JP2005307897A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2005307897A
JP2005307897A JP2004127751A JP2004127751A JP2005307897A JP 2005307897 A JP2005307897 A JP 2005307897A JP 2004127751 A JP2004127751 A JP 2004127751A JP 2004127751 A JP2004127751 A JP 2004127751A JP 2005307897 A JP2005307897 A JP 2005307897A
Authority
JP
Japan
Prior art keywords
compressor
storage chamber
oil storage
chamber
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004127751A
Other languages
Japanese (ja)
Inventor
Koji Hirose
孝司 廣瀬
Tadashi Setoguchi
正 瀬戸口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004127751A priority Critical patent/JP2005307897A/en
Publication of JP2005307897A publication Critical patent/JP2005307897A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compressor, of such structure that excessive rise of delivery temperature due to less lubricant in high speed is restricted for preventing deterioration of reliability of the compressor. <P>SOLUTION: This compressor is provided with a communication passage 59 communicating a high pressure chamber 14 with an oil storage chamber 52, and an opening/closing valve 60 provided in the communication passage 59. As the rotation speed of the compressor becomes higher than prescribed rotation speed, differential pressure between the high pressure chamber 14 and the oil storage chamber 52 becomes high to open the opening/closing valve 60. The surface of lubricant stored in the oil storage chamber 52 by delivery flow into the oil storage chamber 52 is thus disturbed, and part of it is injected from a linking port connecting the oil storage chamber 52 to a separation chamber 51, so that injected lubricant is delivered to a freezing cycle. In high speed rotation of the compressor, insufficient lubrication of lubricating parts in the compressor can thus be eliminated to improve reliability. In a case of low compressor rotation speed, system efficiency is increased to improve cooling performance. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、流体の圧縮を行う圧縮機に関するもので、たとえば自動車用空調装置などの圧縮機に関するものである。   The present invention relates to a compressor that compresses a fluid, and relates to a compressor such as an automotive air conditioner.

従来、この種の圧縮機においては、圧縮された流体(以下冷媒と呼ぶ)と共に圧縮機構を潤滑する潤滑油の一部を圧縮機から空調システムの冷凍サイクル中へ吐出してしまう。圧縮機より冷媒と共に吐出される潤滑油の量が冷凍サイクル中に多くなればなるほど空調システムの効率が低下し、冷房能力が低下する。   Conventionally, in this type of compressor, a part of the lubricating oil that lubricates the compression mechanism together with the compressed fluid (hereinafter referred to as refrigerant) is discharged from the compressor into the refrigeration cycle of the air conditioning system. As the amount of lubricating oil discharged from the compressor together with the refrigerant increases during the refrigeration cycle, the efficiency of the air conditioning system decreases and the cooling capacity decreases.

このため、空調システムの冷凍サイクル中への潤滑油の吐出を抑制し空調システムの効率を向上させるため、圧縮機構の吐出側に、圧縮された冷媒から潤滑油を分離する分離室を設けている(例えば、特許文献1参照)。   For this reason, in order to suppress the discharge of the lubricating oil into the refrigeration cycle of the air conditioning system and improve the efficiency of the air conditioning system, a separation chamber for separating the lubricating oil from the compressed refrigerant is provided on the discharge side of the compression mechanism. (For example, refer to Patent Document 1).

従来の圧縮機は、分離室の下側(重力の向き)には分離された潤滑油を貯える貯油室が形成され、分離室で分離された潤滑油を貯油室に排出する排出孔が分離室に形成されている。また、排出孔開口部から吹き出される潤滑油が貯油室に溜まった潤滑油面に当たり油面が波立ち変動するのを抑制することを目的に衝突壁を形成し、貯油室内の供給ポートより貯油室に溜まった潤滑油を圧縮機の潤滑部に供給している。
特開平11−82352号公報
In the conventional compressor, an oil storage chamber for storing the separated lubricating oil is formed below the separation chamber (in the direction of gravity), and a discharge hole for discharging the lubricating oil separated in the separation chamber to the oil storage chamber is formed in the separation chamber. Is formed. In addition, a collision wall is formed for the purpose of suppressing the oil surface that the lubricating oil blown from the opening of the discharge hole hits the lubricating oil surface accumulated in the oil storage chamber and the oil surface is fluctuated, and the oil storage chamber is supplied from the supply port in the oil storage chamber. The lubricating oil collected in is supplied to the lubricating part of the compressor.
Japanese Patent Laid-Open No. 11-82352

しかしながら、前記従来の圧縮機においては、圧縮機が高速回転になるほど、分離室内の流体の旋回流も速くなり、潤滑油の分離効率が向上し冷凍サイクル中の冷媒に含まれる潤滑油量が減りシステム効率が向上する。しかし、冷凍サイクル中へ吐出する潤滑油が少なくなりすぎると冷媒中に含有される潤滑油の量が少なくなり冷凍サイクル中のオイル循環率(OCR)が悪くなる。OCRが悪くなると吐出ガスに含まれる潤滑油が少なくなりその吸熱作用が少なくなるため見かけ上、吐出ガスの温度は上昇する。延いては、圧縮機構の焼き付き等の原因になり、圧縮機の信頼性、及び耐久性が悪くなる。   However, in the conventional compressor, as the compressor rotates at a higher speed, the swirling flow of the fluid in the separation chamber becomes faster, the separation efficiency of the lubricating oil is improved, and the amount of lubricating oil contained in the refrigerant in the refrigeration cycle is reduced. System efficiency is improved. However, when the amount of lubricating oil discharged into the refrigeration cycle is too small, the amount of lubricating oil contained in the refrigerant is reduced and the oil circulation rate (OCR) in the refrigeration cycle is deteriorated. When the OCR deteriorates, the lubricating oil contained in the discharge gas decreases and the endothermic effect decreases, so that the temperature of the discharge gas rises apparently. As a result, the compression mechanism is burned in, and the reliability and durability of the compressor are deteriorated.

そこで本発明は上述の従来の課題に鑑み、空調装置の冷凍サイクル中の冷媒に含有する潤滑油量が高速で少なくなり吐出温度が過度に上昇することを抑制し、圧縮機の信頼性を低下しないようにした構造の圧縮機の提供することを目的とする。   Therefore, in view of the above-described conventional problems, the present invention suppresses that the amount of lubricating oil contained in the refrigerant in the refrigeration cycle of the air conditioner decreases at a high speed and excessively increases the discharge temperature, thereby reducing the reliability of the compressor. An object of the present invention is to provide a compressor having such a structure.

上記目的を達成するために、本発明による圧縮機においては、貯油室と高圧室との間において、これら相互間の流体移動を許容する連通路と、高圧室と貯油室の圧力差を感知して開閉する開閉弁を設けた構成となっている。   In order to achieve the above object, in the compressor according to the present invention, a communication path allowing fluid movement between the oil storage chamber and the high pressure chamber and a pressure difference between the high pressure chamber and the oil storage chamber are sensed. In this configuration, an on-off valve that opens and closes is provided.

このような構成によって、圧縮機の回転数が上昇し所定の回転数に達すると高圧室と貯油室の圧力差があらかじめ設定した開閉弁の設定圧力に達し開閉弁が開弁する。そのとき高圧室と貯油室の静圧の差により圧縮機の吐出流れの一部が高圧室から上記連通路より貯油室内へ流入する。貯油室に流入する吐出流れによって貯油室に溜まった潤滑油面は乱れ、波立つため、貯油室と分離室を結ぶ連絡口より潤滑油の一部が噴出され、その噴出された潤滑油は分離室からガス排出口へそして冷凍サイクル中へと潤滑油が吐出されることになるので、冷凍サイクル中の冷媒に含まれる潤滑油量は増えることになり、冷凍サイクル
中に不足していた冷媒に含有する潤滑油量が適量になり吐出温度は低下して圧縮機の信頼性を確保することができる。
With such a configuration, when the rotational speed of the compressor increases and reaches a predetermined rotational speed, the pressure difference between the high pressure chamber and the oil storage chamber reaches a preset pressure of the on-off valve, and the on-off valve opens. At that time, due to the difference in static pressure between the high pressure chamber and the oil storage chamber, a part of the discharge flow of the compressor flows from the high pressure chamber into the oil storage chamber through the communication passage. The surface of the lubricating oil accumulated in the oil storage chamber is disturbed and waved by the discharge flow flowing into the oil storage chamber, so a part of the lubricating oil is ejected from the connecting port connecting the oil storage chamber and the separation chamber, and the ejected lubricating oil is separated. Lubricating oil will be discharged from the chamber to the gas exhaust port and into the refrigeration cycle, so the amount of lubricating oil contained in the refrigerant in the refrigeration cycle will increase, and the refrigerant that was lacking in the refrigeration cycle will The amount of lubricating oil to be contained becomes an appropriate amount, the discharge temperature is lowered, and the reliability of the compressor can be ensured.

以上説明したように、本発明の圧縮機においては、高圧室と貯油室を連通する連通路を設け、連通路に設けた開閉弁が所定の回転数より高くなるときに開弁して吐出流の一部を高圧室から貯油室へ流れ込ませることにより、圧縮機の高速回転時において、圧縮機の潤滑部潤滑不足を解消させ信頼性の向上を図ることができる。また、圧縮機回転数が低い場合はシステム効率をあげ冷房性能の向上を図ることができる。   As described above, in the compressor according to the present invention, the communication passage that communicates the high-pressure chamber and the oil storage chamber is provided, and when the on-off valve provided in the communication passage becomes higher than the predetermined rotation speed, the valve is opened to discharge the flow. By allowing a part of the oil to flow from the high pressure chamber into the oil storage chamber, the lack of lubrication of the compressor in the compressor can be eliminated and the reliability can be improved during high speed rotation of the compressor. Further, when the compressor rotational speed is low, the system efficiency can be increased and the cooling performance can be improved.

第1の発明の圧縮機は、潤滑油を含む流体を圧縮する圧縮機構と、前記圧縮機構により圧縮された前記流体が導かれる高圧室と、前記流体に含まれる潤滑油の少なくとも一部が分離される分離室と、前記分離室にて前記流体から分離された潤滑油が貯えられる貯油室とを備える圧縮機において、前記高圧室と前記貯油室とを連通する連通路と、前記連通路を開閉する開閉弁とを設けたことを特徴とするものである。   A compressor according to a first aspect of the present invention separates a compression mechanism for compressing a fluid containing lubricating oil, a high-pressure chamber into which the fluid compressed by the compression mechanism is guided, and at least a part of the lubricating oil contained in the fluid. A compressor that includes a separation chamber and an oil storage chamber in which lubricating oil separated from the fluid in the separation chamber is stored, and a communication passage that communicates the high-pressure chamber and the oil storage chamber; and An on-off valve that opens and closes is provided.

この構成により、冷凍サイクル中の冷媒に含まれる潤滑油量が少なくなって圧縮機の信頼性に影響が出る前に開閉弁を開ける。これにより、圧縮機の吐出流れの一部が高圧室から連通路より貯油室内へ流入し、貯油室に溜まった潤滑油面は乱れ、波立つため、貯油室と分離室を結ぶ連絡口より潤滑油の一部が噴出され、その噴出された潤滑油は分離室からガス排出口へそして冷凍サイクル中へと潤滑油が吐出されることになるので、冷凍サイクル中の冷媒に含まれる潤滑油量は増えることになり、冷凍サイクル中に不足していた冷媒に含有する潤滑油量が適量になり吐出温度は低下して圧縮機の信頼性を確保することができる。   With this configuration, the on-off valve is opened before the amount of lubricating oil contained in the refrigerant in the refrigeration cycle decreases and affects the reliability of the compressor. As a result, a part of the compressor discharge flow flows from the high-pressure chamber into the oil storage chamber through the communication passage, and the lubricating oil surface accumulated in the oil storage chamber is disturbed and waved. Part of the oil is ejected, and the ejected lubricant is discharged from the separation chamber to the gas outlet and into the refrigeration cycle, so the amount of lubricant contained in the refrigerant in the refrigeration cycle As a result, the amount of lubricating oil contained in the refrigerant that has been deficient during the refrigeration cycle becomes an appropriate amount, and the discharge temperature is lowered to ensure the reliability of the compressor.

第2の発明の圧縮機は、第1の発明の開閉弁を、高圧室と貯油室との圧力差が所定の回転数のときの圧力差になったときに開弁することを特徴とするもので、圧縮機の回転数が、オイル循環率が低下する回転数に達すると開閉弁が開弁して高圧室と貯油室とを連通する。   The compressor of the second invention is characterized in that the on-off valve of the first invention opens when the pressure difference between the high-pressure chamber and the oil storage chamber becomes a pressure difference at a predetermined rotational speed. Therefore, when the rotational speed of the compressor reaches the rotational speed at which the oil circulation rate decreases, the on-off valve opens to connect the high pressure chamber and the oil storage chamber.

以下、本発明の圧縮機について、添付図面を参照しながら説明する。   The compressor of the present invention will be described below with reference to the accompanying drawings.

(実施の形態1)
図1は、本発明の実施の形態1による圧縮機の横断面図、図2は、図1に示す圧縮機のA−A断面図、図3は、図1に示す圧縮機の高圧ケースのB矢視図である。
(Embodiment 1)
1 is a cross-sectional view of a compressor according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view of the compressor shown in FIG. 1 taken along line AA, and FIG. 3 is a high-pressure case of the compressor shown in FIG. FIG.

図示したように、この圧縮機においては、円筒内壁を有するシリンダ1に略円柱状のロータ2がその外周の一部がシリンダ1の内壁と微少隙間を形成するように回転自在に収容されている。ロータ2には複数のベーンスロット3が等間隔に設けられており、ベーンスロット3内には、摺動自在にベーン4がそれぞれ挿入されている。ロータ2はこれと一体的に形成された駆動軸5が回転駆動されることにより回転する。シリンダ1の両端開口部はそれぞれ前部側板6及び後部側板7により閉塞され、シリンダ1内部に作動室8が形成される。作動室8には吸入口9及び吐出口10が連通し、吐出口10は高圧通路13に接続され、吐出口10と高圧通路13との間には吐出弁11が配設されている。後部側板7には高圧ケース12が取り付けられており、高圧ケース12内には高圧室14、分離室51及び貯油室52が形成されている。   As shown in the figure, in this compressor, a substantially cylindrical rotor 2 is rotatably accommodated in a cylinder 1 having a cylindrical inner wall so that a part of the outer periphery forms a minute gap with the inner wall of the cylinder 1. . A plurality of vane slots 3 are provided at equal intervals in the rotor 2, and vanes 4 are slidably inserted into the vane slots 3. The rotor 2 rotates when a drive shaft 5 formed integrally therewith is driven to rotate. The opening portions at both ends of the cylinder 1 are respectively closed by the front side plate 6 and the rear side plate 7, and the working chamber 8 is formed inside the cylinder 1. A suction port 9 and a discharge port 10 communicate with the working chamber 8, the discharge port 10 is connected to a high-pressure passage 13, and a discharge valve 11 is disposed between the discharge port 10 and the high-pressure passage 13. A high pressure case 12 is attached to the rear side plate 7, and a high pressure chamber 14, a separation chamber 51, and an oil storage chamber 52 are formed in the high pressure case 12.

高圧室14は導入孔53を介して分離室51と連通している。分離室51は、圧縮された高圧流体にふくまれる潤滑油を分離するために設けられている。分離室51は導油路5
0を介して貯油室52と連通している。貯油室52に貯められた潤滑油は給油路18を介して圧縮機構を構成するロータ2、ベーン4、シリンダ1内壁等に供給され、各部を潤滑すると共に、ベーン背圧室17に供給され、その圧力によりベーン4をロータ2の外側へ押し出す働きをする。潤滑油の給油は貯油室52から圧縮機構に潤滑油を供給する給油路18を介して行われ、給油路18の途中には、ベーン背圧調整装置16が設けられている。ベーン背圧調整装置16は圧縮機構へ供給する潤滑油の給油圧力や給油量を圧縮機構周辺の流体(冷媒)圧力に応じて制御する。
The high pressure chamber 14 communicates with the separation chamber 51 through the introduction hole 53. The separation chamber 51 is provided for separating the lubricating oil contained in the compressed high-pressure fluid. The separation chamber 51 is an oil guide path 5.
It communicates with the oil storage chamber 52 through zero. The lubricating oil stored in the oil storage chamber 52 is supplied to the rotor 2, the vane 4, the inner wall of the cylinder 1 and the like constituting the compression mechanism via the oil supply passage 18, lubricates each part, and is supplied to the vane back pressure chamber 17, The pressure serves to push the vane 4 out of the rotor 2. Lubricating oil is supplied from the oil storage chamber 52 via the oil supply passage 18 that supplies the lubricating oil to the compression mechanism, and a vane back pressure adjusting device 16 is provided in the middle of the oil supply passage 18. The vane back pressure adjusting device 16 controls the oil supply pressure and the amount of oil supplied to the compression mechanism according to the fluid (refrigerant) pressure around the compression mechanism.

エンジンなどの駆動源より動力伝達を受けて駆動軸5及びロータ2が、図2において時計方向に回転すると、これに伴い低圧流体(冷媒)が吸入口9より作動室8内に流入する。ロータ2の回転に伴い圧縮された高圧流体は吐出口10より吐出弁11を押し上げて高圧通路13に吐出され、高圧室14内に流入する。さらに、高圧流体は導入孔53から分離室51に流入し、分離室51で高圧流体に含まれる潤滑油が分離される。   When power is transmitted from a driving source such as an engine and the drive shaft 5 and the rotor 2 rotate clockwise in FIG. 2, a low-pressure fluid (refrigerant) flows into the working chamber 8 from the suction port 9. The high pressure fluid compressed along with the rotation of the rotor 2 pushes up the discharge valve 11 from the discharge port 10 and is discharged into the high pressure passage 13 and flows into the high pressure chamber 14. Further, the high-pressure fluid flows into the separation chamber 51 from the introduction hole 53, and the lubricating oil contained in the high-pressure fluid is separated in the separation chamber 51.

ところで、分離室51は円筒状の空間が設けられており、この円筒空間に高圧流体を導く導入孔53は、この円筒空間の接線方向に高圧流体を導くように、形成されている.高圧流体に含まれる潤滑油は円筒空間を旋回中に遠心力により、分離室51の円筒状部の内周面49に接触し冷媒ガスから分離される。高圧流体はガス排出口58より圧縮機外に吐出され、分離された潤滑油は内周面49に沿って下方に移動する。本実施形態では、円筒空間下部にこれに結合して略逆円錐状の空間が形成されており、分離室51は主にこの略逆円錐状の空間と上述の円筒空間とから構成される。   By the way, the separation chamber 51 is provided with a cylindrical space, and the introduction hole 53 for guiding the high-pressure fluid to the cylindrical space is formed so as to guide the high-pressure fluid in a tangential direction of the cylindrical space. The lubricating oil contained in is brought into contact with the inner peripheral surface 49 of the cylindrical portion of the separation chamber 51 and separated from the refrigerant gas by centrifugal force while turning in the cylindrical space. The high-pressure fluid is discharged from the gas outlet 58 to the outside of the compressor, and the separated lubricating oil moves downward along the inner peripheral surface 49. In this embodiment, a substantially inverted conical space is formed at the lower part of the cylindrical space, and the separation chamber 51 is mainly composed of the substantially inverted conical space and the above-described cylindrical space.

分離室51の下端部には分離された潤滑油を貯油室52に導く導油路50が形成されている。導油路50は、図1に示したように、鉛直下方に向かって形成されており、導油路50の貯油室側開口部54は貯油室52に貯まった潤滑油の油面より鉛直方向において下方の潤滑油中で開口している。そして、分離された潤滑油の自重を利用するといった技術的思想の基に、貯油室52内上部と分離室51との間に、これら相互間の流体移動を許容する再導入孔57を設けることにより、貯油室52上部に貯まった冷媒ガス等の気体流を分離室に移動させ、分離室内の油面を、貯油室の油面に対して、鉛直方向に同等か、少し下方向になるように作用させている。   An oil guide path 50 that guides the separated lubricating oil to the oil storage chamber 52 is formed at the lower end of the separation chamber 51. As shown in FIG. 1, the oil guide passage 50 is formed vertically downward, and the oil storage chamber side opening 54 of the oil guide passage 50 is perpendicular to the oil level of the lubricating oil stored in the oil storage chamber 52. In the lower lubricating oil. A reintroduction hole 57 that allows fluid movement between the oil storage chamber 52 and the separation chamber 51 is provided on the basis of the technical idea of utilizing the weight of the separated lubricating oil. Accordingly, the gas flow such as the refrigerant gas stored in the upper part of the oil storage chamber 52 is moved to the separation chamber so that the oil level in the separation chamber is equal to or slightly lower than the oil level of the oil storage chamber in the vertical direction. Is acting on.

さらに、貯油室52内上部と高圧室14との間には連通路59を形成し、連通路59の貯油室側に開閉弁60を設け、開閉弁60の開度を抑制するように弁押さえ板61を設ける。本実施の形態による開閉弁60はリード弁で、圧縮機の回転数が上昇して高圧室14と貯油室52の圧力差が所定の圧力差よりも大きくなると開く設定である。なお、連通路59、開閉弁60、及び弁押さえ板61は1個又は複数個になる場合もある。   Further, a communication passage 59 is formed between the upper portion of the oil storage chamber 52 and the high-pressure chamber 14, and an opening / closing valve 60 is provided on the oil storage chamber side of the communication passage 59 so as to suppress the opening degree of the opening / closing valve 60. A plate 61 is provided. The on-off valve 60 according to the present embodiment is a reed valve, and is set to open when the rotation speed of the compressor increases and the pressure difference between the high pressure chamber 14 and the oil storage chamber 52 becomes larger than a predetermined pressure difference. In addition, the communication path 59, the on-off valve 60, and the valve pressing plate 61 may be one or more.

このような構成によって、回転数が上昇し高圧室14と貯油室52の圧力差が所定の圧力差よりも大きくなると開閉弁60が開弁し吐出流の一部を連通路59から貯油室へ導入することができ、圧縮機回転数(Nc)が所定の回転数よりも高くなるとオイル循環率(OCR)を大きくしてシステム中の冷媒に含まれる潤滑油の量を多くさせることができる。また回転数が所定の回転数より低い場合は、逆にOCRを低く抑えシステム効率は良くすることができる。信頼性としては、圧縮機が高速回転の時懸念される潤滑部への潤滑油の補給がこのような構成により冷媒中の潤滑油量を適正量にするこができるため信頼性の確保ができる。   With such a configuration, when the rotational speed increases and the pressure difference between the high pressure chamber 14 and the oil storage chamber 52 becomes larger than a predetermined pressure difference, the on-off valve 60 is opened and a part of the discharge flow from the communication passage 59 to the oil storage chamber. When the compressor rotational speed (Nc) is higher than a predetermined rotational speed, the oil circulation rate (OCR) can be increased to increase the amount of lubricating oil contained in the refrigerant in the system. On the other hand, when the rotational speed is lower than the predetermined rotational speed, the OCR can be kept low to improve the system efficiency. As for reliability, replenishment of lubricating oil to the lubricating part, which is a concern when the compressor rotates at high speed, can make the amount of lubricating oil in the refrigerant appropriate due to such a configuration, thus ensuring reliability. .

なお、本実施の形態では、圧縮機としてスライディングベーン型ロータリ圧縮機構を用いたが、本発明はこれに限定されるものではなく、ローリングピストン型、スクロール型等その他の圧縮機構であってもよい。   In the present embodiment, the sliding vane type rotary compression mechanism is used as the compressor. However, the present invention is not limited to this, and other compression mechanisms such as a rolling piston type and a scroll type may be used. .

本発明の実施の形態1による圧縮機の横断面図1 is a cross-sectional view of a compressor according to Embodiment 1 of the present invention. 図1に示す圧縮機のA−A断面図AA sectional view of the compressor shown in FIG. 図1に示す圧縮機の高圧ケースのB矢視図B arrow view of the high pressure case of the compressor shown in FIG.

符号の説明Explanation of symbols

1 シリンダ
2 ロータ
3 ベーンスロット
4 ベーン
5 駆動軸
6 前部側板
7 後部側板
8 作動室
9 吸入口
10 吐出口
11 吐出弁
12 高圧ケース
13 高圧通路
14 高圧室
16 ベーン背圧付与装置
17 ベーン背圧室
18 給油路
50 導油路
51 分離室
52 貯油室
53 導入孔
54 貯油室側開口路(導油路)
57 再導入孔
58 ガス排出口
59 連通路(高圧室と貯油室を連通する)
60 開閉弁
61 弁押さえ板
1 cylinder 2 rotor 3 vane slot 4 vane 5 drive shaft 6 front side plate 7 rear side plate 8 working chamber 9 suction port 10 discharge port 11 discharge valve 12 high pressure case 13 high pressure passage 14 high pressure chamber 16 vane back pressure applying device 17 vane back pressure Chamber 18 Oil supply passage 50 Oil guide passage 51 Separation chamber 52 Oil storage chamber 53 Introduction hole 54 Oil storage chamber side opening passage (oil introduction passage)
57 Reintroduction hole 58 Gas exhaust port 59 Communication passage (Communicating the high pressure chamber and oil storage chamber)
60 On-off valve 61 Valve retainer plate

Claims (2)

潤滑油を含む流体を圧縮する圧縮機構と、前記圧縮機構により圧縮された前記流体が導かれる高圧室と、前記流体に含まれる潤滑油の少なくとも一部が分離される分離室と、前記分離室にて前記流体から分離された潤滑油が貯えられる貯油室とを備える圧縮機において、前記高圧室と前記貯油室とを連通する連通路と、前記連通路を開閉する開閉弁とを設けたことを特徴とする圧縮機。 A compression mechanism for compressing a fluid containing lubricating oil; a high-pressure chamber into which the fluid compressed by the compression mechanism is guided; a separation chamber in which at least a part of the lubricating oil contained in the fluid is separated; and the separation chamber In the compressor comprising the oil storage chamber in which the lubricating oil separated from the fluid is stored, a communication passage that connects the high pressure chamber and the oil storage chamber, and an on-off valve that opens and closes the communication passage are provided. Compressor characterized by. 高圧室と貯油室との圧力差が所定の回転数のときの圧力差になったときに開弁する開閉弁を設けたことを特徴とする請求項1記載の圧縮機。 2. The compressor according to claim 1, further comprising an on-off valve that opens when the pressure difference between the high pressure chamber and the oil storage chamber becomes a pressure difference at a predetermined rotational speed.
JP2004127751A 2004-04-23 2004-04-23 Compressor Pending JP2005307897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004127751A JP2005307897A (en) 2004-04-23 2004-04-23 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004127751A JP2005307897A (en) 2004-04-23 2004-04-23 Compressor

Publications (1)

Publication Number Publication Date
JP2005307897A true JP2005307897A (en) 2005-11-04

Family

ID=35436947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004127751A Pending JP2005307897A (en) 2004-04-23 2004-04-23 Compressor

Country Status (1)

Country Link
JP (1) JP2005307897A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154338A (en) * 2012-04-05 2012-08-16 Calsonic Kansei Corp Gas compressor
CN103147978A (en) * 2011-12-06 2013-06-12 株式会社电装 Rotating machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103147978A (en) * 2011-12-06 2013-06-12 株式会社电装 Rotating machine
CN103147978B (en) * 2011-12-06 2016-01-06 株式会社电装 Rotating machinery
JP2012154338A (en) * 2012-04-05 2012-08-16 Calsonic Kansei Corp Gas compressor

Similar Documents

Publication Publication Date Title
JP4788746B2 (en) Compressor
WO2007077856A1 (en) Compressor
JP2003336588A (en) Compressor
JP2005307897A (en) Compressor
JP4013554B2 (en) Compressor
WO2003006828A1 (en) Compressor
JP2009085189A (en) Displacement type expander, expander-integrated compressor, and refrigeration cycle equipment
JP4378970B2 (en) Compressor
JP2005201171A (en) Lubricating mechanism of compressor
JP4045856B2 (en) Compressor
JP2012017688A (en) Compressor
JP2008014174A (en) Compressor
JP2006112331A (en) Compressor
JP2006029218A (en) Compressor
JP4638313B2 (en) Hermetic rotary compressor
JP2004360543A (en) Air conditioner and air compressor
JP2005307900A (en) Compressor
JP2004190509A (en) Gas compressor
JP2006037895A (en) Compressor
JP2005307765A (en) Compressor
JP2006112237A (en) Compressor
JP3692236B2 (en) Gas compressor
JP2006037928A (en) Compressor
JP2005325734A (en) Compressor
KR100548449B1 (en) Gas leakage prevented scroll compressor