JP2005325734A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2005325734A
JP2005325734A JP2004143461A JP2004143461A JP2005325734A JP 2005325734 A JP2005325734 A JP 2005325734A JP 2004143461 A JP2004143461 A JP 2004143461A JP 2004143461 A JP2004143461 A JP 2004143461A JP 2005325734 A JP2005325734 A JP 2005325734A
Authority
JP
Japan
Prior art keywords
pressure chamber
high pressure
lubricating oil
chamber
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004143461A
Other languages
Japanese (ja)
Inventor
Minoru Kajitani
稔 梶谷
Takeshi Kawada
武史 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004143461A priority Critical patent/JP2005325734A/en
Publication of JP2005325734A publication Critical patent/JP2005325734A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems in a compressor with a large volume of a high pressure chamber for improving muffler effect, and an introducing hole disposed at a high position for improving lubricating oil separation effect that more lubricant need be enclosed because lubricant is not discharged, but remains at a bottom part of the high pressure chamber, and that remaining lubricant reduces the substantial volume of the high pressure chamber, and reduces muffler effect. <P>SOLUTION: In this compressor, an introducing hole 53 is formed at an upper part of the high pressure chamber 14 to be communicated with a separation chamber 51, and a connection passage 59 is provided at an inlet part of the introducing hole 53 to connect the introducing hole 53 from around the bottom part of the high pressure chamber 14. Lubricant at the bottom part of the high pressure chamber 14 is thus prevented from staying, but it is fed to the introducing hole 53. Increase of necessary quantity of enclosed lubricant or deterioration of muffler effect due to staying of the lubricant in the bottom part of the high pressure chamber 14 can thus be prevented. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、流体の圧縮を行う圧縮機に関するもので、特に自動車用空調装置など供される圧縮機等の油分離に関するものである。   The present invention relates to a compressor that compresses a fluid, and more particularly to oil separation in a compressor that is provided for an air conditioner for an automobile.

このような圧縮機においては、圧縮された流体と共に圧縮機潤滑油の一部を空調装置のシステムサイクル中へ吐出してしまう。流体と共に吐出される圧縮機の潤滑油の量がサイクル中に多く吐出されるほどシステム効率が低下する。   In such a compressor, a part of the compressor lubricating oil is discharged into the system cycle of the air conditioner together with the compressed fluid. The more the amount of compressor lubricant discharged with the fluid is discharged during the cycle, the lower the system efficiency.

このため、圧縮機から空調装置のシステムサイクル中への潤滑油の吐出を抑制するため、圧縮機構の吐出側に、圧縮された流体から潤滑油を分離する分離室を設けている(例えば、特許文献1参照)。   For this reason, in order to suppress the discharge of the lubricating oil from the compressor into the system cycle of the air conditioner, a separation chamber for separating the lubricating oil from the compressed fluid is provided on the discharge side of the compression mechanism (for example, a patent Reference 1).

ここでは、分離室の下側(重力の向き)には分離された潤滑油を貯える貯油室が形成され、分離室で分離された潤滑油を貯油室に排出する排出孔が分離室に形成されている。そして、貯油室には、排出孔から吹き出す潤滑油を衝突させ、排出孔から吹き出す潤滑油が、貯油室内の油面に直接衝突することを防止する衝突壁が形成されている。これにより、排出孔から吹き出した潤滑油は、先ず、衝突壁に衝突させることによって、貯油室内の油面に直接衝突することを防止している。したがって、油面が変動することを抑制することができるので、潤滑油が貯油室から分離室に逆流してしまうことを防止している。
特開平11−82352号公報
Here, an oil storage chamber for storing the separated lubricating oil is formed below the separation chamber (in the direction of gravity), and a discharge hole for discharging the lubricating oil separated in the separation chamber to the oil storage chamber is formed in the separation chamber. ing. The oil storage chamber is formed with a collision wall that collides the lubricating oil blown from the discharge hole and prevents the lubricating oil blown from the discharge hole from directly colliding with the oil surface in the oil storage chamber. Thereby, the lubricating oil blown out from the discharge hole is first collided with the collision wall, thereby preventing direct collision with the oil surface in the oil storage chamber. Therefore, the oil level can be prevented from fluctuating, so that the lubricating oil is prevented from flowing backward from the oil storage chamber to the separation chamber.
JP 11-82352 A

ところで、上記従来の圧縮機においては、高圧室の容積を広く取ることによりマフラー効果となり吐出脈動低減が可能となる。また、圧縮された流体から潤滑油を分離する効果を高めるためには、高圧室と分離室とを連通する導入孔を高い位置に配して導入孔と排出孔との距離を取ることが望ましい。しかしながら、導入孔を高い位置に配すると高圧室の内部で分離した潤滑油が吐出されずに高圧室底部に滞留する。このように高圧室底部に潤滑油が滞留すると潤滑油の封入量を多くする必要があり、また滞留した潤滑油によって高圧室の実質容積が減りマフラー効果も低下するという課題を有していた。   By the way, in the said conventional compressor, when the volume of a high pressure chamber is taken widely, it becomes a muffler effect and discharge pulsation reduction is attained. Further, in order to enhance the effect of separating the lubricating oil from the compressed fluid, it is desirable to arrange the introduction hole communicating with the high pressure chamber and the separation chamber at a high position so as to take a distance between the introduction hole and the discharge hole. . However, if the introduction hole is arranged at a high position, the lubricating oil separated in the high pressure chamber is not discharged and stays at the bottom of the high pressure chamber. When the lubricating oil stays at the bottom of the high-pressure chamber in this way, it is necessary to increase the amount of the lubricating oil, and the remaining lubricating oil reduces the substantial volume of the high-pressure chamber and lowers the muffler effect.

本発明は、このような従来の課題を解決するもので、高圧室の容積を広く取っても高圧室内に潤滑油が滞留しないと共に、潤滑油は充分に分離できる構成を提供することを目的とする。   An object of the present invention is to solve such a conventional problem, and to provide a configuration in which lubricating oil does not stay in the high pressure chamber even when the volume of the high pressure chamber is wide, and the lubricating oil can be sufficiently separated. To do.

上記目的を達成するために、本発明は、高圧室の底部近傍より導入孔を結ぶ連絡通路を設けることにより、高圧室底部に潤滑油が滞留しない構成が可能となる。   In order to achieve the above object, according to the present invention, by providing a communication passage connecting the introduction hole from the vicinity of the bottom of the high-pressure chamber, a configuration in which the lubricating oil does not stay at the bottom of the high-pressure chamber is possible.

本発明により、潤滑油の封入量を減らすことが可能となる。また、高圧室の容積を確保する事ができマフラー効果により吐出脈動低減が可能となる。   According to the present invention, it is possible to reduce the amount of lubricating oil enclosed. Further, the volume of the high pressure chamber can be secured, and the discharge pulsation can be reduced by the muffler effect.

第1の発明は潤滑油を含む気流体を圧縮する圧縮機構と、前記圧縮機構により圧縮された前記気流体が導かれる高圧室と、前記気流体に含まれる潤滑油の少なくとも一部が分離
される分離室と、前記分離室にて前記気流体から分離された潤滑油が貯えられる貯油室とを備える圧縮機において、前記高圧室と前記分離室とは導入孔で連通しており、前記高圧室の底部近傍より前記導入孔を結ぶ連絡通路を設けたことにより、高圧室底部に潤滑油が滞留しなくなり、必要潤滑油の封入量を減らすことが可能となる、さらに高圧室の容積を確保する事が可能となりマフラー効果により吐出脈動低減が可能となる。
According to a first aspect of the present invention, a compression mechanism for compressing a gas-fluid containing lubricating oil, a high-pressure chamber into which the gas-fluid compressed by the compression mechanism is guided, and at least a part of the lubricant contained in the gas-fluid are separated. In the compressor, and the high-pressure chamber and the separation chamber communicate with each other through an introduction hole, and the high-pressure chamber is in communication with the high-pressure chamber and the oil storage chamber in which the lubricating oil separated from the gas fluid in the separation chamber is stored. By providing a communication passage connecting the introduction hole from the vicinity of the bottom of the chamber, lubricating oil does not stay at the bottom of the high-pressure chamber, and the amount of required lubricating oil can be reduced, further ensuring the volume of the high-pressure chamber Therefore, the discharge pulsation can be reduced by the muffler effect.

第2の発明は、特に第1の発明の連絡通路の上部(重力の向き)にエア抜き用小穴を有することにより、潤滑油封入時に高圧室の内部の空気がこのエア抜き用小穴を通り外部に排出されるため、潤滑油の封入性を改善することができる。   The second invention has a small hole for releasing air especially in the upper part (direction of gravity) of the communication passage of the first invention, so that the air inside the high pressure chamber passes through this small hole for releasing air when lubricating oil is filled. Therefore, the sealing property of the lubricating oil can be improved.

以下、本発明の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における圧縮機の縦断面図である。図2は図1に示す圧縮機のB−B断面図で、作動室の断面を示す。図3は、図1に示す圧縮機のA矢視図で、圧縮機作動室側から見た高圧ケースを示す。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a compressor according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view of the compressor shown in FIG. FIG. 3 is a view as seen from the arrow A of the compressor shown in FIG. 1 and shows a high-pressure case viewed from the compressor working chamber side.

図1〜3において、この圧縮機は、円筒内壁を有するシリンダ1に略円柱状のロータ2がその外周の一部がシリンダ1の内壁と微少隙間を形成するように回転自在に収容されている。ロータ2には複数のベーンスロット3が等間隔に設けられており、ベーンスロット3内には、摺動自在にベーン4がそれぞれ挿入されている。ロータ2はこれと一体的に形成された駆動軸5が回転駆動されることにより回転する。   1 to 3, in this compressor, a substantially cylindrical rotor 2 is rotatably accommodated in a cylinder 1 having a cylindrical inner wall so that a part of the outer periphery forms a minute gap with the inner wall of the cylinder 1. . A plurality of vane slots 3 are provided at equal intervals in the rotor 2, and vanes 4 are slidably inserted into the vane slots 3. The rotor 2 rotates when a drive shaft 5 formed integrally therewith is driven to rotate.

シリンダ1の両端開口部はそれぞれ前部側板6及び後部側板7により閉塞され、シリンダ1内部に作動室8が形成される。作動室8には吸入口9及び吐出口10が連通し、吐出口10は高圧通路13に接続され、吐出口10と高圧通路13との間には吐出弁11が配設されている。後部側板7には高圧ケース12が取り付けられており、高圧ケース12内には高圧室14、分離室51及び貯油室52が形成されている。高圧室14の上部には分離室51に連通させるように配された導入孔53が開いており、導入孔53の入り口部分に高圧室14の底部より導入孔53を結ぶ連絡通路59が設けられている。   The opening portions at both ends of the cylinder 1 are respectively closed by the front side plate 6 and the rear side plate 7, and the working chamber 8 is formed inside the cylinder 1. A suction port 9 and a discharge port 10 communicate with the working chamber 8, the discharge port 10 is connected to a high-pressure passage 13, and a discharge valve 11 is disposed between the discharge port 10 and the high-pressure passage 13. A high pressure case 12 is attached to the rear side plate 7, and a high pressure chamber 14, a separation chamber 51, and an oil storage chamber 52 are formed in the high pressure case 12. An introduction hole 53 arranged so as to communicate with the separation chamber 51 is opened at the upper part of the high pressure chamber 14, and a communication passage 59 connecting the introduction hole 53 from the bottom of the high pressure chamber 14 is provided at the entrance of the introduction hole 53. ing.

高圧脈動低減のためにマフラー効果を行なうため高圧室14は所定の容積を確保されている。また導入孔53の位置は、潤滑油の分離効率を向上させるためには出来るだけ貯油室側開口部54との距離を取ることが望ましく、容積を確保された高圧室14の上部に構成されている。   A predetermined volume is secured in the high pressure chamber 14 in order to perform a muffler effect to reduce high pressure pulsation. Further, the position of the introduction hole 53 is preferably as far as possible from the oil storage chamber side opening 54 in order to improve the separation efficiency of the lubricating oil, and is configured at the upper portion of the high pressure chamber 14 with a sufficient volume. Yes.

分離室51は、圧縮された高圧流体にふくまれる潤滑油を分離するために設けられている。分離室51は排出孔50を介して貯油室52と連通している。貯油室52に貯められた潤滑油は給油路18を介して圧縮機構を構成するロータ2、ベーン4、シリンダ1内壁等に供給され、各部を潤滑すると共に、ベーン背圧室17に供給され、その圧力によりベーン4をロータ2の外側へ押し出す働きをする。   The separation chamber 51 is provided to separate the lubricating oil contained in the compressed high-pressure fluid. The separation chamber 51 communicates with the oil storage chamber 52 through the discharge hole 50. The lubricating oil stored in the oil storage chamber 52 is supplied to the rotor 2, the vane 4, the inner wall of the cylinder 1, and the like constituting the compression mechanism via the oil supply passage 18, lubricates each part, and is supplied to the vane back pressure chamber 17. The pressure serves to push out the vane 4 to the outside of the rotor 2.

潤滑油の給油は貯油室52から圧縮機構に潤滑油を供給する給油路18を介して行われ、給油路18の途中には、ベーン背圧調整装置16が設けられている。ベーン背圧調整装置16は圧縮機構へ供給する潤滑油の給油圧力や給油量を圧縮機構周辺の流体(冷媒)圧力に応じて制御する。   Lubricating oil is supplied from an oil storage chamber 52 through an oil supply passage 18 that supplies the lubricating oil to the compression mechanism, and a vane back pressure adjusting device 16 is provided in the middle of the oil supply passage 18. The vane back pressure adjusting device 16 controls the oil supply pressure and the amount of oil supplied to the compression mechanism according to the fluid (refrigerant) pressure around the compression mechanism.

エンジンなどの駆動源より動力伝達を受けて駆動軸5及びロータ2が、図2において時計方向に回転すると、これに伴い低圧流体(冷媒)が吸入口9より作動室8内に流入する
。ロータ2の回転に伴い圧縮された高圧流体は吐出口10より吐出弁11を押し上げて高圧通路13に吐出され、高圧室14内に流入する。高圧室14に流入した高圧流体は連絡通路59を通り、導入孔53から分離室51に流入し、分離室51で高圧流体に含まれる潤滑油が分離される。
When power is transmitted from a driving source such as an engine and the drive shaft 5 and the rotor 2 rotate clockwise in FIG. 2, a low-pressure fluid (refrigerant) flows into the working chamber 8 from the suction port 9. The high pressure fluid compressed with the rotation of the rotor 2 pushes up the discharge valve 11 from the discharge port 10 and is discharged into the high pressure passage 13 and flows into the high pressure chamber 14. The high-pressure fluid flowing into the high-pressure chamber 14 passes through the communication passage 59 and flows into the separation chamber 51 from the introduction hole 53, and the lubricating oil contained in the high-pressure fluid is separated in the separation chamber 51.

ところで、分離室51は円筒状の空間が設けられており、この円筒空間に高圧流体を導く導入孔53は、この円筒空間の接線方向に高圧流体を導くように、形成されている。高圧流体に含まれる潤滑油は円筒空間を旋回中に遠心力により、分離室51の円筒状部の内周面49に接触し冷媒ガスから分離される。高圧流体はガス排出口58より圧縮機外に吐出され、分離された潤滑油は内周面49に沿って下方に移動する。本実施形態では、円筒空間下部にこれに結合して略逆円錐状の空間が形成されており、分離室51は主にこの略逆円錐状の空間と上述の円筒空間とから構成される。   By the way, the separation chamber 51 is provided with a cylindrical space, and the introduction hole 53 for guiding the high-pressure fluid to the cylindrical space is formed so as to guide the high-pressure fluid in the tangential direction of the cylindrical space. Lubricating oil contained in the high-pressure fluid comes into contact with the inner peripheral surface 49 of the cylindrical portion of the separation chamber 51 and is separated from the refrigerant gas by centrifugal force during swirling in the cylindrical space. The high-pressure fluid is discharged from the gas outlet 58 to the outside of the compressor, and the separated lubricating oil moves downward along the inner peripheral surface 49. In this embodiment, a substantially inverted conical space is formed at the lower part of the cylindrical space, and the separation chamber 51 is mainly composed of the substantially inverted conical space and the above-described cylindrical space.

分離室51の下端部には分離された潤滑油を貯油室52に導く導油路50が形成されている。導油路50は、図1に示したように、鉛直下方に向かって形成されており、導油路50の貯油室側開口部54は貯油室52に貯まった潤滑油の油面より鉛直方向において下方の潤滑油中で開口している。そして、分離された潤滑油の自重を利用するといった技術的思想の基に、貯油室52内上部と分離室51との間に、これら相互間の流体移動を許容する再導入孔57を設けることにより、貯油室52上部に貯まった冷媒ガス等の気体流を分離室に移動させ、分離室内の油面を、貯油室の油面に対して、鉛直方向に同等か、少し下方向になるように作用させている。   An oil guide path 50 that guides the separated lubricating oil to the oil storage chamber 52 is formed at the lower end of the separation chamber 51. As shown in FIG. 1, the oil guide passage 50 is formed vertically downward, and the oil storage chamber side opening 54 of the oil guide passage 50 is perpendicular to the oil level of the lubricating oil stored in the oil storage chamber 52. In the lower lubricating oil. A reintroduction hole 57 that allows fluid movement between the oil storage chamber 52 and the separation chamber 51 is provided on the basis of the technical idea of utilizing the weight of the separated lubricating oil. Accordingly, the gas flow such as the refrigerant gas stored in the upper part of the oil storage chamber 52 is moved to the separation chamber so that the oil level in the separation chamber is equal to or slightly lower than the oil level of the oil storage chamber in the vertical direction. Is acting on.

以上のように構成された圧縮機においては、連絡通路59を導入孔53の入り口に配することにより、高圧室14下部の潤滑油も分離室51に導く事が可能となる。   In the compressor configured as described above, the lubricating oil in the lower portion of the high pressure chamber 14 can be guided to the separation chamber 51 by arranging the communication passage 59 at the entrance of the introduction hole 53.

連絡通路59が無い状態で運転すると高圧室14の内面に潤滑油を含む高圧流体が衝突し一部潤滑油が分離し高圧室14の底部に滞留(概ね10〜20cc)する現象が発生する。高圧室14の底部に潤滑油が滞留するとサイクル上必要な潤滑油の循環率が低下するため耐久性に影響を及ぼす可能性があり潤滑油の封入量を多くする必要がある。また滞留した潤滑油によって高圧室14の容積が確保できなくなり高圧脈動に有効な高圧室14の容積を確保する事が困難となる。   When the operation is performed without the communication passage 59, a high pressure fluid containing lubricating oil collides with the inner surface of the high pressure chamber 14, and a part of the lubricating oil is separated and stays at the bottom of the high pressure chamber 14 (approximately 10 to 20 cc). If the lubricating oil stays at the bottom of the high-pressure chamber 14, the circulation rate of the lubricating oil necessary for the cycle is lowered, which may affect the durability, and it is necessary to increase the amount of the lubricating oil enclosed. In addition, the volume of the high pressure chamber 14 cannot be secured due to the retained lubricating oil, and it becomes difficult to secure the volume of the high pressure chamber 14 effective for high pressure pulsation.

また、連絡通路59の上部に高圧室14に連通する導入孔53の開口面積より小さい概ねφ1mmのエア抜き用穴60を形成している。これにより、潤滑油封入時に高圧室14の内部の空気がエア抜き用小穴60を通り外部に排出されるため、潤滑油の封入性を改善することができる。   Further, an air vent hole 60 having a diameter of approximately 1 mm smaller than the opening area of the introduction hole 53 communicating with the high pressure chamber 14 is formed in the upper portion of the communication passage 59. As a result, the air inside the high-pressure chamber 14 is discharged to the outside through the air vent small hole 60 when the lubricating oil is sealed, so that the sealing property of the lubricating oil can be improved.

なお、上述の実施形態では、圧縮機として、スライディングベーン型ロータリ圧縮機構を用いたが、本発明はこれに限定されるものではなく、ローリングピストン型、スクロール型等その他の圧縮機構であってもよい。   In the above-described embodiment, the sliding vane type rotary compression mechanism is used as the compressor. However, the present invention is not limited to this, and other compression mechanisms such as a rolling piston type and a scroll type may be used. Good.

以上のように、本実施の形態においては、連絡通路59を導入孔53の入り口に配することにより、高圧室14底部に潤滑油が滞留しなくなり、必要潤滑油の封入量を減らすことが可能となる、さらに高圧室14の容積を確保する事が可能となりマフラー効果により吐出脈動低減が可能となる。   As described above, in the present embodiment, by arranging the communication passage 59 at the entrance of the introduction hole 53, the lubricating oil does not stay at the bottom of the high-pressure chamber 14, and the amount of the necessary lubricating oil can be reduced. Further, the volume of the high pressure chamber 14 can be secured, and the discharge pulsation can be reduced by the muffler effect.

以上のように、本発明にかかる圧縮機は、必要潤滑油の封入量を減らすことが可能となり、また高圧室の容積を確保する事が可能となりマフラー効果により吐出脈動低減が可能となるので、その他の形式の圧縮機構を持った圧縮機にも適用出来る。   As described above, the compressor according to the present invention can reduce the amount of the required lubricating oil, and can secure the volume of the high-pressure chamber, thereby reducing discharge pulsation due to the muffler effect. It can also be applied to compressors having other types of compression mechanisms.

本発明の実施の形態1における圧縮機の縦断面図The longitudinal cross-sectional view of the compressor in Embodiment 1 of this invention 図1に示す圧縮機のB−B断面図BB sectional view of the compressor shown in FIG. 図1に示す圧縮機のA矢視図A arrow view of the compressor shown in FIG.

符号の説明Explanation of symbols

1 シリンダ
2 ロータ
3 ベーンスロット
4 ベーン
5 駆動軸
6 前部側板
7 後部側板
8 作動室
9 吸入口
10 吐出口
11 吐出弁
12 高圧ケース
13 高圧通路
14 高圧室
51 分離室
52 貯油室
53 導入孔
59 連絡通路
60 エア抜き用穴
1 cylinder 2 rotor 3 vane slot 4 vane 5 drive shaft 6 front side plate 7 rear side plate 8 working chamber 9 suction port 10 discharge port 11 discharge valve 12 high pressure case 13 high pressure passage 14 high pressure chamber 51 separation chamber 52 oil storage chamber 53 introduction hole 59 Communication passage 60 Air vent hole

Claims (2)

潤滑油を含む気流体を圧縮する圧縮機構と、前記圧縮機構により圧縮された前記気流体が導かれる高圧室と、前記気流体に含まれる潤滑油の少なくとも一部が分離される分離室と、前記分離室にて前記気流体から分離された潤滑油が貯えられる貯油室とを備え、前記高圧室と前記分離室とを連通する導入孔を前記高圧室の上部に形成し、前記高圧室の底部近傍より前記導入孔を結ぶ連絡通路を設けたことを特徴とする圧縮機。 A compression mechanism for compressing a gas fluid containing lubricating oil; a high-pressure chamber into which the gas fluid compressed by the compression mechanism is guided; and a separation chamber in which at least a part of the lubricating oil contained in the gas fluid is separated; An oil storage chamber in which lubricating oil separated from the gas fluid in the separation chamber is stored, and an introduction hole communicating the high pressure chamber and the separation chamber is formed in an upper portion of the high pressure chamber. A compressor characterized in that a communication passage connecting the introduction hole from the vicinity of the bottom is provided. 連絡通路の上部にエア抜き用穴を形成したことを特徴とする請求項1記載の圧縮機。 The compressor according to claim 1, wherein an air vent hole is formed in an upper portion of the communication passage.
JP2004143461A 2004-05-13 2004-05-13 Compressor Pending JP2005325734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004143461A JP2005325734A (en) 2004-05-13 2004-05-13 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004143461A JP2005325734A (en) 2004-05-13 2004-05-13 Compressor

Publications (1)

Publication Number Publication Date
JP2005325734A true JP2005325734A (en) 2005-11-24

Family

ID=35472265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004143461A Pending JP2005325734A (en) 2004-05-13 2004-05-13 Compressor

Country Status (1)

Country Link
JP (1) JP2005325734A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9651047B2 (en) 2014-01-10 2017-05-16 Kabushiki Kaisha Toyota Jidoshokki Compressor having a partitioned discharge chamber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9651047B2 (en) 2014-01-10 2017-05-16 Kabushiki Kaisha Toyota Jidoshokki Compressor having a partitioned discharge chamber

Similar Documents

Publication Publication Date Title
KR0133251B1 (en) Vane type comprssor
JP4788746B2 (en) Compressor
CN107448383A (en) Scroll compressor
CN104863851B (en) Scroll compressor
JP2008088929A (en) Hermetic compressor
WO2010010790A1 (en) Horizontal scroll compressor
JP2005180295A (en) Scroll compressor
KR100677521B1 (en) Oil separation apparatus for scroll compressor
JP4690516B2 (en) Scroll type fluid machinery
WO2003006828A1 (en) Compressor
JP2005325734A (en) Compressor
JP5209279B2 (en) Scroll compressor
JP2005083234A (en) Compressor
JP4045856B2 (en) Compressor
JP2003206862A (en) Compressor
JP2006037894A (en) Compressor
JP2006037895A (en) Compressor
JP2006070804A (en) Compressor
JP4638313B2 (en) Hermetic rotary compressor
JP2005054745A (en) Compressor
JP4378970B2 (en) Compressor
JP4263047B2 (en) Horizontal type compressor
JP2006037928A (en) Compressor
JP2005307897A (en) Compressor
JP2006029218A (en) Compressor