JP2012154338A - Gas compressor - Google Patents

Gas compressor Download PDF

Info

Publication number
JP2012154338A
JP2012154338A JP2012086138A JP2012086138A JP2012154338A JP 2012154338 A JP2012154338 A JP 2012154338A JP 2012086138 A JP2012086138 A JP 2012086138A JP 2012086138 A JP2012086138 A JP 2012086138A JP 2012154338 A JP2012154338 A JP 2012154338A
Authority
JP
Japan
Prior art keywords
pressure
oil
gas
compressor
bypass passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012086138A
Other languages
Japanese (ja)
Other versions
JP5222420B2 (en
Inventor
Hiroshi Iijima
博史 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2012086138A priority Critical patent/JP5222420B2/en
Publication of JP2012154338A publication Critical patent/JP2012154338A/en
Application granted granted Critical
Publication of JP5222420B2 publication Critical patent/JP5222420B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the excessive lowering of an oil circulation rate at high-speed rotation, in a gas compressor.SOLUTION: A cyclone block 70 (oil separator) has a substantially-cylindrical space 75 (oil component separation space) into which a compression refrigerant gas G(compressed gas) is introduced and which separates refrigerator oil R (oil component), a pressure bypass passage 77 which communicates to a second passage 71a and communicatively continues to a discharge chamber 21 low in pressure than the substantially-cylindrical space 75 is formed at a body member 71, a leaf spring 79 (pressure valve) which opens and closes the pressure bypass passage 77 according to the internal pressure of the second passage 71a in which the pressure bypass passage 77 is formed is arranged at the pressure bypass passage 77, and at a high-speed operation, the refrigerant gas G which is insufficient in the separation of the refrigerator oil R is discharged from the pressure bypass passage 77.

Description

本発明は気体圧縮機に関し、詳細には、圧縮機本体から吐出された圧縮気体から油分を遠心分離する油分離器の改良に関する。   The present invention relates to a gas compressor, and more particularly to an improvement in an oil separator that centrifuges oil from compressed gas discharged from a compressor body.

従来、空気調和システム(以下、空調システムという。)には、冷媒ガスなどの気体を圧縮して、空調システムに気体を循環させるための気体圧縮機(コンプレッサ)が用いられている。   Conventionally, a gas compressor (compressor) for compressing a gas such as a refrigerant gas and circulating the gas in the air conditioning system is used in an air conditioning system (hereinafter referred to as an air conditioning system).

ここで、一般的なコンプレッサは、気体を圧縮して吐出する圧縮機本体と、この圧縮機本体から吐出された圧縮冷媒ガスから冷凍機油等の油分を分離する油分離器とを備えた構成となっている。   Here, a general compressor includes a compressor main body that compresses and discharges gas, and an oil separator that separates oil such as refrigeration oil from the compressed refrigerant gas discharged from the compressor main body. It has become.

油分離器としては、例えば、排油路が形成された端壁で下端面が閉じられた略円柱状の空間を有する本体部材と、本体部材の略円柱状の空間と略同軸であって本体部材の内側に配設された略円筒状の内筒部材とを有して、本体部材の内周面と内筒部材の外周面とによって画成された略円筒状の空間(油分離空間)を、圧縮冷媒ガスを旋回させながら通過させることにより、冷凍機油を遠心分離させるものが知られている(特許文献1)。   As an oil separator, for example, a main body member having a substantially cylindrical space whose lower end surface is closed by an end wall in which a drainage passage is formed, and a main body that is substantially coaxial with the substantially cylindrical space of the main body member A substantially cylindrical space (oil separation space) defined by the inner peripheral surface of the main body member and the outer peripheral surface of the inner cylindrical member, having a substantially cylindrical inner cylindrical member disposed inside the member Is known in which refrigeration oil is centrifuged by passing compressed refrigerant gas while swirling (Patent Document 1).

ここで、内筒部材と本体部材とは別体部品であり、内筒部材は本体部材に圧入や加締めによって本体部材に固定され、油分離器全体として一体的に構成されている。   Here, the inner cylinder member and the main body member are separate parts, and the inner cylinder member is fixed to the main body member by press-fitting or caulking into the main body member, and is configured integrally as an entire oil separator.

特開2007−327340号公報JP 2007-327340 A

ところで、圧縮機本体は、空調システムの所望出力に応じて、その回転数が変化するが、高速回転時には、油分離器の油分離空間での流速が非常に速くなり、遠心分離による油分離性能は通常の運転時よりも向上する。   By the way, although the number of rotations of the compressor body changes according to the desired output of the air conditioning system, the flow rate in the oil separation space of the oil separator becomes very fast at high speed rotation, and the oil separation performance by centrifugal separation Is better than during normal operation.

一方、油分離性能が向上することによって、冷媒ガスとともに、気体圧縮機から空調システムに吐き出される冷凍機油の量は減ること(OCR(Oil Content Rate;オイル循環率)の低下)になるが、空調システム(凝縮器)への冷凍機油の流出量が減ると、空調システム(蒸発器)から冷媒ガスとともに気体圧縮機に戻される冷凍機油も減ることになる。すると、圧縮室に吸入される冷媒ガスに混在している冷凍機油の量が減ることとなり、冷媒ガスとともに圧縮室内に導入される冷凍機油が減少し、冷却媒体として作用する冷凍機油の減少によって、圧縮室から吐出された冷媒ガスの温度が高くなり、結果的に体積効率の低下を招く。   On the other hand, the improvement in oil separation performance will reduce the amount of refrigeration oil discharged from the gas compressor to the air conditioning system together with the refrigerant gas (decrease in OCR (Oil Content Rate)), but air conditioning When the outflow amount of the refrigeration oil to the system (condenser) decreases, the refrigeration oil returned to the gas compressor together with the refrigerant gas from the air conditioning system (evaporator) also decreases. Then, the amount of refrigerating machine oil mixed in the refrigerant gas sucked into the compression chamber is reduced, the refrigerating machine oil introduced into the compression chamber together with the refrigerant gas is reduced, and the reduction of the refrigerating machine oil acting as a cooling medium is reduced. The temperature of the refrigerant gas discharged from the compression chamber increases, resulting in a decrease in volumetric efficiency.

そこで、高速回転時には、OCRの過度の低下を防ぐことが求められている。   Therefore, it is required to prevent an excessive decrease in OCR during high-speed rotation.

本発明は上記事情に鑑みなされたものであって、高速回転時にオイル循環率の過度の低下を防ぐことができる気体圧縮機を提供することを目的とする。   This invention is made | formed in view of the said situation, Comprising: It aims at providing the gas compressor which can prevent the excessive fall of an oil circulation rate at the time of high speed rotation.

本発明に係る気体圧縮機は、圧縮機本体から油分離器に圧縮気体を通過させる圧縮気体通路に、圧力弁を設けて、気体圧縮機の高速回転によって、これら圧縮気体通路または油分離空間の内圧が高くなったときは圧力弁を開いて、油分離が十分なされていない圧縮気体を、圧力バイパス通路を介して気体圧縮機からシステムに吐出して、オイル循環率(OCR)の過度の低下を防ぐものである。   In the gas compressor according to the present invention, a pressure valve is provided in a compressed gas passage for allowing compressed gas to pass from the compressor body to the oil separator, and the compressed gas passage or the oil separation space is provided by high-speed rotation of the gas compressor. When the internal pressure rises, the pressure valve is opened, and compressed gas with insufficient oil separation is discharged from the gas compressor to the system via the pressure bypass passage, resulting in excessive reduction in oil circulation rate (OCR). Is to prevent.

すなわち、本発明に係る気体圧縮機は、供給された気体を高圧の圧縮気体に圧縮する圧縮機本体と、前記圧縮機本体から吐出された圧縮気体から油分を分離する単一の油分離器と、前記圧縮気体が前記圧縮機本体から前記油分離器まで通過する圧縮気体通路とを備え、前記油分離器は、一端が閉じられた略円柱状の空間を形成した本体部と、この略円柱状の空間の軸方向に沿って設けられた略円筒状の内筒部とを有し、前記本体部の内面と前記内筒部の外面とによって画成された略円筒状空間を、前記圧縮気体が導入されて前記油分を分離する油分離空間として有し、前記圧縮気体通路から、前記油分離空間の内圧よりも相対的に圧力が低い空間に連通する圧力バイパス通路が、前記本体部に形成され、前記圧力バイパス通路には、前記圧力バイパス通路が形成された前記圧縮気体通路の内圧に応じて、前記圧力バイパス通路を開閉する圧力弁が設けられていることを特徴とする。   That is, the gas compressor according to the present invention includes a compressor body that compresses a supplied gas into a high-pressure compressed gas, and a single oil separator that separates oil from the compressed gas discharged from the compressor body. A compressed gas passage through which the compressed gas passes from the compressor main body to the oil separator, and the oil separator includes a main body portion that forms a substantially cylindrical space with one end closed, and a substantially circular shape. A substantially cylindrical inner cylinder portion provided along the axial direction of the columnar space, and compressing the substantially cylindrical space defined by the inner surface of the main body portion and the outer surface of the inner cylinder portion. There is an oil separation space in which gas is introduced to separate the oil component, and a pressure bypass passage communicating from the compressed gas passage to a space whose pressure is relatively lower than the internal pressure of the oil separation space is provided in the main body portion. The pressure bypass passage is formed with the pressure Said bypass passage is formed in accordance with the internal pressure of the compressed gas passage, characterized in that the pressure valve for opening and closing the pressure bypass passage.

このように構成された本発明に係る気体圧縮機によれば、圧縮機本体の高速回転によって、圧縮機本体から油分離器に吐出される圧縮気体の圧力が高められると、圧縮気体が通過する、圧縮機本体から油分離器までの圧縮気体通路の内圧が高くなる。   According to the gas compressor according to the present invention configured as above, when the pressure of the compressed gas discharged from the compressor body to the oil separator is increased by the high speed rotation of the compressor body, the compressed gas passes. The internal pressure of the compressed gas passage from the compressor body to the oil separator increases.

そして、圧縮気体通路の内圧が高くなると、圧縮気体通路の内圧に応じて開閉する圧力弁が、圧縮気体通路とこれらの空間よりも相対的に圧力の低い空間とを連通させる圧力バイパス通路を開き、この結果、圧縮気体通路は、油分離空間を通らずに相対的に圧力の低い空間に連通し、圧縮気体通路の圧縮気体は、油分離空間内で油分の分離が行われずに、圧力バイパス通路を通って相対的に圧力の低い空間に逃げる。   When the internal pressure of the compressed gas passage increases, a pressure valve that opens and closes according to the internal pressure of the compressed gas passage opens a pressure bypass passage that communicates the compressed gas passage with a space having a relatively lower pressure than these spaces. As a result, the compressed gas passage communicates with a relatively low-pressure space without passing through the oil separation space, and the compressed gas in the compressed gas passage does not undergo oil separation in the oil separation space, and is bypassed by pressure. Escape to a relatively low pressure space through the passage.

したがって、その相対的に圧力の低い空間に逃げた圧縮気体は、油分離空間で油分離が十分になされた後の本来の圧縮気体よりも油分を多く含むこととなり、従来よりも油分を多く含んだ圧縮気体が、相対的に圧力の低い空間から気体圧縮室の外部(空調システム)に吐出されることで、OCRが増大し、高速運転時におけるOCRの過度の低下を防ぐことができる。   Therefore, the compressed gas that has escaped to the relatively low pressure space contains more oil than the original compressed gas after sufficient oil separation in the oil separation space, and contains more oil than before. The compressed gas is discharged from the space having a relatively low pressure to the outside (air conditioning system) of the gas compression chamber, whereby the OCR increases and an excessive decrease in the OCR during high-speed operation can be prevented.

なお、前記相対的に圧力が低い空間は、油分離空間で冷凍機油が遠心分離された後の圧縮冷媒ガスが吐出される空間(吐出室)であり、この吐出室に通じる油分離空間からの通路よりも広い空間であるため、圧縮気体が油分離器の内部(油分離空間内)から油分離器の外部(吐出室)に吐出された際の圧力差が非常に大きくなる。したがって、圧力弁を開閉させる圧力の閾値を設定し易い。   The relatively low pressure space is a space (discharge chamber) from which the compressed refrigerant gas is discharged after the refrigeration oil is centrifuged in the oil separation space, and the space from the oil separation space that leads to the discharge chamber. Since the space is wider than the passage, the pressure difference when the compressed gas is discharged from the inside of the oil separator (inside the oil separation space) to the outside of the oil separator (discharge chamber) becomes very large. Therefore, it is easy to set a pressure threshold value for opening and closing the pressure valve.

圧力弁が圧力バイパス通路を開いて油分離空間の圧力が下げられることにより、油分離空間を画成する部材の必要強度を従来よりも低く設定することもできる。   Since the pressure valve opens the pressure bypass passage and the pressure in the oil separation space is lowered, the required strength of the member that defines the oil separation space can be set lower than that in the past.

本発明に係る気体圧縮機によれば、高速回転時にオイル循環率の過度の低下を防ぐことができる。   The gas compressor according to the present invention can prevent an excessive decrease in the oil circulation rate during high-speed rotation.

本発明に係る気体圧縮機の一実施形態であるベーンロータリ式コンプレッサを示す縦断面図である。It is a longitudinal section showing a vane rotary type compressor which is one embodiment of a gas compressor concerning the present invention. (a)は図1におけるサイクロンブロックの詳細を示す拡大図、(b)は(a)におけるA−A線に沿った断面図であり圧力バイパス通路が閉じた状態を示す図、(c)は(a)におけるA−A線に沿った断面図であり圧力バイパス通路が開いた状態を示す図である。(A) is an enlarged view showing details of the cyclone block in FIG. 1, (b) is a cross-sectional view taken along line AA in (a) and shows a state in which the pressure bypass passage is closed, (c) is It is sectional drawing along the AA in (a), and is a figure which shows the state which the pressure bypass channel opened.

以下、本発明の気体圧縮機に係る実施形態について、図面を参照して説明する。   Hereinafter, an embodiment according to the gas compressor of the present invention will be described with reference to the drawings.

図1は、本発明に係る気体圧縮機の一実施形態であるベーンロータリ式コンプレッサ100を示す縦断面図、図2は図1におけるサイクロンブロック70の詳細を示す拡大図および断面図である。   FIG. 1 is a longitudinal sectional view showing a vane rotary compressor 100 as an embodiment of a gas compressor according to the present invention, and FIG. 2 is an enlarged view and a sectional view showing details of a cyclone block 70 in FIG.

図示のコンプレッサ100は、例えば、冷却媒体の気化熱を利用して冷却を行なう空気調和システム(以下、単に空調システムという。)の一部として構成され、この空調システムの他の構成要素である凝縮器、膨張弁、蒸発器等(いずれも図示を省略する。)とともに、冷却媒体の循環経路上に設けられている。   The illustrated compressor 100 is configured, for example, as a part of an air conditioning system (hereinafter simply referred to as an air conditioning system) that performs cooling using the heat of vaporization of a cooling medium, and condensing that is another component of the air conditioning system. Along with a condenser, an expansion valve, an evaporator, and the like (all not shown), they are provided on a cooling medium circulation path.

そして、コンプレッサ100は、空調システムの蒸発器から取り入れた気体状の冷却媒体としての冷媒ガスG(気体、圧縮気体)を圧縮し、この圧縮された冷媒ガスGを空調システムの凝縮器に供給する。凝縮器は、圧縮された冷媒ガスGを周囲の空気等との間で熱交換することにより冷媒ガスGから放熱させて液化させ、高圧で液状の冷媒として膨張弁に送出する。   The compressor 100 compresses the refrigerant gas G (gas, compressed gas) as a gaseous cooling medium taken from the evaporator of the air conditioning system, and supplies the compressed refrigerant gas G to the condenser of the air conditioning system. . The condenser heat-exchanges the compressed refrigerant gas G with ambient air and the like to dissipate heat from the refrigerant gas G and liquefy it, and sends it to the expansion valve as a high-pressure liquid refrigerant.

高圧で液状の冷媒は、膨張弁で低圧化され、蒸発器に送出される。低圧の液状冷媒は、蒸発器において周囲の空気から吸熱して気化し、この気化熱との熱交換により蒸発器周囲の空気を冷却する。   The high-pressure liquid refrigerant is reduced in pressure by the expansion valve and sent to the evaporator. The low-pressure liquid refrigerant absorbs heat from ambient air and vaporizes in the evaporator, and cools the air around the evaporator by heat exchange with the heat of vaporization.

気化した低圧の冷媒ガスGは、コンプレッサ100に戻って圧縮され、以下、上記工程を繰り返す。   The vaporized low-pressure refrigerant gas G returns to the compressor 100 and is compressed, and the above steps are repeated thereafter.

コンプレッサ100は、圧縮機本体60と遠心分離式の油分離器である単一のサイクロンブロック70とをハウジング10の内部に収容している。   The compressor 100 houses a compressor main body 60 and a single cyclone block 70 that is a centrifugal oil separator in the housing 10.

ハウジング10は、一端が閉じられ、他端が開放された筒状対を呈したケース11と、このケース11の開放された他端を覆うフロントヘッド12とからなり、フロントヘッド12がケース11に組み付けられた状態で、ハウジング10の内部に、圧縮機本体60およびサイクロンブロック70(油分離器)を収容する空間が画成される。   The housing 10 includes a case 11 having a cylindrical pair with one end closed and the other end opened, and a front head 12 covering the other open end of the case 11. The front head 12 is attached to the case 11. In the assembled state, a space for accommodating the compressor main body 60 and the cyclone block 70 (oil separator) is defined in the housing 10.

フロントヘッド12には、蒸発器から供給された低圧の冷媒ガスGを内部に取り込む吸入ポート12aが形成されており、ケース11には、圧縮機本体60で圧縮された高圧の冷媒ガスGを凝縮器に吐出する吐出ポート11aが形成されている。   The front head 12 is formed with a suction port 12a for taking in the low-pressure refrigerant gas G supplied from the evaporator, and the case 11 condenses the high-pressure refrigerant gas G compressed by the compressor body 60. A discharge port 11a for discharging to the container is formed.

圧縮機本体60は、軸回りに回転駆動される回転軸51と、この回転軸51と一体的に回転する円柱状のロータ50と、ロータ50の外周面の外方を取り囲む断面輪郭略楕円形状の内周面49を有するとともに両端が開放されたシリンダ40と、ロータ50の外周に、外方に向けて突出可能に埋設され、その突出側の先端がシリンダ40の内周面49の輪郭形状に追従するように突出量が可変とされ、回転軸51回りに等角度間隔でロータ50に埋設された5枚の板状のベーン58と、シリンダ40の両側開放端面の外側からそれぞれ開放端面を覆うように固定されたフロントサイドブロック30およびリヤサイドブロック20とからなる。   The compressor main body 60 includes a rotary shaft 51 that is driven to rotate about an axis, a columnar rotor 50 that rotates integrally with the rotary shaft 51, and a cross-sectional contour that is substantially elliptical so as to surround the outer periphery of the rotor 50. The cylinder 40 having the inner peripheral surface 49 and both ends open, and the outer periphery of the rotor 50 are embedded so as to protrude outward, and the tip of the protruding side is the contour shape of the inner peripheral surface 49 of the cylinder 40 The amount of protrusion is variable so as to follow, and the five plate-like vanes 58 embedded in the rotor 50 at equiangular intervals around the rotation shaft 51, and the open end surfaces from the outside of the open end surfaces on both sides of the cylinder 40, respectively. The front side block 30 and the rear side block 20 are fixed so as to cover them.

そして、2つのサイドブロック20,30、ロータ50、シリンダ40、および回転軸51の回転方向に相前後する2つのベーン58,58によって画成された各圧縮室48の容積が、回転軸51の回転にしたがって増減を繰り返すことにより、フロントサイドブロック30を介して各圧縮室48に吸入された冷媒ガスGを圧縮して、リヤサイドブロック20を介して吐出するように構成されている。   The volume of each compression chamber 48 defined by the two side blocks 20, 30, the rotor 50, the cylinder 40, and the two vanes 58, 58 that precede and follow the rotation direction of the rotation shaft 51 is By repeating the increase / decrease according to the rotation, the refrigerant gas G sucked into each compression chamber 48 through the front side block 30 is compressed and discharged through the rear side block 20.

なお、ロータ50の両端面側からそれぞれ突出した回転軸51の部分のうち一方の部分は、フロントサイドブロック30の軸受部32に軸支されるとともに、フロントヘッド12を貫通して外方まで延び、図示しない外部の動力が伝達される駆動力伝達部80に連結されている。   One of the portions of the rotary shaft 51 protruding from both end surfaces of the rotor 50 is pivotally supported by the bearing portion 32 of the front side block 30 and extends outward through the front head 12. The driving force transmitting unit 80 is connected to external power (not shown).

回転軸51の突出部分のうち他方の側は、リヤサイドブロック20の軸受部22により軸支されている。   The other side of the protruding portion of the rotating shaft 51 is pivotally supported by the bearing portion 22 of the rear side block 20.

ケース11と圧縮機本体60およびサイクロンブロック70とによって画成された吐出室21は、圧縮機本体60からサイクロンブロック70を介して冷媒ガスGが吐出される空間であり、前述の吐出ポート11aは、この吐出室21に連通している。   The discharge chamber 21 defined by the case 11, the compressor main body 60, and the cyclone block 70 is a space from which the refrigerant gas G is discharged from the compressor main body 60 through the cyclone block 70. The discharge port 11a described above is The discharge chamber 21 is communicated.

吐出室21の底部には、サイクロンブロック70によって冷媒ガスGから分離された冷凍機油Rが溜められていて、この冷凍機油Rは、ベーン58を突出させるための背圧や圧縮室48の潤滑油等として、リヤサイドブロック20等に形成された導油路を通って圧縮機本体60の内部に供給されている。   Refrigerating machine oil R separated from the refrigerant gas G by the cyclone block 70 is stored at the bottom of the discharge chamber 21, and the refrigerating machine oil R is used for back pressure for causing the vane 58 to protrude and lubricating oil for the compression chamber 48. For example, the oil is supplied into the compressor body 60 through an oil guide passage formed in the rear side block 20 or the like.

サイクロンブロック70は、圧縮機本体60のリヤサイドブロック20に組み付けられていて、圧縮室48からリヤサイドブロック20を介して吐出された高圧の冷媒ガスGから冷凍機油R(油分)を分離するものであり、図2に詳細を示すように、下端が閉じられた略円柱状の空間71dを形成した本体部材71(本体部)と、この本体部材71の略円柱状の空間71dよりも小径の略円筒状の内筒部72aを有する内筒部材72(内筒部)とを備え、本体部材71の略円柱状の空間71dの軸方向に沿って、略円柱状の空間71dの内部に内筒部材72の内筒部72aを配設した状態で、本体部材71の内面と内筒部材72の内筒部72aの外面とによって、冷媒ガスGから冷凍機油Rを分離する油分離空間としての略円筒状空間75が画成されている。   The cyclone block 70 is assembled to the rear side block 20 of the compressor main body 60 and separates the refrigerating machine oil R (oil content) from the high-pressure refrigerant gas G discharged from the compression chamber 48 through the rear side block 20. As shown in detail in FIG. 2, a main body member 71 (main body portion) in which a substantially cylindrical space 71d having a closed lower end is formed, and a substantially cylindrical cylinder having a smaller diameter than the substantially cylindrical space 71d of the main body member 71. And an inner cylinder member 72 (inner cylinder part) having a cylindrical inner cylinder part 72 a, and an inner cylinder member inside the substantially columnar space 71 d along the axial direction of the substantially columnar space 71 d of the main body member 71. In a state where the inner cylinder portion 72 a of 72 is disposed, the substantially cylindrical as an oil separation space for separating the refrigerating machine oil R from the refrigerant gas G by the inner surface of the main body member 71 and the outer surface of the inner cylinder portion 72 a of the inner cylinder member 72. Space 75 It has been made.

ここで、本体部材71の下端には、このサイクロンブロック70によって、冷媒ガスGから分離された冷凍機油Rを吐出室21の底部に排出する排出孔71cが形成されている。   Here, a discharge hole 71 c for discharging the refrigerating machine oil R separated from the refrigerant gas G to the bottom of the discharge chamber 21 by the cyclone block 70 is formed at the lower end of the main body member 71.

圧縮室48から吐出された高圧の冷媒ガスGは、図2に示すように、リヤサイドブロック20に形成された第1通路25、並びにサイクロンブロック70に形成された第2通路71aおよび第3通路71bからなる圧縮ガス通路(圧縮気体通路)を通過して、サイクロンブロック70の本体部材71の内面と内筒部材72の内筒部72aの外面とによって画成された略円筒状空間75に吐出される。   The high-pressure refrigerant gas G discharged from the compression chamber 48 is, as shown in FIG. 2, the first passage 25 formed in the rear side block 20, and the second passage 71a and the third passage 71b formed in the cyclone block 70. And is discharged into a substantially cylindrical space 75 defined by the inner surface of the main body member 71 of the cyclone block 70 and the outer surface of the inner cylinder portion 72a of the inner cylinder member 72. The

そして、この略円筒状空間75に吐出された高圧の冷媒ガスGは、吐出された際の気流によって略円筒状空間75を螺旋状に旋回しながら降下し、旋回している間に作用する遠心力によって、この高圧の冷媒ガスGに混在していた冷凍機油Rを分離し、分離された冷凍機油Rは、本体部材71の略円柱状の空間71dの底部へ流れ落ちて排出孔71cから吐出室21に滴下する。   The high-pressure refrigerant gas G discharged into the substantially cylindrical space 75 descends while spirally swirling in the substantially cylindrical space 75 by the airflow at the time of being discharged, and the centrifugal force acting while turning The refrigerating machine oil R mixed in the high-pressure refrigerant gas G is separated by force, and the separated refrigerating machine oil R flows down to the bottom of the substantially cylindrical space 71d of the main body member 71 and is discharged from the discharge hole 71c to the discharge chamber. It is dripped at 21.

一方、冷凍機油Rが分離された後の冷媒ガスGは、本体部材71の略円柱状の空間71dの底部で跳ね返って上昇し、内筒部材72の内筒部72aの内側空間72cを通過し、上端の開口から吐出室21に吐出される。   On the other hand, the refrigerant gas G after the refrigerating machine oil R is separated rebounds and rises at the bottom of the substantially cylindrical space 71d of the main body member 71, and passes through the inner space 72c of the inner cylinder portion 72a of the inner cylinder member 72. Then, the liquid is discharged into the discharge chamber 21 from the opening at the upper end.

このように、本体部材71の内面と内筒部材72の内筒部72aの外面とによって画成された略円筒状空間75は、冷媒ガスGから冷凍機油Rを分離する空間(油分離空間)となっている。   Thus, the substantially cylindrical space 75 defined by the inner surface of the main body member 71 and the outer surface of the inner cylinder portion 72a of the inner cylinder member 72 is a space (oil separation space) that separates the refrigerating machine oil R from the refrigerant gas G. It has become.

本体部材71には、図2に示すように、本体部材71の第2通路71aと略円筒状の空間75の内圧よりも相対的に圧力が低い空間である吐出室21とを連通する圧力バイパス通路77が形成されているとともに、この本体部材71には、締結部材78で固定された、圧縮ガス通路の内圧に応じて圧力バイパス通路77を開閉する板バネ弁79(圧力弁)が設けられている。   As shown in FIG. 2, the main body member 71 communicates with the second passage 71 a of the main body member 71 and the discharge chamber 21, which is a space whose pressure is relatively lower than the internal pressure of the substantially cylindrical space 75. A passage 77 is formed, and a leaf spring valve 79 (pressure valve) that opens and closes the pressure bypass passage 77 according to the internal pressure of the compressed gas passage is fixed to the main body member 71 by a fastening member 78. ing.

この板バネ弁79は、圧縮ガス通路の内圧が所定の圧力よりも低い状態のときは、図2(b)に示すように変形することがないため圧力バイパス通路77を閉鎖した状態を維持し、圧縮室48から吐出した冷媒ガスGをサイクロンブロック70内の略円筒状空間75に導く。   When the internal pressure of the compressed gas passage is lower than a predetermined pressure, the leaf spring valve 79 is not deformed as shown in FIG. The refrigerant gas G discharged from the compression chamber 48 is guided to the substantially cylindrical space 75 in the cyclone block 70.

一方、圧縮ガス通路の内圧が所定の圧力より高い状態のときは、図4(c)に示すように、板バネ弁79が圧力バイパス通路77の圧力を受けて吐出室21側に弾性変形し、これにより圧力バイパス通路77が開放されて、圧縮室48から吐出した冷媒ガスGを、サイクロンブロック70内の略円筒状空間75を通過することなく、圧力バイパス通路77を介して吐出室21に直接吐出させる。   On the other hand, when the internal pressure of the compressed gas passage is higher than a predetermined pressure, the leaf spring valve 79 receives the pressure of the pressure bypass passage 77 and elastically deforms toward the discharge chamber 21 as shown in FIG. Thus, the pressure bypass passage 77 is opened, and the refrigerant gas G discharged from the compression chamber 48 passes to the discharge chamber 21 via the pressure bypass passage 77 without passing through the substantially cylindrical space 75 in the cyclone block 70. Direct discharge.

このとき、吐出室21に吐出された高圧の冷媒ガスGは、略円筒状の空間75内で螺旋状に旋回しながら降下していないため、冷凍機油Rの遠心分離が十分になされておらず、通常の運転状態(高速運転以外の運転状態)における冷媒ガスGよりも多くの冷凍機油Rが混在している。   At this time, since the high-pressure refrigerant gas G discharged into the discharge chamber 21 does not descend while spirally turning in the substantially cylindrical space 75, the refrigerating machine oil R is not sufficiently centrifuged. More refrigerant oil R is mixed than refrigerant gas G in a normal operation state (operation state other than high-speed operation).

したがって、吐出ポート11aを介してコンプレッサ100外部の空調システム(凝縮器)に持ち出される冷凍機油Rの量は、通常の運転状態よりも多くなり、高速運転時の低OCR(オイル循環率)を回避することができる。   Therefore, the amount of the refrigerating machine oil R taken out to the air conditioning system (condenser) outside the compressor 100 through the discharge port 11a is larger than that in the normal operation state, and avoids low OCR (oil circulation rate) at high speed operation. can do.

すなわち、コンプレッサは一般的に、高速回転時にはサイクロンブロックの略円筒状空間での冷媒ガス流速が通常運転時よりも速くなり、略円筒状空間での遠心分離による油分離性能は通常運転時よりも向上する。   In other words, the compressor generally has a higher refrigerant gas flow rate in the substantially cylindrical space of the cyclone block than in normal operation during high-speed rotation, and the oil separation performance by centrifugal separation in the substantially cylindrical space is higher than in normal operation. improves.

一方、油分離性能が向上することによって、冷媒ガスとともに、コンプレッサから空調システム(凝縮器)に吐き出される冷凍機油の量は減る(低OCR)ことになるが、空調システム(凝縮器)への冷凍機油の流出量が減ると、空調システム(蒸発器)から冷媒ガスとともにコンプレッサに戻される冷凍機油の量も減ることになる。   On the other hand, by improving the oil separation performance, the amount of refrigerating machine oil discharged from the compressor to the air conditioning system (condenser) together with the refrigerant gas is reduced (low OCR), but refrigeration to the air conditioning system (condenser) is reduced. When the outflow amount of machine oil decreases, the amount of refrigerating machine oil returned to the compressor together with the refrigerant gas from the air conditioning system (evaporator) also decreases.

すると、圧縮室に吸入される冷媒ガスに混在している冷凍機油の量が減ることとなり、冷媒ガスとともに圧縮室内に導入される冷凍機油が減り、冷却媒体としての冷凍機油の減少によって、圧縮室から吐出された冷媒ガスの温度が高くなって、結果的に体積効率の低下を招く。   Then, the amount of the refrigerating machine oil mixed in the refrigerant gas sucked into the compression chamber is reduced, the refrigerating machine oil introduced into the compression chamber together with the refrigerant gas is reduced, and the reduction of the refrigerating machine oil as the cooling medium reduces the compression chamber oil. As a result, the temperature of the refrigerant gas discharged from the chamber increases, resulting in a decrease in volumetric efficiency.

しかし、本実施形態のコンプレッサ100は、高速回転時に高速運転によって高められた略円筒状空間75の内圧に基づいて、板バネ弁79が圧力バイパス通路77を開くため、第1通路25および第2通路71aは圧力バイパス通路77を介して、相対的に圧力の低い吐出室21に連通し、第1通路25および第2通路71aを通った高圧の冷媒ガスGは略円筒状空間75通らずに圧力バイパス通路77を通って吐出室21に逃げる。   However, in the compressor 100 of the present embodiment, the leaf spring valve 79 opens the pressure bypass passage 77 based on the internal pressure of the substantially cylindrical space 75 that is increased by high-speed operation during high-speed rotation. The passage 71a communicates with the discharge chamber 21 having a relatively low pressure through the pressure bypass passage 77, and the high-pressure refrigerant gas G passing through the first passage 25 and the second passage 71a does not pass through the substantially cylindrical space 75. It escapes to the discharge chamber 21 through the pressure bypass passage 77.

したがって、圧力バイパス通路77を介して吐出室21に逃げた冷媒ガスGは、略円筒状空間75で冷凍機油Rの分離が十分になされた後の本来の圧縮冷媒ガスGよりも冷凍機油Rを多く含むこととなり、従来よりも冷凍機油Rを多く含んだ圧縮冷媒ガスGが、吐出室21を通ってコンプレッサ100の外部(空調システム)に吐出されることで、OCRが増大し、高速運転時におけるOCRの過度の低下を防ぐことができる。   Therefore, the refrigerant gas G that has escaped to the discharge chamber 21 via the pressure bypass passage 77 is supplied with the refrigerating machine oil R more than the original compressed refrigerant gas G after the refrigerating machine oil R is sufficiently separated in the substantially cylindrical space 75. The compressed refrigerant gas G containing more refrigeration oil R than before is discharged through the discharge chamber 21 to the outside of the compressor 100 (air conditioning system), thereby increasing the OCR and during high-speed operation. An excessive decrease in OCR can be prevented.

また、本実施形態に係るコンプレッサ100のサイクロンブロック70は、圧縮室48で液圧縮が生じた場合であっても、略円筒状空間75の内圧は想定外の異常な高圧となる以前に、すなわち異常な高圧よりも低い所定の圧力となった時点で、圧力バイパス通路77が開かれ、略円筒状空間75の内圧が所定の圧力を超えた状態が長期間に亘って継続するのを回避することができ、サイクロンブロック70が予期しない破損に至るのを防止することができる。   Further, even if the cyclone block 70 of the compressor 100 according to the present embodiment has a liquid compression in the compression chamber 48, before the internal pressure of the substantially cylindrical space 75 becomes an unexpectedly high pressure, that is, When a predetermined pressure lower than the abnormal high pressure is reached, the pressure bypass passage 77 is opened, and the state where the internal pressure of the substantially cylindrical space 75 exceeds the predetermined pressure is prevented from continuing for a long period of time. And can prevent the cyclone block 70 from being unexpectedly damaged.

よって、サイクロンブロック70の略円筒状空間75を画成する部材(本体部材71および内筒部材72)の必要強度を従来よりも低く設定することも可能である。   Therefore, it is also possible to set the required strength of the members (the main body member 71 and the inner cylinder member 72) that define the substantially cylindrical space 75 of the cyclone block 70 to be lower than the conventional one.

なお、高速運転から中・低速運転に移行し、あるいは液圧縮状態が解消すると、略円筒状空間75の内圧が予め設定された所定の圧力未満まで低下し、これにより、変形していた板バネ弁79が復元力(弾性力)によって本体部材71の外面に当接し、圧力バイパス通路77が閉じる。   When the high-speed operation is shifted to the middle / low-speed operation or the liquid compression state is canceled, the internal pressure of the substantially cylindrical space 75 is lowered to a predetermined pressure lower than the predetermined pressure, thereby deforming the deformed leaf spring. The valve 79 comes into contact with the outer surface of the main body member 71 by a restoring force (elastic force), and the pressure bypass passage 77 is closed.

この結果、サイクロンブロック70は、図2(b)に示した元の状態(通常の運転時や停止時における状態)に復帰し、第1通路25および第2通路71aを通った冷媒ガスGは略円筒状空間75に導かれ、略円筒状空間75内を螺旋状に旋回して降下し、遠心分離により冷凍機油Rが分離され、冷凍機油Rは排出孔71cから吐出室21に滴下し、冷媒ガスGは内筒部72の内側空間72cを通って吐出室21に吐出される。   As a result, the cyclone block 70 returns to the original state shown in FIG. 2B (the state at the time of normal operation or stop), and the refrigerant gas G passing through the first passage 25 and the second passage 71a is changed. Guided to the substantially cylindrical space 75, spirally swivels and descends in the substantially cylindrical space 75, the refrigeration oil R is separated by centrifugation, and the refrigeration oil R drops into the discharge chamber 21 from the discharge hole 71c, The refrigerant gas G is discharged into the discharge chamber 21 through the inner space 72 c of the inner cylinder portion 72.

また、本体部材71と内筒部材72との両者が同時に圧力弁の構成要素とならない本実施形態の油分離器(本体部材71のみが圧力弁の構成要素となる油分離器;上記実施形態におけるサイクロンブロック70に相当)にあっては、上述した実施形態のコンプレッサ100のように、本体部材71と内筒部材72とが別体の構成である必要はない。   In addition, the oil separator of this embodiment in which both the main body member 71 and the inner cylinder member 72 are not constituent elements of the pressure valve at the same time (the oil separator in which only the main body member 71 is a constituent element of the pressure valve; In the case of the compressor 100 of the above-described embodiment, the main body member 71 and the inner cylinder member 72 do not need to be separate components.

すなわち、油分離器は、一端が閉じられた略円柱状の空間を形成した本体部(図示した実施形態における本体部材71に相当する部分)と、この略円柱状の空間の軸方向に沿って設けられた略円筒状の内筒部(図示した実施形態における内筒部材72の内筒部72aに相当する部分)とを有し、これらは一体的に構成されており、本体部の内面と内筒部の外面とによって画成された略円筒状空間が、油分離空間(図示した実施形態における略円筒状空間75に相当する部分)であればよく、本体部乃至内筒部に、吐出室に連通する圧力バイパス通路を形成し、さらにこの圧力バイパス通路を開閉する圧力弁を、この圧力バイパス通路が形成された本体部乃至内筒部に設ければよい。   That is, the oil separator has a main body portion (a portion corresponding to the main body member 71 in the illustrated embodiment) that forms a substantially cylindrical space with one end closed, and an axial direction of the substantially cylindrical space. And a substantially cylindrical inner cylinder portion (a portion corresponding to the inner cylinder portion 72a of the inner cylinder member 72 in the illustrated embodiment), which are integrally formed, and an inner surface of the main body portion The substantially cylindrical space defined by the outer surface of the inner cylinder portion may be an oil separation space (a portion corresponding to the substantially cylindrical space 75 in the illustrated embodiment), and is discharged to the main body portion or the inner cylinder portion. A pressure bypass passage communicating with the chamber may be formed, and a pressure valve for opening and closing the pressure bypass passage may be provided in the main body portion or the inner cylinder portion where the pressure bypass passage is formed.

20 リヤサイドブロック(圧縮機本体の一部)
60 圧縮機本体
70 サイクロンブロック(油分離器)
71 本体部材
72 内筒部材
75 略円筒状空間(油分離空間)
77 圧力バイパス通路
79 板バネ弁(圧力弁)
100 コンプレッサ(気体圧縮機)
G 冷媒ガス(気体、圧縮気体)
R 冷凍機油(油分)
20 Rear side block (part of compressor body)
60 Compressor body 70 Cyclone block (oil separator)
71 body member 72 inner cylinder member 75 substantially cylindrical space (oil separation space)
77 Pressure bypass passage 79 Leaf spring valve (pressure valve)
100 compressor (gas compressor)
G Refrigerant gas (gas, compressed gas)
R Refrigerating machine oil (oil content)

Claims (2)

供給された気体を高圧の圧縮気体に圧縮する圧縮機本体と、前記圧縮機本体から吐出された圧縮気体から油分を分離する単一の油分離器と、前記圧縮気体が前記圧縮機本体から前記油分離器まで通過する圧縮気体通路とを備え、
前記油分離器は、一端が閉じられた略円柱状の空間を形成した本体部と、この略円柱状の空間の軸方向に沿って設けられた略円筒状の内筒部とを有し、前記本体部の内面と前記内筒部の外面とによって画成された略円筒状空間を、前記圧縮気体が導入されて前記油分を分離する油分離空間として有し、
前記圧縮気体通路から、前記油分離空間の内圧よりも相対的に圧力が低い空間に連通する圧力バイパス通路が、前記本体部に形成され、
前記圧力バイパス通路には、前記圧力バイパス通路が形成された前記圧縮気体通路の内圧に応じて、前記圧力バイパス通路を開閉する圧力弁が設けられていることを特徴とする気体圧縮機。
A compressor body that compresses the supplied gas into a high-pressure compressed gas; a single oil separator that separates oil from the compressed gas discharged from the compressor body; and the compressed gas from the compressor body. A compressed gas passage that passes to the oil separator,
The oil separator has a main body part that forms a substantially cylindrical space with one end closed, and a substantially cylindrical inner cylinder part that is provided along the axial direction of the substantially cylindrical space, A substantially cylindrical space defined by the inner surface of the main body and the outer surface of the inner cylinder as an oil separation space into which the compressed gas is introduced and the oil is separated;
A pressure bypass passage communicating from the compressed gas passage to a space whose pressure is relatively lower than the internal pressure of the oil separation space is formed in the main body portion,
The gas compressor according to claim 1, wherein the pressure bypass passage is provided with a pressure valve that opens and closes the pressure bypass passage according to an internal pressure of the compressed gas passage in which the pressure bypass passage is formed.
前記圧力弁は、前記内圧が予め設定された所定の圧力以上のときは、前記圧力バイパス通路を開き、前記内圧が予め設定された所定の圧力未満のときは、前記圧力バイパス通路を閉じるように設定されていることを特徴とする請求項1に記載の気体圧縮機。   The pressure valve opens the pressure bypass passage when the internal pressure is equal to or higher than a predetermined pressure, and closes the pressure bypass passage when the internal pressure is less than a predetermined pressure. The gas compressor according to claim 1, wherein the gas compressor is set.
JP2012086138A 2012-04-05 2012-04-05 Gas compressor Expired - Fee Related JP5222420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012086138A JP5222420B2 (en) 2012-04-05 2012-04-05 Gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012086138A JP5222420B2 (en) 2012-04-05 2012-04-05 Gas compressor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008077590A Division JP5020872B2 (en) 2008-03-25 2008-03-25 Gas compressor

Publications (2)

Publication Number Publication Date
JP2012154338A true JP2012154338A (en) 2012-08-16
JP5222420B2 JP5222420B2 (en) 2013-06-26

Family

ID=46836288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012086138A Expired - Fee Related JP5222420B2 (en) 2012-04-05 2012-04-05 Gas compressor

Country Status (1)

Country Link
JP (1) JP5222420B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045684A1 (en) * 2012-09-24 2014-03-27 日立アプライアンス株式会社 Screw compressor and chiller unit provided with same
JP2015163796A (en) * 2015-06-17 2015-09-10 日立アプライアンス株式会社 Screw compressor and chiller unit including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000120543A (en) * 1998-10-12 2000-04-25 Denso Corp Compressor
JP2005023847A (en) * 2003-07-02 2005-01-27 Zexel Valeo Climate Control Corp Compressor
JP2005307897A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Compressor
JP2006291732A (en) * 2005-04-06 2006-10-26 Matsushita Electric Ind Co Ltd Compressor
JP2007327340A (en) * 2006-06-06 2007-12-20 Calsonic Compressor Inc Gas compressor
JP2008057389A (en) * 2006-08-30 2008-03-13 Calsonic Compressor Inc Gas compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000120543A (en) * 1998-10-12 2000-04-25 Denso Corp Compressor
JP2005023847A (en) * 2003-07-02 2005-01-27 Zexel Valeo Climate Control Corp Compressor
JP2005307897A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Compressor
JP2006291732A (en) * 2005-04-06 2006-10-26 Matsushita Electric Ind Co Ltd Compressor
JP2007327340A (en) * 2006-06-06 2007-12-20 Calsonic Compressor Inc Gas compressor
JP2008057389A (en) * 2006-08-30 2008-03-13 Calsonic Compressor Inc Gas compressor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045684A1 (en) * 2012-09-24 2014-03-27 日立アプライアンス株式会社 Screw compressor and chiller unit provided with same
JP2014062519A (en) * 2012-09-24 2014-04-10 Hitachi Appliances Inc Screw compressor and chiller unit having the same
CN104583601A (en) * 2012-09-24 2015-04-29 日立空调·家用电器株式会社 Screw compressor and chiller unit provided with same
US9568003B2 (en) 2012-09-24 2017-02-14 Johnson Controls-Hitachi Air Conditioning Technology (Hong Kong) Limited Screw compressor and chiller unit provided with same
US9803900B2 (en) 2012-09-24 2017-10-31 Johnson Controls-Hitachi Air Conditioning Technology (Hong Kong) Limited Screw compressor and chiller unit provided with same
TWI615551B (en) * 2012-09-24 2018-02-21 Hitachi Johnson Controls Air Conditioning Inc Screw compressor and chiller unit having the same
JP2015163796A (en) * 2015-06-17 2015-09-10 日立アプライアンス株式会社 Screw compressor and chiller unit including the same

Also Published As

Publication number Publication date
JP5222420B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5020872B2 (en) Gas compressor
JP2008057389A (en) Gas compressor
US8092200B2 (en) Gas compressor with a pressure bypass valve being formed in a compressed gas passage or an oil separation space
US20200003199A1 (en) Compressor
JP2012122347A (en) Gas compressor
BR102013015051B1 (en) PADDLE COMPRESSOR
JP5222420B2 (en) Gas compressor
JP2009180106A (en) Scroll compressor
KR20210106134A (en) Electric compressor
EP3636929B1 (en) Rotary compressor
WO2019202682A1 (en) Oil separator, screw compressor, and refrigeration cycle device
JP2008169810A (en) Gas compressor
JP5727348B2 (en) Gas compressor
JP2019056322A (en) Compressor
JP5020906B2 (en) Gas compressor
US20180038372A1 (en) Rotating cylinder type compressor
JP5751215B2 (en) Tandem vane compressor
JP2008223526A (en) Gas compressor
JP2010001835A (en) Gas compressor
EP2412980B1 (en) Single screw compressor
JP2013227890A (en) Gas compressor
KR102191566B1 (en) Scroll compressor improved oil separating efficiency
JP2009228520A (en) Gas compressor
JP2009079538A (en) Variable displacement gas compressor
JP2008157174A (en) Variable displacement gas compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees