JP2008082182A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2008082182A
JP2008082182A JP2006260236A JP2006260236A JP2008082182A JP 2008082182 A JP2008082182 A JP 2008082182A JP 2006260236 A JP2006260236 A JP 2006260236A JP 2006260236 A JP2006260236 A JP 2006260236A JP 2008082182 A JP2008082182 A JP 2008082182A
Authority
JP
Japan
Prior art keywords
compressor
chamber
lubricating oil
pressure chamber
separation chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006260236A
Other languages
Japanese (ja)
Inventor
Seiichiro Nakayama
誠一郎 仲山
Nobuyuki Yamamoto
信之 山本
Maki Shimoyama
真樹 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006260236A priority Critical patent/JP2008082182A/en
Publication of JP2008082182A publication Critical patent/JP2008082182A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compressor which secures in a refrigerating cycle, a lubricating oil amount required for reliability and durability during high-speed rotation of the compressor without deteriorating cooling performance by keeping an appropriate OCR (the lubricating oil amount delivered in the refrigerating cycle) according to the rotational speed of the compressor, and also has large degree of freedom in layout and deals with high-speed rotation even though the position and directivity of the gas refrigerant delivery port of a separation chamber are restricted, in view of the structure of the existing compressor. <P>SOLUTION: A communication passage 20 is formed between a high pressure chamber 14 and a separation chamber 15, the position of a communication passage inlet part 20a is arranged higher than the position of the high pressure chamber 14 in a compressor mounting vertical direction, and the positions of the gas refrigerant delivery port 26 and an introducing hole 19 are made to approach. Thereby, the lubricating oil amount delivered in the refrigerating cycle can be adjusted without causing a lowering in separation performance even though the position and directivity of the gas refrigerant delivery port 26 are restricted. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、流体の圧縮を行う圧縮機に関するもので、特に自動車用空調装置などに用いられる圧縮機に関するものである。   The present invention relates to a compressor that compresses a fluid, and particularly to a compressor that is used in an air conditioner for automobiles.

従来この種の圧縮機においては、圧縮された気流体(以降ガス冷媒と呼ぶ)に伴って圧縮機の潤滑油の一部が空調装置の冷凍サイクル中に吐出され、ガス冷媒中に混ざった潤滑油を利用してベーンやロータ等の圧縮機の摺動部を潤滑しているが、冷凍サイクル中に吐出される圧縮機の潤滑油の量が多くなるとシステム効率が低下してしまうため、圧縮機本体にガス冷媒から潤滑油を分離する分離室を鉛直方向に設け、分離室の下側に分離された潤滑油を貯える貯油室を形成して、冷凍サイクル中に吐出される潤滑油量(以降、OCRと呼ぶ)を出来るだけ少なくするものが提案されている(例えば、特許文献1参照)。   Conventionally, in this type of compressor, a part of the lubricating oil of the compressor is discharged into the refrigeration cycle of the air conditioner along with the compressed gas fluid (hereinafter referred to as a gas refrigerant) and lubrication mixed in the gas refrigerant. Oil is used to lubricate the sliding parts of compressors such as vanes and rotors, but if the amount of lubricating oil discharged from the compressor during the refrigeration cycle increases, the system efficiency will decrease, so compression The machine body is provided with a separation chamber for separating the lubricating oil from the gas refrigerant in the vertical direction, and an oil storage chamber for storing the separated lubricating oil is formed on the lower side of the separation chamber so that the amount of lubricating oil discharged into the refrigeration cycle ( In the following, one that reduces as much as possible (referred to as OCR) has been proposed (see, for example, Patent Document 1).

また、ガス冷媒排出口は、エンジンへの搭載する位置や接続配管の作業性によって、ガス冷媒排出口の分離室は傾斜された構成となり、それに伴い分離室の導入孔位置は、高圧室の下方に設置される構成としている(例えば、特許文献2参照)。   In addition, the gas refrigerant discharge port has a configuration in which the separation chamber of the gas refrigerant discharge port is inclined depending on the mounting position on the engine and the workability of the connecting piping, and the introduction hole position of the separation chamber is located below the high pressure chamber accordingly. (For example, refer to Patent Document 2).

図4、図5は、特許文献2に記載の従来の圧縮機を示すもので、圧縮機構にて圧縮されたガス冷媒が吐出される高圧室114と、旋回させる筒状部分を有する分離室115と、分離室115と高圧室114を連通する導入孔119と、貯油室116へ分離された潤滑油を送る導油路126と、貯油室129と、分離室115と貯油室129を連通する開口123と、ガス冷媒排出口125とから構成されている。
特開2003−90286号公報 特開2005−30278号公報
4 and 5 show a conventional compressor described in Patent Document 2, and a high-pressure chamber 114 into which a gas refrigerant compressed by a compression mechanism is discharged, and a separation chamber 115 having a cylindrical portion to be swung. An introduction hole 119 that communicates the separation chamber 115 and the high-pressure chamber 114, an oil guide passage 126 that sends the separated lubricating oil to the oil storage chamber 116, an oil storage chamber 129, and an opening that communicates the separation chamber 115 and the oil storage chamber 129. 123 and a gas refrigerant outlet 125.
JP 2003-90286 A Japanese Patent Laying-Open No. 2005-30278

しかしながら、前記従来の構成では、高圧室と貯油室の境にある隔壁からの導入孔の位置が離れていて鉛直方向に高い位置に配置されている場合には、高圧室がタンクのような構造になるため、その部分に高圧室内で高圧ガス冷媒が衝突分離された潤滑油が溜まるようになる。その溜まった潤滑油が、圧縮機の回転速度により、つまり高圧ガス冷媒の流速の速さが遅い場合は高圧室内に滞留しているが、速い場合は分離室に吐出されることになる。また、それは導入孔とガス冷媒排出口の位置関係によっても変化する。要するに、ガス排出口に近いほど冷媒ガス中の潤滑油が分離室で分離されずそのまま冷凍サイクルへ吐出されてしまいサイクル中のOCRが高くなることになる。   However, in the above-described conventional configuration, when the position of the introduction hole from the partition wall at the boundary between the high pressure chamber and the oil storage chamber is separated and arranged at a high position in the vertical direction, the high pressure chamber has a structure like a tank. Therefore, the lubricating oil from which the high-pressure gas refrigerant collided and separated in the high-pressure chamber is accumulated in that portion. The accumulated lubricating oil stays in the high-pressure chamber due to the rotational speed of the compressor, that is, when the flow rate of the high-pressure gas refrigerant is slow, but is discharged to the separation chamber when it is fast. It also varies depending on the positional relationship between the introduction hole and the gas refrigerant outlet. In short, the closer to the gas discharge port, the more the lubricating oil in the refrigerant gas is discharged in the refrigeration cycle without being separated in the separation chamber, and the OCR during the cycle becomes higher.

また、高圧室内のタンク部分の深さ(隔壁と導入孔の位置)とか、導入孔とガス排出口との距離に拠っても、サイクル中に吐出される潤滑油量(OCR)が変わる。   Further, the amount of lubricating oil (OCR) discharged during the cycle also changes depending on the depth of the tank portion in the high pressure chamber (position of the partition wall and the introduction hole) or the distance between the introduction hole and the gas discharge port.

従って、OCRが適正値であれば問題ないが、OCR値が圧縮機の回転速度により低くなると性能・信頼性に影響があると言う課題を有していた。   Therefore, there is no problem as long as the OCR is an appropriate value, but there is a problem that if the OCR value becomes lower due to the rotation speed of the compressor, performance and reliability are affected.

また、近年圧縮機には、小型・軽量・高効率化の要求があり、その1つに圧縮機の許容回転数を高くし大容量化を図る案がある。そうなると従来の構成では、圧縮機の許容回転数がより高速になると、冷凍サイクル中の潤滑油量が若干少なめになるため、圧縮機の高速回転時には冷凍サイクル中の潤滑油量を潤滑に必要な量を確保する必要が生じてくる。   In recent years, compressors have been required to be small, light, and highly efficient, and one of them is to increase the allowable rotational speed of the compressor to increase the capacity. Then, in the conventional configuration, if the allowable rotational speed of the compressor becomes higher, the amount of lubricating oil in the refrigeration cycle becomes slightly smaller, so the amount of lubricating oil in the refrigeration cycle is necessary for lubrication when the compressor rotates at high speed. It will be necessary to secure the quantity.

本発明は、従来の課題を解決するもので、冷凍サイクル中の潤滑量を最適し、小型・軽量・高効率・高品質・高耐久で商品性の高い商品を提供するものである。   SUMMARY OF THE INVENTION The present invention solves the conventional problems, and provides a product with high merchantability by optimizing the amount of lubrication in the refrigeration cycle, small size, light weight, high efficiency, high quality, high durability.

前記従来の課題を解決するために本発明の圧縮機は、高圧室と分離室を圧縮機の取付け状態で高圧室の鉛直方向で高い位置から分離室に連通路で連通し、圧縮機の回転数に応じて、高圧室に溜まった潤滑油が前記分離室に吐出されるような高圧室の構造にしたものである。   In order to solve the above-mentioned conventional problems, the compressor of the present invention communicates a high-pressure chamber and a separation chamber from a high position in the vertical direction of the high-pressure chamber in a state where the compressor is attached to the separation chamber through a communication path, and rotates the compressor. According to the number, the high pressure chamber is structured such that the lubricating oil accumulated in the high pressure chamber is discharged into the separation chamber.

これによって、圧縮機のエンジンへ搭載する位置や接続配管の作業性によって、ガス冷媒排出口の位置が圧縮機鉛直方向より傾いた方向に構成されても、高圧室の高い位置に連通路を設け、しかもガス冷媒排出口よりも高い位置にあっても、運転状態に左右されることともなく、冷凍サイクル中に循環する潤滑油が多くなり、ベーンやロータなどの摺動部の潤滑に必要な潤滑油を供給することができる。   As a result, even if the position of the gas refrigerant discharge port is inclined from the vertical direction of the compressor depending on the position of the compressor mounted on the engine and the workability of the connecting piping, the communication path is provided at a high position in the high pressure chamber. And even if it is higher than the gas refrigerant discharge port, it does not depend on the operating condition, and more lubricating oil circulates during the refrigeration cycle, which is necessary for lubrication of sliding parts such as vanes and rotors. Lubricating oil can be supplied.

また、連通路は入り口部を、高圧室の高い位置に設け、かつ分離室の導入孔が、高圧室と連通路により分離されているので、冷媒ガスが直接導油路に侵入せず、貯油室に溜まっている潤滑油中に細かな気泡を含むことを防止することもできる。   In addition, since the communication passage has an inlet at a high position in the high-pressure chamber and the introduction hole of the separation chamber is separated from the high-pressure chamber by the communication passage, the refrigerant gas does not directly enter the oil guide passage, It is also possible to prevent fine bubbles from being included in the lubricating oil accumulated in the chamber.

本発明の圧縮機は、吐出配管の取付け位置・配管の方向性に規制されることなく設計自由度が増すと共に、冷凍サイクル中のOCRを適正に保てることができ圧縮機の信頼性・耐久性を確保することができる。また、近年の圧縮機に要求にも答えることもでき、圧縮機の高速回転化も可能となる。   The compressor of the present invention increases the degree of freedom in design without being restricted by the mounting position of the discharge pipe and the direction of the pipe, and can maintain the OCR in the refrigeration cycle properly, and the reliability and durability of the compressor. Can be secured. In addition, it is possible to respond to the demands of recent compressors, and the compressor can be rotated at a high speed.

第一の発明は、高圧室の鉛直方向で高い位置から分離室に連通路で連通したことにより、高圧室内に溜まったガス冷媒より分離された潤滑油が一気に吐出されず、ガス冷媒の流速により吐出される量が変わるようになり、流速が速いほど吐出量が多く吐出される。従って、圧縮機の回転速度が高いほど冷凍サイクル中のOCRが高くなるため、高速信頼性・高速耐久性を向上することができる。また、配管位置の自由度広くなるため設計の自由度が増すことになる。   According to the first aspect of the present invention, the lubricating oil separated from the gas refrigerant accumulated in the high-pressure chamber is not discharged all at once due to the communication with the separation chamber from a high position in the vertical direction of the high-pressure chamber. The discharge amount changes, and the discharge amount increases as the flow rate increases. Therefore, the higher the rotational speed of the compressor, the higher the OCR in the refrigeration cycle, so that high speed reliability and high speed durability can be improved. In addition, since the degree of freedom of the piping position is widened, the degree of freedom of design is increased.

第二の発明は、第一の発明に加えて高圧室の形状や分離室へガス冷媒が吐出されるまでの流れ方を工夫することにより、圧縮機の回転速度による冷凍サイクル中のOCR値を調整することが可能となる。   In the second invention, in addition to the first invention, the OCR value in the refrigeration cycle according to the rotation speed of the compressor is obtained by devising the shape of the high-pressure chamber and the flow until the gas refrigerant is discharged into the separation chamber. It becomes possible to adjust.

第三の発明は、ガス排出口と導入孔センターまでの位置を20〜25mm、高圧室と貯油室の境の隔壁と導入孔センターまでの位置を20〜40mmとすることによって、第一の発明、第二の発明の効果とする事項をより適正とすることができる。   The third invention is the first invention by setting the position to the gas discharge port and the introduction hole center to 20 to 25 mm, and the position to the partition wall and the introduction hole center at the boundary between the high pressure chamber and the oil storage chamber to 20 to 40 mm. The matters that are the effects of the second invention can be made more appropriate.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって、本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1〜3は、本発明による実施の形態1の圧縮機を示している。図示したように、この圧縮機においては、円筒内壁を有するシリンダ1に略円柱状のロータ2がその外周の一部がシリンダ1の内壁と微少隙間を形成するように回転自在に収容されている。ロータ2には、複数のベーンスロット3が等間隔に設けられており、ベーンスロット3内には、摺動自在にベーン4がそれぞれ挿入されている。ロータ2は、これと一体的に形成された駆動
軸5が回転駆動されることにより回転する。
(Embodiment 1)
1 to 3 show a compressor according to a first embodiment of the present invention. As shown in the figure, in this compressor, a substantially cylindrical rotor 2 is rotatably accommodated in a cylinder 1 having a cylindrical inner wall so that a part of the outer periphery forms a minute gap with the inner wall of the cylinder 1. . The rotor 2 is provided with a plurality of vane slots 3 at equal intervals, and the vanes 4 are slidably inserted into the vane slots 3. The rotor 2 rotates when the drive shaft 5 formed integrally therewith is driven to rotate.

シリンダ1の両端開口部は、それぞれ前部側板6及び後部側板7により閉塞され、シリンダ1内部に作動室8が形成される。作動室8には、吸入口9及び吐出口10が連通し、吐出口10は高圧通路12に接続され、吐出口10と高圧通路12との間には、吐出弁11が配設されている。後部側板7には、高圧ケース13が取り付けられており、高圧ケース13内の高圧室14と貯油室16は隔壁17によって仕切られ、分離室15と貯油室16の間の相互間にはこれらを互いに連通し分離室15にて分離された潤滑油を貯油室16に導く導油路18が形成されている。高圧室14と分離室15の相互間に連通路20を形成し、連通路20の入り口部20aは、分離室15のガス冷媒排出口26より高い位置に配置し、連通路20の出口部は導入孔19で分離室15に連通している。分離室15は、圧縮された高圧流体に含まれる潤滑油を分離するために設けられ、旋回により流体に混ざっている潤滑油の一部を分離し、分離された潤滑油は導油路18を通り貯油室16に溜められる。また、分離されなかった潤滑油を含んだ高圧流体は、ガス冷媒排出口26から冷凍サイクル中(図示せず)へ吐出される。   The opening portions at both ends of the cylinder 1 are respectively closed by the front side plate 6 and the rear side plate 7, and the working chamber 8 is formed inside the cylinder 1. A suction port 9 and a discharge port 10 communicate with the working chamber 8, the discharge port 10 is connected to a high pressure passage 12, and a discharge valve 11 is disposed between the discharge port 10 and the high pressure passage 12. . A high pressure case 13 is attached to the rear side plate 7, and the high pressure chamber 14 and the oil storage chamber 16 in the high pressure case 13 are partitioned by a partition wall 17, and these are separated between the separation chamber 15 and the oil storage chamber 16. An oil guide path 18 that communicates with each other and guides the lubricating oil separated in the separation chamber 15 to the oil storage chamber 16 is formed. A communication passage 20 is formed between the high-pressure chamber 14 and the separation chamber 15, the inlet portion 20 a of the communication passage 20 is disposed at a position higher than the gas refrigerant discharge port 26 of the separation chamber 15, and the outlet portion of the communication passage 20 is The introduction hole 19 communicates with the separation chamber 15. The separation chamber 15 is provided to separate the lubricating oil contained in the compressed high-pressure fluid and separates a part of the lubricating oil mixed in the fluid by swirling, and the separated lubricating oil passes through the oil guide path 18. It is stored in the street oil storage chamber 16. Further, the high-pressure fluid containing the lubricating oil that has not been separated is discharged from the gas refrigerant discharge port 26 into the refrigeration cycle (not shown).

潤滑油の給油は、貯油室16から給油経路の貯油室16側開口であるノズル22から入り、圧縮機構に潤滑油を供給する給油路23を介して行われ、給油路23の途中には、ベーン背圧調整装置24が設けられている。ベーン背圧調整装置24は圧縮機構へ供給する潤滑油の給油圧力や給油量を圧縮機構周辺のガス冷媒圧力に応じて制御する。   Lubricating oil is supplied from the oil storage chamber 16 through a nozzle 22 that is an opening on the oil storage chamber 16 side of the oil supply path, and is supplied via an oil supply passage 23 that supplies the compression mechanism with lubricating oil. A vane back pressure adjusting device 24 is provided. The vane back pressure adjusting device 24 controls the oil supply pressure and the amount of oil supplied to the compression mechanism according to the gas refrigerant pressure around the compression mechanism.

ベーン背圧室25へ供給された潤滑油は、その高圧力によりベーン4をロータ2の外側へ押し出す働きをする。また、潤滑油は給油路23を介して圧縮機構を構成するロータ2、ベーン4、シリンダ1内壁等に供給され、摺動部、微小隙間に入り込み各部を潤滑する。   The lubricating oil supplied to the vane back pressure chamber 25 functions to push the vane 4 to the outside of the rotor 2 due to the high pressure. Lubricating oil is supplied to the rotor 2, the vane 4, the inner wall of the cylinder 1 and the like constituting the compression mechanism via the oil supply passage 23 and enters the sliding portion and the minute gap to lubricate each portion.

以上のように構成された圧縮機について、以下その動作と作用について説明する。図2において、エンジンなどの駆動源より動力伝達を受けて駆動軸5及びロータ2が時計方向に回転すると、これに伴い低圧ガス冷媒が吸入口9より作動室8内に流入する。ロータ2の回転に伴い圧縮された高圧ガス冷媒は、吐出口10より吐出弁11を押し上げて高圧通路12に吐出され、高圧室14内に流入する。高圧ガス冷媒には潤滑油が混ざっていて、その一部の潤滑油は高圧室内の壁とかベーン背圧調整装置24などに衝突し分離され、高圧室14がタンク構造となっているため、高圧室14内に溜まった状態となる。   About the compressor comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. In FIG. 2, when power is transmitted from a driving source such as an engine and the drive shaft 5 and the rotor 2 rotate in the clockwise direction, the low-pressure gas refrigerant flows into the working chamber 8 from the suction port 9. The high-pressure gas refrigerant compressed with the rotation of the rotor 2 pushes up the discharge valve 11 from the discharge port 10 and is discharged into the high-pressure passage 12 and flows into the high-pressure chamber 14. Lubricating oil is mixed in the high-pressure gas refrigerant, and a part of the lubricating oil collides with the wall in the high-pressure chamber or the vane back pressure adjusting device 24 and is separated, and the high-pressure chamber 14 has a tank structure. The state is accumulated in the chamber 14.

次に、高圧ガス冷媒は、連通部20を通り導入孔19から分離室15に流入し、分離室15にて高圧ガス冷媒中に混ざっている潤滑油がさらに分離される。分離室15は、いわゆる遠心分離式オイルセパレータと称される構造で、円筒状の空間にて構成されており、この分離室15内にガス冷媒を導く導入孔19は、円筒状空間内でガス冷媒をより円滑に旋回させるように、円筒状空間の接線方向に高圧ガス冷媒を導くように形成されている。   Next, the high pressure gas refrigerant passes through the communication portion 20 and flows into the separation chamber 15 from the introduction hole 19, and the lubricating oil mixed in the high pressure gas refrigerant is further separated in the separation chamber 15. The separation chamber 15 has a structure referred to as a so-called centrifugal oil separator, and is configured by a cylindrical space. An introduction hole 19 for introducing a gas refrigerant into the separation chamber 15 is a gas in the cylindrical space. It is formed so as to guide the high-pressure gas refrigerant in the tangential direction of the cylindrical space so that the refrigerant turns more smoothly.

従って、導入された高圧ガス冷媒は、円筒状空間を旋回しつつ潤滑油を分離され、分離室15の上端に開口された排出口26より空調装置の冷凍サイクルに向けて吐出される。分離された潤滑油は、導油路18の内周面に沿って下方に移動し、貯油室16に溜められる。   Accordingly, the introduced high-pressure gas refrigerant is separated from the lubricating oil while swirling in the cylindrical space, and is discharged toward the refrigeration cycle of the air conditioner from the discharge port 26 opened at the upper end of the separation chamber 15. The separated lubricating oil moves downward along the inner peripheral surface of the oil guide path 18 and is stored in the oil storage chamber 16.

ところで、本実施形態では連通路20は、図3に示すように、高圧室14と分離室15の相互間に連通路20を形成し、連通路の入り口部20aは、高圧室14の圧縮機の装着状態で鉛直上方に配置している。   By the way, in this embodiment, the communication path 20 forms the communication path 20 between the high pressure chamber 14 and the separation chamber 15 as shown in FIG. 3, and the inlet portion 20 a of the communication path is a compressor of the high pressure chamber 14. It is arranged vertically upward in the mounted state.

また、出口部は、導入孔19になり分離室15に連通している。そして分離室15の上
部にあるガス冷媒排出口26は、配管取付けの都合により、導入孔より高い位置に配置している。
Further, the outlet portion becomes an introduction hole 19 and communicates with the separation chamber 15. And the gas refrigerant discharge port 26 in the upper part of the separation chamber 15 is arranged at a position higher than the introduction hole for convenience of piping installation.

また、ガス冷媒排出口26と導入孔19の位置関係は、導入孔19のセンター位置とガス冷媒排出口26は、12mm程度で近接している。そのため高圧室14と隔壁17の距離は、50mmほど高い位置に配置している。これによって、圧縮機の回転速度が低速の時には、高圧室14内に溜まっている潤滑油は、高圧室内に溜まった状態にある。   Further, the positional relationship between the gas refrigerant discharge port 26 and the introduction hole 19 is such that the center position of the introduction hole 19 and the gas refrigerant discharge port 26 are approximately 12 mm close to each other. Therefore, the distance between the high-pressure chamber 14 and the partition wall 17 is arranged at a position as high as 50 mm. As a result, when the rotation speed of the compressor is low, the lubricating oil accumulated in the high pressure chamber 14 is in a state accumulated in the high pressure chamber.

しかし圧縮機の高速回転時には、高圧室14に溜まっている潤滑油は、高圧ガス冷媒の流速が速くなるため分離室へ吐出されるようになり、システムのOCRが上がる。従って、ベーンやロータなどの摺動部の潤滑に必要な潤滑油を供給することができ、圧縮機の信頼性、耐久性を向上することができる。   However, when the compressor rotates at high speed, the lubricating oil accumulated in the high-pressure chamber 14 is discharged into the separation chamber because the flow rate of the high-pressure gas refrigerant is increased, and the OCR of the system is increased. Accordingly, it is possible to supply lubricating oil necessary for lubricating sliding portions such as vanes and rotors, and to improve the reliability and durability of the compressor.

このように、潤滑油を分離する分離室を有する圧縮機において、分離室15のガス冷媒排出口26の位置や方向性が制約されても、低速運転時には分離性能の低下を来さず冷凍サイクル中に循環する潤滑油が少なくなるので冷凍サイクルの冷房性能を増大し、高速運転時には冷凍サイクル中に循環する潤滑油が多くなり、ベーンやロータなどの摺動部の潤滑に必要な潤滑油を供給することができるので圧縮機の信頼性、耐久性を向上することができ近年の圧縮機の高速化にも対応できる。   Thus, in a compressor having a separation chamber for separating lubricating oil, even if the position and direction of the gas refrigerant outlet 26 of the separation chamber 15 are restricted, the refrigeration cycle does not cause a decrease in separation performance during low-speed operation. The cooling oil in the refrigeration cycle is increased because less lubricating oil circulates in the interior, and the lubricating oil that circulates in the refrigeration cycle increases during high-speed operation, and the lubricating oil necessary for lubricating sliding parts such as vanes and rotors is increased. Since it can be supplied, the reliability and durability of the compressor can be improved, and it is possible to cope with the recent increase in the speed of the compressor.

本発明の圧縮機は、分離室の排出口の位置や方向性が制約されても、低速運転時には分離性能の低下を来さず冷凍サイクル中のオイル循環量を少なくして冷凍サイクルの冷房性能を増大することができ、高速運転時には、冷凍サイクル中に潤滑油を適度に循環させて、ベーンやロータなどの摺動部の潤滑に必要な潤滑油を供給することができるので、圧縮機の信頼性、耐久性を確保し高速化を実現することができるので、自動車用空調装置などの圧縮機やその他の各種圧縮機に有用である。   The compressor of the present invention reduces the amount of oil circulation in the refrigeration cycle and reduces the cooling performance of the refrigeration cycle without reducing the separation performance during low speed operation even if the position and directionality of the outlet of the separation chamber are restricted. During high-speed operation, the lubricating oil can be circulated appropriately during the refrigeration cycle, and the lubricating oil necessary for lubricating sliding parts such as vanes and rotors can be supplied. Since reliability and durability can be secured and high speed can be realized, it is useful for compressors such as automobile air conditioners and other various compressors.

本発明の第1の実施形態の圧縮機の縦断面図The longitudinal cross-sectional view of the compressor of the 1st Embodiment of this invention 図1のB−B矢視断面図BB arrow sectional view of FIG. 図1のC−C矢視断面図CC sectional view of FIG. 従来例の圧縮機の縦断面図Vertical section of a conventional compressor 図4のA−A矢視断面図AA arrow sectional view of FIG.

符号の説明Explanation of symbols

1 シリンダ
2 ロータ
3 ベーンスロット
4 ベーン
5 駆動軸
6 前部側板
7 後部側板
8 作動室
10 吐出口
11 吐出弁
12 高圧通路
13 高圧室ケース
14 高圧室
15 分離室
16 貯油室
17 隔壁
18 導油路
19 導入孔
20 連通部
20a 連通部入り口
22 ノズル
23 給油路
24 ベーン背圧調整装置
25 ベーン背圧室
26 ガス冷媒排出口
Reference Signs List 1 cylinder 2 rotor 3 vane slot 4 vane 5 drive shaft 6 front side plate 7 rear side plate 8 working chamber 10 discharge port 11 discharge valve 12 high pressure passage 13 high pressure chamber case 14 high pressure chamber 15 separation chamber 16 oil storage chamber 17 partition wall 18 oil guide passage DESCRIPTION OF SYMBOLS 19 Introduction hole 20 Communication part 20a Communication part entrance 22 Nozzle 23 Oil supply path 24 Vane back pressure regulator 25 Vane back pressure chamber 26 Gas refrigerant discharge port

Claims (3)

潤滑油を含む流体を圧縮する圧縮機構と、前記圧縮機構により圧縮された前記流体を吐出する高圧室と、前記流体が分離される分離室と、前記分離室にて前記流体から分離された潤滑油が貯えられる貯油室と、圧縮機構には流体を吸入する吸入口と流体を排出するガス排出口を備え、前記高圧室と前記分離室を導入孔により連通し、前記貯油室と前記分離室は排油孔で連通している圧縮機であって、前記高圧室と前記分離室を高圧室の鉛直方向の高い位置から前記分離室に連通路で連通したことを特徴とする圧縮機。 A compression mechanism for compressing a fluid containing lubricating oil; a high-pressure chamber for discharging the fluid compressed by the compression mechanism; a separation chamber for separating the fluid; and a lubrication separated from the fluid in the separation chamber. An oil storage chamber for storing oil; a compression mechanism having a suction port for sucking fluid; and a gas discharge port for discharging fluid; the high pressure chamber and the separation chamber communicate with each other through an introduction hole; and the oil storage chamber and the separation chamber Is a compressor communicating with an oil discharge hole, wherein the high pressure chamber and the separation chamber are communicated with the separation chamber from a high position in the vertical direction of the high pressure chamber through a communication path. 圧縮機の回転速度に応じて、前記高圧室に溜まった潤滑油が前記分離室に吐出されるような高圧室の構造にしたことを特徴とする請求項1に記載の圧縮機。 2. The compressor according to claim 1, wherein the high-pressure chamber is configured such that lubricating oil accumulated in the high-pressure chamber is discharged into the separation chamber in accordance with a rotation speed of the compressor. 前記ガス排出口と前記導入孔センターまでの位置を20〜25mm、前記導入孔センターから前記貯油室と前記高圧室の境にある隔壁までの距離を20〜40mmとする請求項1または2記載の圧縮機。 The position from the gas introduction port to the introduction hole center is 20 to 25 mm, and the distance from the introduction hole center to the partition wall at the boundary between the oil storage chamber and the high pressure chamber is 20 to 40 mm. Compressor.
JP2006260236A 2006-09-26 2006-09-26 Compressor Withdrawn JP2008082182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006260236A JP2008082182A (en) 2006-09-26 2006-09-26 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006260236A JP2008082182A (en) 2006-09-26 2006-09-26 Compressor

Publications (1)

Publication Number Publication Date
JP2008082182A true JP2008082182A (en) 2008-04-10

Family

ID=39353311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006260236A Withdrawn JP2008082182A (en) 2006-09-26 2006-09-26 Compressor

Country Status (1)

Country Link
JP (1) JP2008082182A (en)

Similar Documents

Publication Publication Date Title
EP2309132B1 (en) Horizontal scroll compressor
JP4788746B2 (en) Compressor
JP4218373B2 (en) Compressor
JP2009221960A (en) Compressor
JP2019056322A (en) Compressor
JP2008082182A (en) Compressor
JP2007309282A (en) Compressor
JP4045856B2 (en) Compressor
EP3988786B1 (en) Compressor
EP3985256B1 (en) Scroll compressor
JP2006029218A (en) Compressor
JP2006037895A (en) Compressor
JP2005054745A (en) Compressor
JP2006037928A (en) Compressor
JP2008025349A (en) Compressor
JP4378970B2 (en) Compressor
JP2005325734A (en) Compressor
JP4194307B2 (en) Oil separator and gas compressor provided with the same
JP2005307765A (en) Compressor
JP2005307897A (en) Compressor
JP2006037894A (en) Compressor
CN101290010B (en) Compressor
JP2005299391A (en) Compressor
JP2012017688A (en) Compressor
JP2005054714A (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090220

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Effective date: 20091127

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100706