JP2012017688A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2012017688A
JP2012017688A JP2010155636A JP2010155636A JP2012017688A JP 2012017688 A JP2012017688 A JP 2012017688A JP 2010155636 A JP2010155636 A JP 2010155636A JP 2010155636 A JP2010155636 A JP 2010155636A JP 2012017688 A JP2012017688 A JP 2012017688A
Authority
JP
Japan
Prior art keywords
compressor
lubricating oil
chamber
storage chamber
oil storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010155636A
Other languages
Japanese (ja)
Inventor
Koji Hirose
孝司 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010155636A priority Critical patent/JP2012017688A/en
Publication of JP2012017688A publication Critical patent/JP2012017688A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To suppress an excessive rise of a discharge temperature as the amount of lubricating oil contained in a refrigerant in a system cycle decreases rapidly, preventing the reliability of a compressor from lowering.SOLUTION: The compressor has a constitution including a communication passage 59 which allows an air flow body to move between an oil storage chamber 52 and a high-pressure chamber 14, and a valve 60 which opens and closes the communication passage by the vibration of the compressor. As a result, when the rotating speed of the compressor rises and the vibration value of an engine to which the compressor is installed increases, the valve 60 is opened by the vibration, a part of a discharge flow enters from the high-pressure chamber to the oil storage chamber, a lubricating oil surface collected in the oil storage chamber gets turbulent, and a part thereof is discharged in the system cycle. Therefore, the amount of lubricating oil contained in the refrigerant which has been insufficient in the system cycle becomes the proper quantity, so that the discharge temperature decreases and the compressor reliability can be secured.

Description

本発明は、気流体の圧縮を行う圧縮機に関するもので、例えば自動車用空調装置など圧縮機等に関するものである。   The present invention relates to a compressor that compresses gas fluid, and relates to a compressor such as an air conditioner for an automobile.

従来、この種の圧縮機は、圧縮された気流体と共に圧縮機構を潤滑する潤滑油の一部を圧縮機から空調装置のシステムサイクル中へ吐出してしまう。圧縮機より気流体と共に吐出される潤滑油の量がシステムサイクル中に多くなればなるほど空調装置のシステム効率が低下する。   Conventionally, this type of compressor discharges part of the lubricating oil that lubricates the compression mechanism together with the compressed gas fluid from the compressor into the system cycle of the air conditioner. As the amount of lubricating oil discharged from the compressor together with the gas fluid increases during the system cycle, the system efficiency of the air conditioner decreases.

このため、従来の圧縮機においては、空調装置のシステムサイクル中への潤滑油の吐出を抑制し空調装置のシステム効率を向上させるため、圧縮機構の吐出側に、圧縮された流体から潤滑油を分離する分離室を設けている。分離室の下側(重力の向き)には分離された潤滑油を貯える貯油室が形成され、分離室で分離された潤滑油を貯油室に排出する排出孔が分離室に形成されている。また、排出孔開口部から吹き出される潤滑油が貯油室に溜まった潤滑油面に当たり油面が波立ち変動するのを抑制すべく衝突壁を形成し、貯油室内の供給ポートより貯油室に溜まった潤滑油を圧縮機の潤滑部に供給している(例えば、特許文献1参照)。   Therefore, in the conventional compressor, in order to suppress the discharge of the lubricating oil during the system cycle of the air conditioner and improve the system efficiency of the air conditioner, the lubricating oil is supplied from the compressed fluid to the discharge side of the compression mechanism. A separation chamber for separation is provided. An oil storage chamber for storing the separated lubricating oil is formed below the separation chamber (direction of gravity), and a discharge hole for discharging the lubricating oil separated in the separation chamber to the oil storage chamber is formed in the separation chamber. Also, a collision wall was formed to suppress the oil surface that the lubricant blown from the opening of the discharge hole hit the lubricant surface accumulated in the oil storage chamber and fluctuated and accumulated in the oil storage chamber from the supply port in the oil storage chamber. Lubricating oil is supplied to the lubricating part of the compressor (see, for example, Patent Document 1).

特開平11−82352号公報JP 11-82352 A

ところで当該特許文献1記載の圧縮機においては、圧縮機が高速回転になるほど、分離室内の気流体の旋回流も速くなり、潤滑油の分離効率が向上し、システムサイクル中の冷媒に含まれる潤滑油量が減りシステム効率が向上する。しかし、システムサイクル中へ吐出する潤滑油が少なくなりすぎると冷媒中に含有される潤滑油の量が少なくなり、システムサイクル中のオイル循環率(OCR)が悪くなる。OCRが悪くなると吐出ガスに含まれる潤滑油が少なくなり、その吸熱作用が少なくなるため、見かけ上、吐出ガスの温度は上昇する。延いては、圧縮機構の焼き付き等の原因になり、圧縮機の信頼性、耐久性が悪くなる。   By the way, in the compressor described in Patent Document 1, as the compressor rotates at a higher speed, the swirling flow of the air-fluid in the separation chamber becomes faster, the separation efficiency of the lubricating oil is improved, and the lubrication contained in the refrigerant in the system cycle. Reduces oil volume and improves system efficiency. However, when the amount of lubricating oil discharged into the system cycle is too small, the amount of lubricating oil contained in the refrigerant is reduced, and the oil circulation rate (OCR) during the system cycle is deteriorated. When the OCR deteriorates, the amount of lubricating oil contained in the discharge gas decreases and the endothermic action decreases, so that the temperature of the discharge gas apparently increases. As a result, the compression mechanism is burned in, and the reliability and durability of the compressor are deteriorated.

そこで本発明は上述の従来の課題に鑑み、空調装置のシステムサイクル中の冷媒に含有する潤滑油量が高速で少なくなり吐出温度が過度に上昇することを抑制し圧縮機の信頼性を低下しないようにした圧縮機を提供することを目的とする。   Therefore, in view of the above-described conventional problems, the present invention prevents the amount of lubricating oil contained in the refrigerant in the system cycle of the air conditioner from decreasing at a high speed and excessively increasing the discharge temperature, and does not decrease the reliability of the compressor. An object of the present invention is to provide such a compressor.

上記目的を達成するために、本発明による圧縮機においては、貯油室と高圧室との間において、これら相互間の気流体移動を許容する連通路と、圧縮機の振動によって開閉する開閉弁を設けた構成としてある。   In order to achieve the above object, in the compressor according to the present invention, there are provided a communication passage that allows gas-fluid movement between the oil storage chamber and the high-pressure chamber, and an on-off valve that opens and closes due to the vibration of the compressor. The configuration is provided.

このような構成によって、圧縮機の回転数が上昇し当該圧縮機を取り付けたエンジンの振動値が上昇すると、開閉弁が振動することで開弁する。そのとき高圧室と貯油室の静圧の差により圧縮機の吐出流れの一部が高圧室から上記連通路より貯油室内へ流入する。貯油室に流入する吐出流れによって貯油室に溜まった潤滑油面は乱れ、波立つため、貯油室
と分離室を結ぶ連絡口より潤滑油の一部が噴出され、その噴出された潤滑油は分離室からガス排出口へそしてシステムサイクル中へと潤滑油が吐出されることになる。よって、システムサイクル中の冷媒に含まれる潤滑油量は増えることになり、システムサイクル中に不足していた冷媒に含有する潤滑油量が適量になり、吐出温度は低下し圧縮機信頼性を確保することが出来る。
With such a configuration, when the rotation speed of the compressor increases and the vibration value of the engine to which the compressor is attached increases, the on-off valve is opened by vibration. At that time, due to the difference in static pressure between the high pressure chamber and the oil storage chamber, a part of the discharge flow of the compressor flows from the high pressure chamber into the oil storage chamber through the communication passage. The surface of the lubricating oil accumulated in the oil storage chamber is disturbed and undulated by the discharge flow flowing into the oil storage chamber, so a part of the lubricating oil is ejected from the connection port connecting the oil storage chamber and the separation chamber, and the ejected lubricating oil is separated. Lubricating oil will be discharged from the chamber to the gas outlet and into the system cycle. Therefore, the amount of lubricating oil contained in the refrigerant during the system cycle will increase, the amount of lubricating oil contained in the refrigerant that was lacking during the system cycle will be appropriate, the discharge temperature will fall, and the compressor reliability will be ensured I can do it.

本発明の圧縮機は、高圧室と貯油室を連通する連通路を設け、吐出流の一部を高圧室から貯油室へ流れ込ませることにより、圧縮機の高速回転時において、圧縮機の潤滑部における潤滑不足を解消させ信頼性の向上を図ることが出来る。また、圧縮機回転数が低い場合はシステム効率をあげ冷房性能の向上を図ることが出来る。   The compressor of the present invention is provided with a communication passage that communicates the high pressure chamber and the oil storage chamber, and allows a part of the discharge flow to flow from the high pressure chamber to the oil storage chamber, so that the lubricating portion of the compressor can be used at high speed rotation of the compressor Insufficient lubrication can be resolved and reliability can be improved. Also, when the compressor speed is low, the system efficiency can be increased and the cooling performance can be improved.

本発明の実施の形態1における圧縮機の横断面図Cross section of the compressor in Embodiment 1 of the present invention 図1に示した圧縮機の作動室A−Aの断面図Sectional drawing of the working chamber AA of the compressor shown in FIG. 同実施の形態1における高圧ケースを作動室側から見た断面図Sectional drawing which looked at the high pressure case in Embodiment 1 from the working chamber side

第1の発明は、潤滑油を含む気流体を圧縮する圧縮機構と、前記圧縮機構により圧縮された前記気流体が導かれる高圧室と、前記気流体に含まれる潤滑油の少なくとも一部が分離される分離室と、前記分離室にて前記気流体から分離された潤滑油が貯えられる貯油室とを備える圧縮機であって、前記貯油室と前記高圧室とを連通する連通路と、高圧室側に設けられ前記連通路を開閉する浮動自在な開閉弁と、前記開閉弁を遊びを持って拘束する弁押さえ板とを設けた構成としてある。これによって、圧縮機の回転数が上昇し当該圧縮機を取り付けたエンジンの振動値が上昇すると、開閉弁が振動することで開弁する。そのとき高圧室と貯油室の静圧の差により圧縮機の吐出流れの一部が高圧室から上記連通路より貯油室内へ流入する。貯油室に流入する吐出流れによって貯油室に溜まった潤滑油面は乱れ、波立つため、貯油室と分離室を結ぶ連絡口より潤滑油の一部が噴出され、その噴出された潤滑油は分離室からガス排出口へそしてシステムサイクル中へと潤滑油が吐出されることになる。よって、システムサイクル中の冷媒に含まれる潤滑油量は増えることになり、システムサイクル中に不足していた冷媒に含有する潤滑油量が適量になり、吐出温度は低下し圧縮機信頼性を確保することが出来る。従って、開閉弁の開弁する設定回転数を変えることで、空調装置のシステムサイクル中の冷媒に含有する潤滑油量コントロールし圧縮機の信頼性を確保し空調装置のシステム効率を最適値にコントロールができる圧縮機を提供することができる。   According to a first aspect of the present invention, a compression mechanism for compressing a gas fluid containing lubricating oil, a high-pressure chamber to which the gas fluid compressed by the compression mechanism is guided, and at least a part of the lubricating oil contained in the gas fluid are separated. A compressor that includes a separation chamber and an oil storage chamber in which lubricating oil separated from the gas fluid in the separation chamber is stored, and a communication passage that communicates the oil storage chamber and the high-pressure chamber; A floating on-off valve provided on the chamber side for opening and closing the communication passage and a valve pressing plate for restraining the on-off valve with play are provided. As a result, when the rotational speed of the compressor increases and the vibration value of the engine to which the compressor is attached increases, the on-off valve vibrates and opens. At that time, due to the difference in static pressure between the high pressure chamber and the oil storage chamber, a part of the discharge flow of the compressor flows from the high pressure chamber into the oil storage chamber through the communication passage. The surface of the lubricating oil accumulated in the oil storage chamber is disturbed and waved by the discharge flow flowing into the oil storage chamber, so a part of the lubricating oil is ejected from the connection port connecting the oil storage chamber and the separation chamber, and the ejected lubricating oil is separated. Lubricating oil will be discharged from the chamber to the gas outlet and into the system cycle. Therefore, the amount of lubricating oil contained in the refrigerant during the system cycle will increase, the amount of lubricating oil contained in the refrigerant that was lacking during the system cycle will be appropriate, the discharge temperature will fall, and the compressor reliability will be ensured I can do it. Therefore, by changing the set rotational speed at which the on-off valve opens, the amount of lubricating oil contained in the refrigerant in the system cycle of the air conditioner is controlled to ensure the reliability of the compressor and control the system efficiency of the air conditioner to the optimum value. The compressor which can be provided can be provided.

第2の発明は、前記圧縮機のロータの回転数が所定の回転数以上のときに開弁し、所定の回転数以下のときに閉弁するように開閉弁を設定してあり、空調装置のシステムサイクル中の冷媒に含有する潤滑油量コントロールし、圧縮機の信頼性を確保し空調装置のシステム効率を最適値にコントロールができる圧縮機を提供することができる。   According to a second aspect of the present invention, an on-off valve is set so that the valve is opened when the rotational speed of the rotor of the compressor is equal to or higher than a predetermined rotational speed, and is closed when the rotational speed is equal to or lower than the predetermined rotational speed. It is possible to provide a compressor capable of controlling the amount of lubricating oil contained in the refrigerant in the system cycle, ensuring the reliability of the compressor, and controlling the system efficiency of the air conditioner to an optimum value.

以下、本発明の圧縮機について、添付図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   The compressor of the present invention will be described below with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.

(実施形態1)
図1は本発明の実施の形態1における圧縮機の横断面図、図2は同作動室の断面図、図3は同圧縮機の作動室側から見た高圧ケースの断面図である。
(Embodiment 1)
1 is a cross-sectional view of a compressor according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view of the working chamber, and FIG. 3 is a cross-sectional view of a high-pressure case viewed from the working chamber side of the compressor.

図示したように、この圧縮機においては、円筒内壁を有するシリンダ1に略円柱状のロータ2が、その外周の一部がシリンダ1の内壁と微少隙間を形成するように回転自在に収
容されている。ロータ2には複数のベーンスロット3が等間隔に設けられており、ベーンスロット3内には、摺動自在にベーン4がそれぞれ挿入されている。ロータ2はこれと一体的に形成された駆動軸5が回転駆動されることにより回転する。
As shown in the figure, in this compressor, a substantially cylindrical rotor 2 is rotatably accommodated in a cylinder 1 having a cylindrical inner wall so that a part of the outer periphery forms a minute gap with the inner wall of the cylinder 1. Yes. A plurality of vane slots 3 are provided at equal intervals in the rotor 2, and vanes 4 are slidably inserted into the vane slots 3. The rotor 2 rotates when a drive shaft 5 formed integrally therewith is driven to rotate.

シリンダ1の両端開口部はそれぞれ前部側板6及び後部側板7により閉塞され、シリンダ1内部に作動室8が形成される。作動室8には吸入口9及び吐出口10が連通し、吐出口10は高圧通路13に接続され、吐出口10と高圧通路13との間には吐出弁11が配設されている。後部側板7には高圧ケース12が取り付けられており、高圧ケース12内には高圧室14、分離室51及び貯油室52が形成されている。高圧室14は導入孔53を介して分離室51と連通している。分離室51は、圧縮された高圧流体にふくまれる潤滑油を分離するために設けられている。分離室51は導油路50を介して貯油室52と連通している。   The opening portions at both ends of the cylinder 1 are respectively closed by the front side plate 6 and the rear side plate 7, and the working chamber 8 is formed inside the cylinder 1. A suction port 9 and a discharge port 10 communicate with the working chamber 8, the discharge port 10 is connected to a high-pressure passage 13, and a discharge valve 11 is disposed between the discharge port 10 and the high-pressure passage 13. A high pressure case 12 is attached to the rear side plate 7, and a high pressure chamber 14, a separation chamber 51, and an oil storage chamber 52 are formed in the high pressure case 12. The high pressure chamber 14 communicates with the separation chamber 51 through the introduction hole 53. The separation chamber 51 is provided to separate the lubricating oil contained in the compressed high-pressure fluid. The separation chamber 51 communicates with the oil storage chamber 52 via the oil guide passage 50.

貯油室52に貯められた潤滑油は、給油路18を介して圧縮機構を構成するロータ2、ベーン4、シリンダ1内壁等に供給され、各部を潤滑すると共に、ベーン背圧室17に供給され、その圧力によりベーン4をロータ2の外側へ押し出す働きをする。潤滑油の給油は貯油室52から圧縮機構に潤滑油を供給する給油路18を介して行われ、給油路18の途中には、ベーン背圧付与装置16が設けられている。ベーン背圧付与装置16は圧縮機構へ供給する潤滑油の給油圧力や給油量を圧縮機構周辺の流体(冷媒)圧力に応じて制御する。   Lubricating oil stored in the oil storage chamber 52 is supplied to the rotor 2, the vane 4, the inner wall of the cylinder 1 and the like constituting the compression mechanism via the oil supply passage 18, lubricates each part, and is supplied to the vane back pressure chamber 17. The pressure serves to push out the vane 4 to the outside of the rotor 2. Lubricating oil is supplied from an oil storage chamber 52 via an oil supply passage 18 that supplies the lubricating oil to the compression mechanism, and a vane back pressure applying device 16 is provided in the middle of the oil supply passage 18. The vane back pressure applying device 16 controls the oil supply pressure and the amount of oil supplied to the compression mechanism according to the fluid (refrigerant) pressure around the compression mechanism.

エンジンなどの駆動源より動力伝達を受けて駆動軸5及びロータ2が、図2において時計方向に回転すると、これに伴い低圧流体(冷媒)が吸入口9より作動室8内に流入する。ロータ2の回転に伴い圧縮された高圧流体は吐出口10より吐出弁11を押し上げて高圧通路13に吐出され、高圧室14内に流入する。さらに、高圧流体は導入孔53から分離室51に流入し、分離室51で高圧流体に含まれる潤滑油が分離される。   When power is transmitted from a driving source such as an engine and the drive shaft 5 and the rotor 2 rotate clockwise in FIG. 2, a low-pressure fluid (refrigerant) flows into the working chamber 8 from the suction port 9. The high pressure fluid compressed along with the rotation of the rotor 2 pushes up the discharge valve 11 from the discharge port 10 and is discharged into the high pressure passage 13 and flows into the high pressure chamber 14. Further, the high pressure fluid flows into the separation chamber 51 from the introduction hole 53, and the lubricating oil contained in the high pressure fluid is separated in the separation chamber 51.

ところで、分離室51は円筒状の空間となっており、この円筒空間に高圧流体を導く導入孔53は、この円筒空間の接線方向に高圧流体を導くように、形成されている。したがって、高圧流体に含まれる潤滑油は円筒空間を旋回中に遠心力により、分離室51の円筒状部の内周面49に接触し冷媒ガスから分離される。高圧流体はガス排出口58より圧縮機外に吐出され、分離された潤滑油は内周面49に沿って下方に移動する。本実施形態では、円筒空間下部にこれに結合して略逆円錐状の空間が形成されており、分離室51は主にこの略逆円錐状の空間と上述の円筒空間とから構成される。   By the way, the separation chamber 51 is a cylindrical space, and the introduction hole 53 for guiding the high-pressure fluid to the cylindrical space is formed so as to guide the high-pressure fluid in the tangential direction of the cylindrical space. Therefore, the lubricating oil contained in the high-pressure fluid comes into contact with the inner peripheral surface 49 of the cylindrical portion of the separation chamber 51 and is separated from the refrigerant gas by centrifugal force while turning in the cylindrical space. The high-pressure fluid is discharged from the gas outlet 58 to the outside of the compressor, and the separated lubricating oil moves downward along the inner peripheral surface 49. In this embodiment, a substantially inverted conical space is formed at the lower part of the cylindrical space, and the separation chamber 51 is mainly composed of the substantially inverted conical space and the above-described cylindrical space.

分離室51の下端部には分離された潤滑油を貯油室52に導く導油路50が形成されている。導油路50は、図1に示したように、鉛直下方に向かって形成されており、導油路50の貯油室側開口部54は貯油室52に貯まった潤滑油の油面より鉛直方向において下方の潤滑油中で開口している。そして、貯油室52内上部と分離室51との間に、これら相互間の流体移動を許容する再導入孔57を設けることにより、貯油室52上部に貯まった冷媒ガス等の気体流を分離室51に移動させ、分離室内の油面を、貯油室の油面に対して、鉛直方向に同等か、少し下方向になるように作用させている。   An oil guide passage 50 that guides the separated lubricating oil to the oil storage chamber 52 is formed at the lower end of the separation chamber 51. As shown in FIG. 1, the oil guide passage 50 is formed vertically downward, and the oil storage chamber side opening 54 of the oil guide passage 50 is perpendicular to the oil level of the lubricating oil stored in the oil storage chamber 52. In the lower lubricating oil. Then, by providing a reintroduction hole 57 that allows fluid movement between the upper part in the oil storage chamber 52 and the separation chamber 51, a gas flow such as refrigerant gas stored in the upper part of the oil storage chamber 52 is allowed to flow. The oil level in the separation chamber is made to be equal to the vertical direction or slightly lower than the oil level in the oil storage chamber.

さらに、貯油室52の内上部と高圧室14との間の仕切壁には、0.15〜0.5φ断面積の連通路59を形成している。連通路59は1個又は複数個になる場合もある。そしてこの連通路59の高圧室側には振動によって当該連通路59を開閉する浮動自在な開閉弁60と、前記開閉弁60を遊びを持って拘束する弁押さえ板61とが設けてある。   Further, a communication passage 59 having a cross-sectional area of 0.15 to 0.5φ is formed in the partition wall between the inner upper portion of the oil storage chamber 52 and the high-pressure chamber 14. There may be one or a plurality of communication paths 59. A floating on-off valve 60 that opens and closes the communication passage 59 by vibration and a valve pressing plate 61 that restrains the on-off valve 60 with play are provided on the high-pressure chamber side of the communication passage 59.

このような構成によって、圧縮機の回転数が上昇し当該圧縮機を取り付けたエンジンの振動値が上昇すると、開閉弁60が振動することで開弁する。そのとき高圧室14と貯油
室52の静圧の差により圧縮機の吐出流れの一部が高圧室14から上記連通路59より貯油室52内へ流入する。貯油室52に流入する吐出流れによって貯油室52に溜まった潤滑油面は乱れ、波立つため、貯油室52と分離室51を結ぶ連絡口より潤滑油の一部が噴出され、その噴出された潤滑油は分離室51からガス排出口へそしてシステムサイクル中へと潤滑油が吐出されることになる。よって、システムサイクル中の冷媒に含まれる潤滑油量は増えることになり、システムサイクル中に不足していた冷媒に含有する潤滑油量が適量になり、吐出温度は低下し圧縮機信頼性を確保することが出来る。
With such a configuration, when the rotation speed of the compressor increases and the vibration value of the engine to which the compressor is attached increases, the on-off valve 60 is opened by vibration. At that time, due to the difference in static pressure between the high pressure chamber 14 and the oil storage chamber 52, a part of the compressor discharge flow flows from the high pressure chamber 14 into the oil storage chamber 52 through the communication passage 59. Since the surface of the lubricating oil accumulated in the oil storage chamber 52 is disturbed and waved by the discharge flow flowing into the oil storage chamber 52, a part of the lubricating oil is ejected from the connection port connecting the oil storage chamber 52 and the separation chamber 51, Lubricating oil will be discharged from the separation chamber 51 to the gas outlet and into the system cycle. Therefore, the amount of lubricating oil contained in the refrigerant during the system cycle will increase, the amount of lubricating oil contained in the refrigerant that was lacking during the system cycle will be appropriate, the discharge temperature will fall, and the compressor reliability will be ensured I can do it.

すなわち、この圧縮機では、当該圧縮機を取り付けているエンジンなどの振動で開閉弁60が小刻みに振動して連通路59を開閉する、すなわち吐出流の一部を連通路59から貯油室52へ導入することができ、連通路59がない場合と比較すると連通路59がある場合は、圧縮機回転数(Nc)が高くなるほどオイル循環率(OCR)が大きくなり、システム中の冷媒に含まれる潤滑油の量を多くさせることができる。また回転数が低い場合は、逆にOCRを低く抑えシステム効率は良くすることができる。信頼性としては、圧縮機が高速回転の時懸念される潤滑部への潤滑油の補給がこのような構成により冷媒中の潤滑油量を適正量にするこが出来るため信頼性の確保ができる。   That is, in this compressor, the on-off valve 60 vibrates in small increments due to vibration of the engine or the like to which the compressor is attached, that is, opens and closes the communication passage 59, that is, a part of the discharge flow from the communication passage 59 to the oil storage chamber 52. When the communication passage 59 is present as compared with the case where the communication passage 59 is not present, the oil circulation rate (OCR) increases as the compressor rotational speed (Nc) increases and is included in the refrigerant in the system. The amount of lubricating oil can be increased. On the other hand, when the rotational speed is low, the OCR can be kept low and the system efficiency can be improved. As for reliability, replenishment of lubricating oil to the lubricating part, which is a concern when the compressor rotates at high speed, can make the amount of lubricating oil in the refrigerant appropriate by such a configuration, thus ensuring reliability. .

また、上記開閉弁60の開弁する設定回転数を変えることで、空調装置のシステムサイクル中の冷媒に含有する潤滑油量コントロールし、圧縮機の信頼性を確保し空調装置のシステム効率を最適値にコントロールができる圧縮機を提供することができる。   In addition, the amount of lubricating oil contained in the refrigerant in the system cycle of the air conditioner is controlled by changing the set rotational speed at which the on-off valve 60 opens, ensuring the reliability of the compressor and optimizing the system efficiency of the air conditioner. A compressor capable of controlling the value can be provided.

なお、上述の実施形態では、圧縮機として、スライディングベーン型ロータリ圧縮機構を用いたが、本発明はこれに限定されるものではなく、ローリングピストン型、スクロール型等その他の圧縮機構であっても同様に構成することができる。   In the above-described embodiment, the sliding vane type rotary compression mechanism is used as the compressor. However, the present invention is not limited to this, and other compression mechanisms such as a rolling piston type and a scroll type may be used. It can be configured similarly.

以上説明したように、本発明の圧縮機においては、圧縮機の高速回転時において、圧縮機の潤滑部における潤滑不足を解消させ信頼性の向上を図ることができ、また、圧縮機回転数が低い場合はシステム効率をあげ冷房性能の向上を図ることができ、自動車用はもちろん各種冷凍機器に使用できる。   As described above, in the compressor of the present invention, at the time of high-speed rotation of the compressor, the lack of lubrication in the lubrication part of the compressor can be resolved, and the reliability can be improved. If it is low, the system efficiency can be increased and the cooling performance can be improved, and it can be used for various refrigeration equipment as well as for automobiles.

1 シリンダ
2 ロータ
3 ベーンスロット
4 ベーン
5 駆動軸
6 前部側板
7 後部側板
8 作動室
9 吸入口
10 吐出口
11 吐出弁
12 高圧ケース
13 高圧通路
14 高圧室
16 ベーン背圧付与装置
17 ベーン背圧室
18 給油路
50 導油路
51 分離室
52 貯油室
53 導入孔
54 貯油室側開口部
57 再導入孔
58 ガス排出口
59 連通路(高圧室と貯油室を連通する)
60 開閉弁
61 弁押さえ板
1 cylinder 2 rotor 3 vane slot 4 vane 5 drive shaft 6 front side plate 7 rear side plate 8 working chamber 9 suction port 10 discharge port 11 discharge valve 12 high pressure case 13 high pressure passage 14 high pressure chamber 16 vane back pressure applying device 17 vane back pressure Chamber 18 Oil supply path 50 Oil guide path 51 Separation chamber 52 Oil storage chamber 53 Introduction hole 54 Oil storage chamber side opening 57 Reintroduction hole 58 Gas exhaust port 59 Communication path (The high pressure chamber and the oil storage chamber communicate with each other)
60 On-off valve 61 Valve retainer plate

Claims (2)

潤滑油を含む気流体を圧縮する圧縮機構と、前記圧縮機構により圧縮された前記気流体が導かれる高圧室と、前記気流体に含まれる潤滑油の少なくとも一部が分離される分離室と、前記分離室にて前記気流体から分離された潤滑油が貯えられる貯油室とを備える圧縮機であって、前記貯油室と前記高圧室とを連通する連通路と、高圧室側に設けられ前記連通路を開閉する浮動自在な開閉弁と、前記開閉弁を遊びを持って拘束する弁押さえ板とを設けたことを特徴とする圧縮機。 A compression mechanism for compressing a gas fluid containing lubricating oil; a high-pressure chamber into which the gas fluid compressed by the compression mechanism is guided; and a separation chamber in which at least a part of the lubricating oil contained in the gas fluid is separated; A compressor having an oil storage chamber in which lubricating oil separated from the gas fluid is stored in the separation chamber, the communication passage communicating the oil storage chamber and the high pressure chamber, and provided on the high pressure chamber side; A compressor comprising: a floating on-off valve that opens and closes a communication path; and a valve pressing plate that restrains the on-off valve with play. 圧縮機のロータの回転数が所定の回転数以上のときに開弁し、所定の回転数以下のときに閉弁するように開閉弁を設定したことを特徴とする請求項1記載の圧縮機。 2. The compressor according to claim 1, wherein the on-off valve is set so that the valve is opened when the rotational speed of the rotor of the compressor is equal to or higher than a predetermined rotational speed, and is closed when the rotational speed is equal to or lower than the predetermined rotational speed. .
JP2010155636A 2010-07-08 2010-07-08 Compressor Pending JP2012017688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010155636A JP2012017688A (en) 2010-07-08 2010-07-08 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010155636A JP2012017688A (en) 2010-07-08 2010-07-08 Compressor

Publications (1)

Publication Number Publication Date
JP2012017688A true JP2012017688A (en) 2012-01-26

Family

ID=45603117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010155636A Pending JP2012017688A (en) 2010-07-08 2010-07-08 Compressor

Country Status (1)

Country Link
JP (1) JP2012017688A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110730860A (en) * 2018-05-17 2020-01-24 三菱重工业株式会社 Vibration suppression method and vibration suppression device for supercharger capable of being driven by motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110730860A (en) * 2018-05-17 2020-01-24 三菱重工业株式会社 Vibration suppression method and vibration suppression device for supercharger capable of being driven by motor

Similar Documents

Publication Publication Date Title
JP4788746B2 (en) Compressor
JP5006444B2 (en) Compressor and oil supply structure thereof
WO2007077856A1 (en) Compressor
JP2003336588A (en) Compressor
WO2016059772A1 (en) Compressor
JP2009221960A (en) Compressor
JP2012017688A (en) Compressor
WO2003006828A1 (en) Compressor
JP2005201171A (en) Lubricating mechanism of compressor
JP2005307897A (en) Compressor
JP4378970B2 (en) Compressor
JP2005083234A (en) Compressor
JP2003206862A (en) Compressor
JP2006029218A (en) Compressor
JP4045856B2 (en) Compressor
JP2008014174A (en) Compressor
JP2006118366A (en) Compressor
CN218581801U (en) Compressor
JP2005307765A (en) Compressor
JP4638313B2 (en) Hermetic rotary compressor
JP4333238B2 (en) Compressor
JP2006037895A (en) Compressor
JP2006112237A (en) Compressor
JP2007309282A (en) Compressor
JP2006037928A (en) Compressor