JP2005054745A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2005054745A
JP2005054745A JP2003288735A JP2003288735A JP2005054745A JP 2005054745 A JP2005054745 A JP 2005054745A JP 2003288735 A JP2003288735 A JP 2003288735A JP 2003288735 A JP2003288735 A JP 2003288735A JP 2005054745 A JP2005054745 A JP 2005054745A
Authority
JP
Japan
Prior art keywords
separation
chamber
separation chamber
lubricating oil
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003288735A
Other languages
Japanese (ja)
Inventor
Takeo Kitamura
武男 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003288735A priority Critical patent/JP2005054745A/en
Publication of JP2005054745A publication Critical patent/JP2005054745A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil

Landscapes

  • Compressor (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compressor capable of providing a separation effect even in a state of low flow speed in a centrifugal separation type oil separation chamber in the compressor provided with a compression mechanism compressing a gaseous fluid containing lubricating oil and the centrifugal separation type oil separation chamber having the gaseous fluid compressed by the compression mechanism introduced therein and turning to separate at least part of lubricating oil contained in the gaseous fluid by centrifugal force of the turning. <P>SOLUTION: Separation efficiency is improved by a synergetic effect of centrifugal separation and impingement separation by providing an impingement wall near the inner circumference surface of the oil separation chamber. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、流体の圧縮を行う圧縮機に関するもので、特に自動車用空調装置などに用いられる圧縮機に関するものである。   The present invention relates to a compressor that compresses a fluid, and particularly to a compressor that is used in an air conditioner for automobiles.

このような圧縮機においては、圧縮機構摺動部を潤滑する潤滑油の一部が圧縮された流体と共に圧縮機から吐出され、冷凍・空調サイクル中を循環することとなる。流体と共に吐出される潤滑油の量がサイクル中に多く吐出されるほどシステム効率(熱効率)が低下することは従来からよく知られている。   In such a compressor, a part of the lubricating oil that lubricates the sliding portion of the compression mechanism is discharged from the compressor together with the compressed fluid, and circulates in the refrigeration / air conditioning cycle. It has been well known that the system efficiency (thermal efficiency) decreases as the amount of lubricating oil discharged together with the fluid increases in the cycle.

かかる事情から、システム効率の向上を図るため、圧縮機構により圧縮された流体から、そこに含まれる潤滑油を極力分離した後、該流体をシステムサイクル中に吐出するようにしている。   For this reason, in order to improve the system efficiency, the lubricating oil contained therein is separated as much as possible from the fluid compressed by the compression mechanism, and then the fluid is discharged during the system cycle.

そのような例として、圧縮機構の吐出側に、圧縮された流体から潤滑油を分離するため、流体を衝突壁に衝突させ、潤滑油を分離する方式が一般的であり、さらに分離性能を向上させるため、遠心分離式の分離室を設けた圧縮機が公知となっている(特許文献1及び2参照)。   As an example, in order to separate the lubricating oil from the compressed fluid on the discharge side of the compression mechanism, it is common to make the fluid collide with the collision wall and separate the lubricating oil, further improving the separation performance Therefore, a compressor provided with a centrifugal separation chamber is known (see Patent Documents 1 and 2).

かかる圧縮機では、圧縮機構により圧縮され潤滑油を含む高圧の冷媒ガスが遠心分離式の分離室に導かれ、略円柱状の分離室内を旋回し、旋回による遠心力により冷媒ガスに含まれるミスト状の潤滑油が分離室内壁に接触することで冷媒ガスから分離されるようになっている。
特開平11−82352号公報(第4頁、図1、図3、図4) 特開2001−295767号公報(第3頁、図1、図2)
In such a compressor, a high-pressure refrigerant gas compressed by a compression mechanism and containing lubricating oil is guided to a centrifugal separation chamber, swirls in a substantially cylindrical separation chamber, and mist contained in the refrigerant gas by centrifugal force due to swirling. The lubricating oil is separated from the refrigerant gas by contacting the separation chamber wall.
Japanese Patent Laid-Open No. 11-82352 (page 4, FIG. 1, FIG. 3, FIG. 4) JP 2001-295767 A (Page 3, FIGS. 1 and 2)

ところで、遠心分離式の分離室を備えた公知の圧縮機においては、上述の特許文献1、2に開示されているものに限られず、その分離室内には分離管と称される管が悉く配され、分離室に導入された冷媒ガスは分離管外周面と分離室内周面の間に形成される断面円環状の円筒空間を旋回するように構成されている。   By the way, the known compressor provided with the centrifugal separation chamber is not limited to those disclosed in the above-mentioned Patent Documents 1 and 2, and a pipe called a separation pipe is arranged in the separation chamber. The refrigerant gas introduced into the separation chamber is configured to swivel in an annular cylindrical space formed between the outer peripheral surface of the separation tube and the outer peripheral surface of the separation chamber.

このように、遠心分離式の潤滑油分離方式には、一般に分離管が必須構成要素と考えられている。すなわち、潤滑油の高い分離効率を得るためには、分離室内において冷媒ガスを確実に旋回させる必要があり、そのためには分離室内に分離管を設け、この周囲に冷媒ガスを旋回させる必要があると考えられているのである。   As described above, the separation pipe is generally considered as an essential component in the centrifugal separation method of the lubricating oil. That is, in order to obtain a high separation efficiency of the lubricating oil, it is necessary to swirl the refrigerant gas reliably in the separation chamber. For that purpose, it is necessary to provide a separation pipe in the separation chamber and swirl the refrigerant gas around this. It is considered.

しかし、特許文献1及び2にも記載されているように、分離管を分離室内に設ける場合は、分離室の大型化を招くばかりでなく、部品点数の増加や分離管製作コスト、分離管組み付け工数などを見込む必要があり、圧縮機の製造コスト低減の障害となっていた。   However, as described in Patent Documents 1 and 2, when the separation tube is provided in the separation chamber, not only does the separation chamber increase in size, but also the number of parts, the production cost of the separation tube, and the assembly of the separation tube are increased. It was necessary to allow for man-hours and the like, which was an obstacle to reducing the manufacturing cost of the compressor.

また、旋回室内径が大きい場合や、流入量が少ない場合など、流入流体の旋回室内での旋回流速が遅い場合には、潤滑油の分離効果を十分に発揮できない。旋回室の内径を小さくし、旋回流速を上げる事が出来るが、流入量が増加した場合、旋回室中心部付近まで潤滑油の高密度域が出来、高濃度の潤滑油分を含む流体を吐出することとなり、潤滑油の分離効率が低下する。   Also, when the swirl flow velocity in the swirl chamber of the inflowing fluid is slow, such as when the swirl chamber diameter is large or the inflow amount is small, the effect of separating the lubricating oil cannot be sufficiently exerted. The swirl chamber inner diameter can be reduced and swirl flow velocity can be increased. However, if the inflow rate increases, a high-density region of lubricating oil can be created near the center of the swirl chamber, and fluid containing high-concentration lubricating oil can be discharged. As a result, the separation efficiency of the lubricating oil decreases.

そこで、本発明は上記問題点に鑑み、潤滑油の分離効率が高く、しかも分離室の小型化が可能で製造コストの低減を可能とした圧縮機を提供することを目的としている。   SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a compressor that has a high separation efficiency of lubricating oil and that can reduce the size of the separation chamber and reduce the manufacturing cost.

上述の目的を達成するため、本出願にかかる第1の発明による圧縮機においては、分離室内には、旋回による流れが衝突する複数の衝突壁を有する事を特徴とする。   In order to achieve the above-described object, the compressor according to the first invention of the present application is characterized in that the separation chamber has a plurality of collision walls on which the flow caused by swirling collides.

このような特徴を有することにより、この発明による圧縮機においては、分離室内の衝突壁に旋回流が衝突し、旋回による潤滑油分離効果と、衝突による分離効果が相乗され、潤滑油の分離効率が増加する。   With such a feature, in the compressor according to the present invention, the swirling flow collides with the collision wall in the separation chamber, and the lubricating oil separation effect by the swirling and the separating effect by the collision are synergistic, and the separation efficiency of the lubricating oil is increased. Will increase.

また、上述の目的を達成するため、本出願にかかる第2の発明による圧縮機においては、前記衝突壁は、旋回室内の内周面付近に設ける事を特徴とする。   In order to achieve the above object, in the compressor according to the second invention of the present application, the collision wall is provided in the vicinity of the inner peripheral surface in the swirl chamber.

このような特徴を有することにより、この発明による圧縮機においては、分離室内で気流体は旋回流となるため、旋回室内で潤滑油分は、中心部より旋回室内周面の方が、高密度となる。従って、衝突による分離効果が増加し、潤滑油の分離効率が増加する。   With such a feature, in the compressor according to the present invention, the gas-fluid becomes a swirl flow in the separation chamber, so that the lubricating oil content in the swirl chamber is higher in the circumferential surface of the swirl chamber than in the center. It becomes. Therefore, the separation effect due to the collision increases, and the separation efficiency of the lubricating oil increases.

また、上述の目的を達成するため、本出願にかかる第3の発明による圧縮機においては、前記衝突壁は、潤滑油を透過しにくい材料で作成したことを特徴とする。   In order to achieve the above-mentioned object, in the compressor according to the third invention of the present application, the collision wall is made of a material that does not easily transmit lubricating oil.

このような特徴を有することにより、この発明による圧縮機においては、分離室内の衝突壁に旋回流が衝突し、気流体中の潤滑油分が透過しにくいため、衝突壁にて潤滑油が分離され、分離効率が増加する。   With such a feature, in the compressor according to the present invention, the swirl flow collides with the collision wall in the separation chamber, and the lubricating oil in the gas fluid is difficult to permeate, so the lubricating oil is separated at the collision wall. And the separation efficiency is increased.

以上説明したように本発明の圧縮機では、遠心分離式に加え、衝突による油分離をすることができたので、分離効率が向上する。このため、流体の流速が小さい状態においても、分離効果を得る事が出来、分離室を小型化することも可能となる。   As described above, in the compressor of the present invention, oil separation by collision can be performed in addition to the centrifugal separation type, so that the separation efficiency is improved. For this reason, the separation effect can be obtained even in a state where the flow velocity of the fluid is small, and the separation chamber can be downsized.

以下、本発明の実施の形態を、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は本発明の一部が適用された圧縮機の縦断面図であり、図2は図1のA−A線による断面図(作動室断面図)、図3は図1のB−B線による断面図(高圧ケースを作動室側から見た図)である。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a compressor to which a part of the present invention is applied, FIG. 2 is a sectional view taken along line AA of FIG. 1 (working chamber sectional view), and FIG. 3 is a sectional view taken along line BB of FIG. It is sectional drawing by a line (figure which looked at the high pressure case from the operation room side).

図に示した圧縮機は、いわゆるベーンロータリタイプの圧縮機であり、図示したように、円筒状の内壁を有するシリンダ1内に略円柱状のロータ2が配置されている。ロータ2はその外周の一部がシリンダ1の内壁と微少隙間を形成する位置に配置されている。ロータ2には複数のべ一ンスロット3が設けられ、それぞれのべ一ンスロット3内にはベーン4が摺動自在に挿入されている。ロータ2は回転自在に軸支された駆動軸5と一体的に形成されている。シリンダ1及びロータ2はロータ2の回転軸方向において前部側板6及び後部側板7の間に挟み込まれており、シリンダ1の両端はこれらにより閉塞されシリンダ内に流体圧縮のための作動室8が形成されている。   The compressor shown in the figure is a so-called vane rotary type compressor, and as shown in the drawing, a substantially columnar rotor 2 is arranged in a cylinder 1 having a cylindrical inner wall. The rotor 2 is disposed at a position where a part of the outer periphery forms a minute gap with the inner wall of the cylinder 1. The rotor 2 is provided with a plurality of vane slots 3, and vanes 4 are slidably inserted into the vane slots 3. The rotor 2 is formed integrally with a drive shaft 5 that is rotatably supported. The cylinder 1 and the rotor 2 are sandwiched between the front side plate 6 and the rear side plate 7 in the rotational axis direction of the rotor 2, and both ends of the cylinder 1 are closed by these, and a working chamber 8 for fluid compression is formed in the cylinder. Is formed.

作動室8には吸入孔9及び吐出孔10が連通し、冷媒ガス等の気流体は吸入孔9から作動室8に吸入されて圧縮された後、吐出孔10から吐出される。吐出孔10の出口には、例えばリード弁からなる吐出弁11が配設されている。後部側板7の後部側には高圧ケース12が取り付けられており、高圧ケース12には作動室8にて圧縮された冷媒ガスに含まれるミスト状の潤滑油を分離、収集する分離室51が設けられている。   A suction hole 9 and a discharge hole 10 communicate with the working chamber 8, and a gas fluid such as refrigerant gas is sucked into the working chamber 8 from the suction hole 9 and compressed, and then discharged from the discharge hole 10. A discharge valve 11 made of, for example, a reed valve is disposed at the outlet of the discharge hole 10. A high pressure case 12 is attached to the rear side of the rear side plate 7, and the high pressure case 12 is provided with a separation chamber 51 for separating and collecting mist-like lubricating oil contained in the refrigerant gas compressed in the working chamber 8. It has been.

作動室8にて圧縮され吐出孔10から吐出された気流体は、シリンダ1、後部側板7及び高圧ケース12に連続して設けられた案内通路13により案内され、分離室51の側壁に形成された導入孔53を介して分離室51内に導入される。分離室51の上部には分離室51にて潤滑油が分離された冷媒ガスを排気するガス排出孔58が開口し、分離室51の下部には分離室にて冷媒ガスから分離、収集された潤滑油の排出される排油孔54が開口している。分離室51の内周面付近に、複数の衝突壁61を有している。   The gas fluid compressed in the working chamber 8 and discharged from the discharge hole 10 is guided by the guide passage 13 provided continuously in the cylinder 1, the rear side plate 7 and the high pressure case 12, and is formed on the side wall of the separation chamber 51. Then, it is introduced into the separation chamber 51 through the introduction hole 53. A gas discharge hole 58 for exhausting the refrigerant gas from which the lubricating oil has been separated in the separation chamber 51 is opened at the upper portion of the separation chamber 51, and the lower portion of the separation chamber 51 is separated and collected from the refrigerant gas in the separation chamber. An oil drain hole 54 through which the lubricating oil is discharged is opened. A plurality of collision walls 61 are provided near the inner peripheral surface of the separation chamber 51.

前記分離室51からガス排出孔58を介して排出される冷媒ガスは、冷凍・空調サイクルを循環し、やがて上述した吸入孔9に帰還し、再び圧縮されてサイクルを循環する。分離室51下部に開口した排油孔54は、高圧ケース12及び後部側板7の相互間に形成された貯油室52に連通する。従って、分離室51にて冷媒ガスから分離、収集された潤滑油は、排油孔54を通じて貯油室52に貯留される。   The refrigerant gas discharged from the separation chamber 51 through the gas discharge hole 58 circulates in the refrigeration / air conditioning cycle, eventually returns to the suction hole 9 described above, is compressed again, and circulates in the cycle. The oil drain hole 54 opened to the lower part of the separation chamber 51 communicates with an oil storage chamber 52 formed between the high pressure case 12 and the rear side plate 7. Therefore, the lubricating oil separated and collected from the refrigerant gas in the separation chamber 51 is stored in the oil storage chamber 52 through the oil drain hole 54.

前記貯油室52に貯留された潤滑油は、給油路18を介して圧縮機構を構成するロータ2、ベーン4、シリンダ1内壁等に供給され各部を潤滑すると共に、ベーン背圧室17に供給され、その圧力によりベーン4をロータ2の外側へ付勢する働きをする。   Lubricating oil stored in the oil storage chamber 52 is supplied to the rotor 2, the vane 4, the inner wall of the cylinder 1 and the like constituting the compression mechanism via the oil supply passage 18 to lubricate each part and to the vane back pressure chamber 17. The pressure acts to urge the vane 4 to the outside of the rotor 2.

潤滑油の給油は、貯油室52から圧縮機構に潤滑油を供給する給油路18を介して行われ、給油路18にはベーン背圧調整装置16を介して貯油室に貯留されている潤滑油が供給される。ベーン背圧調整装置16は圧縮機構へ供給する潤滑油の給油圧力や給油量を圧縮機構周辺の冷媒ガス圧力に応じて制御する。   Lubricating oil is supplied through an oil supply passage 18 that supplies the lubricating oil from the oil storage chamber 52 to the compression mechanism, and the lubricating oil stored in the oil storage chamber via the vane back pressure adjusting device 16 is supplied to the oil supply passage 18. Is supplied. The vane back pressure adjusting device 16 controls the oil supply pressure and the amount of oil supplied to the compression mechanism according to the refrigerant gas pressure around the compression mechanism.

以下、上述した実施例にかかる圧縮機の動作について説明する。   Hereinafter, the operation of the compressor according to the above-described embodiment will be described.

車載エンジンなどの駆動源から動力伝達を受けて駆動軸5及びロータ2が、図2において時計方向に回転すると、これに伴い低圧の冷媒ガスが吸入口9より作動室8内に流入する。ロータ2の回転に伴い圧縮された高圧の冷媒ガスは吐出孔10より吐出弁11を押し上げて案内通路13内に流入する。更に、高圧の冷媒ガスは導入孔53を通り分離室51内に導入され、分離室にて冷媒ガスに含まれる潤滑油が分離、収集される。   When power is transmitted from a drive source such as an in-vehicle engine and the drive shaft 5 and the rotor 2 rotate clockwise in FIG. 2, a low-pressure refrigerant gas flows into the working chamber 8 from the suction port 9 accordingly. The high-pressure refrigerant gas compressed along with the rotation of the rotor 2 pushes up the discharge valve 11 from the discharge hole 10 and flows into the guide passage 13. Further, the high-pressure refrigerant gas is introduced into the separation chamber 51 through the introduction hole 53, and the lubricating oil contained in the refrigerant gas is separated and collected in the separation chamber.

ところで、分離室51はいわゆる遠心分離式のオイルセパレータであり、図1に示したように、互いに結合された円柱状空間部51aと逆円錐状空間部51bとから構成される。分離室内部には従来の分離管等は設けられず、分離室内周面付近に、衝突壁61を有している。   By the way, the separation chamber 51 is a so-called centrifugal oil separator, and includes a columnar space 51a and an inverted conical space 51b that are coupled to each other as shown in FIG. A conventional separation pipe or the like is not provided in the separation chamber, and a collision wall 61 is provided in the vicinity of the peripheral surface of the separation chamber.

前記導入孔53は、分離室51の円柱状空間部中心軸から偏心して設けられ、分離室内に導入される冷媒ガスを円柱状空間部の接線方向に導くように、すなわち、冷媒ガスを円柱状空間部の内周面49に沿って分離室51内に導入し得るように設けられている。したがって、分離室51内に導入された冷媒ガスは分離室内で周方向に旋回し、旋回による遠心力の働きにより比重の大きい潤滑油が分離室内壁に接触して冷媒ガスから分離される。   The introduction hole 53 is provided eccentric from the central axis of the cylindrical space portion of the separation chamber 51 so as to guide the refrigerant gas introduced into the separation chamber in the tangential direction of the cylindrical space portion, that is, the refrigerant gas is cylindrical. It is provided so that it can be introduced into the separation chamber 51 along the inner peripheral surface 49 of the space. Therefore, the refrigerant gas introduced into the separation chamber 51 swirls in the circumferential direction in the separation chamber, and the lubricating oil having a large specific gravity comes into contact with the separation chamber wall and is separated from the refrigerant gas by the centrifugal force caused by the swirling.

分離された潤滑油は内周面49に沿って下方に移動し、内周面付近に設けた衝突壁61に衝突し、潤滑油分離を促進させ、逆円錐状空間部51bにより中央部に凝集される。   The separated lubricating oil moves downward along the inner peripheral surface 49, collides with a collision wall 61 provided in the vicinity of the inner peripheral surface, promotes the separation of the lubricating oil, and aggregates in the central portion by the inverted conical space portion 51b. Is done.

なお、貯油室52の上部と分離室51との間には、これらを相互に連通する連通路57が設けられている。連通路57は、導入孔53と同様に、分離室51の中心軸から偏心して設けられ、連通路57を介して分離室51内に導入される流体を円柱状空間部51aの接線方向に導くように、すなわち、流体を円柱状空間部51aの内周面49に沿って分離室51内に導入し得るように設けられている。このようにすることにより、貯油室52から連通路57を通じて分離室51内に流入する流体は、分離室内の冷媒ガスの旋回に滑らかに合流し、冷媒ガスの旋回を妨げることを抑制できる。また、何らかの要因により、貯油室52内の潤滑油が連通路57に達した場合でも、潤滑油は連通路57を介して分離室51に導入されるが、分離室51への流入の向きが前述したように分離室内の旋回流に合流する向きなので、潤滑油が分離室に連通路57を介して導入されても、分離室内の冷媒ガスの旋回を妨げることがない。また、これら流体の旋回を妨げないように、衝突壁は分離室の下方(連通路57より下方)に設ける方が好ましい。   Note that a communication passage 57 is provided between the upper portion of the oil storage chamber 52 and the separation chamber 51 to communicate these with each other. Similar to the introduction hole 53, the communication passage 57 is provided eccentrically from the central axis of the separation chamber 51, and guides the fluid introduced into the separation chamber 51 through the communication passage 57 in the tangential direction of the cylindrical space 51a. That is, it is provided so that the fluid can be introduced into the separation chamber 51 along the inner peripheral surface 49 of the cylindrical space 51a. By doing in this way, the fluid which flows in into the separation chamber 51 through the communication path 57 from the oil storage chamber 52 can smoothly join the swirling of the refrigerant gas in the separating chamber, and can prevent the swirling of the refrigerant gas from being hindered. Even if the lubricating oil in the oil storage chamber 52 reaches the communication passage 57 due to some reason, the lubricating oil is introduced into the separation chamber 51 through the communication passage 57, but the direction of the inflow into the separation chamber 51 is different. As described above, since the direction is to join the swirling flow in the separation chamber, even if the lubricating oil is introduced into the separation chamber via the communication path 57, the rotation of the refrigerant gas in the separation chamber is not hindered. In addition, it is preferable to provide the collision wall below the separation chamber (below the communication path 57) so as not to prevent the fluid from turning.

本実施の形態における圧縮機の場合、排油孔54の貯油室側開口部は貯油室52の油面より鉛直方向において下方で開口している。このため、圧縮機構により吐出された高圧の冷媒ガス圧力が分離室51下部に収集された潤滑油の油面を押し下げる一方、貯油室52内の潤滑油面を押し上げるように作用する。   In the case of the compressor in the present embodiment, the oil storage chamber side opening of the oil drain hole 54 opens downward in the vertical direction from the oil level of the oil storage chamber 52. For this reason, the high-pressure refrigerant gas pressure discharged by the compression mechanism acts to push down the lubricating oil level in the oil storage chamber 52 while pushing down the lubricating oil level collected in the lower part of the separation chamber 51.

しかし、貯油室52内の潤滑油が押し上げられる際に、貯油室52上部に溜まった気流体(主に冷媒ガス)が貯油室52内の潤滑油面の押上を妨げることが考えられる。   However, it is conceivable that when the lubricating oil in the oil storage chamber 52 is pushed up, the gas fluid (mainly refrigerant gas) accumulated in the upper portion of the oil storage chamber 52 prevents the lubricating oil surface in the oil storage chamber 52 from being pushed up.

そこで、この実施の形態においては、貯油室52内上部と分離室51との間に、これら相互間の流体移動を許容する連通路57を設けている。連通路57は、貯油室52上部に溜まった冷媒ガス等の気流体のガス抜き孔として働くので、貯油室52内の潤滑油面の押し上げは円滑に行われるようになる。   Therefore, in this embodiment, a communication path 57 that allows fluid movement between the oil storage chamber 52 and the separation chamber 51 is provided. Since the communication passage 57 functions as a vent hole for a gas fluid such as a refrigerant gas accumulated in the upper portion of the oil storage chamber 52, the lubricating oil surface in the oil storage chamber 52 is pushed up smoothly.

図4に、従来の旋回室のみの場合と、本発明の旋回室内に衝突壁61を持った場合のオイル分離効果を、オイル循環率(OCR)として比較した結果を示す。   FIG. 4 shows the result of comparing the oil separation effect in the case of only the conventional swirl chamber and the oil separation rate when the collision wall 61 is provided in the swirl chamber of the present invention as the oil circulation rate (OCR).

旋回室のみの場合は、低速回転域では旋回流の流速が低く、オイル分離効率が低く、OCRが比較的高くなる。しかし、本発明の旋回室内に衝突壁61を持った場合においては、低速回転域でもオイル分離効率が向上し、OCRを低くする事が可能である。   In the case of only the swirl chamber, the flow velocity of the swirl flow is low in the low-speed rotation region, the oil separation efficiency is low, and the OCR is relatively high. However, when the collision wall 61 is provided in the swirl chamber of the present invention, the oil separation efficiency can be improved and the OCR can be lowered even in the low speed rotation region.

したがって、本実施の形態における圧縮機においては、低い油循環率(高い油分離効率)を維持若しくは増進することが可能となる。   Therefore, in the compressor in the present embodiment, it is possible to maintain or enhance a low oil circulation rate (high oil separation efficiency).

なお、連通路57は、貯油室52から分離室51に流入する流体が分離室内の冷媒ガスの旋回を妨げないように設けられていれば足りる。すなわち、貯油室52から分離室51へ流入する流体の流入方向が連通路の出口付近の旋回流と正面衝突する方向成分を持っていなければ、旋回流の妨げとはならないと考えられる。   It is sufficient that the communication path 57 is provided so that the fluid flowing from the oil storage chamber 52 into the separation chamber 51 does not hinder the rotation of the refrigerant gas in the separation chamber. That is, if the inflow direction of the fluid flowing from the oil storage chamber 52 to the separation chamber 51 does not have a directional component that collides frontally with the swirling flow near the outlet of the communication path, it is considered that the swirling flow is not hindered.

従って、連通路57は、分離室51の中心軸と直角に交わる方向に沿って設けられていてもよい。   Therefore, the communication path 57 may be provided along a direction that intersects the central axis of the separation chamber 51 at a right angle.

なお、この実施の形態では、排油孔54の貯油室52側開口部は貯油室の油面より鉛直方向において下方で開口していたが、油面より上方で開口していてもよい。この場合、高圧の冷媒ガスによる油面押し上げの効果を期待することはできないが、連通路57を設けているので冷媒ガスの脈動に伴う排油孔54からの吹き戻しが抑制される。従って、分離室51内下部に収集された油が吹き戻しにより分離室内に飛散することも抑制される。   In this embodiment, the oil storage chamber 52 side opening of the oil discharge hole 54 opens downward in the vertical direction from the oil level of the oil storage chamber, but may open above the oil level. In this case, the effect of pushing up the oil level by the high-pressure refrigerant gas cannot be expected, but since the communication passage 57 is provided, the blowback from the oil discharge hole 54 due to the pulsation of the refrigerant gas is suppressed. Therefore, the oil collected in the lower part of the separation chamber 51 is also prevented from being scattered into the separation chamber by blowing back.

また、本実施の形態による圧縮機においては、いわゆる遠心分離式の分離室を有しながら、分離室内に分離管を有しない構造で記載したが、分離管を有していても、同様の効果を得ることが出来る。   Further, in the compressor according to the present embodiment, the structure is described in which a separation tube is not provided in the separation chamber while having a so-called centrifugal separation chamber, but the same effect can be obtained even if the separation tube is provided. Can be obtained.

(実施の形態2)
次に、衝突壁61を細かな網状部材や多孔質材などで構成することにより、気流体の旋回流を妨げない様にし、旋回による分離効果と衝突による分離効果を増大させる事が出来る。
(Embodiment 2)
Next, the collision wall 61 is made of a fine mesh member or a porous material, so that the swirling flow of gas and fluid is not hindered, and the separation effect by swirl and the separation effect by collision can be increased.

上述の実施の形態においては、分離室51の柱状空間部の例として円柱状空間部を用いて説明しているが、導入された冷媒ガスの旋回を妨げない断面形状であればいかなる断面形状の柱状空間部でもよく、例えば、断面が楕円形でも角部を丸めた四辺形であってもよい。   In the above-described embodiment, the columnar space portion is used as an example of the columnar space portion of the separation chamber 51. However, any cross-sectional shape may be used as long as it does not prevent the introduced refrigerant gas from turning. It may be a columnar space, for example, an elliptical cross section or a quadrilateral with rounded corners.

なお、上述の実施例では、圧縮機としてスライディングベーン型ロータリ圧縮機を例に採り説明したが、本発明はこれに限定されるものではなくローリングピストン型、スクロール型等その他の圧縮機にも適用可能である。   In the above-described embodiment, a sliding vane type rotary compressor has been described as an example of the compressor. However, the present invention is not limited to this and is also applicable to other compressors such as a rolling piston type and a scroll type. Is possible.

本発明の実施の形態における圧縮機の縦断面図The longitudinal cross-sectional view of the compressor in embodiment of this invention 図1に示したA−A線による圧縮機の作動室断面図Sectional view of the working chamber of the compressor along line AA shown in FIG. 図1に示したD−D線による圧縮機の分離室断面図Sectional view of the separation chamber of the compressor along line DD shown in FIG. 回転数とOCRの関係を示す特性図Characteristic diagram showing the relationship between rotational speed and OCR

符号の説明Explanation of symbols

1 シリング
2 ロ一夕
3 ベーンスロット
4 ベーン
5 駆動軸
6 前部側板
7 後部側板
8 作動室
9 吸入口
10 吐出孔
11 吐出弁
12 高圧ケース
13 案内通路
14 高圧室
16 ベーン背庄付与装置
17 ベーン背庄室
18 給油通路
21 細長通路部
49 内周面
51 分離室
52 貯油室
53 導入孔
54 排油孔
56 縮径部
57 連通路
58 ガス排出孔
61 衝突壁
DESCRIPTION OF SYMBOLS 1 Shilling 2 Rollover 3 Vane slot 4 Vane 5 Drive shaft 6 Front side plate 7 Rear side plate 8 Actuation chamber 9 Suction port 10 Discharge hole 11 Discharge valve 12 High pressure case 13 Guide passage 14 High pressure chamber 16 Vane backrest grant device 17 Vane Back chamber 18 Oil supply passage 21 Elongated passage portion 49 Inner peripheral surface 51 Separation chamber 52 Oil storage chamber 53 Introduction hole 54 Oil discharge hole 56 Reduced diameter portion 57 Communication passage 58 Gas discharge hole 61 Collision wall

Claims (3)

潤滑油を含む気流体を圧縮する圧縮機構と、前記圧縮機構により圧縮された気流体が導入されて旋回し、この旋回による遠心力により前記気流体に含まれる潤滑油の少なくとも一部が分離される分離室とを備えた圧縮機であって、前記分離室内に、旋回による流れが衝突する複数の衝突壁を有する事を特徴とする圧縮機。 A compression mechanism that compresses the gas-fluid containing lubricating oil, and the gas fluid compressed by the compression mechanism is introduced and swirled, and at least a part of the lubricant contained in the gas-fluid is separated by the centrifugal force generated by the swirling. And a separation chamber having a plurality of collision walls that collide with a flow caused by swirling. 前記衝突壁は、旋回室内の内周面付近に設ける事を特徴とする請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the collision wall is provided in the vicinity of an inner peripheral surface in the swirl chamber. 前記衝突壁は、潤滑油を透過しにくい材料で作成したことを特徴とする請求項1または2に記載の圧縮機。 The compressor according to claim 1 or 2, wherein the collision wall is made of a material that hardly permeates lubricating oil.
JP2003288735A 2003-08-07 2003-08-07 Compressor Pending JP2005054745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003288735A JP2005054745A (en) 2003-08-07 2003-08-07 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003288735A JP2005054745A (en) 2003-08-07 2003-08-07 Compressor

Publications (1)

Publication Number Publication Date
JP2005054745A true JP2005054745A (en) 2005-03-03

Family

ID=34367297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003288735A Pending JP2005054745A (en) 2003-08-07 2003-08-07 Compressor

Country Status (1)

Country Link
JP (1) JP2005054745A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023981A (en) * 2005-07-21 2007-02-01 Mitsubishi Heavy Ind Ltd Scroll compressor
US8118577B2 (en) 2007-01-30 2012-02-21 Mitsubishi Heavy Industries, Ltd. Scroll compressor having optimized cylinder oil circulation rate of lubricant
US8945265B2 (en) 2011-02-22 2015-02-03 Kabushiki Kaisha Toyota Jidoshokki Compressor
CN111148575A (en) * 2017-09-29 2020-05-12 大金工业株式会社 Oil separator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023981A (en) * 2005-07-21 2007-02-01 Mitsubishi Heavy Ind Ltd Scroll compressor
US8118577B2 (en) 2007-01-30 2012-02-21 Mitsubishi Heavy Industries, Ltd. Scroll compressor having optimized cylinder oil circulation rate of lubricant
US8945265B2 (en) 2011-02-22 2015-02-03 Kabushiki Kaisha Toyota Jidoshokki Compressor
CN111148575A (en) * 2017-09-29 2020-05-12 大金工业株式会社 Oil separator
CN111148575B (en) * 2017-09-29 2021-05-28 大金工业株式会社 Oil separator

Similar Documents

Publication Publication Date Title
JP4788746B2 (en) Compressor
TWI615551B (en) Screw compressor and chiller unit having the same
JPH0712072A (en) Vane compressor
JP4218373B2 (en) Compressor
KR20160108036A (en) Compressor
JP6181405B2 (en) Compressor
KR100971578B1 (en) Scroll compressor
JP2009221960A (en) Compressor
US7490541B2 (en) Compressor
JP2005054745A (en) Compressor
JP4469742B2 (en) Compressor
JP2005083234A (en) Compressor
EP1217215B1 (en) Gas compressor
JP2008014174A (en) Compressor
JP2006037895A (en) Compressor
JP4045856B2 (en) Compressor
JP2007309282A (en) Compressor
JP2006214376A (en) Muffler structure for compressor
JP2005226467A (en) Gas compressor
JP2006097487A (en) Compressor
JP2006029218A (en) Compressor
JP2005299391A (en) Compressor
JP2005054713A (en) Compressor
JP2006070804A (en) Compressor
JP2005054714A (en) Compressor