JP4378970B2 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP4378970B2
JP4378970B2 JP2003042849A JP2003042849A JP4378970B2 JP 4378970 B2 JP4378970 B2 JP 4378970B2 JP 2003042849 A JP2003042849 A JP 2003042849A JP 2003042849 A JP2003042849 A JP 2003042849A JP 4378970 B2 JP4378970 B2 JP 4378970B2
Authority
JP
Japan
Prior art keywords
oil
chamber
lubricating oil
storage chamber
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003042849A
Other languages
Japanese (ja)
Other versions
JP2004251210A (en
Inventor
正 瀬戸口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003042849A priority Critical patent/JP4378970B2/en
Publication of JP2004251210A publication Critical patent/JP2004251210A/en
Application granted granted Critical
Publication of JP4378970B2 publication Critical patent/JP4378970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、気流体の圧縮を行う圧縮機に関するもので、たとえば自動車用空調装置など圧縮機等に関するものである。
【0002】
【従来の技術】
このような圧縮機においては、圧縮された気流体と共に圧縮機構を潤滑する潤滑油の一部を圧縮機から空調装置のシステムサイクル中へ吐出してしまう。圧縮機より気流体と共に吐出される潤滑油の量がシステムサイクル中に多くなればなるほど空調装置のシステム効率が低下する。
【0003】
このため、従来の圧縮機においては、空調装置のシステムサイクル中への潤滑油の吐出を抑制し空調装置のシステム効率を向上させるため、圧縮機構の吐出側に、圧縮された流体から潤滑油を分離する分離室を設けている。
【0004】
分離室の下側(重力の向き)には分離された潤滑油を貯える貯油室が形成され、分離室で分離された潤滑油を貯油室に排出する排出孔が分離室に形成されている。
【0005】
また、排出孔開口部から吹き出される潤滑油が貯油室に溜まった潤滑油面に当たり油面が波立ち変動するのを抑制することを目的に衝突壁を形成し、貯油室内の供給ポートより貯油室に溜まった潤滑油を圧縮機の潤滑部に供給している(例えば特許文献1参照)。
【0006】
【特許文献1】
特開平11−82352号公報(第3−4頁、図1)
【0007】
【発明が解決しようとする課題】
ところで該公報記載の圧縮機においては、圧縮機が高速回転になるほど、分離室内の気流体の旋回流も速くなり、潤滑油の分離効率が向上しシステムサイクル中の冷媒に含まれる潤滑油量が減りシステム効率が向上する。
【0008】
しかし、システムサイクル中へ吐出する潤滑油が少なくなりすぎると冷媒中に含有される潤滑油の量が少なくなりシステムサイクル中のオイル循環率(OCR)が悪くなる。
【0009】
OCRが悪くなると圧縮機構の摺動部の潤滑性が悪くなり、延いては、圧縮機構の焼き付き等の原因になり、圧縮機の信頼性、耐久性が悪くなる。
【0010】
そこで本発明は上述の従来の課題に鑑み、空調装置のシステムサイクル中の冷媒に含有する潤滑油量が過度に少なくなることを抑制し圧縮機の信頼性を低下しないようにした構造の圧縮機の提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明による圧縮機においては、潤滑油を含む気流体を圧縮する圧縮機構と、前記圧縮機構により圧縮された前記気流体が導かれる高圧室と、前記気流体に含まれる潤滑油の少なくとも一部が分離される分離室と、前記分離室に導油路を介して連通し前記分離室にて前記気流体から分離された潤滑油が貯えられる貯油室と、前記貯油室内上部と前記分離室を連通する再導入孔とを備え、前記導油路の貯油室側開口部は前記貯油室に貯まった潤滑油の油面より鉛直方向において下方の潤滑油中で開口するとした圧縮機であって、前記貯油室と前記高圧室との間に連通路を設けるとともに、当該連通路の断面積の直径φを0.15〜0.5mmとして、当該連通路を介し前記貯油室に流入する吐出流の圧力が前記潤滑油の油面を波立たせるようにした構成となっている。連絡通路はスリットのような切りかけであってもよい。
【0012】
このような構成によって、高圧室と貯油室の静圧の差により圧縮機の吐出流の一部が高圧室から上記連通路より貯油室内へ流入する。
【0013】
貯油室に流入する吐出流は、圧縮機の回転が高速になればなるほど速くなり、その影響が大きいほど貯油室に溜まった潤滑油面は乱れ、波立つため、貯油室と分離室を結ぶ連絡口より潤滑油の一部が噴出され、その噴出された潤滑油は分離室からガス排出口へ向い、そしてシステムサイクル中へと潤滑油が吐出されることになるので、システムサイクル中の冷媒に含まれる潤滑油量は増えることになり、システムサイクル中に不足していた冷媒に含有する潤滑油量が適量になり圧縮機信頼性を確保することができる。
【0014】
従って、高圧室と貯油室の間に設ける連通路の断面積の大きさを変えることにより空調装置のシステムサイクル中のオイル循環率(OCR)とシステム効率をコントロールすることができる。
【0015】
たとえば、連通路の断面積が小さくした場合は、低速回転時の空調装置のシステム効率を下げずに、圧縮機の高速回転時にシステムサイクル中の潤滑油を増やし圧縮機の信頼性
を向上させられる。従って、低速時に空調装置のシステム効率が良く、高速時の圧縮機信頼性を確保し空調装置のシステム効率を最適値にコントロールすることができる。
【0016】
このように連絡通路の断面積の大きさを変えることで、空調装置のシステムサイクル中の冷媒に含有する潤滑油量コントロールし圧縮機の信頼性を確保し空調装置のシステム効率を最適値にコントロールができる圧縮機を提供することができる。
【0017】
【発明の実施の形態】
(実施の形態1)
以下、本発明の圧縮機について、添付図面を参照しながら説明する。図1は本発明の実施の形態1における圧縮機の横断面図、図2は同圧縮機の作動室断面図、図3は同圧縮機を作動室側から見た高圧ケースの図である。
【0018】
図示したように、この圧縮機においては、円筒内壁を有するシリンダ1に略円柱状のロータ2がその外周の一部がシリンダ1の内壁と微少隙間を形成するように回転自在に収容されている。ロータ2には複数のベーンスロット3が等間隔に設けられており、ベーンスロット3内には、摺動自在にベーン4がそれぞれ挿入されている。
【0019】
ロータ2はこれと一体的に形成された駆動軸5が回転駆動されることにより回転する。シリンダ1の両端開口部はそれぞれ前部側板6及び後部側板7により閉塞され、シリンダ1内部に作動室8が形成される。
【0020】
作動室8には吸入口9及び吐出口10が連通し、吐出口10は高圧通路13に接続され、吐出口10と高圧通路13との間には吐出弁11が配設されている。後部側板7には高圧ケース12が取り付けられており、高圧ケース12内には高圧室14、分離室51及び貯油室52が形成されている。
【0021】
高圧室14は導入孔53を介して分離室51と連通している。分離室51は、圧縮された高圧流体にふくまれる潤滑油を分離するために設けられている。分離室51は導油路50を介して貯油室52と連通している。
【0022】
貯油室52に貯められた潤滑油は給油路18を介して圧縮機構を構成するロータ2、ベーン4、シリンダ1内壁等に供給され、各部を潤滑すると共に、ベーン背圧室17に供給され、その圧力によりベーン4をロータ2の外側へ押し出す働きをする。
【0023】
潤滑油の給油は貯油室52から圧縮機構に潤滑油を供給する給油路18を介して行われ、給油路18の途中には、ベーン背圧調整装置16が設けられている。ベーン背圧調整装置16は圧縮機構へ供給する潤滑油の給油圧力や給油量を圧縮機構周辺の流体(冷媒)圧力に応じて制御する。
【0024】
エンジンなどの駆動源より動力伝達を受けて駆動軸5及びロータ2が、図2において時計方向に回転すると、これに伴い低圧流体(冷媒)が吸入口9より作動室8内に流入する。ロータ2の回転に伴い圧縮された高圧流体は吐出口10より吐出弁11を押し上げて高圧通路13に吐出され、高圧室14内に流入する。さらに、高圧流体は導入孔53から分離室51に流入し、分離室51で高圧流体に含まれる潤滑油が分離される。
【0025】
ところで、分離室51は円筒状の空間が設けられており、この円筒空間に高圧流体を導く導入孔53は、この円筒空間の接線方向に高圧流体を導くように、形成されている.高圧流体に含まれる潤滑油は円筒空間を旋回中に遠心力により、分離室51の円筒状部の内周面49に接触し冷媒ガスから分離される。
【0026】
高圧流体はガス排出口58より圧縮機外に吐出され、分離された潤滑油は内周面49に沿って下方に移動する。本実施形態では、円筒空間下部にこれに結合して略逆円錐状の空間が形成されており、分離室51は主にこの略逆円錐状の空間と上述の円筒空間とから構成される。
【0027】
分離室51の下端部には分離された潤滑油を貯油室52に導く導油路50が形成されている。導油路50は、図1に示したように、鉛直下方に向かって形成されており、導油路50の貯油室側開口部54は貯油室52に貯まった潤滑油の油面より鉛直方向において下方の潤滑油中で開口している。
【0028】
そして、分離された潤滑油の自重を利用するといった技術的思想の基に、貯油室52内上部と分離室51との間に、これら相互間の流体移動を許容する再導入孔57を設けることにより、貯油室52上部に貯まった冷媒ガス等の気体流を分離室に移動させ、分離室内の油面を、貯油室の油面に対して、鉛直方向に同等か、少し下方向になるように作用させている。
【0029】
さらに、貯油室52内上部と高圧室14との間には、直径φが0.15〜0.5mmの断面積の連通路59を形成している。連通路59は1個又は複数個になる場合もある。
【0030】
このような構成によって、吐出流の一部を連通路59から貯油室へ導入することができ、図4(特性データ)ように、連通路ない場合と比較すると連通路59がある場合は、圧縮機回転数(Nc)が高くなるほどオイル循環率(OCR)が大きくなりシステム中の冷媒に含まれる潤滑油の量を多くさせることができる。
【0031】
また回転数が低い場合は、逆にOCRを低く抑えシステム効率は良くすることができる。信頼性としては、圧縮機が高速回転の時懸念される潤滑部への潤滑油の補給がこのような構成により冷媒中の潤滑油量を適正量にするこが出来るため信頼性の確保ができる。
【0032】
なお、図4の特性データでは連通路の断面積が直径φが0.25mmの場合と、直径φが0.4mmの場合を示したが、連通路の断面積が直径φが0.15〜0.5mmの間で同様の特性が得られたことは確認している。
【0033】
また、上述の実施の形態では、圧縮機として、スライディングベーン型ロータリ圧縮機構を用いたが、本発明はこれに限定されるものではなく、ローリングピストン型、スクロール型等その他の圧縮機構であってもよい。
【0034】
【発明の効果】
以上説明したように、本発明の圧縮機においては、高圧室と貯油室を連通する連通路を設け、吐出流の一部を高圧室から貯油室へ流れ込ませることにより、圧縮機の高速回転時において、圧縮機の潤滑部潤滑不足を解消させ信頼性の向上を図ることができる。また、圧縮機回転数が低い場合はシステム効率をあげ冷房性能の向上を図ることができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施形態を示す圧縮機の横断面図
【図2】 図1のB−B断面図
【図3】 図1のA矢視図
【図4】 同圧縮機の特性データを示すグラフ
【符号の説明】
1 シリンダ
2 ロータ
3 ベーンスロット
4 ベーン
5 駆動軸
6 前部側板
7 後部側板
8 作動室
9 吸入口
10 吐出口
11 吐出弁
12 高圧ケース
13 高圧通路
14 高圧室
16 ベーン背圧付与装置
17 ベーン背圧室
18 給油路
50 導油路
51 分離室
52 貯油室
53 導入孔
54 貯油室側開口路(導油路)
57 再導入孔
58 ガス排出口
59 連通路(高圧室と貯油室を連通する)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a compressor that compresses a gas fluid, and relates to a compressor such as an automotive air conditioner.
[0002]
[Prior art]
In such a compressor, a part of the lubricating oil that lubricates the compression mechanism together with the compressed gas fluid is discharged from the compressor into the system cycle of the air conditioner. As the amount of lubricating oil discharged from the compressor together with the gas fluid increases during the system cycle, the system efficiency of the air conditioner decreases.
[0003]
Therefore, in the conventional compressor, in order to suppress the discharge of the lubricating oil during the system cycle of the air conditioner and improve the system efficiency of the air conditioner, the lubricating oil is supplied from the compressed fluid to the discharge side of the compression mechanism. A separation chamber for separation is provided.
[0004]
An oil storage chamber for storing the separated lubricating oil is formed below the separation chamber (direction of gravity), and a discharge hole for discharging the lubricating oil separated in the separation chamber to the oil storage chamber is formed in the separation chamber.
[0005]
In addition, a collision wall is formed for the purpose of suppressing the oil surface that the lubricating oil blown from the opening of the discharge hole hits the lubricating oil surface accumulated in the oil storage chamber and the oil surface is fluctuated, and the oil storage chamber is supplied from the supply port in the oil storage chamber. The lubricating oil collected in the compressor is supplied to the lubricating portion of the compressor (see, for example, Patent Document 1).
[0006]
[Patent Document 1]
JP 11-82352 A (page 3-4, FIG. 1)
[0007]
[Problems to be solved by the invention]
By the way, in the compressor described in this publication, as the compressor rotates at a higher speed, the swirling flow of the gas fluid in the separation chamber becomes faster, the separation efficiency of the lubricating oil is improved, and the amount of lubricating oil contained in the refrigerant in the system cycle is increased. Reduces system efficiency.
[0008]
However, when the amount of lubricating oil discharged into the system cycle is too small, the amount of lubricating oil contained in the refrigerant is reduced and the oil circulation rate (OCR) during the system cycle is deteriorated.
[0009]
When the OCR is deteriorated, the lubricity of the sliding portion of the compression mechanism is deteriorated, and as a result, the compression mechanism is seized, and the reliability and durability of the compressor are deteriorated.
[0010]
Therefore, in view of the above-described conventional problems, the present invention is a compressor having a structure in which the amount of lubricating oil contained in the refrigerant in the system cycle of the air conditioner is suppressed from being excessively reduced and the reliability of the compressor is not lowered. The purpose is to provide.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, in a compressor according to the present invention, a compression mechanism for compressing a gas-fluid containing lubricating oil, a high-pressure chamber into which the gas-fluid compressed by the compression mechanism is guided, and the gas-fluid A separation chamber in which at least a part of the contained lubricating oil is separated, an oil storage chamber that communicates with the separation chamber via an oil guide passage and stores the lubricating oil separated from the gas fluid in the separation chamber; An oil storage chamber upper portion and a reintroduction hole communicating with the separation chamber are provided, and the oil storage chamber side opening of the oil guide passage is opened in the lubricating oil below in the vertical direction from the oil level of the lubricating oil stored in the oil storage chamber. a and the compressor, Rutotomoni the communication path provided between the high pressure chamber and the reservoir chamber, as 0.15~0.5mm diameter φ of the cross-sectional area of the communication passage, via the communicating passage The pressure of the discharge flow flowing into the oil storage chamber is determined by the lubrication. It has a configuration so as to surged oil level. The communication passage may be a cut like a slit.
[0012]
With such a configuration, a part of the discharge flow of the compressor flows into the oil storage chamber from the high pressure chamber through the communication path due to the difference in static pressure between the high pressure chamber and the oil storage chamber.
[0013]
The discharge flow that flows into the oil storage chamber becomes faster as the compressor rotates at a higher speed. The greater the effect, the more the oil surface accumulated in the oil storage chamber becomes turbulent and undulate, so the connection between the oil storage chamber and the separation chamber A part of the lubricating oil is ejected from the opening, the ejected lubricating oil is directed from the separation chamber to the gas discharge port, and the lubricating oil is discharged into the system cycle. The amount of lubricating oil contained will increase, and the amount of lubricating oil contained in the refrigerant that has been insufficient during the system cycle will be appropriate, ensuring compressor reliability.
[0014]
Therefore, the oil circulation rate (OCR) and the system efficiency during the system cycle of the air conditioner can be controlled by changing the size of the cross-sectional area of the communication path provided between the high pressure chamber and the oil storage chamber.
[0015]
For example, if the cross-sectional area of the communication passage is reduced, the reliability of the compressor can be improved by increasing the lubricating oil in the system cycle at the time of high speed rotation of the compressor without lowering the system efficiency of the air conditioner at low speed rotation. . Therefore, the system efficiency of the air conditioner is good at low speed, the compressor reliability at high speed can be ensured, and the system efficiency of the air conditioner can be controlled to the optimum value.
[0016]
By changing the cross-sectional area of the communication passage in this way, the amount of lubricating oil contained in the refrigerant in the system cycle of the air conditioner is controlled to ensure the reliability of the compressor and control the system efficiency of the air conditioner to the optimum value. The compressor which can be provided can be provided.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
The compressor of the present invention will be described below with reference to the accompanying drawings. 1 is a cross-sectional view of a compressor according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view of a working chamber of the compressor, and FIG. 3 is a view of a high-pressure case when the compressor is viewed from the working chamber side.
[0018]
As shown in the figure, in this compressor, a substantially cylindrical rotor 2 is rotatably accommodated in a cylinder 1 having a cylindrical inner wall so that a part of the outer periphery forms a minute gap with the inner wall of the cylinder 1. . A plurality of vane slots 3 are provided at equal intervals in the rotor 2, and vanes 4 are slidably inserted into the vane slots 3.
[0019]
The rotor 2 rotates when a drive shaft 5 formed integrally therewith is driven to rotate. The opening portions at both ends of the cylinder 1 are respectively closed by the front side plate 6 and the rear side plate 7, and the working chamber 8 is formed inside the cylinder 1.
[0020]
A suction port 9 and a discharge port 10 communicate with the working chamber 8, the discharge port 10 is connected to a high-pressure passage 13, and a discharge valve 11 is disposed between the discharge port 10 and the high-pressure passage 13. A high pressure case 12 is attached to the rear side plate 7, and a high pressure chamber 14, a separation chamber 51, and an oil storage chamber 52 are formed in the high pressure case 12.
[0021]
The high pressure chamber 14 communicates with the separation chamber 51 through the introduction hole 53. The separation chamber 51 is provided to separate the lubricating oil contained in the compressed high-pressure fluid. The separation chamber 51 communicates with the oil storage chamber 52 via the oil guide passage 50.
[0022]
The lubricating oil stored in the oil storage chamber 52 is supplied to the rotor 2, the vane 4, the inner wall of the cylinder 1, and the like constituting the compression mechanism via the oil supply passage 18, lubricates each part, and is supplied to the vane back pressure chamber 17. The pressure serves to push out the vane 4 to the outside of the rotor 2.
[0023]
Lubricating oil is supplied from an oil storage chamber 52 through an oil supply passage 18 that supplies the lubricating oil to the compression mechanism, and a vane back pressure adjusting device 16 is provided in the middle of the oil supply passage 18. The vane back pressure adjusting device 16 controls the oil supply pressure and the amount of oil supplied to the compression mechanism according to the fluid (refrigerant) pressure around the compression mechanism.
[0024]
When power is transmitted from a driving source such as an engine and the drive shaft 5 and the rotor 2 rotate clockwise in FIG. 2, a low-pressure fluid (refrigerant) flows into the working chamber 8 from the suction port 9. The high pressure fluid compressed along with the rotation of the rotor 2 pushes up the discharge valve 11 from the discharge port 10 and is discharged into the high pressure passage 13 and flows into the high pressure chamber 14. Further, the high pressure fluid flows into the separation chamber 51 from the introduction hole 53, and the lubricating oil contained in the high pressure fluid is separated in the separation chamber 51.
[0025]
By the way, the separation chamber 51 is provided with a cylindrical space, and the introduction hole 53 for guiding the high-pressure fluid to the cylindrical space is formed so as to guide the high-pressure fluid in the tangential direction of the cylindrical space. Lubricating oil contained in the high-pressure fluid comes into contact with the inner peripheral surface 49 of the cylindrical portion of the separation chamber 51 and is separated from the refrigerant gas by centrifugal force during swirling in the cylindrical space.
[0026]
The high-pressure fluid is discharged from the gas outlet 58 to the outside of the compressor, and the separated lubricating oil moves downward along the inner peripheral surface 49. In this embodiment, a substantially inverted conical space is formed at the lower part of the cylindrical space, and the separation chamber 51 is mainly composed of the substantially inverted conical space and the above-described cylindrical space.
[0027]
An oil guide passage 50 that guides the separated lubricating oil to the oil storage chamber 52 is formed at the lower end of the separation chamber 51. As shown in FIG. 1, the oil guide passage 50 is formed vertically downward, and the oil storage chamber side opening 54 of the oil guide passage 50 is perpendicular to the oil level of the lubricating oil stored in the oil storage chamber 52. In the lower lubricating oil.
[0028]
A reintroduction hole 57 that allows fluid movement between the oil storage chamber 52 and the separation chamber 51 is provided on the basis of the technical idea of utilizing the weight of the separated lubricating oil. Accordingly, the gas flow such as the refrigerant gas stored in the upper part of the oil storage chamber 52 is moved to the separation chamber so that the oil level in the separation chamber is equal to or slightly lower than the oil level of the oil storage chamber in the vertical direction. Is acting on.
[0029]
Further, a communication passage 59 having a cross-sectional area with a diameter φ of 0.15 to 0.5 mm is formed between the upper portion in the oil storage chamber 52 and the high-pressure chamber 14. There may be one or a plurality of communication paths 59.
[0030]
With this configuration, a part of the discharge flow can be introduced from the communication passage 59 into the oil storage chamber. As shown in FIG. 4 (characteristic data), when there is the communication passage 59 compared to the case where there is no communication passage, compression As the machine speed (Nc) increases, the oil circulation rate (OCR) increases and the amount of lubricating oil contained in the refrigerant in the system can be increased.
[0031]
On the other hand, when the rotational speed is low, the OCR can be kept low and the system efficiency can be improved. As for reliability, replenishment of lubricating oil to the lubrication part, which is a concern when the compressor rotates at high speed, can ensure the amount of lubricating oil in the refrigerant by such a configuration, so that reliability can be ensured. .
[0032]
Incidentally, in the case the cross-sectional area of the communication passage in the characteristic data of Figure 4 with a diameter of phi is 0.25 mm, the diameter phi showed the case of 0.4 mm, the cross-sectional area of the communication passage diameter phi 0. It has been confirmed that similar characteristics were obtained between 15 and 0.5 mm .
[0033]
In the above-described embodiment, the sliding vane type rotary compression mechanism is used as the compressor. However, the present invention is not limited to this, and other compression mechanisms such as a rolling piston type and a scroll type may be used. Also good.
[0034]
【The invention's effect】
As described above, in the compressor of the present invention, a communication path that connects the high-pressure chamber and the oil storage chamber is provided, and a part of the discharge flow is caused to flow from the high-pressure chamber to the oil storage chamber, so that the compressor can rotate at high speed. Therefore, the lack of lubrication in the lubrication part of the compressor can be resolved and the reliability can be improved. Also, when the compressor speed is low, the system efficiency can be increased and the cooling performance can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a compressor showing a first embodiment of the present invention. FIG. 2 is a cross-sectional view taken along line BB in FIG. 1. FIG. Showing the characteristic data of the graph 【Explanation of symbols】
1 cylinder 2 rotor 3 vane slot 4 vane 5 drive shaft 6 front side plate 7 rear side plate 8 working chamber 9 suction port 10 discharge port 11 discharge valve 12 high pressure case 13 high pressure passage 14 high pressure chamber 16 vane back pressure applying device 17 vane back pressure Chamber 18 Oil supply passage 50 Oil guide passage 51 Separation chamber 52 Oil storage chamber 53 Introduction hole 54 Oil storage chamber side opening passage (oil introduction passage)
57 Reintroduction hole 58 Gas exhaust port 59 Communication passage (Communicating the high pressure chamber and oil storage chamber)

Claims (1)

潤滑油を含む気流体を圧縮する圧縮機構と、前記圧縮機構により圧縮された前記気流体が導かれる高圧室と、前記気流体に含まれる潤滑油の少なくとも一部が分離される分離室と、前記分離室に導油路を介して連通し前記分離室にて前記気流体から分離された潤滑油が貯えられる貯油室と、前記貯油室内上部と前記分離室を連通する再導入孔とを備え、前記導油路の貯油室側開口部は前記貯油室に貯まった潤滑油の油面より鉛直方向において下方の潤滑油中で開口するとした圧縮機であって、前記貯油室と前記高圧室との間に連通路を設けるとともに、当該連通路の断面積の直径φを0.15〜0.5mmとして、当該連通路を介し前記貯油室に流入する吐出流の圧力が前記潤滑油の油面を波立たせるようにしたことを特徴とする圧縮機。A compression mechanism for compressing a gas fluid containing lubricating oil; a high-pressure chamber into which the gas fluid compressed by the compression mechanism is guided; and a separation chamber in which at least a part of the lubricating oil contained in the gas fluid is separated; An oil storage chamber that communicates with the separation chamber via an oil guide passage and stores the lubricating oil separated from the gas fluid in the separation chamber, and a reintroduction hole that communicates the upper portion of the oil storage chamber with the separation chamber. The oil storage chamber side opening of the oil guide passage is a compressor that opens in the lubricating oil vertically below the oil level of the lubricating oil stored in the oil storage chamber, the oil storage chamber, the high pressure chamber, Rutotomoni the communication path is provided between the, as 0.15~0.5mm diameter φ of the cross-sectional area of the communication passage, the oil pressure of the discharge flow of the lubricating oil flowing into the oil storage chamber through the communication passage A compressor characterized by making the surface undulate .
JP2003042849A 2003-02-20 2003-02-20 Compressor Expired - Lifetime JP4378970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003042849A JP4378970B2 (en) 2003-02-20 2003-02-20 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003042849A JP4378970B2 (en) 2003-02-20 2003-02-20 Compressor

Publications (2)

Publication Number Publication Date
JP2004251210A JP2004251210A (en) 2004-09-09
JP4378970B2 true JP4378970B2 (en) 2009-12-09

Family

ID=33026020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003042849A Expired - Lifetime JP4378970B2 (en) 2003-02-20 2003-02-20 Compressor

Country Status (1)

Country Link
JP (1) JP4378970B2 (en)

Also Published As

Publication number Publication date
JP2004251210A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
JP5006444B2 (en) Compressor and oil supply structure thereof
JPH0712072A (en) Vane compressor
JP4378970B2 (en) Compressor
WO2003006828A1 (en) Compressor
JP4013554B2 (en) Compressor
JP2005307897A (en) Compressor
JP4045856B2 (en) Compressor
JP2008014174A (en) Compressor
JP2502339B2 (en) Compressor
JP2012017688A (en) Compressor
KR100608867B1 (en) Structure of refrigerant channel for high pressure scroll compressor
JP2009127517A (en) Enclosed compressor
JP2006029218A (en) Compressor
JP2004360543A (en) Air conditioner and air compressor
JP2006118366A (en) Compressor
JP4638313B2 (en) Hermetic rotary compressor
JP2006037895A (en) Compressor
JP2006112237A (en) Compressor
JP2005307900A (en) Compressor
JP3692236B2 (en) Gas compressor
JP2005307765A (en) Compressor
JP2005325734A (en) Compressor
JP2006037928A (en) Compressor
JP2006070804A (en) Compressor
JP3738149B2 (en) Gas compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3