JP4218373B2 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP4218373B2
JP4218373B2 JP2003062238A JP2003062238A JP4218373B2 JP 4218373 B2 JP4218373 B2 JP 4218373B2 JP 2003062238 A JP2003062238 A JP 2003062238A JP 2003062238 A JP2003062238 A JP 2003062238A JP 4218373 B2 JP4218373 B2 JP 4218373B2
Authority
JP
Japan
Prior art keywords
separation chamber
gas
fluid
chamber
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003062238A
Other languages
Japanese (ja)
Other versions
JP2003336588A (en
Inventor
武男 北村
健司 渡邊
武史 川田
賢治 奥園
信直 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003062238A priority Critical patent/JP4218373B2/en
Publication of JP2003336588A publication Critical patent/JP2003336588A/en
Application granted granted Critical
Publication of JP4218373B2 publication Critical patent/JP4218373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Rotary Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流体の圧縮を行う圧縮機に関するもので、特に自動車用空調装置などに用いられる圧縮機に関するものである。
【0002】
【従来の技術】
このような圧縮機においては、圧縮機構摺動部を潤滑する潤滑油の一部が圧縮された流体と共に圧縮機から吐出され、冷凍・空調サイクル中を循環することとなる。流体と共に吐出される潤滑油の量がサイクル中に多く吐出されるほどシステム効率(熱効率)が低下することは従来からよく知られている。
【0003】
かかる事情から、システム効率の向上を図るため、圧縮機構により圧縮された流体から、そこに含まれる潤滑油を極力分離した後、該流体をシステムサイクル中に吐出するようにしている。そのような例として、圧縮機構の吐出側に、圧縮された流体から潤滑油を分離する遠心分離式の分離室を設けた圧縮機が公知となっている(例えば特許文献1及び2参照)。
【0004】
かかる圧縮機では、圧縮機構により圧縮され潤滑油を含む高圧の冷媒ガスが遠心分離式の分離室に導かれ、略円柱状の分離室内を旋回し、旋回による遠心力により冷媒ガスに含まれるミスト状の潤滑油が分離室内壁に接触することで冷媒ガスから分離されるようになっている。
【0005】
【特許文献1】
特開平11−82352号公報(第4頁、図1、図3、図4)
【0006】
【特許文献2】
特開2001−295767号公報(第3頁、図1、図2)
【0007】
【発明が解決しようとする課題】
ところで、遠心分離式の分離室を備えた公知の圧縮機においては、上述の特許文献に開示されているものに限られず、その分離室内には分離管と称される管が悉く配され、分離室に導入された冷媒ガスは分離管外周面と分離室内周面の間に形成される断面円環状の円筒空間を旋回するように構成されている。
【0008】
このように、遠心分離式の潤滑油分離方式には、一般に分離管が必須構成要素と考えられている。すなわち、潤滑油の高い分離効率を得るためには、分離室内において冷媒ガスを確実に旋回させる必要があり、そのためには分離室内に分離管を設け、この周囲に冷媒ガスを旋回させる必要があると考えられているのである。
【0009】
しかし、特許文献1及び2にも記載されているように、分離管を分離室内に設ける場合は、分離室の大型化を招くばかりでなく、部品点数の増加や分離管製作コスト、分離管組み付け工数などを見込む必要があり、圧縮機の製造コスト低減の障害となっていた。
【0010】
そこで、本発明は上記問題点に鑑み、潤滑油の分離効率が高く、しかも分離室の小型化が可能で製造コストの低減を可能とした圧縮機を提供することを目的としている。
【0011】
【課題を解決するための手段】
上述の目的を達成するため、本出願にかかる第1の発明による圧縮機においては、分離室内には、そこに導入された流体以外は何も存在しないことを特徴としている。すなわち、分離室内には分離管は配されず、がらんどうとなっている。そして、この圧縮機においては、分離室にて分離された潤滑油が貯えられる貯油室内上部と分離室との間に連通路が設けられ、その連通路の分離室側開口部がここから分離室内に流入する流体により分離室内の気流体の旋回を妨げない向きに開口している。
【0012】
このような特徴を有することにより、この発明による圧縮機においては、分離室内に分離管を配するためのスペースを確保する必要がなくなる。また、貯油室から連通路を通じて流入する流体により分離室内の気流体の旋回が妨げられることが抑制される。
【0013】
また、上述の目的を達成するため、本出願にかかる第3の発明による圧縮機においては、分離室から気流体を排出するガス排出孔の分離室側開口部が分離室の柱状空間部の一端側外周部に縮径部を介して結合していることを特徴としている。
【0014】
このような特徴を有することにより、潤滑油ミストを多く含んで分離室に導入される高密度、高速度の気流体が分離室内を旋回することなく分離室から排気されてしまう様なことが抑制される。
【0015】
また、上述の目的を達成するため、本出願にかかる第4の発明による圧縮機においては、導入孔から分離室内に導入される気流体はガス排出孔開口部から遠ざかる方向に向かって分離室内へ導入されることを特徴としている。
【0016】
このような特徴を有することにより、この発明による圧縮機においては、潤滑油ミストを多く含んで分離室に導入される気流体がガス排出孔開口部から遠ざけられ、分離室内を碌に旋回することなく分離室から排気されてしまうようなことが抑制される。
【0017】
また、上述の目的を達成するため、本出願にかかる第5の発明による圧縮機においては、圧縮機構の吐出口から分離室の導入孔まで気流体を案内する案内通路に、導入孔に連なって形成される細長通路部分を設けたことを特徴としている。
【0018】
このような特徴を有することにより、この発明による圧縮機においては、細長通路部分は分離室に導入される冷媒ガスを整流する作用を有するので、分離室に流入する気流体の流れの乱れや拡散が抑制され、圧縮機構から突出された高圧の冷媒ガスの静圧のみならず動圧をも分離室内における冷媒ガスの旋回に活用できるようになる。
【0019】
【発明の実施の形態】
以下、本出願にかかる発明の実施例を、図面を参照しながら説明する。図は本出願にかかる発明の一部が適用された圧縮機の縦断面図であり、図2は図のA−A断面図(作動室断面図)、図3は図11のB−B断面図(高圧ケースを作動室側から見た図)である。
【0020】
図に示した圧縮機は、いわゆるベーンロータリタイプの圧縮機であり、図示したように、円筒状の内壁を有するシリンダ内に略円柱状のロータ2が配置されている。
【0021】
ロータ2はその外周の一部がシリンダの内壁と微少隙間を形成する位置に配置されている。ロータ2には複数のべ一ンスロット3が設けられ、それぞれのべ一ンスロット3内にはベーン4が摺動自在に挿入されている。
【0022】
ロータ2は回転自在に軸支された駆動軸5と一体的に形成されている。シリンダ1及びロータ2はロータ2の回転軸方向において前部側板6及び後部側板7の間に挟み込まれており、シリンダ1の両端はこれらにより閉塞されシリンダ内に流体圧縮のための作動室8が形成されている。
【0023】
作動室8には吸入孔9及び吐出孔10が連通し、冷媒ガス等の気流体は吸入孔9から作動室8に吸入されて圧縮された後、吐出孔10から吐出される。吐出孔10の出口には、例えばリード弁からなる吐出弁11が配設されている。
【0024】
後部側板7の後部側には高圧ケース12が取り付けられており、高圧ケース12には作動室8にて圧縮された冷媒ガスに含まれるミスト状の潤滑油を分離、収集する分離室51が設けられている。
【0025】
作動室8にて圧縮され吐出孔10から吐出された気流体はシリンダ1、後部側板7及び高圧ケース12に連続して設けられた案内通路13により案内され、分離室51の側壁に形成された導入孔53を介して分離室51内に導入される。
【0026】
分離室51の上部には分離室にて潤滑油が分離された冷媒ガスを排気するガス排出孔58が開口し、分離室51の下部には分離室にて冷媒ガスから分離、収集された潤滑油の排出される排油孔54が開口している。
【0027】
分離室51からガス排出孔58を介して排出される冷媒ガスは冷凍・空調サイクルを循環し、やがて上述した吸入孔9に帰還し、再び圧縮されてサイクルを循環する。
【0028】
分離室51下部に開口した排油孔54は高圧ケース12及び後部側板7の相互間に形成された貯油室52に連通する。従って、分離室にて冷媒ガスから分離、収集された潤滑油は、排油孔54を通じて貯油室52に貯留される。
【0029】
貯油室52に貯留された潤滑油は、給油路18を介して圧縮機構を構成するロータ2、ベーン4、シリンダ1内壁等に供給され各部を潤滑すると共に、ベーン背圧室17に供給され、その圧力によりベーン4をロータ2の外側へ付勢する働きをする。
【0030】
潤滑油の給油は貯油室52から圧縮機構に潤滑油を供給する給油路18を介して行われ、給油路18にはベーン背圧調整装置16を介して貯油室に貯留されている潤滑油が供給される。ベーン背圧調整装置16は圧縮機構へ供給する潤滑油の給油圧力や給油量を圧縮機構周辺の冷媒ガス圧力に応じて制御する。
【0031】
以下、上述した実施例にかかる圧縮機の動作について説明する。
【0032】
車載エンジンなどの駆動源から動力伝達を受けて駆動軸5及びロータ2が、図2において時計方向に回転すると、これに伴い低圧の冷媒ガスが吸入口9より作動室8内に流入する。
【0033】
ロータ2の回転に伴い圧縮された高圧の冷媒ガスは吐出孔10より吐出弁11を押し上げて案内通路13内に流入する。更に、高圧の冷媒ガスは導入孔53を通り分離室51内に導入され、分離室にて冷媒ガスに含まれる潤滑油が分離、収集される。
【0034】
ところで、分離室51はいわゆる遠心分離式のオイルセパレータであり、図1に示したように、互いに結合された円柱状空間部と逆円錐状空間部とから構成される。
【0035】
分離室内部には従来の分離管等は設けられず、分離室内はがらんどうとなっており、導入された冷媒ガス(含有される潤滑油を含む。)以外は内部には何も存在していない。
【0036】
また、分離室内には分離室に導入された冷媒ガスの旋回の障害となるような凸条や突起、凹凸も形成されていない。導入孔53は分離室51の円柱状空間部中心軸から偏心して設けられ、分離室内に導入される冷媒ガスを円柱状空間部の接線方向に導くように、すなわち、冷媒ガスを円柱状空間部の内周面49に沿って分離室51内に導入し得るように設けられている。
【0037】
したがって、分離室51内に導入された冷媒ガスは分離室内で周方向に旋回し、旋回による遠心力の働きにより比重の大きい潤滑油が分離室内壁に接触して冷媒ガスから分離される。
【0038】
分離された潤滑油は内周面49に沿って下方に移動し、逆円錐状空間部により中央部に凝集される。
【0039】
なお、貯油室52の上部と分離室51との間には、これらを相互に連通する連通路57が設けられている。連通路57は、導入孔53と同様に、分離室51の中心軸から偏心して設けられ、連通路57を介して分離室内に導入される流体を円柱状空間部の接線方向に導くように、すなわち、流体を円柱状空間部の内周面49に沿って分離室51内に導入し得るように設けられている。
【0040】
このようにすることにより、貯油室52から連通路57を通じて分離室51内に流入する流体は、分離室内の冷媒ガスの旋回に滑らかに合流し、冷媒ガスの旋回を妨げることを抑制できる。
【0041】
また、何らかの要因により、貯油室52内の潤滑油が連通路57に達した場合でも、潤滑油は連通路57を介して分離室51に導入されるが、分離室51への流入の向きが前述したように分離室内の旋回流に合流する向きなので、潤滑油が分離室に連通路57を介して導入されても、分離室内の冷媒ガスの旋回を妨げることがない。
【0042】
説明中の圧縮機の場合、排油孔54の貯油室側開口部は貯油室52の油面より鉛直方向において下方で開口している。このため、圧縮機構により吐出された高圧の冷媒ガス圧力が分離室51下部に収集された潤滑油の油面を押し下げる一方、貯油室52内の潤滑油面を押し上げるように作用する。
【0043】
しかし、貯油室52内の潤滑油が押し上げられる際に、貯油室52上部に溜まった気流体(主に冷媒ガス)が貯油室52内の潤滑油面の押上を妨げることが考えられる。
【0044】
そこで、説明中のこの実施例おいては、貯油室52内上部と分離室51との間に、これら相互間の流体移動を許容する連通路57を設けている。連通路57は貯油室52上部に溜まった冷媒ガス等の気流体のガス抜き孔として働くので、貯油室52内の潤滑油面の押し上げは円滑に行われるようになる。
【0045】
なお、連通路57は貯油室52から分離室51に流入する流体が分離室内の冷媒ガスの旋回を妨げないように設けられていれば足りる。すなわち、貯油室から分離室へ流入する流体の流入方向が連通路の出口付近の旋回流と正面衝突する方向成分を持っていなければ、旋回流の妨げとはならないと考えられる。従って、連通路は分離室の中心軸と直角に交わる方向に沿って設けられていてもよい。
【0046】
なお、この実施例では、排油孔54の貯油室52側開口部は貯油室の油面より鉛直方向において下方で開口していたが、油面より上方で開口していてもよい。
【0047】
この場合、高圧の冷媒ガスによる油面押し上げの効果を期待することはできないが、連通路57を設けているので冷媒ガスの脈動に伴う排油孔54からの吹き戻しが抑制される。従って、分離室51内下部に収集された油が吹き戻しにより分離室内に飛散することも抑制される。
【0048】
ところで、本出願にかかる発明による圧縮機においては、いわゆる遠心分離式の分離室を有しながら、分離室内に分離管を有しないことを特徴としている。分離管を廃することができた要因として、以下の幾つかの技術的事項が考えられる。
【0049】
かかる技術的事項の1つとして、分離室に圧縮された冷媒ガスを導入する導入孔と分離室との相対的位置関係を挙げることができると推測している。ここでいう相対的位置関係とは、導入孔の分離室中心軸からの偏心度合いを意味する。この偏心度合いについて少し詳細に説明する。
【0050】
図4に示したように、分離室51の中心軸Mから柱状空間部内周壁までの距離をRとし、中心軸Mから導入孔53の開口部を柱状空間部の接線方向(導入孔の中心軸線と平行な方向)に投影した投影線までの最短距離をLとすると、このRとLの比L/Rが偏心度合いを表すことになる。
【0051】
Lの大きさを最小で0、最大でRと仮定すると、この偏心度合いL/Rは0〜1の値をとり、値が大きいほど導入孔は分離室に対して偏心していることとなる。この偏心度合いと油循環率の関係について分離室内に分離管を有する場合と有しない場合を比較すると、本出願の発明者の推測では定性的には図5に示すようになる。
【0052】
すなわち、図5に示したように、偏心度合いが小さいと分離管のある方が油循環率が小さく(油分離効率が高く)、偏心度合いが大きくなるに連れ油循環率の差は減少して両者の曲線(分離管あり曲線と分離管なし曲線)はある偏心度合いに達すると交差しそれぞれの曲線の油循環率は逆転するのである。
【0053】
従って、分離管を廃して高効率の冷凍・空調システムを提供するには、図5に示した両曲線の交点に相当する偏心度合い以上の偏心度合いとすることが望ましい。本発明者は望ましい具体的な偏心度合いL/Rの値として0.4以上と推測している。
【0054】
ここで、上述した油循環率とは、日本工業規格(JIS B8606)に定義されているように、サイクル内を循環する液冷媒と潤滑油の混合液質量に対する該混合液中の潤滑油質量で表される。
【0055】
図5ではOCRと略して百分率の値として示している。図5に示したグラフ曲線は、これまでの発明者の経験等による推測に基づくものであり、圧縮機の構成や分離室まわりのデザイン等により、グラフ曲線の形状は変化するものと考えられ、常に図示したものに一致するとは限らないが、分離管あり曲線と分離管なし曲線が交差するということについては、本発明者は確信を得ている。
【0056】
なお、Lとして分離室の中心軸Mから導入孔の断面重心軸までの距離を用いることも可能であり、この場合には、導入孔の形状にもよるが偏心度合いが0.7以上であれば、分離管の無い方が油循環率が低く高効率の冷凍・空調システムを提供できると本発明者は推測する。
【0057】
また、分離管を廃することができた要因として、上述の技術的事項とは別に次の技術的事項も挙げることができる。それは、分離室から油分離後の冷媒ガスを排出するガス排出孔58の分離室51に対する開口の仕方である。
【0058】
図1に示した実施例においては、ガス排出孔開口部は分離室の円柱状空間部の上端側中心部に設けられると共に、ガス排出孔開口部の断面積は円柱状空間部の断面積より小さく形成されている。
【0059】
ガス排出孔開口部は円柱状空間部の外周部にはかからず、円柱状空間部上端面に円柱状空間部の内径をガス排出孔開口部の内径にまで縮小する縮径部56が形成されることとなる。
【0060】
すなわち、ガス排出孔58開口部はこの縮径部56を介して円柱状空間部の上端側外周に結合する。これにより、潤滑油ミストを多く含んで分離室に導入される高密度、高速度の冷媒ガスが分離室51内を碌に旋回することなく分離室から排気されてしまうことが抑制される。
【0061】
すなわち、分離室に導入された冷媒ガスの流速が旋回中に低下しないと仮定すると、比重の大きい潤滑油ミストを多く含む(高密度の)冷媒ガスが旋回流の外周部を円柱状空間部の内壁に沿って旋回し、潤滑油の分離が進むにつれ高密度の冷媒ガスに押し退けられるようにして徐々に旋回の中心部に移動し、最終的にガス排出孔から排気されると考えられる。
【0062】
実際には、分離室内に流入した直後の冷媒ガスが最も流速が速く、旋回中に徐々に流速は低下していくものと考えられ、流速の低下とともに冷媒ガスに作用する遠心力も小さくなるので、潤滑油ミストを含む高密度、高速度の冷媒ガスが旋回流の外周部を分離室円柱状空間部の内壁に沿って旋回し、潤滑油の分離が進み密度、速度が低くなった冷媒ガスが旋回の中心部に移動し、ガス排出孔から排気されるものと考えられる。
【0063】
この結果、潤滑油ミストを多く含んで分離室に導入される高密度、高速度の冷媒ガスが分離室内を碌に旋回することなく分離室から排気されてしまうことを抑制できる。
【0064】
なお、図1および図4に示した実施例では、縮径部56が円柱状空間部の中心軸に直角な上端面として形成されているが、これに限られる必要はなく、縮径部は円柱状空間部の中心軸に対して斜めに傾斜した斜面として形成されても、円柱状空間部の外周から連なる緩やかな曲線として形成されていてもよい。さらに、ガス排出孔開口部の全周にわたり縮径部が存在していればガス排出孔の中心軸と分離室の中心とが偏心していてもよい。
【0065】
また、分離管を廃することができた要因として、上述の技術的事項とは別に次の技術的事項も挙げることができる。それは、図6に示したように、導入孔に連なる細長通路部分21の向きを調整して分離室内に導入される冷媒ガスがガス排出孔開口部から遠ざかる方向に向かって分離室へ導入されるようにすることである。
【0066】
このようにすることにより、少なくとも潤滑油ミストを多く含んで分離室51に導入された導入直後の冷媒ガスをガス排出孔開口部から遠ざけることができ、導入直後の潤滑油ミストを多く含んだ冷媒ガスがガス排出孔から冷凍・空調システムに供給されることを抑制できる。
【0067】
なお、細長通路部分21の分離室中心軸に対する傾斜角度αは小さすぎると分離室内へ導入される冷媒ガスの流速を分離室内での旋回に活用できなくなり、油分離効率が低下すると考えられるので、高い油分離効率を得るために、傾斜角度αは60°≦α≦90゜であることが望ましい。
【0068】
なお、円柱状空間部の内周がガス排出孔から離れるに従い拡大するように、柱状空間部の内周壁を形成すれば、分離室に導入された高密度・高速度の冷媒ガスは遠心力を受けて最も拡張された内周部に導かれるので、細長通路部分21を分離室中心軸に対して傾斜させなくても、潤滑油ミストを多く含んで分離室に導入された冷媒ガスをガス排出孔開口部から遠ざけることができ好ましいと考えられる。
【0069】
さらに、分離管を廃することができた要因として、上述の技術的事項とは別に次の技術的事項も挙げることができる。それは、圧縮機構の吐出口から分離室への導入孔まで冷媒ガスを案内する案内通路に、導入孔53に連なって形成された細長通路部分13a(図参照)、21(図参照)を設けることである。
【0070】
このようにすることにより、これらの細長通路部分は分離室51に導入される冷媒ガスを整流する作用を有するので、分離室に流入する気流体の流れの乱れや拡散を抑制すると共に、圧縮機構から吐出された高圧の冷媒ガスが有する静圧だけでなく動圧をも分離室内における冷媒ガスの旋回に活用できるようになる。
【0071】
上述の説明では、分離管を廃することができる要因と考えられる複数の技術的事項についてそれぞれ個別に説明したが、これらは相互に複数の技術的事項を組み合わせることも可能であり、その場合にはそれぞれの技術的事項の相乗効果を期待できる。その他、本出願明細書に記載の個々の技術的事項は他のいずれの技術的事項と組み合わすことも可能である。
【0072】
上述の実施例においては、分離室の柱状空間部の例として円柱状空間部を用いて説明しているが、導入された冷媒ガスの旋回を妨げない断面形状であればいかなる断面形状の柱状空間部でもよく、例えば、断面が楕円形でも角部を丸めた四辺形であってもよい。
【0073】
なお、上述の実施例では、圧縮機としてスライディングベーン型ロータリ圧縮機を例に採り説明したが、本発明はこれに限定されるものではなくローリングピストン型、スクロール型等その他の圧縮機にも適用可能である。
【0074】
【発明の効果】
以上説明したように本発明の圧縮機では、遠心分離式油分離室の分離管を廃することができたので、分離管の製作や組み付け等に伴う圧縮機の製造コストを低減することが可能となった。
【0075】
また、分離管が不要となったため、実際に分離室を小型化するかどうかは別にして、分離室内に分離管設置スペースを設ける必要がなくなった分、分離室を小型化することも可能となる。
【図面の簡単な説明】
【図1】 本出願にかかる発明の一部が適用された実施例を示す圧縮機の縦断面図
【図2】 図1に示した圧縮機のA−A断面図(作動室断面図)
【図3】 図1に示した圧縮機のB−B断面図(高圧ケースを作動室側から見た図)
【図4】 図1に示した圧縮機の分離室付近のC−C断面図
【図5】 分離室に対する導入孔の偏心度合いL/Rと油循環率OCRの関係を表すグラフ
【図6】 図1に示した実施例の高圧ケースの変形例を示す縦断面図
【図7】 図1に示した実施例の細長通路部の変形例を示した分離室付近の横断面図
【符号の説明】
1 シリング
2 ロ一夕
3 ベーンスロット
4 ベーン
5 駆動軸
6 前部側板
7 後部側板
8 作動室
9 吸入口
10 吐出孔
11 吐出弁
12 高圧ケース
13 案内通路
14 高圧室
16 ベーン背庄付与装置
17 ベーン背庄室
18 給油通路
21 細長通路部
51 分離室
52 貯油室
53 導入孔
54 排油孔
56 縮径部
57 連通路
58 ガス排出孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a compressor that compresses a fluid, and particularly to a compressor that is used in an air conditioner for automobiles.
[0002]
[Prior art]
In such a compressor, a part of the lubricating oil that lubricates the sliding portion of the compression mechanism is discharged from the compressor together with the compressed fluid, and circulates in the refrigeration / air conditioning cycle. It has been well known that the system efficiency (thermal efficiency) decreases as the amount of lubricating oil discharged together with the fluid increases in the cycle.
[0003]
For this reason, in order to improve the system efficiency, the lubricating oil contained therein is separated as much as possible from the fluid compressed by the compression mechanism, and then the fluid is discharged during the system cycle. As such an example, a compressor in which a centrifugal separation chamber that separates lubricating oil from a compressed fluid is provided on the discharge side of a compression mechanism is known (see, for example, Patent Documents 1 and 2).
[0004]
In such a compressor, high-pressure refrigerant gas compressed by a compression mechanism and containing lubricating oil is guided to a centrifugal separation chamber, swirls in a substantially cylindrical separation chamber, and mist contained in the refrigerant gas by centrifugal force due to swirling. The lubricating oil is separated from the refrigerant gas by contacting the separation chamber wall.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-82352 (page 4, FIG. 1, FIG. 3, FIG. 4)
[0006]
[Patent Document 2]
JP 2001-295767 A (Page 3, FIGS. 1 and 2)
[0007]
[Problems to be solved by the invention]
By the way, the known compressor provided with the centrifugal separation chamber is not limited to the one disclosed in the above-mentioned patent document, and a tube called a separation tube is arranged in the separation chamber. The refrigerant gas introduced into the chamber is configured to swirl in an annular cylindrical space formed between the outer peripheral surface of the separation tube and the outer peripheral surface of the separation chamber.
[0008]
As described above, the separation pipe is generally considered as an essential component in the centrifugal separation method of the lubricating oil. That is, in order to obtain a high separation efficiency of the lubricating oil, it is necessary to swirl the refrigerant gas reliably in the separation chamber. For that purpose, it is necessary to provide a separation pipe in the separation chamber and swirl the refrigerant gas around this. It is considered.
[0009]
However, as described in Patent Documents 1 and 2, when the separation tube is provided in the separation chamber, not only does the separation chamber increase in size, but also the number of parts, the production cost of the separation tube, and the assembly of the separation tube are increased. It was necessary to allow for man-hours and the like, which was an obstacle to reducing the manufacturing cost of the compressor.
[0010]
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a compressor that has a high separation efficiency of lubricating oil and that can reduce the size of the separation chamber and reduce the manufacturing cost.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the compressor according to the first invention of the present application is characterized in that nothing exists in the separation chamber other than the fluid introduced therein. That is, the separation pipe is not arranged in the separation chamber, and it is troublesome. In this compressor, a communication path is provided between the upper part of the oil storage chamber in which the lubricating oil separated in the separation chamber is stored and the separation chamber, and the opening on the separation chamber side of the communication path extends from here to the separation chamber. Is opened in a direction that does not hinder the swirling of the gas fluid in the separation chamber.
[0012]
With such a feature, in the compressor according to the present invention, it is not necessary to secure a space for arranging the separation pipe in the separation chamber. Further, the fluid flowing in from the oil storage chamber through the communication path is prevented from preventing the swirling of the gas fluid in the separation chamber.
[0013]
In order to achieve the above object, in the compressor according to the third invention of the present application, the separation chamber side opening of the gas discharge hole for discharging the gas fluid from the separation chamber is one end of the columnar space portion of the separation chamber. It is characterized by being connected to the side outer peripheral part via a reduced diameter part.
[0014]
By having such a feature, it is possible to prevent the high-density and high-speed gas-fluid introduced into the separation chamber containing a large amount of lubricating oil mist from being exhausted from the separation chamber without swirling in the separation chamber. Is done.
[0015]
In order to achieve the above object, in the compressor according to the fourth aspect of the present application, the gas fluid introduced from the introduction hole into the separation chamber enters the separation chamber in a direction away from the gas discharge hole opening. It is characterized by being introduced.
[0016]
By having such a feature, in the compressor according to the present invention, the gas-fluid containing a large amount of lubricating oil mist and introduced into the separation chamber is kept away from the opening of the gas discharge hole and swirls around the separation chamber. The exhaust from the separation chamber is suppressed.
[0017]
In order to achieve the above object, in the compressor according to the fifth aspect of the present application, the guide passage for guiding the gas fluid from the discharge port of the compression mechanism to the introduction hole of the separation chamber is connected to the introduction hole. It is characterized in that an elongated passage portion to be formed is provided.
[0018]
By having such characteristics, in the compressor according to the present invention, the elongated passage portion has a function of rectifying the refrigerant gas introduced into the separation chamber, so that the turbulence and diffusion of the gas-fluid flowing into the separation chamber Thus, not only the static pressure of the high-pressure refrigerant gas protruding from the compression mechanism but also the dynamic pressure can be utilized for the rotation of the refrigerant gas in the separation chamber.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. 1 is a longitudinal sectional view of a compressor to which a part of the invention according to the present application is applied, FIG. 2 is a sectional view taken along the line AA in FIG. 1 (a sectional view of the working chamber), and FIG. It is B sectional drawing (figure which looked at the high pressure case from the working chamber side).
[0020]
The compressor shown in the figure is a so-called vane rotary type compressor, and as shown in the drawing, a substantially columnar rotor 2 is arranged in a cylinder 1 having a cylindrical inner wall.
[0021]
The rotor 2 is disposed at a position where a part of the outer periphery forms a minute gap with the inner wall of the cylinder 1 . The rotor 2 is provided with a plurality of vane slots 3, and vanes 4 are slidably inserted into the vane slots 3.
[0022]
The rotor 2 is formed integrally with a drive shaft 5 that is rotatably supported. The cylinder 1 and the rotor 2 are sandwiched between the front side plate 6 and the rear side plate 7 in the rotational axis direction of the rotor 2, and both ends of the cylinder 1 are closed by these, and a working chamber 8 for fluid compression is formed in the cylinder. Is formed.
[0023]
A suction hole 9 and a discharge hole 10 communicate with the working chamber 8, and a gas fluid such as refrigerant gas is sucked into the working chamber 8 from the suction hole 9 and compressed, and then discharged from the discharge hole 10. A discharge valve 11 made of, for example, a reed valve is disposed at the outlet of the discharge hole 10.
[0024]
A high pressure case 12 is attached to the rear side of the rear side plate 7, and the high pressure case 12 is provided with a separation chamber 51 for separating and collecting mist-like lubricating oil contained in the refrigerant gas compressed in the working chamber 8. It has been.
[0025]
The gas fluid compressed in the working chamber 8 and discharged from the discharge hole 10 is guided by the guide passage 13 provided continuously in the cylinder 1, the rear side plate 7 and the high pressure case 12, and formed on the side wall of the separation chamber 51. It is introduced into the separation chamber 51 through the introduction hole 53.
[0026]
A gas discharge hole 58 for exhausting the refrigerant gas from which the lubricating oil has been separated in the separation chamber opens in the upper portion of the separation chamber 51, and the lubrication separated and collected from the refrigerant gas in the separation chamber 51 is formed in the lower portion of the separation chamber 51. An oil drain hole 54 through which oil is discharged is opened.
[0027]
The refrigerant gas discharged from the separation chamber 51 through the gas discharge hole 58 circulates in the refrigeration / air conditioning cycle, eventually returns to the suction hole 9 described above, is compressed again, and circulates in the cycle.
[0028]
The oil drain hole 54 opened at the lower part of the separation chamber 51 communicates with an oil storage chamber 52 formed between the high pressure case 12 and the rear side plate 7. Therefore, the lubricating oil separated and collected from the refrigerant gas in the separation chamber is stored in the oil storage chamber 52 through the oil drain hole 54.
[0029]
The lubricating oil stored in the oil storage chamber 52 is supplied to the rotor 2, the vane 4, the inner wall of the cylinder 1, and the like constituting the compression mechanism via the oil supply passage 18, lubricates each part, and is supplied to the vane back pressure chamber 17. The pressure acts to urge the vane 4 to the outside of the rotor 2.
[0030]
Lubricating oil is supplied through an oil supply passage 18 for supplying the lubricating oil from the oil storage chamber 52 to the compression mechanism. The lubricating oil stored in the oil storage chamber via the vane back pressure adjusting device 16 is supplied to the oil supply passage 18. Supplied. The vane back pressure adjusting device 16 controls the oil supply pressure and the amount of oil supplied to the compression mechanism according to the refrigerant gas pressure around the compression mechanism.
[0031]
Hereinafter, the operation of the compressor according to the above-described embodiment will be described.
[0032]
When power is transmitted from a drive source such as an in-vehicle engine and the drive shaft 5 and the rotor 2 rotate clockwise in FIG. 2, a low-pressure refrigerant gas flows into the working chamber 8 from the suction port 9 accordingly.
[0033]
The high-pressure refrigerant gas compressed along with the rotation of the rotor 2 pushes up the discharge valve 11 from the discharge hole 10 and flows into the guide passage 13. Further, the high-pressure refrigerant gas is introduced into the separation chamber 51 through the introduction hole 53, and the lubricating oil contained in the refrigerant gas is separated and collected in the separation chamber.
[0034]
By the way, the separation chamber 51 is a so-called centrifugal oil separator, and is composed of a cylindrical space portion and an inverted conical space portion coupled to each other as shown in FIG.
[0035]
No conventional separation pipe or the like is provided in the separation chamber, and the separation chamber is empty, and there is nothing inside except for the introduced refrigerant gas (including the lubricating oil contained). .
[0036]
In addition, there are no protrusions, protrusions, or irregularities in the separation chamber that hinder the turning of the refrigerant gas introduced into the separation chamber. The introduction hole 53 is provided eccentrically from the central axis of the cylindrical space portion of the separation chamber 51 so as to guide the refrigerant gas introduced into the separation chamber in the tangential direction of the cylindrical space portion, that is, the refrigerant gas is introduced into the cylindrical space portion. It is provided so that it can be introduced into the separation chamber 51 along the inner peripheral surface 49.
[0037]
Therefore, the refrigerant gas introduced into the separation chamber 51 swirls in the circumferential direction in the separation chamber, and the lubricating oil having a large specific gravity comes into contact with the separation chamber wall and is separated from the refrigerant gas by the centrifugal force caused by the swirling.
[0038]
The separated lubricating oil moves downward along the inner peripheral surface 49 and is aggregated in the central portion by the inverted conical space portion.
[0039]
Note that a communication passage 57 is provided between the upper portion of the oil storage chamber 52 and the separation chamber 51 to communicate these with each other. Similarly to the introduction hole 53, the communication passage 57 is provided eccentrically from the central axis of the separation chamber 51, and guides the fluid introduced into the separation chamber via the communication passage 57 in the tangential direction of the cylindrical space portion. That is, it is provided so that the fluid can be introduced into the separation chamber 51 along the inner peripheral surface 49 of the cylindrical space portion.
[0040]
By doing in this way, the fluid which flows in into the separation chamber 51 through the communication path 57 from the oil storage chamber 52 can smoothly join the swirling of the refrigerant gas in the separating chamber, and can prevent the swirling of the refrigerant gas from being hindered.
[0041]
Even if the lubricating oil in the oil storage chamber 52 reaches the communication passage 57 due to some reason, the lubricating oil is introduced into the separation chamber 51 through the communication passage 57, but the direction of the inflow into the separation chamber 51 is different. As described above, since the direction is to join the swirling flow in the separation chamber, even if the lubricating oil is introduced into the separation chamber via the communication path 57, the rotation of the refrigerant gas in the separation chamber is not hindered.
[0042]
In the case of the compressor being described, the oil storage chamber side opening of the oil discharge hole 54 opens downward in the vertical direction from the oil level of the oil storage chamber 52. For this reason, the high-pressure refrigerant gas pressure discharged by the compression mechanism acts to push down the lubricating oil level in the oil storage chamber 52 while pushing down the lubricating oil level collected in the lower part of the separation chamber 51.
[0043]
However, it is conceivable that when the lubricating oil in the oil storage chamber 52 is pushed up, the gas fluid (mainly refrigerant gas) accumulated in the upper portion of the oil storage chamber 52 prevents the lubricating oil surface in the oil storage chamber 52 from being pushed up.
[0044]
Therefore, in this embodiment being described, a communication passage 57 is provided between the upper portion in the oil storage chamber 52 and the separation chamber 51 to allow fluid movement between them. Since the communication passage 57 functions as a vent hole for gas fluid such as refrigerant gas accumulated in the upper portion of the oil storage chamber 52, the lubricating oil surface in the oil storage chamber 52 is pushed up smoothly.
[0045]
It is sufficient that the communication path 57 is provided so that the fluid flowing from the oil storage chamber 52 into the separation chamber 51 does not hinder the rotation of the refrigerant gas in the separation chamber. That is, it is considered that the swirl flow is not hindered unless the inflow direction of the fluid flowing from the oil storage chamber to the separation chamber has a direction component that collides head-on with the swirl flow near the outlet of the communication path. Therefore, the communication path may be provided along a direction perpendicular to the central axis of the separation chamber.
[0046]
In this embodiment, the oil storage chamber 52 side opening of the oil discharge hole 54 is opened downward in the vertical direction from the oil level of the oil storage chamber, but may be opened above the oil level.
[0047]
In this case, the effect of pushing up the oil level by the high-pressure refrigerant gas cannot be expected, but since the communication passage 57 is provided, the blowback from the oil discharge hole 54 due to the pulsation of the refrigerant gas is suppressed. Therefore, the oil collected in the lower part of the separation chamber 51 is also prevented from being scattered into the separation chamber by blowing back.
[0048]
By the way, the compressor according to the invention of the present application is characterized by having a so-called centrifugal separation chamber and no separation tube in the separation chamber. The following technical matters can be considered as factors that could eliminate the separation tube.
[0049]
As one of such technical matters, it is speculated that the relative positional relationship between the introduction hole for introducing the refrigerant gas compressed into the separation chamber and the separation chamber can be given. The relative positional relationship here means the degree of eccentricity of the introduction hole from the central axis of the separation chamber. The degree of eccentricity will be described in some detail.
[0050]
4, the distance from the central axis M of the separation chamber 51 to the inner peripheral wall of the columnar space is R, and the opening of the introduction hole 53 from the central axis M is tangential to the columnar space (the central axis of the introduction hole). If the shortest distance to the projection line projected in the direction parallel to the direction L is L, the ratio L / R of R and L represents the degree of eccentricity.
[0051]
Assuming that the size of L is 0 at the minimum and R at the maximum, the eccentricity L / R takes a value of 0 to 1, and the larger the value, the more eccentric the introduction hole is with respect to the separation chamber. Comparing the relationship between the degree of eccentricity and the oil circulation rate between the case where the separation chamber is provided and the case where the separation tube is not provided, qualitatively as shown in FIG.
[0052]
That is, as shown in FIG. 5, if the degree of eccentricity is small, the oil circulation rate is smaller with the separation pipe (the oil separation efficiency is higher), and the difference in oil circulation rate decreases as the degree of eccentricity increases. Both curves (curves with and without separating pipes) intersect when a certain degree of eccentricity is reached, and the oil circulation rate of each curve is reversed.
[0053]
Therefore, in order to eliminate the separation pipe and provide a highly efficient refrigeration / air-conditioning system, it is desirable that the degree of eccentricity is equal to or greater than the degree of eccentricity corresponding to the intersection of both curves shown in FIG. The inventor presumes that the desired specific degree of eccentricity L / R is 0.4 or more.
[0054]
Here, the oil circulation rate mentioned above is the mass of lubricating oil in the mixed liquid with respect to the mixed liquid mass of liquid refrigerant and lubricating oil circulating in the cycle, as defined in Japanese Industrial Standards (JIS B8606). expressed.
[0055]
In FIG. 5, OCR is abbreviated as a percentage value. The graph curve shown in FIG. 5 is based on the estimation based on the experience of the inventors so far, and the shape of the graph curve is considered to change due to the configuration of the compressor, the design around the separation chamber, and the like. Although not always consistent with what is shown, the inventor is confident that the curve with and without the separation tube intersects.
[0056]
It is also possible to use the distance from the center axis M of the separation chamber to the cross-sectional center of gravity axis of the introduction hole as L. In this case, although the degree of eccentricity is 0.7 or more, depending on the shape of the introduction hole. For example, the present inventor presumes that a high efficiency refrigeration / air-conditioning system with a low oil circulation rate can be provided without a separation pipe.
[0057]
In addition to the technical items described above, the following technical items can also be cited as factors that have eliminated the separation tube. It is a way of opening the gas discharge hole 58 for discharging the refrigerant gas after oil separation from the separation chamber to the separation chamber 51.
[0058]
In the embodiment shown in FIG. 1, the gas discharge hole opening is provided at the center of the upper end side of the cylindrical space portion of the separation chamber, and the cross-sectional area of the gas discharge hole opening is larger than the cross-sectional area of the cylindrical space portion. It is formed small.
[0059]
The gas discharge hole opening does not extend to the outer peripheral portion of the cylindrical space portion, and a reduced diameter portion 56 that reduces the inner diameter of the cylindrical space portion to the inner diameter of the gas discharge hole opening is formed on the upper end surface of the cylindrical space portion. Will be.
[0060]
That is, the opening part of the gas discharge hole 58 is coupled to the outer periphery on the upper end side of the cylindrical space part through the reduced diameter part 56. As a result, the high-density, high-speed refrigerant gas that contains a large amount of lubricating oil mist and is introduced into the separation chamber is prevented from being exhausted from the separation chamber without swirling around the separation chamber 51.
[0061]
That is, if it is assumed that the flow velocity of the refrigerant gas introduced into the separation chamber does not decrease during swirling, the refrigerant gas containing a large amount of lubricating oil mist having a large specific gravity (high density) It is considered that the gas swirls along the inner wall, gradually moves to the center of the swirl as it is pushed away by the high-density refrigerant gas as the separation of the lubricating oil proceeds, and is finally exhausted from the gas discharge hole.
[0062]
Actually, the refrigerant gas immediately after flowing into the separation chamber has the fastest flow velocity, and it is thought that the flow velocity gradually decreases during turning, and the centrifugal force acting on the refrigerant gas also decreases as the flow velocity decreases. A high-density, high-speed refrigerant gas containing lubricating oil mist swirls around the outer periphery of the swirling flow along the inner wall of the cylindrical space of the separation chamber, and the separation of the lubricating oil progresses, and the refrigerant gas whose density and speed have decreased It is considered that the gas moves to the center of the turn and is exhausted from the gas exhaust hole.
[0063]
As a result, it is possible to prevent the high-density and high-speed refrigerant gas that is introduced into the separation chamber containing a large amount of lubricating oil mist from being exhausted from the separation chamber without swirling the separation chamber.
[0064]
In the embodiment shown in FIGS. 1 and 4, the reduced diameter portion 56 is formed as an upper end surface perpendicular to the central axis of the cylindrical space portion. It may be formed as a slope inclined obliquely with respect to the central axis of the cylindrical space part, or may be formed as a gentle curve continuous from the outer periphery of the cylindrical space part. Furthermore, if the reduced diameter portion exists over the entire circumference of the gas discharge hole opening, the center axis of the gas discharge hole and the center of the separation chamber may be eccentric.
[0065]
In addition to the technical items described above, the following technical items can also be cited as factors that have eliminated the separation tube. As shown in FIG. 6, the refrigerant gas introduced into the separation chamber by adjusting the direction of the elongated passage portion 21 connected to the introduction hole is introduced into the separation chamber in the direction away from the gas discharge hole opening. Is to do so.
[0066]
By doing so, the refrigerant gas immediately after introduction introduced into the separation chamber 51 containing at least a large amount of lubricating oil mist can be kept away from the opening of the gas discharge hole, and the refrigerant containing a large amount of lubricating oil mist just after introduction. It can suppress that gas is supplied to a refrigerating / air-conditioning system from a gas exhaust hole.
[0067]
Note that if the inclination angle α of the elongated passage portion 21 with respect to the central axis of the separation chamber is too small, the flow rate of the refrigerant gas introduced into the separation chamber cannot be used for swirling in the separation chamber, and it is considered that the oil separation efficiency decreases. In order to obtain high oil separation efficiency, the inclination angle α is preferably 60 ° ≦ α ≦ 90 °.
[0068]
Note that if the inner peripheral wall of the columnar space is formed so that the inner periphery of the cylindrical space expands away from the gas discharge hole, the high-density and high-speed refrigerant gas introduced into the separation chamber has a centrifugal force. As a result, the refrigerant gas is guided to the most expanded inner peripheral portion, so that the refrigerant gas introduced into the separation chamber containing a large amount of lubricating oil mist is discharged without the elongate passage portion 21 being inclined with respect to the central axis of the separation chamber. It can be kept away from the hole opening, which is considered preferable.
[0069]
In addition to the above-described technical items, the following technical items can be cited as factors that could eliminate the separation tube. That is, the elongated passage portions 13a (see FIG. 1 ) and 21 (see FIG. 7 ) formed continuously to the introduction hole 53 in the guide passage for guiding the refrigerant gas from the discharge port of the compression mechanism to the introduction hole to the separation chamber. Is to provide.
[0070]
By doing so, these elongated passage portions have a function of rectifying the refrigerant gas introduced into the separation chamber 51, so that the turbulence and diffusion of the gas-fluid flowing into the separation chamber can be suppressed, and the compression mechanism In addition to the static pressure of the high-pressure refrigerant gas discharged from the cylinder, not only the static pressure but also the dynamic pressure can be utilized for the rotation of the refrigerant gas in the separation chamber.
[0071]
In the above description, a plurality of technical matters that are considered to be factors that can eliminate the separation pipe have been individually described. However, it is also possible to combine a plurality of technical matters with each other. Can expect a synergistic effect of each technical matter. In addition, the individual technical matters described in the specification of the present application can be combined with any other technical matters.
[0072]
In the above-described embodiments, the columnar space portion is described as an example of the columnar space portion of the separation chamber. However, the columnar space having any cross-sectional shape as long as it does not hinder the swirling of the introduced refrigerant gas. For example, the cross section may be elliptical or a quadrangle with rounded corners.
[0073]
In the above-described embodiment, a sliding vane type rotary compressor has been described as an example of the compressor. However, the present invention is not limited to this and is also applicable to other compressors such as a rolling piston type and a scroll type. Is possible.
[0074]
【The invention's effect】
As described above, in the compressor of the present invention, the separation pipe of the centrifugal oil separation chamber can be eliminated, so that it is possible to reduce the manufacturing cost of the compressor associated with the production and assembly of the separation pipe. It became.
[0075]
In addition, since the separation tube is no longer necessary, it is possible to reduce the size of the separation chamber, because it is no longer necessary to provide a space for installing the separation tube in the separation chamber, whether or not the separation chamber is actually downsized. Become.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a compressor showing an embodiment to which a part of the invention according to the present application is applied. FIG. 2 is a sectional view taken along line AA of the compressor shown in FIG.
FIG. 3 is a cross-sectional view of the compressor shown in FIG.
4 is a cross-sectional view taken along the line CC in the vicinity of the separation chamber of the compressor shown in FIG. 1. FIG. 5 is a graph showing the relationship between the degree of eccentricity L / R of the introduction hole relative to the separation chamber and the oil circulation rate OCR. 1 is a longitudinal sectional view showing a modification of the high-pressure case of the embodiment shown in FIG. 1. FIG. 7 is a transverse sectional view of the vicinity of the separation chamber showing a modification of the elongated passage portion of the embodiment shown in FIG. ]
DESCRIPTION OF SYMBOLS 1 Shilling 2 Rollover 3 Vane slot 4 Vane 5 Drive shaft 6 Front side plate 7 Rear side plate 8 Actuation chamber 9 Suction port 10 Discharge hole 11 Discharge valve 12 High pressure case 13 Guide passage 14 High pressure chamber 16 Vane backrest grant device 17 Vane Back chamber 18 Oil supply passage 21 Elongated passage portion 51 Separation chamber 52 Oil storage chamber 53 Introduction hole 54 Oil drain hole 56 Reduced diameter portion 57 Communication passage 58 Gas exhaust hole

Claims (4)

潤滑油を含む気流体を圧縮する圧縮機構と、前記圧縮機構により圧縮された気流体が導入されて旋回し、この旋回による遠心力により前記気流体に含まれる潤滑油の少なくとも一部が分離される分離室とを備え前記分離室内はそこに導入された流体以外は何も存在しない構成とした圧縮機であって、前記分離室にて気流体から分離された潤滑油が貯えられる貯油室と、前記貯油室内上部と前記分離室との間に設けられ、これら相互間の流体移動を許容する連通路とを有し、前記連通路の前記分離室側開口部は前記貯油室内上部から前記分離室内に流入する流体が前記分離室内の気流体の旋回を妨げない向きに開口していることを特徴とする圧縮機。A compression mechanism that compresses the gas-fluid containing lubricating oil, and the gas fluid compressed by the compression mechanism is introduced and swirled, and at least a part of the lubricant contained in the gas-fluid is separated by the centrifugal force generated by the swirling. that a separation chamber, the partial release chamber is a structure as the compressor is not present anything except fluid introduced therein, the oil storage lubricating oil separated from the gas fluid in the separation chamber is stored And a communication passage that is provided between the upper part of the oil storage chamber and the separation chamber and allows fluid movement between them, and the opening on the separation chamber side of the communication passage extends from the upper part of the oil storage chamber. The compressor is characterized in that the fluid flowing into the separation chamber is opened in a direction that does not hinder the swirling of the gas fluid in the separation chamber . 請求項1記載の圧縮機であって、前記分離室は導入された気流体が旋回する柱状空間部を有すると共に導入された気流体が排気されるガス排出孔を有し、前記ガス排出孔の分離室側開口部は前記柱状空間部の一端側外周部に縮径部を介して結合していることを特徴とする圧縮機。2. The compressor according to claim 1, wherein the separation chamber has a columnar space portion in which the introduced gas fluid swirls and a gas discharge hole through which the introduced gas fluid is exhausted. The separation chamber side opening is coupled to the outer peripheral portion on one end side of the columnar space via a reduced diameter portion. 請求項1記載の圧縮機であって、前記分離室へ前記圧縮機構により圧縮された気流体を導入する導入孔を有すると共に、前記分離室には導入された気流体が排気されるガス排出孔が開口しており、前記導入孔から前記分離室内に導入される気流体は前記ガス排出孔の開口部から遠ざかる方向に向かって前記分離室内へ導入されることを特徴とする圧縮機。2. The compressor according to claim 1, wherein the separator has an introduction hole for introducing the gas fluid compressed by the compression mechanism into the separation chamber, and the gas discharge hole through which the introduced gas fluid is exhausted in the separation chamber. The compressor is characterized in that the gas fluid introduced into the separation chamber through the introduction hole is introduced into the separation chamber in a direction away from the opening of the gas discharge hole. 請求項1記載の圧縮機であって、前記圧縮機構から圧縮された気流体が吐出される吐出口と、前記吐出口から吐出された気流体を前記分離室に導入する導入孔と、前記吐出口から前記導入孔まで気流体を案内する案内通路とを有し、前記案内通路は前記導入孔に連なって形成された細長通路部分を有することを特徴とする圧縮機。2. The compressor according to claim 1, wherein a discharge port through which compressed gas fluid is discharged from the compression mechanism, an introduction hole through which the gas fluid discharged from the discharge port is introduced into the separation chamber, and the discharge port. And a guide passage for guiding a gas-fluid from an outlet to the introduction hole, and the guide passage has an elongated passage portion formed continuously to the introduction hole.
JP2003062238A 2002-03-12 2003-03-07 Compressor Expired - Fee Related JP4218373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003062238A JP4218373B2 (en) 2002-03-12 2003-03-07 Compressor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002066475 2002-03-12
JP2002-66475 2002-03-12
JP2003062238A JP4218373B2 (en) 2002-03-12 2003-03-07 Compressor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008200797A Division JP4788746B2 (en) 2002-03-12 2008-08-04 Compressor

Publications (2)

Publication Number Publication Date
JP2003336588A JP2003336588A (en) 2003-11-28
JP4218373B2 true JP4218373B2 (en) 2009-02-04

Family

ID=29714014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003062238A Expired - Fee Related JP4218373B2 (en) 2002-03-12 2003-03-07 Compressor

Country Status (1)

Country Link
JP (1) JP4218373B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848136B2 (en) * 2005-04-28 2011-12-28 三菱重工業株式会社 Oil separator
JP2006342722A (en) * 2005-06-09 2006-12-21 Mitsubishi Heavy Ind Ltd Compressor
JP4928769B2 (en) * 2005-11-01 2012-05-09 三菱重工業株式会社 Compressor
JP2008082238A (en) * 2006-09-27 2008-04-10 Sanden Corp Compressor with built-in oil separator
JP4852441B2 (en) * 2007-02-06 2012-01-11 サンデン株式会社 Oil separator built-in compressor
JP5270847B2 (en) * 2007-02-14 2013-08-21 サンデン株式会社 Oil separator built-in compressor
JP2009008101A (en) * 2008-10-15 2009-01-15 Sanden Corp Compressor with built-in oil separator
JP2009013996A (en) * 2008-10-16 2009-01-22 Sanden Corp Compressor with built-in oil separator
JP5209437B2 (en) * 2008-10-23 2013-06-12 サンデン株式会社 Oil separator built-in compressor
JP5341472B2 (en) * 2008-10-29 2013-11-13 サンデン株式会社 Oil separator built-in compressor
WO2011080865A1 (en) * 2009-12-29 2011-07-07 株式会社ヴァレオジャパン Compressor
JP5434937B2 (en) 2011-02-22 2014-03-05 株式会社豊田自動織機 Compressor
JP5510485B2 (en) 2012-03-23 2014-06-04 株式会社豊田自動織機 Compressor
KR102112211B1 (en) * 2015-03-13 2020-05-19 한온시스템 주식회사 Method of manufacturing Oil separation device of the compressor
WO2021084740A1 (en) * 2019-11-01 2021-05-06 太平洋工業株式会社 Integrated valve

Also Published As

Publication number Publication date
JP2003336588A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
JP4788746B2 (en) Compressor
JP4218373B2 (en) Compressor
US6227831B1 (en) Compressor having an inclined surface to guide lubricant oil
JP4000634B2 (en) Scroll compressor
KR20160108036A (en) Compressor
JP2009221960A (en) Compressor
CN100398834C (en) Scroll compressor
JP4013554B2 (en) Compressor
WO2019202682A1 (en) Oil separator, screw compressor, and refrigeration cycle device
JP2005083234A (en) Compressor
WO2003006828A1 (en) Compressor
JP2005054745A (en) Compressor
JP2008014174A (en) Compressor
JP2007309282A (en) Compressor
JP4045856B2 (en) Compressor
JP2003206863A (en) Compressor
JP2006037895A (en) Compressor
JP2005054713A (en) Compressor
JP2006029218A (en) Compressor
JP2008025349A (en) Compressor
JP4194307B2 (en) Oil separator and gas compressor provided with the same
JP2006097487A (en) Compressor
JP4409185B2 (en) Compressor
JPH0114790Y2 (en)
JP2005054714A (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4218373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees