JP2000120543A - Compressor - Google Patents

Compressor

Info

Publication number
JP2000120543A
JP2000120543A JP10289772A JP28977298A JP2000120543A JP 2000120543 A JP2000120543 A JP 2000120543A JP 10289772 A JP10289772 A JP 10289772A JP 28977298 A JP28977298 A JP 28977298A JP 2000120543 A JP2000120543 A JP 2000120543A
Authority
JP
Japan
Prior art keywords
chamber
discharge
discharge chamber
separation chamber
compression mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10289772A
Other languages
Japanese (ja)
Other versions
JP4035650B2 (en
Inventor
Shigeki Iwanami
重樹 岩波
Kazuhito Miyagawa
和仁 宮川
Mikio Matsuda
三起夫 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP28977298A priority Critical patent/JP4035650B2/en
Publication of JP2000120543A publication Critical patent/JP2000120543A/en
Application granted granted Critical
Publication of JP4035650B2 publication Critical patent/JP4035650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil

Landscapes

  • Compressor (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably separate a refrigerant from lubricating oil irrespective of discharge quantity. SOLUTION: Out of both first and second communicating passages 122 and 123 interconnecting a discharge chamber 115 and a separate chamber 116 together, a differential pressure regulating valve 124 to open or close these discharge and separate chambers 115 and 116 by pressure differential, is installed in the second communicating passage 123. With this, if a discharge quantity is increased, this differential pressure regulating valve 124 is opened, and on the other hand, if the discharge quantity is decreased, the valve 124 is closed. Accordingly, since a pressure differential lying between both these chambers 115 and 116 is controlled so as to make it become within the specified range, such a possibility that the flow velocity of a refrigerant in time of its flow into the separate chamber 116 might to largely lowered is preventable without entailing any drop in the efficiency of a compressor 100. Therefore, the refrigerant and lubricating oil are stably separable irrespective of the discharge quantity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮機に関するも
ので、車両用冷凍サイクル等の吐出流量が変化するもの
に適用して有効である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compressor, and is effective when applied to a compressor having a variable discharge flow rate such as a refrigeration cycle for a vehicle.

【0002】[0002]

【従来の技術】冷凍サイクル用の圧縮では、冷媒と共に
潤滑油を吸入させることで、圧縮機内の摺動部を潤滑し
ている。しかし、冷媒中に潤滑油が混合した状態で冷媒
が冷凍サイクル内を循環すると、凝縮器や蒸発器等の熱
交換器において、熱交換効率が低下し、冷凍能力が低下
してしまうという問題が発生する。
2. Description of the Related Art In a compression for a refrigeration cycle, a sliding portion in a compressor is lubricated by sucking lubricating oil together with a refrigerant. However, if the refrigerant circulates through the refrigeration cycle while lubricating oil is mixed in the refrigerant, the heat exchange efficiency of the heat exchanger such as a condenser or an evaporator decreases, and the refrigeration capacity decreases. appear.

【0003】そこで、例えば特開平3−129273号
公報に記載の発明では、圧縮機の吐出側に吐出室から流
出する冷媒中から潤滑油を分離する油分離器(オイルセ
パレータ)を設け、潤滑油が冷凍サイクル内を循環する
ことを防止している。
Therefore, in the invention described in, for example, JP-A-3-129273, an oil separator (oil separator) is provided on the discharge side of the compressor to separate lubricating oil from the refrigerant flowing out of the discharge chamber. Is prevented from circulating in the refrigeration cycle.

【0004】[0004]

【発明が解決しようとする課題】ところで、油分離器
は、冷媒の流速を高めた状態で冷媒を分離室内に流入さ
せる必要があるので、一般的に、吐出室と分離室とを連
通させる連通路にて冷媒流れを絞り、分離室に流入する
冷媒の速度を高めて(加速して)いる。このため、例え
ば圧縮機の回転数が低く吐出流量が小さいときに、油分
離器を十分に機能させるには、連通路の断面積を十分に
小さくする必要がある。しかし、連通路の断面積を小さ
くすると、圧縮機の回転数が上昇し吐出流量が増大する
と、連通路での圧力損失(以下、圧損と略す。)が大き
くなり、圧縮機の効率が低下してしまうという問題が発
生する。
In the oil separator, since it is necessary to flow the refrigerant into the separation chamber in a state where the flow velocity of the refrigerant is increased, the oil separator is generally connected to the discharge chamber so that the discharge chamber communicates with the separation chamber. The flow of the refrigerant is restricted in the passage, and the speed of the refrigerant flowing into the separation chamber is increased (accelerated). Therefore, for example, when the rotation speed of the compressor is low and the discharge flow rate is small, it is necessary to make the cross-sectional area of the communication passage sufficiently small in order for the oil separator to function sufficiently. However, when the cross-sectional area of the communication passage is reduced, the rotation speed of the compressor increases and the discharge flow rate increases, so that the pressure loss (hereinafter, abbreviated as pressure loss) in the communication passage increases, and the efficiency of the compressor decreases. The problem that occurs.

【0005】また逆に、圧縮機の回転数が高く吐出流量
が大きいときに合わせて連通路の断面積を設定すると、
圧縮機の回転数が低く吐出流量が小さいときに、分離室
に流入する冷媒の流速が低くなるので、十分に油分離器
を機能させることができず、潤滑油が冷媒と共に冷凍サ
イクル内を循環してしまうという問題が発生する。な
お、上記問題は、吐出流量が変化することにより発生す
る問題であるので、吐出容量を変化させることができる
可変容量型圧縮では、回転数が変化しなくても上記問題
は発生する。
Conversely, when the cross-sectional area of the communication passage is set in accordance with the case where the rotation speed of the compressor is high and the discharge flow rate is large,
When the rotation speed of the compressor is low and the discharge flow rate is low, the flow rate of the refrigerant flowing into the separation chamber is low, so that the oil separator cannot function sufficiently, and the lubricating oil circulates in the refrigeration cycle together with the refrigerant. Problem occurs. Since the above problem is caused by a change in the discharge flow rate, the variable displacement compression in which the discharge capacity can be changed causes the above problem even if the rotational speed does not change.

【0006】本発明は、上記点に鑑み、吐出流量の変化
によらず、安定的に冷媒等の流体と潤滑油とを分離する
ことを目的とする。
In view of the above, it is an object of the present invention to stably separate a fluid such as a refrigerant from a lubricating oil regardless of a change in a discharge flow rate.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するために、以下の技術的手段を用いる。請求項1、
2に記載の発明では、吐出室(115)と分離室(11
6)とを連通させる第2連通路(123)に、吐出室
(115)と分離室(116)との圧力差に応じて開度
が変化する差圧弁(124)を設けたことを特徴とす
る。
The present invention uses the following technical means to achieve the above object. Claim 1,
In the invention described in Item 2, the discharge chamber (115) and the separation chamber (11)
6), a differential pressure valve (124) whose opening changes in accordance with the pressure difference between the discharge chamber (115) and the separation chamber (116) is provided in the second communication path (123). I do.

【0008】これにより、圧力差の増大に応じて差圧弁
(124)の開度を増大させれば、吐出流量の増大に応
じて差圧弁(124)の開度が増大するので、流体が吐
出室(115)から分離室(116)に流入する際の圧
損が過度に増大することを防止できる。したがって、圧
縮機の効率が低下することを防止しつつ、流体中から潤
滑油を分離することができる。
Accordingly, if the opening of the differential pressure valve (124) is increased in accordance with the increase in the pressure difference, the opening of the differential pressure valve (124) is increased in accordance with the increase in the discharge flow rate. It is possible to prevent the pressure loss when flowing into the separation chamber (116) from the chamber (115) from excessively increasing. Therefore, the lubricating oil can be separated from the fluid while preventing the efficiency of the compressor from decreasing.

【0009】また、圧力差の減少に応じて差圧弁(12
4)の縮小させれば、吐出流量の減少に応じて差圧弁
(124)の開度が縮小するので、流体が吐出室(11
5)から分離室(116)に流入する際の流速が過度に
低下することを防止でき、流体中から潤滑油を確実に分
離することができる。以上に述べたように、本発明で
は、吐出流量の変化によらず、安定的に流体と潤滑油と
を分離することができる。
In addition, the differential pressure valve (12
If the pressure is reduced in 4), the opening of the differential pressure valve (124) is reduced in accordance with the decrease in the discharge flow rate.
The flow velocity at the time of flowing into the separation chamber (116) from 5) can be prevented from being excessively reduced, and the lubricating oil can be reliably separated from the fluid. As described above, according to the present invention, the fluid and the lubricating oil can be stably separated irrespective of the change in the discharge flow rate.

【0010】請求項3に記載の発明では、吐出室(11
5)と分離室(116)との圧力差に応じて開度が変化
する差圧弁(124)を、吐出室(115)と分離室
(116)とを連通させる連通路(123)に設けたこ
とを特徴とする。これにより、請求項1に記載の発明と
同様に、吐出流量の変化によらず、安定的に流体と潤滑
油とを分離することができる。
According to the third aspect of the present invention, the discharge chamber (11
5) A differential pressure valve (124) whose degree of opening changes in accordance with the pressure difference between the separation chamber (116) is provided in the communication path (123) for communicating the discharge chamber (115) and the separation chamber (116). It is characterized by the following. This makes it possible to stably separate the fluid and the lubricating oil irrespective of a change in the discharge flow rate, as in the first aspect of the present invention.

【0011】請求項4に記載の発明では、吐出室(11
5)と分離室(116)との圧力差が所定範囲内となる
ように、吐出室(115)と分離室(116)とを連通
させる連通路(122、123)の連通状態を制御する
差圧弁(124)を設けたことを特徴とする。これによ
り、吐出流量によらず、吐出室(115)と分離室(1
16)との圧力差が所定範囲内となるように制御される
ので、吐出室(115)から分離室(116)に流入す
る流体の流速が所定範囲内となる。したがって、吐出流
量の変化によらず、安定的に流体と潤滑油とを分離する
ことができる。
In the invention according to claim 4, the discharge chamber (11
5) A difference for controlling the communication state of the communication paths (122, 123) for communicating the discharge chamber (115) and the separation chamber (116) such that the pressure difference between the separation chamber (116) and the pressure within the predetermined range. A pressure valve (124) is provided. Thereby, regardless of the discharge flow rate, the discharge chamber (115) and the separation chamber (1)
Since the pressure difference is controlled so as to be within the predetermined range, the flow velocity of the fluid flowing from the discharge chamber (115) into the separation chamber (116) is within the predetermined range. Therefore, it is possible to stably separate the fluid and the lubricating oil irrespective of the change in the discharge flow rate.

【0012】因みに、上記各手段の括弧内の符号は、後
述する実施形態に記載の具体的手段との対応関係を示す
一例である。
Incidentally, the reference numerals in parentheses of the above-mentioned means are examples showing the correspondence with specific means described in the embodiments described later.

【0013】[0013]

【発明の実施の形態】本実施形態は、本発明に係る圧縮
機を車両用冷凍サイクル(以下、冷凍サイクルと略
す。)用の可変容量型斜板圧縮機(以下、圧縮機と略
す。)100に適用したものであって、図1は圧縮機1
00を備える冷凍サイクルの模式図である。図1中、2
00は圧縮機100から吐出する冷媒(流体)を冷却す
る放熱器(凝縮器)であり、300は放熱器200から
流出する冷媒を気相冷媒と液相冷媒とに分離して液相冷
媒のみを流出させるとともに、冷凍サイクル中の余剰冷
媒を蓄えるレシーバ(受液器)である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present embodiment, a compressor according to the present invention is a variable displacement swash plate compressor (hereinafter abbreviated as a compressor) for a vehicle refrigeration cycle (hereinafter abbreviated as a refrigeration cycle). FIG. 1 shows a compressor 1
FIG. 2 is a schematic diagram of a refrigeration cycle including 00. In FIG. 1, 2
Reference numeral 00 denotes a radiator (condenser) that cools the refrigerant (fluid) discharged from the compressor 100, and 300 separates the refrigerant flowing out of the radiator 200 into a gas-phase refrigerant and a liquid-phase refrigerant, and separates only the liquid-phase refrigerant. Is a receiver (liquid receiver) for discharging excess refrigerant and storing excess refrigerant in the refrigeration cycle.

【0014】また、400はレシーバ300から流出し
た液相冷媒を減圧する減圧器であり、500は減圧器4
00にて減圧された液相冷媒を蒸発させる蒸発器であ
る。なお、減圧器400は、蒸発器500出口側の冷媒
過熱度が所定値となるように、その減圧度(開度)が調
節される、いわゆる温度式膨張弁である。次に、圧縮機
100について述べる。
A decompressor 400 decompresses the liquid refrigerant flowing out of the receiver 300, and a depressurizer 500
The evaporator evaporates the liquid-phase refrigerant depressurized at 00. The decompressor 400 is a so-called temperature-type expansion valve whose depressurization degree (opening degree) is adjusted so that the degree of superheat of the refrigerant on the outlet side of the evaporator 500 becomes a predetermined value. Next, the compressor 100 will be described.

【0015】図1は圧縮機100の軸方向断面図であ
り、101は走行用エンジン(図示せず)から駆動力を
得て回転するシャフトであり、このシャフト101は、
フロントハウジング102及びミドルハウジング103
内に設けられたラジアル軸受104、105により回転
可能に支持されている。そして、ミドルハウジング10
3には、シャフト101と平行な方向に延びるシリンダ
ボア(円柱状の空間)106がシャフト101周りに複
数本形成されており、これらシリンダボア106内に
は、ピストン107がシャフト101と平行な方向に往
復摺動可能に配設されている。
FIG. 1 is an axial cross-sectional view of a compressor 100. Reference numeral 101 denotes a shaft which rotates by obtaining driving force from a traveling engine (not shown).
Front housing 102 and middle housing 103
It is rotatably supported by radial bearings 104 and 105 provided therein. And the middle housing 10
3, a plurality of cylinder bores (cylindrical spaces) 106 extending in a direction parallel to the shaft 101 are formed around the shaft 101, and a piston 107 reciprocates in the cylinder bore 106 in a direction parallel to the shaft 101. It is slidably disposed.

【0016】108はシャフト101と一体的に回転す
るロータであり、このロータ108の径外方側には、ピ
ストン107側に向けて突出するとともに、長円状の長
穴108bが設けられた突起部108aが一体形成され
ている。109は、一対のシュー110を介してピスト
ン107の一端側(ロータ108側)に連結された斜板
であり、この斜板109は、長穴108bを貫通するピ
ン111を介してロータ108に対して変位可能に連結
されている。
Reference numeral 108 denotes a rotor that rotates integrally with the shaft 101. A protrusion that projects radially outward of the rotor 108 toward the piston 107 and that is provided with an oblong elongated hole 108b. The part 108a is integrally formed. Reference numeral 109 denotes a swash plate connected to one end side (the rotor 108 side) of the piston 107 via a pair of shoes 110. The swash plate 109 is connected to the rotor 108 via a pin 111 penetrating the elongated hole 108b. Are displaceably connected.

【0017】因みに、シュー110は、球面状の球面摺
動部にてピストン107と回転可能に接触し、平面状の
摺動面にて斜板109と摺動可能に接触している。この
ため、シャフト101が回転すると、ロータ108を介
して斜板109がシャフト101に対して傾いた状態で
回転し、斜板109の径外方側が揺動するので、ピスト
ン107が往復運動する。
Incidentally, the shoe 110 is rotatably in contact with the piston 107 at a spherical spherical sliding portion, and is in slidable contact with the swash plate 109 on a planar sliding surface. Therefore, when the shaft 101 rotates, the swash plate 109 rotates while being inclined with respect to the shaft 101 via the rotor 108, and the radially outer side of the swash plate 109 swings, so that the piston 107 reciprocates.

【0018】なお、本実施形態に係る圧縮機100で
は、斜板109が配設された空間126(以下、この空
間126を斜板室126と呼ぶ。)内の圧力を変化させ
ることにより、斜板109の傾斜角θを変化させてピス
トン107の行程(ストローク)を変化させ、圧縮機1
00の吐出容量を変化させている。また、112は、シ
リンダボア106の一端側(ピストン107の他端側)
を閉塞するバルブプレートであり、このバルブプレート
112、シリンダボア106及びピストン107により
冷媒を吸入圧縮する作動室Vが構成されている。つま
り、本実施形態では、シャフト101、斜板109及び
ピストン107等により斜板型の圧縮機構Cpが構成さ
れている。
In the compressor 100 according to the present embodiment, the swash plate is changed by changing the pressure in a space 126 in which the swash plate 109 is provided (hereinafter, this space 126 is referred to as a swash plate chamber 126). 109, the stroke (stroke) of the piston 107 is changed, and the compressor 1
The discharge capacity of 00 is changed. Reference numeral 112 denotes one end of the cylinder bore 106 (the other end of the piston 107).
The valve plate 112, the cylinder bore 106 and the piston 107 constitute a working chamber V for sucking and compressing the refrigerant. That is, in the present embodiment, the swash plate type compression mechanism Cp is configured by the shaft 101, the swash plate 109, the piston 107, and the like.

【0019】113は、複数個の作動室Vに冷媒を分配
供給する吸入室114、各作動室Vから吐出する冷媒を
集合回収する吐出室115、冷媒中から潤滑油を分離す
る油分離器OSの分離室116、及び油分離器OSにて
分離された潤滑油を蓄える貯油室117が形成されたリ
アハウジングである。そして、バルブプレート112に
は、作動室Vと吸入室114とを連通させる吸入ポート
118、及び作動室Vと吐出室115とを連通させる吐
出ポート119が形成されており、吸入ポート118に
は冷媒が作動室Vから吸入室114に逆流することを防
止するリード弁状の吸入弁(図示せず)が設けられ、吐
出ポート119には吐出室115から作動室Vに冷媒が
逆流するリード弁状の吐出弁(図示せず)が設けられて
いる。なお、120は吐出弁の最大開度を規制する弁止
板(ストッパ)である。
Reference numeral 113 denotes a suction chamber 114 for distributing refrigerant to a plurality of working chambers V, a discharge chamber 115 for collecting and collecting the refrigerant discharged from each working chamber V, and an oil separator OS for separating lubricating oil from the refrigerant. And an oil storage chamber 117 for storing the lubricating oil separated by the oil separator OS. The valve plate 112 is provided with a suction port 118 for communicating the working chamber V with the suction chamber 114 and a discharge port 119 for communicating the working chamber V with the discharge chamber 115. Is provided with a reed valve-shaped suction valve (not shown) for preventing the backflow of the refrigerant from the working chamber V to the suction chamber 114. The discharge port 119 is provided with a reed valve in which the refrigerant flows back from the discharge chamber 115 to the working chamber V. (Not shown). Reference numeral 120 denotes a valve stop plate (stopper) for regulating the maximum opening of the discharge valve.

【0020】ところで、分離室116は、図3に示すよ
うに、その内壁面116aが円周状に形成された円柱状
の空間であり、この分離室116には、分離室116と
同心状に配設された吐出パイプ121が挿入固定されて
いる。なお、この吐出パイプ121は、放熱器200の
冷媒流入側に接続される。また、図2中、122、12
3は、吐出室115と分離室116とを連通させる第
1、2連通路であり、これら第1、2連通路122、1
23の分離室116側は、図3に示すように、内壁面1
16aの接線方向に向けて開口している。そして、第2
連通路123には、図2に示すように、吐出室115と
分離室116との圧力差に応じて開度が変化する差圧弁
124が設けられている。
As shown in FIG. 3, the separation chamber 116 is a columnar space having an inner wall surface 116a formed in a circular shape. The separation chamber 116 is concentric with the separation chamber 116. The arranged discharge pipe 121 is inserted and fixed. In addition, the discharge pipe 121 is connected to the refrigerant inflow side of the radiator 200. Further, in FIG.
Reference numeral 3 denotes first and second communication paths for communicating the discharge chamber 115 and the separation chamber 116, and the first and second communication paths 122, 1
As shown in FIG. 3, the separation chamber 116 has an inner wall 1
It is open in the tangential direction of 16a. And the second
As shown in FIG. 2, the communication passage 123 is provided with a differential pressure valve 124 whose opening changes according to the pressure difference between the discharge chamber 115 and the separation chamber 116.

【0021】なお、差圧弁124は、第2連通路123
の連通状態(開閉状態)を調節する球状の弁体124
a、第2連通路123を閉じる向きの弾性力(以下、こ
の力を閉弁力と呼ぶ。)を弁体124aに作用させるコ
イルバネ(弾性部材)124b、及び弁体124aの弁
座124cから構成されている。因みに、125は、シ
ャフト101とフロントハウジング102との隙間を密
閉し、斜板109が配設された斜板室126から冷媒が
外部に漏れ出すことを防止するリップシールである。
The differential pressure valve 124 is connected to the second communication passage 123
Spherical valve element 124 for adjusting the communication state (open / closed state) of
a, a coil spring (elastic member) 124b for applying an elastic force in the direction of closing the second communication passage 123 (hereinafter, this force is referred to as a valve closing force) to the valve element 124a, and a valve seat 124c of the valve element 124a. Have been. Incidentally, reference numeral 125 denotes a lip seal that seals a gap between the shaft 101 and the front housing 102 and prevents the refrigerant from leaking out of the swash plate chamber 126 in which the swash plate 109 is disposed.

【0022】次に、圧縮機100の特徴的作動について
述べる。 1.最大吐出容量運転時(図2参照) 最大容量運転時では、図2に示すように、ピストン10
7の行程が大きくなり、シャフト101が一回転する間
に吐出される冷媒量(吐出流量)が、後述する可変容量
運転時に比べて大きくなる。
Next, the characteristic operation of the compressor 100 will be described. 1. At the time of maximum displacement operation (see FIG. 2) At the time of maximum displacement operation, as shown in FIG.
7, the amount of refrigerant (discharge flow rate) discharged during one rotation of the shaft 101 becomes larger than that during variable displacement operation described later.

【0023】このため、第1連通路122を流通する冷
媒の流速が増大するので、第1連通路122での冷媒の
圧損が(流速の2乗に略比例して)増大し、吐出室11
5の内圧が分離室116の内圧より高くなるとともに、
その圧力差が拡大する。ここで、吐出室115と分離室
116との圧力差によって弁体124aに作用する力
は、第2連通路123の開度を増大させる(開く)向き
の力であるので、以下、吐出室115と分離室116と
の圧力差により弁体124aに作用する力を開弁力と呼
ぶ。
As a result, the flow velocity of the refrigerant flowing through the first communication passage 122 increases, so that the pressure loss of the refrigerant in the first communication passage 122 increases (substantially in proportion to the square of the flow velocity).
5 becomes higher than the internal pressure of the separation chamber 116,
The pressure difference increases. Here, the force acting on the valve element 124a due to the pressure difference between the discharge chamber 115 and the separation chamber 116 is a force that increases (opens) the degree of opening of the second communication passage 123. The force acting on the valve body 124a due to the pressure difference between the valve body 124a and the separation chamber 116 is referred to as the valve opening force.

【0024】そして、開弁力が閉弁力を上回ると、第2
連通路123が開くので、作動室Vから吐出室115に
吐出された冷媒は、第1、2連通路122、123を流
通して分離室116に流入する。なお、油分離器OSで
分離された貯油室117内の潤滑油は、吸入圧と吐出圧
との差圧により、図示しない通路を経て圧縮機構Cpの
吸入側に吸引されて冷媒と共に作動室V内に吸入され
る。
When the valve opening force exceeds the valve closing force, the second
Since the communication path 123 is opened, the refrigerant discharged from the working chamber V to the discharge chamber 115 flows through the first and second communication paths 122 and 123 and flows into the separation chamber 116. Note that the lubricating oil in the oil storage chamber 117 separated by the oil separator OS is drawn into the suction side of the compression mechanism Cp through a passage (not shown) due to the differential pressure between the suction pressure and the discharge pressure, and is together with the refrigerant in the working chamber V Inhaled into.

【0025】2.可変容量運転時(図4参照) 可変容量運転時では、図4に示すように、ピストン10
7の行程が小さくなり、シャフト101が一回転する間
に吐出される冷媒量(吐出流量)が、最大容量運転時に
比べて小さくなる。このため、第1、2連通路122、
123を流通する冷媒の流速が減少するので、第1、2
連通路122、123での冷媒の圧損が減少し、吐出室
115と分離室116との圧力差が縮小する。
2. During variable displacement operation (see FIG. 4) During variable displacement operation, as shown in FIG.
7, the amount of refrigerant (discharge flow rate) discharged during one rotation of the shaft 101 becomes smaller than that during the maximum capacity operation. Therefore, the first and second communication paths 122,
Since the flow rate of the refrigerant flowing through the flow path 123 decreases,
The pressure loss of the refrigerant in the communication passages 122 and 123 decreases, and the pressure difference between the discharge chamber 115 and the separation chamber 116 decreases.

【0026】そして、閉弁力が開弁力を上回ると、第2
連通路123が閉じるので、作動室Vから吐出室115
に吐出された冷媒は、第1連通路122のみを流通して
分離室116に流入する。なお、油分離器OSで分離さ
れた貯油室117内の潤滑油は、最大容量運転時と同様
に、吸入圧と吐出圧との差圧により、圧縮機構Cpの吸
入側に吸引されて冷媒と共に作動室V内に吸入される。
When the valve closing force exceeds the valve opening force, the second
Since the communication passage 123 is closed, the working chamber V is connected to the discharge chamber 115.
Is discharged into the separation chamber 116 through only the first communication passage 122. Note that the lubricating oil in the oil storage chamber 117 separated by the oil separator OS is sucked into the suction side of the compression mechanism Cp by the differential pressure between the suction pressure and the discharge pressure and is discharged together with the refrigerant in the same manner as in the maximum capacity operation. It is sucked into the working chamber V.

【0027】次に、本実施形態の特徴を述べる。本実施
形態によれば、上述のごとく、吐出流量が増大すると、
冷媒は2つの連通路(第1、2連通路)122、123
を流通して吐出室115から分離室116に流入するの
で、吐出流量が増大しても、冷媒が吐出室115から分
離室116に向けて流通するときに発生する圧損を小さ
くすることができ、圧縮機100の効率が低下すること
を防止できる。
Next, the features of this embodiment will be described. According to the present embodiment, as described above, when the discharge flow rate increases,
The refrigerant flows through two communication paths (first and second communication paths) 122 and 123.
And flows into the separation chamber 116 from the discharge chamber 115. Therefore, even if the discharge flow rate increases, the pressure loss generated when the refrigerant flows from the discharge chamber 115 toward the separation chamber 116 can be reduced. A decrease in efficiency of the compressor 100 can be prevented.

【0028】一方、吐出流量が減少すると、冷媒は第1
連通路122のみを連通して吐出室115から分離室1
16に流入するので、吐出流量が減少しても、分離室1
16に流入する際の冷媒の流速が大きく低下することを
防止でき、油分離器OSで油分離能力が低下することを
防止できる。以上に述べたように、本実施形態に係る圧
縮機100によれば、差圧弁124が開閉することによ
り、吐出室115と分離室116との圧力差が所定範囲
内となるように制御されることとなる。したがって、圧
縮機100の効率を低下させることなく、分離室116
に流入する際の冷媒の流速が大きく低下することを防止
できるので、吐出流量の変化によらず、安定的に冷媒と
潤滑油とを分離することができる。
On the other hand, when the discharge flow rate decreases, the refrigerant
The discharge chamber 115 is separated from the separation chamber 1 by communicating only the communication passage 122.
16, even if the discharge flow rate decreases, the separation chamber 1
It is possible to prevent the flow velocity of the refrigerant when flowing into the fuel cell 16 from greatly decreasing, and to prevent the oil separator OS from decreasing the oil separation capacity. As described above, according to the compressor 100 of the present embodiment, the differential pressure valve 124 is opened and closed to control the pressure difference between the discharge chamber 115 and the separation chamber 116 to be within a predetermined range. It will be. Therefore, without reducing the efficiency of the compressor 100, the separation chamber 116
Therefore, it is possible to prevent the flow velocity of the refrigerant when flowing into the oil tank from dropping significantly, so that the refrigerant and the lubricating oil can be stably separated regardless of the change in the discharge flow rate.

【0029】ところで、上述の実施形態では、吐出室1
15と分離室116との圧力差によって第2連通路12
3を開閉する差圧弁124を第2連通路123に設けた
が、本発明は、冷媒が吐出室115から分離室116に
向けて流通する際に、吐出流量の増減に応じてその圧損
が変化することをに着目してなされたものであるから、
2つの連通路122、123を1本の連通路とするとと
もに、吐出室115と分離室116との圧力差が所定範
囲内となるように、その1本の連通路の連通状態(開
度)を制御する差圧弁を設けてもよい。
By the way, in the above embodiment, the discharge chamber 1
Due to the pressure difference between the second communication passage 12 and the separation chamber 116.
The differential pressure valve 124 that opens and closes the third communication passage 123 is provided in the second communication passage 123. However, in the present invention, when the refrigerant flows from the discharge chamber 115 to the separation chamber 116, the pressure loss changes according to the increase and decrease of the discharge flow rate. It was made with the focus on doing
The two communication paths 122 and 123 are made into one communication path, and the communication state (opening degree) of the one communication path is set so that the pressure difference between the discharge chamber 115 and the separation chamber 116 is within a predetermined range. May be provided.

【0030】また、上述の実施形態では、分離室116
の内壁面116aに沿って冷媒を旋回させることによ
り、冷媒中から潤滑油を分離する遠心式の油分離器OS
であったが、分離室116の内壁面に冷媒を高速で衝突
させることにより冷媒中から潤滑油を分離する衝突式の
油分離器を有する圧縮機にも適用することができる。ま
た、上述の実施形態では、可変容量型斜板圧縮機を例に
本発明に係る圧縮機を説明したが、本発明は、これに限
定されるものではなく、例えば固定容量型斜板圧縮機又
は可変容量型スクロール圧縮機等その他の圧縮機に対し
ても適用することができる。
In the above embodiment, the separation chamber 116
Centrifugal oil separator OS that separates lubricating oil from the refrigerant by swirling the refrigerant along the inner wall surface 116a
However, the present invention can also be applied to a compressor having a collision-type oil separator that separates lubricating oil from the refrigerant by causing the refrigerant to collide with the inner wall surface of the separation chamber 116 at high speed. Further, in the above-described embodiment, the compressor according to the present invention has been described by taking the variable capacity type swash plate compressor as an example. However, the present invention is not limited to this. Alternatively, the present invention can be applied to other compressors such as a variable capacity scroll compressor.

【0031】また、本発明に係る圧縮機は車両用冷凍サ
イクルにその適用が限定されるものではなく、電気冷蔵
庫等その他の冷凍サイクルに対しても適用することがで
きる。
The application of the compressor according to the present invention is not limited to a refrigeration cycle for a vehicle, but may be applied to other refrigeration cycles such as an electric refrigerator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】冷凍サイクルの模式図である。FIG. 1 is a schematic diagram of a refrigeration cycle.

【図2】最大容量運転時における実施形態に係る圧縮機
の断面図である。
FIG. 2 is a cross-sectional view of the compressor according to the embodiment during a maximum capacity operation.

【図3】図2のA−A断面図である。FIG. 3 is a sectional view taken along line AA of FIG. 2;

【図4】可変容量運転時における実施形態に係る圧縮機
の断面図である。
FIG. 4 is a cross-sectional view of the compressor according to the embodiment during variable displacement operation.

【符号の説明】[Explanation of symbols]

101…シャフト、102…フロントハウジング、10
3…ミドルハウジング、106…シリンダボア、107
…ピストン、108…ロータ、109…斜板、115…
吐出室、116…分離室、122…第1連通路、123
…第2連通路、124…差圧弁。
101: shaft, 102: front housing, 10
3 Middle housing, 106 Cylinder bore, 107
... piston, 108 ... rotor, 109 ... swash plate, 115 ...
Discharge chamber, 116: separation chamber, 122: first communication path, 123
... second communication passage, 124 ... differential pressure valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮川 和仁 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 松田 三起夫 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 Fターム(参考) 3H003 AA03 AB05 AC03 BH05  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuhito Miyagawa 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture Inside Denso Co., Ltd. F-term in Japan Auto Parts Research Institute (reference) 3H003 AA03 AB05 AC03 BH05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 流体を吸入圧縮する圧縮機構(Cp)
と、 前記圧縮機構(Cp)を収納するとともに、前記圧縮機
構(Cp)から吐出する流体が流入する吐出室(11
5)、及び第1連通路(122)を介して前記吐出室
(115)と連通し、流体中から潤滑油を分離する分離
室(116)が形成されたハウジング(113)とを有
し、 前記吐出室(115)と前記分離室(116)とを連通
させる第2連通路(123)を設け、 さらに、前記吐出室(115)と前記分離室(116)
との圧力差に応じて開度が変化する差圧弁(124)を
前記第2連通路(123)に設けたことを特徴とする圧
縮機。
1. A compression mechanism (Cp) for suctioning and compressing a fluid.
And a discharge chamber (11) in which the compression mechanism (Cp) is housed, and into which fluid discharged from the compression mechanism (Cp) flows.
5) and a housing (113) in communication with the discharge chamber (115) via the first communication passage (122) and in which a separation chamber (116) for separating lubricating oil from a fluid is formed. A second communication path (123) for communicating the discharge chamber (115) with the separation chamber (116) is provided, and the discharge chamber (115) and the separation chamber (116) are further provided.
A differential pressure valve (124) whose degree of opening changes according to the pressure difference between the second communication passage (123) and the second communication passage (123).
【請求項2】 前記分離室(116)の内壁面(116
a)は、円周状に形成されており、 前記両連通路(122、123)の前記分離室(11
6)側は、前記内壁面(116a)の接線方向に向けて
開口していることを特徴とする請求項1に記載の圧縮
機。
2. An inner wall (116) of said separation chamber (116).
a) is formed in a circumferential shape, and the separation chamber (11) of the two communication passages (122, 123) is formed.
The compressor according to claim 1, wherein the side (6) is open in a tangential direction of the inner wall surface (116a).
【請求項3】 流体を吸入圧縮する圧縮機構(Cp)
と、 前記圧縮機構(Cp)を収納するとともに、前記圧縮機
構(Cp)から吐出する流体が流入する吐出室(11
5)、及び連通路(123)を介して前記吐出室(11
5)と連通し、流体中から潤滑油を分離する分離室(1
16)が形成されたハウジング(113)とを有し、 前記吐出室(115)と前記分離室(116)との圧力
差に応じて開度が変化する差圧弁(124)を前記連通
路(123)に設けたことを特徴とする圧縮機。
3. A compression mechanism (Cp) for sucking and compressing a fluid.
And a discharge chamber (11) in which the compression mechanism (Cp) is housed, and into which fluid discharged from the compression mechanism (Cp) flows.
5) and the discharge chamber (11) through the communication passage (123).
5) and a separation chamber (1) for separating lubricating oil from the fluid.
16) having a housing (113) formed therein, and a differential pressure valve (124) whose degree of opening changes according to the pressure difference between the discharge chamber (115) and the separation chamber (116) is connected to the communication passage ( 123).
【請求項4】 流体を吸入圧縮する圧縮機構(Cp)
と、 前記圧縮機構(Cp)を収納するとともに、前記圧縮機
構(Cp)から吐出する流体が流入する吐出室(11
5)、及び連通路(122、123)を介して前記吐出
室(115)と連通し、流体中から潤滑油を分離する分
離室(116)が形成されたハウジング(113)とを
有し、 前記吐出室(115)と前記分離室(116)との圧力
差が所定範囲内となるように、前記連通路(122、1
23)の連通状態を制御する差圧弁(124)を設けた
ことを特徴とする圧縮機。
4. A compression mechanism (Cp) for sucking and compressing a fluid.
And a discharge chamber (11) in which the compression mechanism (Cp) is housed, and into which fluid discharged from the compression mechanism (Cp) flows.
5) a housing (113) communicating with the discharge chamber (115) through the communication passages (122, 123) and having a separation chamber (116) for separating lubricating oil from a fluid; The communication passages (122, 1 1) are arranged such that the pressure difference between the discharge chamber (115) and the separation chamber (116) falls within a predetermined range.
23) A compressor provided with a differential pressure valve (124) for controlling the communication state of (23).
【請求項5】 流体を吸入圧縮する圧縮機構(Cp)、
及び前記圧縮機構(Cp)を収納するとともに、前記圧
縮機構(Cp)から吐出する流体が流入する吐出室(1
15)を有する圧縮機(100)に適用され、 前記吐出室(115)から流出する流体中から潤滑油を
分離する油分離器であって、 前記吐出室(115)から流出する流体が流入する分離
室(116)を構成する部材(113)に、前記吐出室
(115)と前記分離室(116)とを連通させる連通
路(123)を設け、 前記吐出室(115)と前記分離室(116)との圧力
差に応じて開度が変化する差圧弁(124)を前記連通
路(123)に設けたことを特徴とする油分離器。
5. A compression mechanism (Cp) for suctioning and compressing a fluid,
And a discharge chamber (1) that houses the compression mechanism (Cp) and into which fluid discharged from the compression mechanism (Cp) flows.
An oil separator which is applied to the compressor (100) having the above (15) and separates lubricating oil from the fluid flowing out of the discharge chamber (115), wherein the fluid flowing out of the discharge chamber (115) flows in. A member (113) constituting the separation chamber (116) is provided with a communication passage (123) for communicating the discharge chamber (115) with the separation chamber (116), and the discharge chamber (115) and the separation chamber ( An oil separator characterized in that a differential pressure valve (124) whose degree of opening changes in accordance with the pressure difference with the pressure path (116) is provided in the communication path (123).
JP28977298A 1998-10-12 1998-10-12 Compressor Expired - Fee Related JP4035650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28977298A JP4035650B2 (en) 1998-10-12 1998-10-12 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28977298A JP4035650B2 (en) 1998-10-12 1998-10-12 Compressor

Publications (2)

Publication Number Publication Date
JP2000120543A true JP2000120543A (en) 2000-04-25
JP4035650B2 JP4035650B2 (en) 2008-01-23

Family

ID=17747572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28977298A Expired - Fee Related JP4035650B2 (en) 1998-10-12 1998-10-12 Compressor

Country Status (1)

Country Link
JP (1) JP4035650B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1705437A1 (en) * 2005-03-23 2006-09-27 Luk Fahrzeug-Hydraulik GmbH & Co. KG Oil supply method for an air conditioner compressor
JP2006342722A (en) * 2005-06-09 2006-12-21 Mitsubishi Heavy Ind Ltd Compressor
JP2012154338A (en) * 2012-04-05 2012-08-16 Calsonic Kansei Corp Gas compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101769420B1 (en) * 2010-07-30 2017-08-21 학교법인 두원학원 Swash plate type compressor with oil separator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937814U (en) * 1972-07-05 1974-04-03
JPH03129273A (en) * 1989-07-05 1991-06-03 Nippondenso Co Ltd Oil separator
JPH1094304A (en) * 1996-09-25 1998-04-14 Iseki & Co Ltd Hydraulic device of driving power vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937814U (en) * 1972-07-05 1974-04-03
JPH03129273A (en) * 1989-07-05 1991-06-03 Nippondenso Co Ltd Oil separator
JPH1094304A (en) * 1996-09-25 1998-04-14 Iseki & Co Ltd Hydraulic device of driving power vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1705437A1 (en) * 2005-03-23 2006-09-27 Luk Fahrzeug-Hydraulik GmbH & Co. KG Oil supply method for an air conditioner compressor
JP2006342722A (en) * 2005-06-09 2006-12-21 Mitsubishi Heavy Ind Ltd Compressor
JP2012154338A (en) * 2012-04-05 2012-08-16 Calsonic Kansei Corp Gas compressor

Also Published As

Publication number Publication date
JP4035650B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
JPS62674A (en) Capacity controller for variable angle swing swash type variable capacity compressor
JP2003343440A (en) Compressor
EP1519128A2 (en) Refrigeration cycle
WO2007077856A1 (en) Compressor
US4403929A (en) Rotary compressor
US4447196A (en) Rotary vane compressor with valve control of undervane pressure
JP2008107282A (en) Refrigerant flow rate detection structure in compressor
JPH10205446A (en) Clutchless compressor
JP2000120543A (en) Compressor
KR100563849B1 (en) Oil Separator with Compressor
JP2009250155A (en) Variable displacement gas compressor
JP2008133810A (en) Compressor
CN111656012B (en) Variable capacity swash plate type compressor
JP5222420B2 (en) Gas compressor
KR101099117B1 (en) Check valve and compressor having the same
JP4192314B2 (en) Supercritical refrigeration cycle
CN112412789B (en) Compressor and refrigeration cycle device
CN112128103B (en) Rotary compressor and refrigeration cycle system
JPH03129273A (en) Oil separator
JP2007192154A (en) Reciprocating fluid machine
JP2014001697A (en) Tandem type vane compressor
CN216843275U (en) Check valve, compressor and water chilling unit
JP2004084633A (en) Oil return control device for gas compressor
JP2000130322A (en) Variable displacement compressor
JP2000080982A (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees