WO2021084740A1 - Integrated valve - Google Patents

Integrated valve Download PDF

Info

Publication number
WO2021084740A1
WO2021084740A1 PCT/JP2019/043069 JP2019043069W WO2021084740A1 WO 2021084740 A1 WO2021084740 A1 WO 2021084740A1 JP 2019043069 W JP2019043069 W JP 2019043069W WO 2021084740 A1 WO2021084740 A1 WO 2021084740A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
separation chamber
integrated valve
cylinder
liquid separation
Prior art date
Application number
PCT/JP2019/043069
Other languages
French (fr)
Japanese (ja)
Inventor
和宏 金森
坂井 孝行
Original Assignee
太平洋工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋工業株式会社 filed Critical 太平洋工業株式会社
Priority to JP2020530530A priority Critical patent/JP7157809B2/en
Priority to PCT/JP2019/043069 priority patent/WO2021084740A1/en
Publication of WO2021084740A1 publication Critical patent/WO2021084740A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor

Definitions

  • the present disclosure is incorporated in a heat pump cycle having an indoor condenser, an outdoor evaporator, and a compressor, and the gas-liquid mixed refrigerant flowing from the indoor condenser is swirled along the inner peripheral surface of the gas-liquid separation chamber to separate the gas and liquid.
  • the present invention relates to an integrated valve capable of switching between a first state in which the separated liquid phase refrigerant flows out to the outdoor evaporator and a second state in which the separated vapor phase refrigerant flows out to the compressor.
  • a gas-phase refrigerant outflow pipe is integrally formed on a metal base, which is arranged inside the gas-liquid separation chamber and allows the separated gas-phase refrigerant to flow out of the gas-liquid separation chamber.
  • Patent Document 1 Japanese Patent Document 1
  • the above-mentioned conventional integrated valve is required to improve thermal efficiency.
  • the integrated valve of the present disclosure is incorporated in a heat pump cycle having an indoor condenser, an outdoor evaporator and a compressor, and the gas-liquid mixed refrigerant flowing from the indoor condenser is swirled along the inner peripheral surface of the gas-liquid separation chamber.
  • an integrated valve that can be switched between a first state in which the liquid-separated and separated liquid-phase refrigerant flows out to the outdoor evaporator and a second state in which the separated vapor-phase refrigerant flows out to the compressor.
  • the gas-phase refrigerant outflow pipe arranged inside the gas-liquid separation chamber and causing the separated gas-phase refrigerant to flow out from the gas-liquid separation chamber, and the gas-phase refrigerant outflow pipe, which are tubular.
  • the outer cylinder portion whose peripheral surface forms the inner peripheral surface of the gas-liquid separation chamber and the communication plate portion that connects the gas phase refrigerant outflow pipe and the outer cylinder portion are integrally molded with resin. It is an integrated valve equipped with a heavy cylinder component.
  • the outer cylinder portion surrounding the gas-liquid separation chamber and the gas-phase refrigerant outflow pipe are molded of resin, external heat is less likely to be transmitted and thermal efficiency is improved.
  • the integrated valve 10 of the present embodiment will be described with reference to FIGS. 1 to 10.
  • the integrated valve 10 of the present embodiment is incorporated into, for example, the heat pump cycle 80 of an air conditioner of an electric vehicle or a hybrid vehicle traveling by a driving force of a motor.
  • the heat pump cycle 80 includes a compressor 81 and an outdoor heat exchanger 83 (outdoor evaporator) arranged outside the vehicle interior (for example, inside the bonnet), and an indoor condenser 82 and an indoor evaporator 84 arranged inside the vehicle interior (inside the air conditioning unit). It is possible to switch between cooling mode and heating mode.
  • an outdoor heat exchanger 83 outdoor evaporator
  • indoor condenser 82 and an indoor evaporator 84 arranged inside the vehicle interior (inside the air conditioning unit). It is possible to switch between cooling mode and heating mode.
  • the compressor 81 sucks in the refrigerant, compresses it, and discharges it.
  • the compressor 81 includes a low-pressure input port 81A for sucking low-temperature low-pressure refrigerant, an intermediate pressure input port 81B for merging the sucked refrigerant with the refrigerant in the process of compressing the sucked refrigerant from low-temperature low-pressure to high-temperature high-pressure, and a high-temperature and high-pressure compressed refrigerant.
  • An outflow output port 81C is provided.
  • An indoor capacitor 82 is connected to the output port 81C of the compressor 81.
  • the indoor condenser 82 functions as a radiator that dissipates high-temperature and high-pressure refrigerant discharged from the output port 81C of the compressor 81 (warms the interior of the vehicle).
  • the interior condenser 82 is covered with, for example, a cover so that the interior of the vehicle cannot be warmed.
  • the outdoor heat exchanger 83 exchanges heat between the outside air and the refrigerant flowing inside the outdoor heat exchanger 83.
  • the outdoor heat exchanger 83 functions as an evaporator (outdoor evaporator) that absorbs heat and evaporates the refrigerant when the heat pump cycle 80 is in the heating mode, while as a radiator that dissipates the refrigerant when the heat pump cycle 80 is in the cooling mode. Function.
  • the low pressure input port 81A of the compressor 81 is connected to the output port of the outdoor heat exchanger 83 via the on-off valve 86. Further, an expansion valve 85 and an indoor evaporator 84 are arranged in parallel with the on-off valve 86 between the output port of the outdoor heat exchanger 83 and the low-voltage input port 81A of the compressor 81.
  • the on-off valve 86 is controlled to be in the open state and the expansion valve 85 is closed, and the refrigerant from the outdoor heat exchanger 83 flows directly into the compressor 81 without flowing into the indoor evaporator 84. To do.
  • the on-off valve 86 is controlled to be in the closed state, the expansion valve 85 is opened, and the refrigerant from the outdoor heat exchanger 83 flows into the indoor evaporator 84.
  • the indoor evaporator 84 absorbs heat from the air inside the vehicle interior (cools the vehicle interior) and evaporates the refrigerant that has flowed in from the outdoor heat exchanger 83.
  • the integrated valve 10 is separated by an inflow port 13 into which the refrigerant flows, a gas-liquid separation chamber 12 capable of separating the refrigerant flowing from the inflow port 13, and a gas-liquid separation chamber 12. It has a gas phase outflow port 14 for flowing out the gas phase refrigerant and a liquid phase outflow port 15 for flowing out the liquid phase refrigerant separated in the gas-liquid separation chamber 12.
  • the inflow port 13 is connected to the output port of the indoor capacitor 82 via an expansion valve 87
  • the gas phase outflow port 14 is connected to the intermediate pressure input port 81B of the compressor 81
  • the liquid phase outflow port 15 is It is connected to the input port of the outdoor heat exchanger 83.
  • the integrated valve 10 is provided with a drive valve 50 (electromagnetic valve in the example of the present embodiment) and an orifice 61 in parallel between the gas-liquid separation chamber 12 and the liquid phase outflow port 15, and gas-liquid separation is performed.
  • a differential pressure valve 40 is provided between the chamber 12 and the gas phase outflow port 14, and the gas phase outflow port 14 can be opened and closed by opening and closing the drive valve 50 (specifically, the drive valve).
  • the drive valve 50 specifically, the drive valve.
  • a normal heating mode and a special heating mode are provided as heating modes.
  • the drive valve 50 of the integrated valve 10 is opened, and the gas phase outflow port 14 of the integrated valve 10 is closed (see FIG. 1 (A)).
  • the special heating mode the drive valve 50 of the integrated valve is closed, and the gas phase outflow port 14 of the integrated valve 10 is opened.
  • the special inflow path 89 from the gas phase outflow port 14 of the integrated valve 10 to the intermediate pressure input port 81B of the compressor 81 is opened (see FIG. 1B).
  • the heat pump cycle 80 functions as a gas injection cycle, and can easily warm the vehicle interior even when the outside air temperature is low and the vehicle interior is difficult to warm in the normal heating mode.
  • the outdoor evaporator (outdoor heat exchanger 83) cannot sufficiently absorb heat from the outside air (the refrigerant cannot be sufficiently evaporated). Therefore, it is considered that the pressure of the refrigerant in the flow path from the outdoor heat exchanger 83 to the compressor 81 does not increase and the flow rate of the refrigerant also decreases. If the flow rate of the refrigerant decreases, the discharge pressure and temperature of the refrigerant from the compressor 81 do not rise, the heat radiation from the indoor condenser 82 also decreases, and the heating capacity decreases.
  • the gas injection cycle separates the refrigerant before flowing into the outdoor heat exchanger 83 into gas and liquid, and returns the separated refrigerant in the gas phase to the compressor 81.
  • the refrigerant before the pressure drops in the outdoor heat exchanger 83 is applied to the compressor 81, so that it is possible to suppress a decrease in the discharge pressure of the refrigerant from the compressor 81.
  • the heating performance can be improved.
  • the integrated valve 10 includes a plurality of flow paths inside the vertically elongated body 11.
  • the integrated valve 10 is arranged so that the longitudinal direction of the body 11 is the vertical direction when the integrated valve 10 is used (that is, when the integrated valve 10 is installed in the vehicle).
  • the vertical direction when the integrated valve 10 is used is referred to as the vertical direction of the integrated valve 10.
  • the left-right direction in FIG. 4 is the left-right direction of the integrated valve 10
  • the front side of the paper surface in FIG. 4 is the front side
  • the back side of the paper surface is the rear side.
  • the body 11 is formed by connecting the upper body 11A and the lower body 11B vertically.
  • the upper body 11A is made of metal and has a block-shaped upper support base 20A having a quadrangular front view
  • the lower body 11B is made of metal and has a substantially rectangular parallelepiped lower support base 20B.
  • a gas-liquid separation chamber 12 is provided between the upper body 11A and the lower body 11B.
  • the gas-liquid separation chamber 12 is a columnar chamber extending in the vertical direction, and a cylindrical body 12A hangs from the ceiling coaxially with the central axis.
  • An inflow port 13 for communicating the outside of the integrated valve 10 and the gas-liquid separation chamber 12 is opened in the upper right portion on the rear side of the inner peripheral surface 12B of the gas-liquid separation chamber 12.
  • the gas-liquid separation chamber 12 is of a centrifugal separation type, and the refrigerant of the gas-liquid mixture flowing from the indoor condenser 82 through the inflow port 13 swirls along the inner peripheral surface 12B of the gas-liquid separation chamber 12.
  • the centrifugal force generated by this swirl separates the gas phase refrigerant and the liquid phase refrigerant.
  • the separated gas-phase refrigerant passes through the inside of the cylindrical body 12A and goes upward, and the separated liquid-phase refrigerant travels downward along the inner peripheral surface 12B of the gas-liquid separation chamber 12.
  • a first straight hole portion 21 and a second straight hole portion 31 extending in parallel with each other are provided on the lower side and the upper side of the gas-liquid separation chamber 12 in the body 11.
  • the first straight hole portion 21 has a circular cross section and extends from the right surface to the left surface side position of the lower support base 20B in the lower body 11B.
  • the first straight hole portion 21 has a reduced diameter portion 21A whose diameter is gradually reduced toward the left from the right end opening and a uniform diameter after being tapered from the end portion of the reduced diameter portion 21A. It has an inflow portion 21B that extends to the left and then has a tapered diameter, and an outflow portion 21C that extends from the end of the inflow portion 21B to the left end of the first straight hole 21 with a uniform diameter. ..
  • a support body 53 of a drive valve 50 that moves directly in the first straight hole 21 is attached to the right surface of the lower support base 20B, and the support body 53 closes the right end opening of the first straight hole 21. ing.
  • One part of the support body 53 is positioned by being received by the reduced diameter portion 21A of the first straight hole portion 21.
  • the support body 53 and the reduced diameter portion 21A of the first straight hole portion 21 are sealed by an O-ring 53R.
  • the drive valve 50 opens and closes the valve port 62, which will be described later, by the valve body 51 provided at the tip.
  • the drive valve 50 In the non-operating state, the drive valve 50 is in a valve-opened state away from the valve opening 62, and in the operating state, the drive valve 50 is addressed to the opening edge of the valve opening 62 (that is, the valve seat 62Z) and is closed.
  • a cylindrical heat insulating member 60 made of a material (for example, resin) having a lower thermoelectricity than the upper and lower support bases 20A and 20B is fitted in the left portion of the first straight hole portion 21. ..
  • the lower support base 20B and the heat insulating member 60 are sealed by an O-ring 60R arranged in the middle of the heat insulating member 60 in the axial direction.
  • the right end portion of the heat insulating member 60 is arranged in the inflow portion 21B and is arranged with a gap from the inner surface of the inflow portion 21B.
  • the right end opening of the heat insulating member 60 constitutes a valve opening 62 that is opened and closed by the drive valve 50.
  • the inside of the first straight hole portion 21 and the heat insulating member 60 is a liquid phase refrigerant flow path 21R.
  • the liquid phase outflow port 15 described above is formed so as to penetrate the lower support base 20B and the heat insulating member 60, and communicates the outside of the integrated valve 10 with the liquid phase refrigerant flow path 21R (inside the heat insulating member 60). ..
  • the engaging protrusion 64 provided in a part of the left end surface in the circumferential direction engages with the engaging recess 24 formed at the left end of the first straight hole portion 21 in an uneven manner. , It is prevented from rotating with respect to the body 11. Further, the movement of the heat insulating member 60 to the right is restricted by engaging the regulating bar 72 mounted on the partition wall 39, which will be described later, with the engaging recess 63 formed on the outer peripheral surface of the heat insulating member 60. There is.
  • An orifice 61 extending in the radial direction and communicating the inside of the heat insulating member 60 and the inflow portion 21B of the first straight hole 21 is formed in the lower part of the right end of the heat insulating member 60.
  • the orifice 61 is narrowed toward the inside of the heat insulating member 60.
  • the lower support base 20B of the lower body 11B is provided with a partition wall 39 for partitioning between the gas-liquid separation chamber 12 and the first straight hole portion 21.
  • a communication hole 34 extending in the vertical direction and connecting the gas-liquid separation chamber 12 and the first straight hole portion 21 is formed through the partition wall 39.
  • an inflow portion 21B is provided in a portion of the first straight hole portion 21 arranged directly below the gas-liquid separation chamber 12. Then, the lower end of the communication hole 34 is opened in the inflow portion 21B.
  • the communication holes 34 are formed at two positions of the outer edge of the partition wall 39 facing each other with the center in between (see FIG. 5).
  • an upwardly projecting protruding portion 39T is formed in the central portion on the upper surface of the partition wall 39, and the protruding portion 39T has a first engagement extending downward from the upper surface.
  • Hole 39A is provided.
  • a shutter member 70 is attached to the first engaging hole 39A.
  • the shutter member 70 has an insertion bar 70B hanging from the center of the lower surface of the disc-shaped shutter portion 70A.
  • the insertion bar 70B is press-fitted into the first engagement hole 39A.
  • the shutter portion 70A covers a part of the two communication holes 34 (the central portion of the partition wall 39) from above. Further, the side surface of the shutter portion 70A is tapered.
  • the partition wall 39 is formed with a second engagement hole 39B that is displaced from the first engagement hole 39A in the horizontal direction and penetrates the partition wall 39 at a position covered by the shutter portion 70A from above. 2
  • the above-mentioned regulation bar 72 is attached to the engagement hole 39B.
  • the second straight hole portion 31 above the gas-liquid separation chamber 12 extends from the left surface of the upper support base 20A of the upper body 11A to a position closer to the right surface.
  • the above-mentioned gas phase outflow port 14 is formed through the rear surface of the upper support base 20A from the rear surface to the second straight hole portion 31 behind the right end portion of the upper support base 20A, and the gas phase outflow port 14 is formed.
  • the outside of the integrated valve 10 and the right end of the second straight hole 31 are communicated with each other.
  • the intermediate portion of the second straight hole portion 31 is connected to the inner portion of the cylindrical body 12A of the gas-liquid separation chamber 12 by a communication hole 32.
  • the portion of the second straight hole portion 31 near the gas phase outflow port 14 has a stepped diameter reduced from the left portion thereof, and an annular recess 31U is formed in the stepped portion 31D between them. Has been done.
  • a differential pressure valve 40 capable of opening and closing the flow path between the cylindrical body 12A and the gas phase outflow port 14 is attached to the second straight hole portion 31. Specifically, the left end portion of the second straight hole portion 31 is closed by the support cap 44, and the differential pressure valve 40 is arranged on the right side of the support cap 44 with the compression coil spring 42 interposed therebetween. The differential pressure valve 40 is urged toward the stepped portion 31D by the compression coil spring 42, and the valve body 41 provided in the differential pressure valve 40 always closes the valve port 43 at the inner edge of the stepped portion 31D from the left side. There is.
  • the differential pressure valve 40 can receive the pressure in the communication hole 32 (that is, the pressure in the cylindrical body 12A of the gas-liquid separation chamber 12). Further, as shown in the figure, the left portion of the first straight hole portion 21 (and the heat insulating member 60) and the left portion of the second straight hole portion 31 are communicated with each other by the internal pressure introduction path 19.
  • An introduction path member 19A for sealing between the upper support base 20A and the lower support base 20B is arranged in the middle of the internal pressure introduction path 19, and the introduction path member 19A and the upper and lower sides are arranged.
  • the support bases 20A and 20B are sealed by an O-ring 19R.
  • the differential pressure valve 40 that opens and closes the gas phase outflow port 14 operates as follows.
  • the drive valve 50 is opened and the valve port 62 is opened, as shown in FIG.
  • the pressure in the recess 31U passing through the communication hole 32 is relative to the pressure of the refrigerant (back pressure of the valve body 41) in the first straight hole 21 (in the heat insulating member 60) passing through the internal pressure introduction path 19.
  • the valve body 41 urged by the compression coil spring 42 is maintained so that the valve opening 43 is in the closed state. Therefore, when the heat pump cycle 80 is in the normal heating mode, the gas phase outflow port 14 of the integrated valve 10 is blocked, and the liquid refrigerant flows out only from the liquid phase outflow port 15.
  • the drive valve 50 is driven to the closed state to close the valve port 62 (see FIG. 6).
  • the liquid-phase refrigerant separated in the gas-liquid separation chamber 12 flows down from the gas-liquid separation chamber 12 into the inflow portion 21B of the first straight hole portion 21. , Passes through the orifice 61 without passing through the valve port 62, and flows into the inner portion of the heat insulating member 60.
  • the liquid phase refrigerant is depressurized by flowing from the small-diameter orifice 61 into the large-diameter heat insulating member 60.
  • the back pressure of the valve body 41 of the differential pressure valve 40 becomes the same as the pressure in the first straight hole portion 21. Then, when the pressure in the communication hole 32 becomes larger than the back pressure of the valve body 41, the valve body 41 opens the valve opening 43 as shown in FIG. As a result, the gas phase refrigerant flows out from the gas phase outflow port 14 and flows into the compressor 81. This constitutes a gas injection cycle.
  • parallel means not only a state of being strictly parallel but also a state of being substantially parallel (for example, a state of being tilted at an angle of 5 degrees or less).
  • the upper body 11A is formed by assembling the double cylinder component 65 having the gas-liquid separation chamber 12 inside to the above-mentioned upper support base 20A. ..
  • the upper support base 20A is formed with the upper cylinder receiving portion 25 recessed upward from the lower surface
  • the lower support base 20B is formed with the lower cylinder receiving portion recessed downward from the upper surface.
  • the portion 26 is formed.
  • the cross-sectional shapes of the upper cylinder receiving portion 25 and the lower cylinder receiving portion 26 are both circular and the same, and the inner peripheral surfaces of the upper cylinder receiving portion 25 and the lower cylinder receiving portion 26 are flush with each other.
  • a communication hole 32 is opened on the ceiling surface of the upper cylinder receiving portion 25.
  • the lower end of the communication hole 32 is a diameter-expanded portion 32A whose diameter is stepped from the upper portion thereof.
  • the upper surface of the partition wall 39 described above constitutes the lower surface of the lower cylinder receiving portion 26.
  • the double cylinder component 65 shown in FIG. 7 is fitted inside the upper cylinder receiving portion 25 and the lower cylinder receiving portion 26.
  • the double-cylinder component 65 is an integrally foam-molded product of resin (for example, PPS), and has a lower thermal conductivity than the upper support base 20A and the lower support base 20B (see FIG. 4).
  • the double cylinder component 65 is arranged inside the outer cylinder portion 66 and the outer cylinder portion 66 that abuts on the inner peripheral surfaces of the upper cylinder receiving portion 25 and the lower cylinder receiving portion 26. It has an inner cylinder portion 67 and a ring plate portion 68 that connects the outer cylinder portion 66 and the inner cylinder portion 67.
  • the outer cylinder portion 66 extends from the ceiling surface of the upper cylinder receiving portion 25 to the bottom surface of the lower cylinder receiving portion 26 (upper surface of the partition wall 39).
  • a tapered portion 66A corresponding to the tapered side surface of the shutter portion 70A is formed at a position near the lower end of the outer cylinder portion 66, and the inner diameter of the lower portion of the outer cylinder portion 66 of the tapered portion 66A is the outer cylinder portion 66. Of these, it is larger than the inner diameter of the upper portion of the tapered portion 66A.
  • two grooves 66M to which two O-rings 66R for sealing between the upper support base 20A and the lower support base 20B are formed are formed on the outer peripheral surface of the outer cylinder portion 66.
  • the inner cylinder portion 67 extends from a position above the upper end of the outer cylinder portion 66 to a position approximately one-third above the axial length of the outer cylinder portion 66 from the lower end of the outer cylinder portion 66, and the lower end opening thereof. Is facing the shutter portion 70A from above. When viewed from below, the entire lower end opening of the inner cylinder portion 67 is covered by the shutter portion 70A.
  • the annular plate portion 68 communicates between the upper end of the outer cylinder portion 66 and the position near the upper end of the inner cylinder portion 67, and is in contact with the ceiling surface of the upper cylinder receiving portion 25.
  • the portion of the inner cylinder portion 67 above the annular plate portion 68 is received by the diameter-expanded portion 32A of the communication hole 32 of the upper cylinder receiving portion 25. Further, the portion of the inner cylinder portion 67 below the annular plate portion 68 forms the above-mentioned cylindrical body 12A.
  • the inflow port 13 is formed through the base penetrating portion 13A formed through the upper support base 20A and the outer cylinder portion 66 of the double cylinder component 65. It is composed of a cylinder penetrating portion 13B provided.
  • the base penetrating portion 13A of the upper support base 20A has a circular cross section, and its opening edge is formed in a tapered shape extending outward.
  • FIG. 9 is a view of the planosection of the integrated valve 10 as viewed from below.
  • the term "circular" includes not only a perfect circle but also a shape slightly distorted from the perfect circle.
  • an inflow guide protrusion 69 projecting inward from the inner peripheral surface of the outer cylinder 66 is integrally formed on the upper portion of the outer cylinder 66, and the inflow guide protrusion 69 and the outer cylinder are integrally formed.
  • a cylinder penetrating portion 13B is provided so as to penetrate the portion 66.
  • the inflow guide protrusion 69 is formed over a range from the lower surface of the annular plate portion 68 to the height near the upper groove 66M, and is formed on the inner circumference of the outer cylinder portion 66.
  • the first surface 69A extending to the left from the position slightly left rear of the rightmost portion, and the inner circumference of the outer cylinder portion 66 extending from the left end of the first surface 69A while curving to the left rear. It has a second surface 69B that communicates with the surface, and a third surface 69C that connects the lower ends of the first surface 69A and the second surface 69B and the inner peripheral surface of the outer cylinder portion 66.
  • the second surface 69B extends from the vicinity of the rear end portion of the inner peripheral surface of the outer cylinder portion 66 to the left end of the first surface 69A while increasing the curvature.
  • a gap of substantially the same length as the width of the first surface 69A in the left-right direction is provided between the first surface 69A and the inner cylinder portion 67.
  • the cylinder penetrating portion 13B extends in the front-rear direction between the first surface 69A of the inflow guide protrusion 69 and the outer peripheral surface of the outer cylinder portion 66.
  • the cross-sectional shape of the cylinder penetrating portion 13B is an oval shape, and the cylinder penetrating portion 13B has a first facing surface 13B1 and a second facing surfaces facing each other in the width direction (left-right direction). It has a facing surface 13B2. As shown in FIG.
  • the first facing surface 13B1 is slightly to the left of the fictitious tangent line L (tangent line extending in the front-rear direction) passing through the rightmost end of the inner circumference of the outer cylinder portion 66. It is located and extends parallel to the fictitious tangent L from the position near the right end of the first surface 69A.
  • the second facing surface 13B2 extends parallel to the first facing surface 13B1 from a position near the left end of the first surface 69A. Further, the portion of the second facing surface 13B2 that protrudes inward from the inner peripheral surface of the outer cylinder portion 66 corresponds to the "inflow guide portion 69R" in the claims. As shown in FIGS.
  • the cross-sectional shape of the cylinder penetrating portion 13B is an oval shape. Further, as shown in FIG. 3, in the cylinder penetrating portion 13B, the entire opening edge is exposed by the base penetrating portion 13A when viewed from the outside.
  • the outer cylinder portion 66 having the inner peripheral surface 12B of the gas-liquid separation chamber 12 and the cylindrical body 12A through which the refrigerant of the gas phase passes are formed of resin, so that gas-liquid mixing is performed.
  • the refrigerant of the gas-liquid separation chamber 12 swirls around the inner peripheral surface 12B of the gas-liquid separation chamber 12, when the refrigerant of the liquid phase travels through the inner peripheral surface 12B of the gas-liquid separation chamber 12, and when the refrigerant of the gas phase passes through the cylindrical body 12A.
  • the first facing surface 13B1 of the cylinder penetrating portion 13B which constitutes a part of the inflow port 13 and allows the gas-liquid mixed refrigerant to flow into the gas-liquid separation chamber 12, is near the tangent line of the inner peripheral surface 12B of the gas-liquid separation chamber 12.
  • the cross-sectional shape of the cylinder penetrating portion 13B is oval, the width in the radial direction becomes small, and the refrigerant can be easily applied along the inner peripheral surface 12B of the gas-liquid separation chamber 12. Flow rate can be secured.
  • the hole (base penetrating portion 13A) formed in the metal upper support base 20A can be made circular in cross section. It is possible to prevent the occurrence of burrs rather than making the cross section oval.
  • the cylinder penetrating portion 13B of the outer cylinder portion 66 is provided with an inflow guide portion 69R protruding inward from the inner peripheral surface 12B of the gas-liquid separation chamber 12, so that the cylinder penetrating portion 69R is provided.
  • the inner peripheral surface 12B of the gas-liquid separation chamber 12 makes it easier for the refrigerant flowing in from the portion 13B to follow.
  • the second surface 69B of the inflow guide protrusion 69 is curved, the refrigerant swirls more than the configuration in which the space between the inflow guide protrusion 69 and the inner peripheral surface 12B of the gas-liquid separation chamber 12 is angular. It is hard to get in the way.
  • liquid-phase refrigerant is generally captured on the inner peripheral surface until the gas-liquid mixed refrigerant flows in from the inflow port 13 and makes one round (the amount of protrusion of the inflow guide protrusion and the length in the vertical direction). Etc.).
  • FIG. 10 the integrated valve 10W of the present embodiment has a different configuration around the shutter member from the integrated valve 10 of the first embodiment.
  • the parts having the same configuration as that of the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and only the different points will be described.
  • the shutter member 70W of the present embodiment is radially arranged (at a position where the outer circumference of the shutter portion 70A is divided into three equal parts) on the disc-shaped shutter portion 70A and the outer edge portion of the shutter portion 70A. It is provided with three legs 70C and the like. As shown in FIG. 13, the leg portion 70C has a strip-shaped shape, and the first band portion 70D extending downward from the outer edge of the shutter portion 70A while extending outward, and the U from the end of the first band portion 70D.
  • the second band 70E which is folded back in a shape and extends upward while facing outward, and one or two sheets below the shutter 70A, bend horizontally outward from the second band 70E. It has a third band portion 70F extending horizontally.
  • the integrated valve 10W of the present embodiment does not have the double cylinder component 65 of the first embodiment, and has a first recess 20F recessed upward from the lower surface and a first recess 20F in the upper support base 20A of the upper body 11A.
  • a cylindrical portion 20G protruding downward from the opening edge of the recess 20F is formed, while a second recess 20H recessed downward from the upper surface is formed on the lower support base 20B of the lower body 11B to support the upper side.
  • a gas-liquid separation chamber 12 is formed inside the cylindrical portion 20G.
  • two communication holes 34 are provided avoiding the insertion bar 70B of the shutter member 70, but in the integrated valve 10W of the present embodiment, one communication hole 34 is provided on the central axis of the gas-liquid separation chamber 12.
  • the entire opening of the communication hole 34 faces the shutter portion 70A from below. That is, the entire opening of the communication hole 34 is covered with the shutter portion 70A from above.
  • the entire lower end opening of the gas-liquid separation chamber 12 also faces the shutter portion 70A from above.
  • the gas-liquid separation chamber 12 of the present embodiment is molded of resin, aluminum, or the like, and is caulked and fixed to the upper support base 20A.
  • the shutter member 70W is sandwiched between the upper body 11A and the lower body 11B, so that the dimensional tolerance is larger than that in the conventional case in which the shutter member is press-fitted. And easy to process. Further, since the shutter member 70W can be assembled by mounting the shutter member 70W in the second recess 20H of the lower support base 20B and then attaching the upper support base 20A from above, the shutter member 70W can be easily assembled. become.
  • the communication hole 34 can be arranged in the center, and the entire opening of the communication hole 34 can be covered by the shutter portion 70A, and the inside of the gas-liquid separation chamber 12 can be covered. (In particular, the lower end of the cylindrical body 12A) can be made less likely to get dirty.
  • a plurality of straightening vanes 13B3 arranged in the longitudinal direction may be provided in the cylinder penetrating portion 13B.
  • the straightening vane 13B3 may be configured to be inclined downward as it goes inward. In this case, the refrigerant can be smoothly guided downward while swirling.
  • the cylinder penetrating portion 13B itself is also inclined, and the refrigerant can be guided downward more smoothly.
  • the cylinder penetrating portion 13B may extend horizontally.
  • the inflow guide protrusion 69 may have a configuration in which the amount of protrusion decreases as it goes downward. In this case, it is possible to prevent the refrigerant flowing from the cylinder penetrating portion 13B and swirling from being separated from the inner peripheral surface 12B of the gas-liquid separation chamber 12 by the inflow guide protrusion 69 and moving inward.
  • the double cylinder component 65 is provided with a rotation restricting protrusion 65T, and the upper support base 20A is provided with a receiving recess 20U for receiving the rotation regulating protrusion 65T.
  • the rotation-regulating protrusion 65T and the receiving recess 20U engage with each other in a concavo-convex manner, so that the rotation of the double-cylinder component 65 is restricted and the cylinder penetrating portion 13B and the base penetrating portion 13A are prevented from being displaced.
  • the generation of noise due to the rotation of the double cylinder component 65 can be prevented.
  • the cylinder penetrating portion 13B has an oval shape, but the present invention is not limited to this, and it may be an elliptical shape, a rectangular shape, or a circular shape. A plurality of holes may be arranged in the vertical direction.
  • the double cylinder component 65 and the upper support base 20A and the double cylinder component 65 and the lower support base 20B are sealed with separate O-rings 66R.
  • a groove 66M may be provided at a position corresponding to the boundary between the upper support base 20A and the lower support base 20B, or the upper cylinder receiving portion 25 of the upper support base 20A or the lower cylinder of the lower support base 20B may be provided.
  • a notch may be provided at the opening edge of the receiving portion 26, and one O-ring 66R may be configured to seal between the two support bases 20A and 20B.
  • the groove (notch) for the O-ring 66R is arranged not in the double cylinder part 65 but in the upper support base 20A or the lower support base 20B as in the latter, the resin double cylinder part 65 is formed. Since no parting line is generated, it is possible to seal more reliably.
  • the O-ring seals between the double-cylinder component 65 and the upper and lower support bases 20A and 20B, but a gasket may also be used. Further, the O-ring or the gasket may have a figure eight shape and may be configured to surround the double cylinder component 65 and the introduction path member 19A together.
  • the first facing surface 13B1 of the cylinder penetrating portion 13B is arranged at a position deviated from the tangent line of the inner peripheral surface 12B of the gas-liquid separation chamber 12, but the gas-liquid separation chamber 12 It may be arranged on the tangent line of the inner peripheral surface 12B. Further, the first facing surface 13B1 may be inclined with respect to the tangent line of the inner peripheral surface 12B of the gas-liquid separation chamber 12, and the width of the first facing surface 13B1 and the second facing surface 13B2 becomes wider toward the inside. It may be inclined so as to be narrow.
  • the number of communication holes 34 is one, but a plurality of communication holes 34 may be provided. Even in this case, it is preferable that the entire opening of the plurality of communication holes 34 is covered with the shutter portion 70A from above.
  • the communication hole 34 may include a portion not covered by the shutter portion 70A.
  • the leg portion 70C of the shutter member 70W is configured by bending the strip plate, but the strip plate may be overhanging in the horizontal direction. In this case, it is necessary to provide a contact portion for sandwiching the leg portion 70C in the second recess 20H of the lower support base 20B in cooperation with the lower end portion of the cylindrical portion 20G of the upper support base 20A. Further, the shutter member 70W may have a plurality of through holes at positions near the outer edge of the disk.
  • the shutter member 70W may be provided with a rotation stopper.
  • the shutter member 70W may be provided with a rotation stop leg 70K having an insertion hole 70S to be inserted into the regulation bar 72.
  • the configuration may include both the double cylinder component 65 of the first embodiment and the shutter member 70W of the second embodiment.
  • a clearance is provided between the lower end of the double cylinder component 65 and the upper surface of the partition wall 39, and the shutter member 70W is sandwiched between them.
  • the double cylinder component 65 may be positioned in the vertical direction by the legs 70C of the shutter member 70W, or a positioning flange or the like may be formed on the outer cylinder portion 66. It may be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Valve Housings (AREA)

Abstract

[Problem] To improve thermal efficiency. [Solution] Provided is an integrated valve (10) in which an upper body (11A) is formed by fitting a double-cylinder component (65) having a gas-liquid separation chamber (12) inside in the upper support base (20A). The double-cylinder component (65) is a one-piece foam molded product of resin and has a lower thermal conductivity than the upper support base (20A) and a lower support base (20B). The double-cylinder component (65) has: an outer cylinder (66) that abuts on the inner peripheral surfaces of an upper cylinder receiving portion (25) and a lower cylinder receiving portion (26); an inner cylinder (67) that is disposed inside the outer cylinder (66); and an annular plate (68) that connects between the outer cylinder (66) and the inner cylinder (67).

Description

統合弁Integrated valve
 本開示は、室内コンデンサと室外エバポレータとコンプレッサとを有するヒートポンプサイクルに組み込まれ、前記室内コンデンサから流入する気液混合の冷媒を気液分離室の内周面に沿って旋回させて気液分離し、かつ、分離された液相の冷媒を前記室外エバポレータへ流出する第1状態と、分離された気相の冷媒を前記コンプレッサへ流出する第2状態と、に切り替え可能な統合弁に関する。 The present disclosure is incorporated in a heat pump cycle having an indoor condenser, an outdoor evaporator, and a compressor, and the gas-liquid mixed refrigerant flowing from the indoor condenser is swirled along the inner peripheral surface of the gas-liquid separation chamber to separate the gas and liquid. The present invention relates to an integrated valve capable of switching between a first state in which the separated liquid phase refrigerant flows out to the outdoor evaporator and a second state in which the separated vapor phase refrigerant flows out to the compressor.
 従来、この種の統合弁として、金属製のベースに、気液分離室の内部に配され、分離された気相の冷媒を気液分離室から流出させる気相冷媒流出パイプが一体形成されたものが知られている(例えば、特許文献1参照)。 Conventionally, as this type of integrated valve, a gas-phase refrigerant outflow pipe is integrally formed on a metal base, which is arranged inside the gas-liquid separation chamber and allows the separated gas-phase refrigerant to flow out of the gas-liquid separation chamber. Is known (see, for example, Patent Document 1).
特開2013-92355号(段落[0122]~[0123]、図4)Japanese Unexamined Patent Publication No. 2013-92355 (paragraphs [0122] to [0123], FIG. 4)
 上述した従来の統合弁においては、熱効率の向上が求められている。 The above-mentioned conventional integrated valve is required to improve thermal efficiency.
 本開示の統合弁は、室内コンデンサと室外エバポレータとコンプレッサとを有するヒートポンプサイクルに組み込まれ、前記室内コンデンサから流入する気液混合の冷媒を気液分離室の内周面に沿って旋回させて気液分離し、かつ、分離された液相の冷媒を前記室外エバポレータへ流出する第1状態と、分離された気相の冷媒を前記コンプレッサへ流出する第2状態と、に切り替え可能な統合弁において、前記気液分離室の内部に配され、分離された気相の冷媒を前記気液分離室から流出させる気相冷媒流出パイプと、前記気相冷媒流出パイプと、筒状であり、その内周面が前記気液分離室の前記内周面をなす外筒部と、前記気相冷媒流出パイプと前記外筒部との間を連絡する連絡板部と、が樹脂により一体成形された二重筒部品と、を備える統合弁である。 The integrated valve of the present disclosure is incorporated in a heat pump cycle having an indoor condenser, an outdoor evaporator and a compressor, and the gas-liquid mixed refrigerant flowing from the indoor condenser is swirled along the inner peripheral surface of the gas-liquid separation chamber. In an integrated valve that can be switched between a first state in which the liquid-separated and separated liquid-phase refrigerant flows out to the outdoor evaporator and a second state in which the separated vapor-phase refrigerant flows out to the compressor. , The gas-phase refrigerant outflow pipe arranged inside the gas-liquid separation chamber and causing the separated gas-phase refrigerant to flow out from the gas-liquid separation chamber, and the gas-phase refrigerant outflow pipe, which are tubular. The outer cylinder portion whose peripheral surface forms the inner peripheral surface of the gas-liquid separation chamber and the communication plate portion that connects the gas phase refrigerant outflow pipe and the outer cylinder portion are integrally molded with resin. It is an integrated valve equipped with a heavy cylinder component.
 請求項1の統合弁によれば、気液分離室を囲う外筒部及び気相冷媒流出パイプが樹脂により成形されているので、外部熱が伝わりにくく、熱効率が向上する。 According to the integrated valve of claim 1, since the outer cylinder portion surrounding the gas-liquid separation chamber and the gas-phase refrigerant outflow pipe are molded of resin, external heat is less likely to be transmitted and thermal efficiency is improved.
第1実施形態に係る統合弁が組み込まれるヒートポンプサイクルの概念図Conceptual diagram of a heat pump cycle in which the integrated valve according to the first embodiment is incorporated. 統合弁の前方斜視図Front perspective view of the integrated valve 統合弁の背面図Rear view of integrated valve 統合弁の正断面図Positive cross section of integrated valve シャッター部材近傍の平断面図Planosection view near the shutter member 統合弁の正断面図Positive cross section of integrated valve 二重筒部材の斜視図Perspective view of double cylinder member 二重筒部材の正断面図Regular cross-sectional view of double cylinder member 統合弁の平断面図Planosection of integrated valve 二重筒部材の下側斜視図Lower perspective view of double cylinder member 第2実施形態に係る統合弁の正断面図Positive sectional view of the integrated valve according to the second embodiment シャッター部材の斜視図Perspective view of shutter member シャッター部材の正面図Front view of shutter member シャッター部材近傍の正断面図Regular cross-sectional view near the shutter member 変形例に係る二重筒部材の斜視図Perspective view of the double cylinder member according to the modified example 変形例に係る二重筒部材の正断面図Regular cross-sectional view of the double cylinder member according to the modified example 変形例に係る二重筒部材の下側斜視図Lower perspective view of the double cylinder member according to the modified example 変形例に係る二重筒部材の正断面図Regular cross-sectional view of the double cylinder member according to the modified example 図18におけるA-A断面図A cross-sectional view taken along the line in FIG. 変形例に係る二重筒部材の正断面図Regular cross-sectional view of the double cylinder member according to the modified example 図20におけるB-B断面図BB sectional view in FIG. 20 変形例に係る二重筒部材の下側斜視図Lower perspective view of the double cylinder member according to the modified example 変形例に係る統合弁の正断面図Positive cross-sectional view of the integrated valve according to the modified example 変形例に係る統合弁のシャッター部材近傍の正断面図Regular cross-sectional view near the shutter member of the integrated valve according to the modified example 変形例に係る統合弁の正断面図Positive cross-sectional view of the integrated valve according to the modified example
 [第1実施形態]
 以下、図1~10を参照しつつ、本実施形態の統合弁10について説明する。図1に示されるように、本実施形態の統合弁10は、例えば、モータの駆動力で走行する電気自動車やハイブリッド自動車のエアコンのヒートポンプサイクル80に組み込まれる。
[First Embodiment]
Hereinafter, the integrated valve 10 of the present embodiment will be described with reference to FIGS. 1 to 10. As shown in FIG. 1, the integrated valve 10 of the present embodiment is incorporated into, for example, the heat pump cycle 80 of an air conditioner of an electric vehicle or a hybrid vehicle traveling by a driving force of a motor.
 ヒートポンプサイクル80は、車室外(例えば、ボンネット内)に配置されるコンプレッサ81及び室外熱交換器83(室外エバポレータ)や、車室内(空調ユニット内)に配置される室内コンデンサ82及び室内蒸発器84を備えていて、冷房モードと暖房モードとに切り替え可能となっている。 The heat pump cycle 80 includes a compressor 81 and an outdoor heat exchanger 83 (outdoor evaporator) arranged outside the vehicle interior (for example, inside the bonnet), and an indoor condenser 82 and an indoor evaporator 84 arranged inside the vehicle interior (inside the air conditioning unit). It is possible to switch between cooling mode and heating mode.
 コンプレッサ81は、冷媒を吸入し、圧縮して吐出する。コンプレッサ81には、低温低圧の冷媒を吸入する低圧入力ポート81Aと、吸入した冷媒を、低温低圧から高温高圧に圧縮する過程の冷媒に合流させる中間圧入力ポート81Bと、高温高圧の圧縮冷媒を流出する出力ポート81Cと、が設けられている。 The compressor 81 sucks in the refrigerant, compresses it, and discharges it. The compressor 81 includes a low-pressure input port 81A for sucking low-temperature low-pressure refrigerant, an intermediate pressure input port 81B for merging the sucked refrigerant with the refrigerant in the process of compressing the sucked refrigerant from low-temperature low-pressure to high-temperature high-pressure, and a high-temperature and high-pressure compressed refrigerant. An outflow output port 81C is provided.
 コンプレッサ81の出力ポート81Cには、室内コンデンサ82が接続されている。室内コンデンサ82は、コンプレッサ81の出力ポート81Cから吐出された高温高圧の冷媒を放熱させる(車室内を暖める)放熱器として機能する。なお、冷房モードのときには、室内コンデンサ82は、例えばカバーで覆われ、車室内が暖められないようになっている。 An indoor capacitor 82 is connected to the output port 81C of the compressor 81. The indoor condenser 82 functions as a radiator that dissipates high-temperature and high-pressure refrigerant discharged from the output port 81C of the compressor 81 (warms the interior of the vehicle). In the cooling mode, the interior condenser 82 is covered with, for example, a cover so that the interior of the vehicle cannot be warmed.
 室外熱交換器83は、外気と室外熱交換器83の内部を流れる冷媒とを熱交換させる。室外熱交換器83は、ヒートポンプサイクル80が暖房モードのときには、吸熱して冷媒を蒸発させる蒸発器(室外エバポレータ)として機能する一方、ヒートポンプサイクル80が冷房モードのときには、冷媒を放熱させる放熱器として機能する。 The outdoor heat exchanger 83 exchanges heat between the outside air and the refrigerant flowing inside the outdoor heat exchanger 83. The outdoor heat exchanger 83 functions as an evaporator (outdoor evaporator) that absorbs heat and evaporates the refrigerant when the heat pump cycle 80 is in the heating mode, while as a radiator that dissipates the refrigerant when the heat pump cycle 80 is in the cooling mode. Function.
 室外熱交換器83の出力ポートには、開閉弁86を介してコンプレッサ81の低圧入力ポート81Aが接続されている。また、室外熱交換器83の出力ポートとコンプレッサ81の低圧入力ポート81Aとの間には、開閉弁86と並列に、膨張弁85及び室内蒸発器84が配されている。ヒートポンプサイクル80が暖房モードのときには、開閉弁86が開状態に制御されて膨張弁85が閉状態となり、室外熱交換器83からの冷媒が室内蒸発器84に流入せずに直接コンプレッサ81へ流入する。一方、ヒートポンプサイクル80が冷房モードのときには、開閉弁86が閉状態に制御されて膨張弁85が開状態となり、室外熱交換器83からの冷媒が室内蒸発器84に流入する。室内蒸発器84は、車室内の空気から吸熱して(車室内を冷やして)室外熱交換器83から流入した冷媒を蒸発させる。 The low pressure input port 81A of the compressor 81 is connected to the output port of the outdoor heat exchanger 83 via the on-off valve 86. Further, an expansion valve 85 and an indoor evaporator 84 are arranged in parallel with the on-off valve 86 between the output port of the outdoor heat exchanger 83 and the low-voltage input port 81A of the compressor 81. When the heat pump cycle 80 is in the heating mode, the on-off valve 86 is controlled to be in the open state and the expansion valve 85 is closed, and the refrigerant from the outdoor heat exchanger 83 flows directly into the compressor 81 without flowing into the indoor evaporator 84. To do. On the other hand, when the heat pump cycle 80 is in the cooling mode, the on-off valve 86 is controlled to be in the closed state, the expansion valve 85 is opened, and the refrigerant from the outdoor heat exchanger 83 flows into the indoor evaporator 84. The indoor evaporator 84 absorbs heat from the air inside the vehicle interior (cools the vehicle interior) and evaporates the refrigerant that has flowed in from the outdoor heat exchanger 83.
 図1に示すように、統合弁10は、冷媒が流入する流入ポート13と、流入ポート13から流入する冷媒を気液分離可能な気液分離室12と、気液分離室12で分離された気相の冷媒を流出する気相用流出ポート14と、気液分離室12で分離された液相の冷媒を流出する液相用流出ポート15と、を有している。流入ポート13は、室内コンデンサ82の出力ポートに、膨張弁87を介して接続され、気相用流出ポート14は、コンプレッサ81の中間圧入力ポート81Bに接続され、液相用流出ポート15は、室外熱交換器83の入力ポートに接続されている。また、統合弁10は、気液分離室12と液相用流出ポート15との間に駆動弁50(本実施形態の例では、電磁弁)とオリフィス61とを並列に備えると共に、気液分離室12と気相用流出ポート14との間に差圧弁40を備えていて、駆動弁50を開閉することで、気相用流出ポート14を開閉可能となっている(詳細には、駆動弁50を開くと気相用流出ポート14が閉じ、駆動弁50を閉じると気相用流出ポート14が開くようになっている)。統合弁10の開閉制御については、後に詳細を説明する。 As shown in FIG. 1, the integrated valve 10 is separated by an inflow port 13 into which the refrigerant flows, a gas-liquid separation chamber 12 capable of separating the refrigerant flowing from the inflow port 13, and a gas-liquid separation chamber 12. It has a gas phase outflow port 14 for flowing out the gas phase refrigerant and a liquid phase outflow port 15 for flowing out the liquid phase refrigerant separated in the gas-liquid separation chamber 12. The inflow port 13 is connected to the output port of the indoor capacitor 82 via an expansion valve 87, the gas phase outflow port 14 is connected to the intermediate pressure input port 81B of the compressor 81, and the liquid phase outflow port 15 is It is connected to the input port of the outdoor heat exchanger 83. Further, the integrated valve 10 is provided with a drive valve 50 (electromagnetic valve in the example of the present embodiment) and an orifice 61 in parallel between the gas-liquid separation chamber 12 and the liquid phase outflow port 15, and gas-liquid separation is performed. A differential pressure valve 40 is provided between the chamber 12 and the gas phase outflow port 14, and the gas phase outflow port 14 can be opened and closed by opening and closing the drive valve 50 (specifically, the drive valve). When 50 is opened, the gas phase outflow port 14 is closed, and when the drive valve 50 is closed, the gas phase outflow port 14 is opened). The opening / closing control of the integrated valve 10 will be described in detail later.
 ヒートポンプサイクル80では、暖房モードとして、通常暖房モードと特別暖房モードとが設けられている。通常暖房モードでは、統合弁10の駆動弁50が開弁し、統合弁10の気相用流出ポート14は閉じられる(図1(A)参照)。一方、特別暖房モードでは、統合弁の駆動弁50が閉弁し、統合弁10の気相用流出ポート14が開く。これにより、統合弁10の気相用流出ポート14からコンプレッサ81の中間圧入力ポート81Bまでの特別流入路89が開通する(図1(B)参照)。そして、ヒートポンプサイクル80が、ガスインジェクションサイクルとして機能し、外気温が低く通常暖房モードでは車室内が暖まりにくい場合でも車室内を暖め易くすることができる。 In the heat pump cycle 80, a normal heating mode and a special heating mode are provided as heating modes. In the normal heating mode, the drive valve 50 of the integrated valve 10 is opened, and the gas phase outflow port 14 of the integrated valve 10 is closed (see FIG. 1 (A)). On the other hand, in the special heating mode, the drive valve 50 of the integrated valve is closed, and the gas phase outflow port 14 of the integrated valve 10 is opened. As a result, the special inflow path 89 from the gas phase outflow port 14 of the integrated valve 10 to the intermediate pressure input port 81B of the compressor 81 is opened (see FIG. 1B). Then, the heat pump cycle 80 functions as a gas injection cycle, and can easily warm the vehicle interior even when the outside air temperature is low and the vehicle interior is difficult to warm in the normal heating mode.
 なお、詳細には、通常暖房モードでは、外気温が極端に低い場合には、室外エバポレータ(室外熱交換器83)で十分に外気から吸熱ができない(冷媒を十分に蒸発させることができない)。そのため、室外熱交換器83からコンプレッサ81までの流路内の冷媒の圧力が上がらず、冷媒流量も少なくなると考えられる。冷媒流量が減れば、コンプレッサ81からの冷媒の吐出圧力や温度が上がらず、室内コンデンサ82からの放熱も少なくなり、暖房能力が低くなる。これに対して、特別暖房モードでは、ガスインジェクションサイクルにより、室外熱交換器83に流入する前の冷媒を気液分離し、分離した気相の冷媒をコンプレッサ81に戻す。これにより、室外熱交換器83で圧力が下がる前の冷媒がコンプレッサ81に加えられるので、コンプレッサ81からの冷媒の吐出圧力の低下を抑制できる。その結果、暖房性能を向上させることが可能となる。 In detail, in the normal heating mode, when the outside air temperature is extremely low, the outdoor evaporator (outdoor heat exchanger 83) cannot sufficiently absorb heat from the outside air (the refrigerant cannot be sufficiently evaporated). Therefore, it is considered that the pressure of the refrigerant in the flow path from the outdoor heat exchanger 83 to the compressor 81 does not increase and the flow rate of the refrigerant also decreases. If the flow rate of the refrigerant decreases, the discharge pressure and temperature of the refrigerant from the compressor 81 do not rise, the heat radiation from the indoor condenser 82 also decreases, and the heating capacity decreases. On the other hand, in the special heating mode, the gas injection cycle separates the refrigerant before flowing into the outdoor heat exchanger 83 into gas and liquid, and returns the separated refrigerant in the gas phase to the compressor 81. As a result, the refrigerant before the pressure drops in the outdoor heat exchanger 83 is applied to the compressor 81, so that it is possible to suppress a decrease in the discharge pressure of the refrigerant from the compressor 81. As a result, the heating performance can be improved.
 次に、統合弁10の詳細について説明する。図2~図4に示されるように、統合弁10は、縦長をなしたボディ11の内部に複数の流路を備えてなる。統合弁10は、使用時(即ち、統合弁10が車両に設置された際)には、ボディ11の長手方向が上下方向となるように配置される。以下の説明では、統合弁10の使用時の上下方向を、統合弁10の上下方向とする。また、図4における左右方向を統合弁10の左右方向とし、図4における紙面手前を前方、紙面奥側を後方とする。 Next, the details of the integrated valve 10 will be described. As shown in FIGS. 2 to 4, the integrated valve 10 includes a plurality of flow paths inside the vertically elongated body 11. The integrated valve 10 is arranged so that the longitudinal direction of the body 11 is the vertical direction when the integrated valve 10 is used (that is, when the integrated valve 10 is installed in the vehicle). In the following description, the vertical direction when the integrated valve 10 is used is referred to as the vertical direction of the integrated valve 10. Further, the left-right direction in FIG. 4 is the left-right direction of the integrated valve 10, the front side of the paper surface in FIG. 4 is the front side, and the back side of the paper surface is the rear side.
 図4に示すように、ボディ11は、上側ボディ11Aと下側ボディ11Bとを上下に連結してなる。上側ボディ11Aは、金属製で正面視四角形のブロック状の上側支持ベース20Aを有し、下側ボディ11Bは、金属製で略直方体状の下側支持ベース20Bを有している。これら上側ボディ11Aと下側ボディ11Bとの間には、気液分離室12が設けられている。気液分離室12は、上下方向に延びた円柱状の部屋となっていて、天井から中心軸と同軸上に円筒体12Aが垂下している。この気液分離室12の内周面12Bのうち後ろ側の右上部には、統合弁10の外部と気液分離室12とを連通させる流入ポート13が開口している。 As shown in FIG. 4, the body 11 is formed by connecting the upper body 11A and the lower body 11B vertically. The upper body 11A is made of metal and has a block-shaped upper support base 20A having a quadrangular front view, and the lower body 11B is made of metal and has a substantially rectangular parallelepiped lower support base 20B. A gas-liquid separation chamber 12 is provided between the upper body 11A and the lower body 11B. The gas-liquid separation chamber 12 is a columnar chamber extending in the vertical direction, and a cylindrical body 12A hangs from the ceiling coaxially with the central axis. An inflow port 13 for communicating the outside of the integrated valve 10 and the gas-liquid separation chamber 12 is opened in the upper right portion on the rear side of the inner peripheral surface 12B of the gas-liquid separation chamber 12.
 気液分離室12は、遠心分離式となっていて、流入ポート13を介して室内コンデンサ82から流入する気液混合の冷媒は、気液分離室12の内周面12Bに沿って旋回し、この旋回による遠心力によって気相の冷媒と液相の冷媒とに分離される。分離した気相の冷媒は、円筒体12Aの内側を通って、上方に向かい、分離した液相状の冷媒は、気液分離室12の内周面12Bを伝い下方に落ちていく。 The gas-liquid separation chamber 12 is of a centrifugal separation type, and the refrigerant of the gas-liquid mixture flowing from the indoor condenser 82 through the inflow port 13 swirls along the inner peripheral surface 12B of the gas-liquid separation chamber 12. The centrifugal force generated by this swirl separates the gas phase refrigerant and the liquid phase refrigerant. The separated gas-phase refrigerant passes through the inside of the cylindrical body 12A and goes upward, and the separated liquid-phase refrigerant travels downward along the inner peripheral surface 12B of the gas-liquid separation chamber 12.
 ボディ11における気液分離室12の下側と上側には、互いに平行に延びた第1ストレート孔部21と第2ストレート孔部31とが設けられている。第1ストレート孔部21は、断面円形で、下側ボディ11Bにおける下側支持ベース20Bの右面から左面寄り位置まで延びている。また、第1ストレート孔部21は、右端開口から左方へ向かうにつれて段付き状に縮径した縮径部21Aと、縮径部21Aの端部からテーパー状に拡径してから均一径で左方へ延びたのち、テーパー状に縮径した流入部21Bと、流入部21Bの端部から均一径で第1ストレート孔部21の左端部まで延びた流出部21Cと、を有している。 A first straight hole portion 21 and a second straight hole portion 31 extending in parallel with each other are provided on the lower side and the upper side of the gas-liquid separation chamber 12 in the body 11. The first straight hole portion 21 has a circular cross section and extends from the right surface to the left surface side position of the lower support base 20B in the lower body 11B. Further, the first straight hole portion 21 has a reduced diameter portion 21A whose diameter is gradually reduced toward the left from the right end opening and a uniform diameter after being tapered from the end portion of the reduced diameter portion 21A. It has an inflow portion 21B that extends to the left and then has a tapered diameter, and an outflow portion 21C that extends from the end of the inflow portion 21B to the left end of the first straight hole 21 with a uniform diameter. ..
 下側支持ベース20Bの右面には、第1ストレート孔部21内を直動する駆動弁50の支持ボディ53が取り付けられ、この支持ボディ53により、第1ストレート孔部21の右端開口が閉塞されている。支持ボディ53は、1部が第1ストレート孔部21の縮径部21Aに受容されることにより位置決めされている。支持ボディ53と第1ストレート孔部21の縮径部21Aとの間は、Oリング53Rによりシールされている。駆動弁50は、先端に備える弁体51により後述する弁口62を開閉する。駆動弁50は、非作動状態では、弁口62から離れた開弁状態となり、作動状態では、弁口62の開口縁(即ち、弁座62Z)に宛がわれて閉弁状態となる。 A support body 53 of a drive valve 50 that moves directly in the first straight hole 21 is attached to the right surface of the lower support base 20B, and the support body 53 closes the right end opening of the first straight hole 21. ing. One part of the support body 53 is positioned by being received by the reduced diameter portion 21A of the first straight hole portion 21. The support body 53 and the reduced diameter portion 21A of the first straight hole portion 21 are sealed by an O-ring 53R. The drive valve 50 opens and closes the valve port 62, which will be described later, by the valve body 51 provided at the tip. In the non-operating state, the drive valve 50 is in a valve-opened state away from the valve opening 62, and in the operating state, the drive valve 50 is addressed to the opening edge of the valve opening 62 (that is, the valve seat 62Z) and is closed.
 第1ストレート孔部21の左部には、上側及び下側の支持ベース20A,20Bよりも熱電動率が低い材料(例えば樹脂)で形成された円筒状の断熱部材60が嵌合している。下側支持ベース20Bと断熱部材60との間は、断熱部材60の軸方向の途中部分に配されたOリング60Rによりシールされている。断熱部材60の右端部は、流入部21B内に配置されて、流入部21Bの内面とは隙間をあけて配置されている。断熱部材60の右端開口は、駆動弁50によって開閉される弁口62を構成している。これら第1ストレート孔部21及び断熱部材60の内側は、液相冷媒流路21Rとなっている。 A cylindrical heat insulating member 60 made of a material (for example, resin) having a lower thermoelectricity than the upper and lower support bases 20A and 20B is fitted in the left portion of the first straight hole portion 21. .. The lower support base 20B and the heat insulating member 60 are sealed by an O-ring 60R arranged in the middle of the heat insulating member 60 in the axial direction. The right end portion of the heat insulating member 60 is arranged in the inflow portion 21B and is arranged with a gap from the inner surface of the inflow portion 21B. The right end opening of the heat insulating member 60 constitutes a valve opening 62 that is opened and closed by the drive valve 50. The inside of the first straight hole portion 21 and the heat insulating member 60 is a liquid phase refrigerant flow path 21R.
 上述した液相用流出ポート15は、下側支持ベース20Bと断熱部材60とを貫通して形成され、統合弁10の外部と液相冷媒流路21R(断熱部材60の内部)とを連通する。なお、断熱部材60は、左端面の周方向の一部に設けられた係合突部64が、第1ストレート孔部21の左端に形成された係合凹部24と、凹凸係合することにより、ボディ11に対して回り止めされている。また、断熱部材60の外周面に形成された係合凹部63に、後述する区画壁39に装着された規制バー72が係合することにより、断熱部材60の右方への移動が規制されている。 The liquid phase outflow port 15 described above is formed so as to penetrate the lower support base 20B and the heat insulating member 60, and communicates the outside of the integrated valve 10 with the liquid phase refrigerant flow path 21R (inside the heat insulating member 60). .. In the heat insulating member 60, the engaging protrusion 64 provided in a part of the left end surface in the circumferential direction engages with the engaging recess 24 formed at the left end of the first straight hole portion 21 in an uneven manner. , It is prevented from rotating with respect to the body 11. Further, the movement of the heat insulating member 60 to the right is restricted by engaging the regulating bar 72 mounted on the partition wall 39, which will be described later, with the engaging recess 63 formed on the outer peripheral surface of the heat insulating member 60. There is.
 断熱部材60の右端下部には、径方向に延び、断熱部材60の内側と第1ストレート孔部21の流入部21Bとを連通するオリフィス61が形成されている。オリフィス61は、断熱部材60の内側に向かって絞られている。 An orifice 61 extending in the radial direction and communicating the inside of the heat insulating member 60 and the inflow portion 21B of the first straight hole 21 is formed in the lower part of the right end of the heat insulating member 60. The orifice 61 is narrowed toward the inside of the heat insulating member 60.
 図4に示されるように、下側ボディ11Bの下側支持ベース20Bには、気液分離室12と第1ストレート孔部21との間を区画する区画壁39が設けられている。区画壁39には、上下方向に延びて気液分離室12と第1ストレート孔部21とを連絡する連通孔34が貫通形成されている。詳細には、第1ストレート孔部21のうち気液分離室12の真下に配置される部分には、流入部21Bが設けられている。そして、この流入部21Bに、連通孔34の下端部が開口している。連通孔34は、区画壁39の外縁部のうち、中央を挟んで対向する2位置にそれぞれ形成されている(図5参照)。 As shown in FIG. 4, the lower support base 20B of the lower body 11B is provided with a partition wall 39 for partitioning between the gas-liquid separation chamber 12 and the first straight hole portion 21. A communication hole 34 extending in the vertical direction and connecting the gas-liquid separation chamber 12 and the first straight hole portion 21 is formed through the partition wall 39. Specifically, an inflow portion 21B is provided in a portion of the first straight hole portion 21 arranged directly below the gas-liquid separation chamber 12. Then, the lower end of the communication hole 34 is opened in the inflow portion 21B. The communication holes 34 are formed at two positions of the outer edge of the partition wall 39 facing each other with the center in between (see FIG. 5).
 図4及び図5に示されるように、区画壁39の上面には、中央部に、上方に突出した突出部39Tが形成され、突出部39Tには、上面から下方へ延びた第1係合孔39Aが設けられている。第1係合孔39Aには、シャッター部材70が取り付けられている。具体的には、シャッター部材70は、円板状のシャッター部70Aの下面中央から挿入バー70Bが垂下してなる。挿入バー70Bは、第1係合孔39Aに圧入されている。そして、シャッター部70Aは、2つの連通孔34の一部(区画壁39の中央側部分)を上方から覆っている。また、シャッター部70Aの側面はテーパー状になっている。なお、区画壁39には、水平方向において第1係合孔39Aとずれ、かつ、シャッター部70Aに上方から覆われる位置に区画壁39を貫通する第2係合孔39Bが形成され、この第2係合孔39Bに上述した規制バー72が装着されている。 As shown in FIGS. 4 and 5, an upwardly projecting protruding portion 39T is formed in the central portion on the upper surface of the partition wall 39, and the protruding portion 39T has a first engagement extending downward from the upper surface. Hole 39A is provided. A shutter member 70 is attached to the first engaging hole 39A. Specifically, the shutter member 70 has an insertion bar 70B hanging from the center of the lower surface of the disc-shaped shutter portion 70A. The insertion bar 70B is press-fitted into the first engagement hole 39A. The shutter portion 70A covers a part of the two communication holes 34 (the central portion of the partition wall 39) from above. Further, the side surface of the shutter portion 70A is tapered. The partition wall 39 is formed with a second engagement hole 39B that is displaced from the first engagement hole 39A in the horizontal direction and penetrates the partition wall 39 at a position covered by the shutter portion 70A from above. 2 The above-mentioned regulation bar 72 is attached to the engagement hole 39B.
 図4に示すように、気液分離室12の上方の第2ストレート孔部31は、上側ボディ11Aの上側支持ベース20Aの左面から右面寄り位置まで延びている。上側支持ベース20Aのうち右端部の後方には、上述の気相用流出ポート14が、上側支持ベース20Aの後面から第2ストレート孔部31まで貫通形成されていて、気相用流出ポート14は、統合弁10の外部と第2ストレート孔部31の右端部とを連通している。第2ストレート孔部31の途中部分は、気液分離室12の円筒体12Aの内側部分と連通孔32により連絡されている。また、第2ストレート孔部31のうち気相用流出ポート14寄り部分は、その左方部から段付き状に縮径していて、その間の段差部31Dには、円環状の凹部31Uが形成されている。 As shown in FIG. 4, the second straight hole portion 31 above the gas-liquid separation chamber 12 extends from the left surface of the upper support base 20A of the upper body 11A to a position closer to the right surface. The above-mentioned gas phase outflow port 14 is formed through the rear surface of the upper support base 20A from the rear surface to the second straight hole portion 31 behind the right end portion of the upper support base 20A, and the gas phase outflow port 14 is formed. , The outside of the integrated valve 10 and the right end of the second straight hole 31 are communicated with each other. The intermediate portion of the second straight hole portion 31 is connected to the inner portion of the cylindrical body 12A of the gas-liquid separation chamber 12 by a communication hole 32. Further, the portion of the second straight hole portion 31 near the gas phase outflow port 14 has a stepped diameter reduced from the left portion thereof, and an annular recess 31U is formed in the stepped portion 31D between them. Has been done.
 第2ストレート孔部31には、円筒体12Aと気相用流出ポート14との間の流路を開閉可能な差圧弁40が取り付けられている。詳細には、第2ストレート孔部31の左端部は、支持キャップ44により閉塞されて、この支持キャップ44の右方に、圧縮コイルバネ42を挟んで差圧弁40が配されている。差圧弁40は、圧縮コイルバネ42により段差部31Dへ向けて付勢されて、常には、差圧弁40に備えられた弁体41は、段差部31Dの内縁の弁口43を左側から閉塞している。また、差圧弁40と段差部31Dの凹部31Uとの間には隙間が有けられており、さらに、差圧弁40は、閉弁状態においても凹部31Uと連通孔32との間を閉塞しないように構成されている。これにより、差圧弁40は、連通孔32内の圧力(即ち、気液分離室12の円筒体12A内の圧力)を受けることができる。また、同図に示されるように、第1ストレート孔部21(及び断熱部材60)の左部と第2ストレート孔部31の左部とは、内圧導入路19により連通されている。なお、内圧導入路19の途中部分には、上側支持ベース20Aと下側支持ベース20Bとの間をシールするための導入路部材19Aが配されていて、この導入路部材19Aと上側及び下側の支持ベース20A,20Bとの間はOリング19Rによりシールされている。 A differential pressure valve 40 capable of opening and closing the flow path between the cylindrical body 12A and the gas phase outflow port 14 is attached to the second straight hole portion 31. Specifically, the left end portion of the second straight hole portion 31 is closed by the support cap 44, and the differential pressure valve 40 is arranged on the right side of the support cap 44 with the compression coil spring 42 interposed therebetween. The differential pressure valve 40 is urged toward the stepped portion 31D by the compression coil spring 42, and the valve body 41 provided in the differential pressure valve 40 always closes the valve port 43 at the inner edge of the stepped portion 31D from the left side. There is. Further, there is a gap between the differential pressure valve 40 and the recess 31U of the stepped portion 31D, and further, the differential pressure valve 40 does not block between the recess 31U and the communication hole 32 even in the valve closed state. It is configured in. As a result, the differential pressure valve 40 can receive the pressure in the communication hole 32 (that is, the pressure in the cylindrical body 12A of the gas-liquid separation chamber 12). Further, as shown in the figure, the left portion of the first straight hole portion 21 (and the heat insulating member 60) and the left portion of the second straight hole portion 31 are communicated with each other by the internal pressure introduction path 19. An introduction path member 19A for sealing between the upper support base 20A and the lower support base 20B is arranged in the middle of the internal pressure introduction path 19, and the introduction path member 19A and the upper and lower sides are arranged. The support bases 20A and 20B are sealed by an O-ring 19R.
 本実施形態の統合弁10では、気相用流出ポート14を開閉する差圧弁40は、以下のようにして動作する。ヒートポンプサイクル80が通常暖房モードである場合には、図4に示されるように、駆動弁50が開弁状態となり、弁口62が開放される。この場合、内圧導入路19を通った第1ストレート孔部21内(断熱部材60内)の冷媒の圧力(弁体41の背圧)に対して、連通孔32を通った凹部31U内における圧力は、弁体41を開弁位置に移動するほど強くないと考えられ、圧縮コイルバネ42に付勢された弁体41は、弁口43が閉弁状態になるように維持される。そのため、ヒートポンプサイクル80が通常暖房モードの場合、統合弁10の気相用流出ポート14が閉塞され、液相用流出ポート15のみから液体状の冷媒が流出する。 In the integrated valve 10 of the present embodiment, the differential pressure valve 40 that opens and closes the gas phase outflow port 14 operates as follows. When the heat pump cycle 80 is in the normal heating mode, the drive valve 50 is opened and the valve port 62 is opened, as shown in FIG. In this case, the pressure in the recess 31U passing through the communication hole 32 is relative to the pressure of the refrigerant (back pressure of the valve body 41) in the first straight hole 21 (in the heat insulating member 60) passing through the internal pressure introduction path 19. Is not considered to be strong enough to move the valve body 41 to the valve opening position, and the valve body 41 urged by the compression coil spring 42 is maintained so that the valve opening 43 is in the closed state. Therefore, when the heat pump cycle 80 is in the normal heating mode, the gas phase outflow port 14 of the integrated valve 10 is blocked, and the liquid refrigerant flows out only from the liquid phase outflow port 15.
 ヒートポンプサイクル80が特別暖房モードに切り替わった場合には、駆動弁50が閉弁状態に駆動されて弁口62を閉塞する(図6参照)。この状態で気液分離室12に冷媒が流入すると、気液分離室12で分離された液相の冷媒は、気液分離室12から第1ストレート孔部21の流入部21B内に流下した後、弁口62を通らずにオリフィス61を通過して断熱部材60の内側部分に流れ込む。このとき、小径のオリフィス61から大径の断熱部材60に流れ込むことで、液相の冷媒が減圧される。内圧導入路19により、差圧弁40の弁体41の背圧が第1ストレート孔部21内の圧力と同じになる。そして、連通孔32内の圧力が弁体41の背圧よりも大きくなると、弁体41が図6に示されるように弁口43を開状態にする。これにより、気相用流出ポート14から気相の冷媒が流出し、コンプレッサ81に流れ込む。これにより、ガスインジェクションサイクルが構成される。 When the heat pump cycle 80 is switched to the special heating mode, the drive valve 50 is driven to the closed state to close the valve port 62 (see FIG. 6). When the refrigerant flows into the gas-liquid separation chamber 12 in this state, the liquid-phase refrigerant separated in the gas-liquid separation chamber 12 flows down from the gas-liquid separation chamber 12 into the inflow portion 21B of the first straight hole portion 21. , Passes through the orifice 61 without passing through the valve port 62, and flows into the inner portion of the heat insulating member 60. At this time, the liquid phase refrigerant is depressurized by flowing from the small-diameter orifice 61 into the large-diameter heat insulating member 60. Due to the internal pressure introduction path 19, the back pressure of the valve body 41 of the differential pressure valve 40 becomes the same as the pressure in the first straight hole portion 21. Then, when the pressure in the communication hole 32 becomes larger than the back pressure of the valve body 41, the valve body 41 opens the valve opening 43 as shown in FIG. As a result, the gas phase refrigerant flows out from the gas phase outflow port 14 and flows into the compressor 81. This constitutes a gas injection cycle.
 なお、本開示において、「平行」とは、厳密に平行な状態だけでなく、略平行な状態(例えば、5度以下の角度で互いに傾斜する状態)をも意味する。 In the present disclosure, "parallel" means not only a state of being strictly parallel but also a state of being substantially parallel (for example, a state of being tilted at an angle of 5 degrees or less).
 さて、本実施形態の統合弁10では、図4に示すように、上側ボディ11Aが、上述した上側支持ベース20Aに、気液分離室12を内側に有する二重筒部品65を組付けてなる。詳細には、上側支持ベース20Aには、下面から上方へ向けて陥没した上側筒受容部25が形成される一方、下側支持ベース20Bには、上面から下方へ向けて陥没した下側筒受容部26が形成されている。上側筒受容部25及び下側筒受容部26の断面形状は共に円形で同一であり、上側筒受容部25及び下側筒受容部26の内周面は面一になっている。上側筒受容部25の天井面には、連通孔32が開口している。なお、連通孔32の下端部は、その上方部よりも段付き状に拡径した拡径部32Aとなっている。また、上述した区画壁39の上面が下側筒受容部26の底面を構成している。 By the way, in the integrated valve 10 of the present embodiment, as shown in FIG. 4, the upper body 11A is formed by assembling the double cylinder component 65 having the gas-liquid separation chamber 12 inside to the above-mentioned upper support base 20A. .. Specifically, the upper support base 20A is formed with the upper cylinder receiving portion 25 recessed upward from the lower surface, while the lower support base 20B is formed with the lower cylinder receiving portion recessed downward from the upper surface. The portion 26 is formed. The cross-sectional shapes of the upper cylinder receiving portion 25 and the lower cylinder receiving portion 26 are both circular and the same, and the inner peripheral surfaces of the upper cylinder receiving portion 25 and the lower cylinder receiving portion 26 are flush with each other. A communication hole 32 is opened on the ceiling surface of the upper cylinder receiving portion 25. The lower end of the communication hole 32 is a diameter-expanded portion 32A whose diameter is stepped from the upper portion thereof. Further, the upper surface of the partition wall 39 described above constitutes the lower surface of the lower cylinder receiving portion 26.
 これら上側筒受容部25及び下側筒受容部26の内側に図7に示される二重筒部品65が嵌合している。二重筒部品65は、樹脂(例えば、PPS)の一体発泡成形品であり、上側支持ベース20A及び下側支持ベース20B(図4参照)よりも熱伝導率が低くなっている。図7及び図8に示すように、二重筒部品65は、上側筒受容部25及び下側筒受容部26の内周面に当接する外筒部66と、外筒部66の内側に配された内筒部67と、外筒部66と内筒部67との間を連絡する円環板部68と、を有している。 The double cylinder component 65 shown in FIG. 7 is fitted inside the upper cylinder receiving portion 25 and the lower cylinder receiving portion 26. The double-cylinder component 65 is an integrally foam-molded product of resin (for example, PPS), and has a lower thermal conductivity than the upper support base 20A and the lower support base 20B (see FIG. 4). As shown in FIGS. 7 and 8, the double cylinder component 65 is arranged inside the outer cylinder portion 66 and the outer cylinder portion 66 that abuts on the inner peripheral surfaces of the upper cylinder receiving portion 25 and the lower cylinder receiving portion 26. It has an inner cylinder portion 67 and a ring plate portion 68 that connects the outer cylinder portion 66 and the inner cylinder portion 67.
 図4及び図8に示すように、外筒部66は、上側筒受容部25の天井面から下側筒受容部26の底面(区画壁39の上面)まで延びている。外筒部66の下端寄り位置には、シャッター部70Aのテーパー状の側面に対応したテーパー部66Aが形成され、外筒部66のうちテーパー部66Aの下方部分の内径が、外筒部66のうちテーパー部66Aの上方部分の内径よりも大きくなっている。また、外筒部66の外周面には、上側支持ベース20A及び下側支持ベース20Bとの間をそれぞれシールする2つのOリング66Rが取り付けられる2つの溝66Mが形成されている。 As shown in FIGS. 4 and 8, the outer cylinder portion 66 extends from the ceiling surface of the upper cylinder receiving portion 25 to the bottom surface of the lower cylinder receiving portion 26 (upper surface of the partition wall 39). A tapered portion 66A corresponding to the tapered side surface of the shutter portion 70A is formed at a position near the lower end of the outer cylinder portion 66, and the inner diameter of the lower portion of the outer cylinder portion 66 of the tapered portion 66A is the outer cylinder portion 66. Of these, it is larger than the inner diameter of the upper portion of the tapered portion 66A. Further, on the outer peripheral surface of the outer cylinder portion 66, two grooves 66M to which two O-rings 66R for sealing between the upper support base 20A and the lower support base 20B are formed are formed.
 内筒部67は、外筒部66の上端よりも上方位置から、外筒部66の下端よりも外筒部66の軸方向の長さの1/3程上方の位置まで延び、その下端開口がシャッター部70Aに上方から対向している。下方から見ると、内筒部67の下端開口の全体がシャッター部70Aにより覆われている。円環板部68は、外筒部66の上端と内筒部67の上端寄り位置との間を連絡し、上側筒受容部25の天井面に当接している。内筒部67のうち円環板部68より上方部分は、上側筒受容部25のうち連通孔32の拡径部32Aに受容される。また、内筒部67のうち円環板部68より下方部分は、上述した円筒体12Aをなしている。 The inner cylinder portion 67 extends from a position above the upper end of the outer cylinder portion 66 to a position approximately one-third above the axial length of the outer cylinder portion 66 from the lower end of the outer cylinder portion 66, and the lower end opening thereof. Is facing the shutter portion 70A from above. When viewed from below, the entire lower end opening of the inner cylinder portion 67 is covered by the shutter portion 70A. The annular plate portion 68 communicates between the upper end of the outer cylinder portion 66 and the position near the upper end of the inner cylinder portion 67, and is in contact with the ceiling surface of the upper cylinder receiving portion 25. The portion of the inner cylinder portion 67 above the annular plate portion 68 is received by the diameter-expanded portion 32A of the communication hole 32 of the upper cylinder receiving portion 25. Further, the portion of the inner cylinder portion 67 below the annular plate portion 68 forms the above-mentioned cylindrical body 12A.
 図3及び図9に示すように、本実施形態の統合弁10では、流入ポート13が、上側支持ベース20Aに貫通形成されたベース貫通部13Aと、二重筒部品65の外筒部66に設けられた筒貫通部13Bと、から構成にされている。上側支持ベース20Aのベース貫通部13Aは、断面円形状をなし、その開口縁は、外方へ向けて広がるテーパー状に形成されている。なお、図9は、統合弁10の平断面を下方から見た図である。なお、本開示において「円形」とは、正円だけでなく、正円から僅かに歪んだ形状を含むものである。 As shown in FIGS. 3 and 9, in the integrated valve 10 of the present embodiment, the inflow port 13 is formed through the base penetrating portion 13A formed through the upper support base 20A and the outer cylinder portion 66 of the double cylinder component 65. It is composed of a cylinder penetrating portion 13B provided. The base penetrating portion 13A of the upper support base 20A has a circular cross section, and its opening edge is formed in a tapered shape extending outward. Note that FIG. 9 is a view of the planosection of the integrated valve 10 as viewed from below. In the present disclosure, the term "circular" includes not only a perfect circle but also a shape slightly distorted from the perfect circle.
 次に、二重筒部品65の筒貫通部13Bについて詳説する。図10に示すように、外筒部66の上部には、外筒部66の内周面から内側に突出した流入ガイド突部69が一体形成されていて、この流入ガイド突部69及び外筒部66を貫通して筒貫通部13Bが設けられている。図8~図10に示すように、流入ガイド突部69は、円環板部68の下面から上側の溝66M近傍の高さまでの範囲に亘って形成されていて、外筒部66の内周面のうち、最右部よりも僅かに左後方の位置から左方に延びた第1面69Aと、第1面69Aの左端から、左後方へ湾曲しながら延び、外筒部66の内周面へ連絡した第2面69Bと、第1面69A及び第2面69Bの下端と外筒部66の内周面とを連絡する第3面69Cと、を有している。第2面69Bは、外筒部66の内周面の後端部付近から第1面69Aの左端まで曲率が大きくなりながら延びている。第1面69Aと内筒部67との間には、第1面69Aの左右方向の幅との略同じ長さ分の隙間が設けられている。 Next, the cylinder penetrating portion 13B of the double cylinder component 65 will be described in detail. As shown in FIG. 10, an inflow guide protrusion 69 projecting inward from the inner peripheral surface of the outer cylinder 66 is integrally formed on the upper portion of the outer cylinder 66, and the inflow guide protrusion 69 and the outer cylinder are integrally formed. A cylinder penetrating portion 13B is provided so as to penetrate the portion 66. As shown in FIGS. 8 to 10, the inflow guide protrusion 69 is formed over a range from the lower surface of the annular plate portion 68 to the height near the upper groove 66M, and is formed on the inner circumference of the outer cylinder portion 66. Of the surfaces, the first surface 69A extending to the left from the position slightly left rear of the rightmost portion, and the inner circumference of the outer cylinder portion 66 extending from the left end of the first surface 69A while curving to the left rear. It has a second surface 69B that communicates with the surface, and a third surface 69C that connects the lower ends of the first surface 69A and the second surface 69B and the inner peripheral surface of the outer cylinder portion 66. The second surface 69B extends from the vicinity of the rear end portion of the inner peripheral surface of the outer cylinder portion 66 to the left end of the first surface 69A while increasing the curvature. A gap of substantially the same length as the width of the first surface 69A in the left-right direction is provided between the first surface 69A and the inner cylinder portion 67.
 図9に示すように、筒貫通部13Bは、流入ガイド突部69の第1面69Aと外筒部66の外周面との間を前後方向に延びている。図8及び図9に示すように、筒貫通部13Bの断面形状は、長円形状になっていて、筒貫通部13Bは、幅方向(左右方向)で対向する第1対向面13B1及び第2対向面13B2を有している。図9に示すように、統合弁10の断面において、第1対向面13B1は、外筒部66の内周の最右端を通る架空の接線L(前後方向に延びる接線)より僅かに左方に位置し、第1面69Aの右端寄り位置から架空の接線Lと平行に延びている。第2対向面13B2は、第1面69Aの左端寄り位置から第1対向面13B1と平行に延びている。また、第2対向面13B2のうち、外筒部66の内周面よりも内側に突出している部分が、特許請求の範囲中の「流入ガイド部69R」に相当する。図7及び図8に示すように、筒貫通部13Bの断面形状は、長円形状になっている。また、図3に示すように、筒貫通部13Bは、開口縁の全体が外側から見てベース貫通部13Aにより露出している。 As shown in FIG. 9, the cylinder penetrating portion 13B extends in the front-rear direction between the first surface 69A of the inflow guide protrusion 69 and the outer peripheral surface of the outer cylinder portion 66. As shown in FIGS. 8 and 9, the cross-sectional shape of the cylinder penetrating portion 13B is an oval shape, and the cylinder penetrating portion 13B has a first facing surface 13B1 and a second facing surfaces facing each other in the width direction (left-right direction). It has a facing surface 13B2. As shown in FIG. 9, in the cross section of the integrated valve 10, the first facing surface 13B1 is slightly to the left of the fictitious tangent line L (tangent line extending in the front-rear direction) passing through the rightmost end of the inner circumference of the outer cylinder portion 66. It is located and extends parallel to the fictitious tangent L from the position near the right end of the first surface 69A. The second facing surface 13B2 extends parallel to the first facing surface 13B1 from a position near the left end of the first surface 69A. Further, the portion of the second facing surface 13B2 that protrudes inward from the inner peripheral surface of the outer cylinder portion 66 corresponds to the "inflow guide portion 69R" in the claims. As shown in FIGS. 7 and 8, the cross-sectional shape of the cylinder penetrating portion 13B is an oval shape. Further, as shown in FIG. 3, in the cylinder penetrating portion 13B, the entire opening edge is exposed by the base penetrating portion 13A when viewed from the outside.
 本実施形態の統合弁10の構造については、以上である。次に、統合弁10の作用効果について説明する。本実施形態の統合弁10によれば、気液分離室12の内周面12Bを有する外筒部66及び気相の冷媒が通過する円筒体12Aが樹脂により成形されているので、気液混合の冷媒が気液分離室12の内周面12Bを旋回する際や、液相の冷媒が気液分離室12の内周面12Bを伝う際、気相の冷媒が円筒体12Aを通過する際に、上側支持ベース20A及び下側支持ベース20Bを通して外部に伝わりにくくなり、熱効率が向上する。特に、本実施形態のように上側支持ベース20A及び下側支持ベース20Bが金属でできている場合にその効果がより顕著となる。 This is the above for the structure of the integrated valve 10 of this embodiment. Next, the action and effect of the integrated valve 10 will be described. According to the integrated valve 10 of the present embodiment, the outer cylinder portion 66 having the inner peripheral surface 12B of the gas-liquid separation chamber 12 and the cylindrical body 12A through which the refrigerant of the gas phase passes are formed of resin, so that gas-liquid mixing is performed. When the refrigerant of the gas-liquid separation chamber 12 swirls around the inner peripheral surface 12B of the gas-liquid separation chamber 12, when the refrigerant of the liquid phase travels through the inner peripheral surface 12B of the gas-liquid separation chamber 12, and when the refrigerant of the gas phase passes through the cylindrical body 12A. In addition, it becomes difficult to transmit to the outside through the upper support base 20A and the lower support base 20B, and the thermal efficiency is improved. In particular, when the upper support base 20A and the lower support base 20B are made of metal as in the present embodiment, the effect becomes more remarkable.
 また、流入ポート13の一部を構成し、気液混合の冷媒を気液分離室12へ流入させる筒貫通部13Bの第1対向面13B1が気液分離室12の内周面12Bの接線近傍に、その接線と平行に延びているので、流入する冷媒を気液分離室12の内周面12Bに沿わせやすくすることができる。また、筒貫通部13Bの断面形状が長円状になっているので、径方向の幅が小さくなり、より多くの冷媒を気液分離室12の内周面12Bに沿わせやすくしつつ、冷媒の流量を確保することができる。さらに、流入ポート13を、筒貫通部13Bとベース貫通部13Aとから構成することで、金属製の上側支持ベース20Aに形成する孔(ベース貫通部13A)を、断面円形にすることができ、断面長円形にするよりもバリの発生を防ぐことができる。 Further, the first facing surface 13B1 of the cylinder penetrating portion 13B, which constitutes a part of the inflow port 13 and allows the gas-liquid mixed refrigerant to flow into the gas-liquid separation chamber 12, is near the tangent line of the inner peripheral surface 12B of the gas-liquid separation chamber 12. In addition, since it extends parallel to the tangent line, it is possible to make it easier for the inflowing refrigerant to follow the inner peripheral surface 12B of the gas-liquid separation chamber 12. Further, since the cross-sectional shape of the cylinder penetrating portion 13B is oval, the width in the radial direction becomes small, and the refrigerant can be easily applied along the inner peripheral surface 12B of the gas-liquid separation chamber 12. Flow rate can be secured. Further, by forming the inflow port 13 from the cylinder penetrating portion 13B and the base penetrating portion 13A, the hole (base penetrating portion 13A) formed in the metal upper support base 20A can be made circular in cross section. It is possible to prevent the occurrence of burrs rather than making the cross section oval.
 また、本実施形態の統合弁10では、外筒部66の筒貫通部13Bに、気液分離室12の内周面12Bより内側に突出した流入ガイド部69Rが設けられているので、筒貫通部13Bから流入した冷媒を気液分離室12の内周面12Bにより沿わせやすくなる。また、流入ガイド突部69の第2面69Bが湾曲しているので、流入ガイド突部69と気液分離室12の内周面12Bとの間が角ばっている構成よりも冷媒の旋回の妨げになりにくい。なお、気液混合の冷媒が流入ポート13から流入して1周するまでの間に、液相の冷媒が概ね内周面に捉えられる構成(流入ガイド突部の突出量や上下方向の長さ等)であることが好ましい。 Further, in the integrated valve 10 of the present embodiment, the cylinder penetrating portion 13B of the outer cylinder portion 66 is provided with an inflow guide portion 69R protruding inward from the inner peripheral surface 12B of the gas-liquid separation chamber 12, so that the cylinder penetrating portion 69R is provided. The inner peripheral surface 12B of the gas-liquid separation chamber 12 makes it easier for the refrigerant flowing in from the portion 13B to follow. Further, since the second surface 69B of the inflow guide protrusion 69 is curved, the refrigerant swirls more than the configuration in which the space between the inflow guide protrusion 69 and the inner peripheral surface 12B of the gas-liquid separation chamber 12 is angular. It is hard to get in the way. It should be noted that the liquid-phase refrigerant is generally captured on the inner peripheral surface until the gas-liquid mixed refrigerant flows in from the inflow port 13 and makes one round (the amount of protrusion of the inflow guide protrusion and the length in the vertical direction). Etc.).
[第2実施形態]
 図11から図14には、第2実施形態の統合弁10Wが示されている。図10に示すように、本実施形態の統合弁10Wは、シャッター部材周辺の構成が上記第1実施形態の統合弁10と異なっている。以下、上記第1実施形態と同じ構成の部位については同じ符号を付して説明は省略し、異なる点に関してのみ説明する。
[Second Embodiment]
11 to 14 show the integrated valve 10W of the second embodiment. As shown in FIG. 10, the integrated valve 10W of the present embodiment has a different configuration around the shutter member from the integrated valve 10 of the first embodiment. Hereinafter, the parts having the same configuration as that of the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and only the different points will be described.
 図12に示すように、本実施形態のシャッター部材70Wは、円板状のシャッター部70Aと、シャッター部70Aの外縁部に、放射状に(シャッター部70Aの外周を3等分する位置に)配された3本の脚部70Cと、を備えてなる。図13に示すように、脚部70Cは、帯板状をなし、シャッター部70Aの外縁から外方へ向かいながら下方へ延びた第1帯部70Dと、第1帯部70Dの端部からU字状に折り返されて、外方へ向かいながら上方へ延びた第2帯部70Eと、シャッター部70Aより板厚1~2枚分下の位置で、第2帯部70Eから水平外方へ折れ曲がり、水平に延びた第3帯部70Fと、を有している。 As shown in FIG. 12, the shutter member 70W of the present embodiment is radially arranged (at a position where the outer circumference of the shutter portion 70A is divided into three equal parts) on the disc-shaped shutter portion 70A and the outer edge portion of the shutter portion 70A. It is provided with three legs 70C and the like. As shown in FIG. 13, the leg portion 70C has a strip-shaped shape, and the first band portion 70D extending downward from the outer edge of the shutter portion 70A while extending outward, and the U from the end of the first band portion 70D. The second band 70E, which is folded back in a shape and extends upward while facing outward, and one or two sheets below the shutter 70A, bend horizontally outward from the second band 70E. It has a third band portion 70F extending horizontally.
 図11に示すように、シャッター部材70Wは、上側ボディ11Aと下側ボディ11Bとの間に挟持されている。以下、詳細を説明する。本実施形態の統合弁10Wは、第1実施形態の二重筒部品65を有しておらず、上側ボディ11Aの上側支持ベース20Aに、下面から上方へ陥没した第1凹部20Fと、第1凹部20Fの開口縁から下方へ突出した円筒部20Gとが形成される一方、下側ボディ11Bの下側支持ベース20Bに、上面から下方へ陥没した第2凹部20Hが形成されていて、上側支持ベース20Aの円筒部20Gが下側支持ベース20Bの第2凹部20Hに嵌合することで、その内部に気液分離室12が構成されている。 As shown in FIG. 11, the shutter member 70W is sandwiched between the upper body 11A and the lower body 11B. The details will be described below. The integrated valve 10W of the present embodiment does not have the double cylinder component 65 of the first embodiment, and has a first recess 20F recessed upward from the lower surface and a first recess 20F in the upper support base 20A of the upper body 11A. A cylindrical portion 20G protruding downward from the opening edge of the recess 20F is formed, while a second recess 20H recessed downward from the upper surface is formed on the lower support base 20B of the lower body 11B to support the upper side. By fitting the cylindrical portion 20G of the base 20A into the second recess 20H of the lower support base 20B, a gas-liquid separation chamber 12 is formed inside the cylindrical portion 20G.
 円筒部20Gの下端と、下側支持ベース20Bの第2凹部20Hの底面(区画壁39の上面)との間には隙間があり、この隙間にシャッター部材70Wの脚部70Cが配されている。このとき、図14に示すように、脚部70Cにおける第1帯部70Dと第2帯部70Eとの間の折り返し部70Gが下側支持ベース20Bの第2凹部20Hの底面に当接し、第3帯部70Fが円筒部20Gの下端に当接することで、シャッター部材70Wが上下方向で抜け止めされる。また、脚部70Cが、帯板を折り曲げた形状になっているので、シャッター部70Aの水平方向で弾性変形し、水平方向の移動や回転が規制される。 There is a gap between the lower end of the cylindrical portion 20G and the bottom surface (upper surface of the partition wall 39) of the second recess 20H of the lower support base 20B, and the leg portion 70C of the shutter member 70W is arranged in this gap. .. At this time, as shown in FIG. 14, the folded-back portion 70G between the first band portion 70D and the second band portion 70E in the leg portion 70C abuts on the bottom surface of the second recess 20H of the lower support base 20B, and the second When the three-band portion 70F comes into contact with the lower end of the cylindrical portion 20G, the shutter member 70W is prevented from coming off in the vertical direction. Further, since the leg portion 70C has a shape in which the strip plate is bent, the shutter portion 70A is elastically deformed in the horizontal direction, and the movement and rotation in the horizontal direction are restricted.
 また、上記実施形態では、連通孔34がシャッター部材70の挿入バー70Bを避けて2つ設けられていたが、本実施形態の統合弁10Wでは、気液分離室12の中心軸上に1つのみ設けられ、連通孔34の開口全体がシャッター部70Aに下方から対向している。即ち、連通孔34の開口全体がシャッター部70Aに上方から覆われている。また、上記第1実施形態と同様に、気液分離室12の下端開口の全体もシャッター部70Aに上方から対向している。なお、本実施形態の気液分離室12は、樹脂やアルミ等により成形され、上側支持ベース20Aにカシメ固定されている。 Further, in the above embodiment, two communication holes 34 are provided avoiding the insertion bar 70B of the shutter member 70, but in the integrated valve 10W of the present embodiment, one communication hole 34 is provided on the central axis of the gas-liquid separation chamber 12. The entire opening of the communication hole 34 faces the shutter portion 70A from below. That is, the entire opening of the communication hole 34 is covered with the shutter portion 70A from above. Further, similarly to the first embodiment, the entire lower end opening of the gas-liquid separation chamber 12 also faces the shutter portion 70A from above. The gas-liquid separation chamber 12 of the present embodiment is molded of resin, aluminum, or the like, and is caulked and fixed to the upper support base 20A.
 本実施形態の統合弁10Wの構成は以上である。次に、統合弁10Wの作用効果について説明する。本実施形態の統合弁10Wによれば、シャッター部材70Wが上側ボディ11Aと下側ボディ11Bとの間に挟持される構成なので、シャッター部材を圧入により取り付けていた従来よりも寸法公差を大きくすることができ、加工が容易となる。また、下側支持ベース20Bの第2凹部20H内にシャッター部材70Wを載置した後、上側支持ベース20Aを上から取り付けることでシャッター部材70Wを組み付けることができるので、シャッター部材70Wの組み付けも容易になる。さらに、シャッター部材70Wの外縁部が保持されるため、連通孔34を中央に配することが可能となり、シャッター部70Aにより連通孔34の開口全体を覆わせることができ、気液分離室12内(特に、円筒体12Aの下端部)を汚れにくくすることができる。 This completes the configuration of the integrated valve 10W of this embodiment. Next, the action and effect of the integrated valve 10W will be described. According to the integrated valve 10W of the present embodiment, the shutter member 70W is sandwiched between the upper body 11A and the lower body 11B, so that the dimensional tolerance is larger than that in the conventional case in which the shutter member is press-fitted. And easy to process. Further, since the shutter member 70W can be assembled by mounting the shutter member 70W in the second recess 20H of the lower support base 20B and then attaching the upper support base 20A from above, the shutter member 70W can be easily assembled. become. Further, since the outer edge portion of the shutter member 70W is held, the communication hole 34 can be arranged in the center, and the entire opening of the communication hole 34 can be covered by the shutter portion 70A, and the inside of the gas-liquid separation chamber 12 can be covered. (In particular, the lower end of the cylindrical body 12A) can be made less likely to get dirty.
 [他の実施形態]
 (1)上記第1実施形態において、図15~図17に示すように、筒貫通部13B内に、長手方向に並んだ複数の整流板13B3を設けた構成であってもよい。
[Other Embodiments]
(1) In the first embodiment, as shown in FIGS. 15 to 17, a plurality of straightening vanes 13B3 arranged in the longitudinal direction may be provided in the cylinder penetrating portion 13B.
 (2)また、図18及び図19に示すように、その整流板13B3が、内側に向かうにつれて下方へ傾斜した構成であってもよい。この場合、冷媒を旋回させながらスムーズに下方へ誘導することができる。図18及び図19に示す例では、筒貫通部13B自体も傾斜しており、冷媒をよりスムーズに下方へ誘導することができる。なお、筒貫通部13Bは水平に延びていてもよい。 (2) Further, as shown in FIGS. 18 and 19, the straightening vane 13B3 may be configured to be inclined downward as it goes inward. In this case, the refrigerant can be smoothly guided downward while swirling. In the examples shown in FIGS. 18 and 19, the cylinder penetrating portion 13B itself is also inclined, and the refrigerant can be guided downward more smoothly. The cylinder penetrating portion 13B may extend horizontally.
 (3)さらに、図20~図22に示すように、流入ガイド突部69の突出量が下方へ向かうにつれて小さくなった構成であってもよい。この場合、筒貫通部13Bから流入して旋回する冷媒が流入ガイド突部69により気液分離室12の内周面12Bから離れて内側に寄ってしまうことを抑えることができる。 (3) Further, as shown in FIGS. 20 to 22, the inflow guide protrusion 69 may have a configuration in which the amount of protrusion decreases as it goes downward. In this case, it is possible to prevent the refrigerant flowing from the cylinder penetrating portion 13B and swirling from being separated from the inner peripheral surface 12B of the gas-liquid separation chamber 12 by the inflow guide protrusion 69 and moving inward.
 (4)上記第1実施形態において、図23に示すように、二重筒部品65に回転規制突部65Tを設け、上側支持ベース20Aに、回転規制突部65Tを受容する受容凹部20Uを設けてもよい。この場合、回転規制突部65Tと受容凹部20Uとが凹凸係合することで、二重筒部品65の回転が規制され、筒貫通部13Bとベース貫通部13Aとがずれることが防がれる。また、二重筒部品65の回転による騒音の発生も防がれる。 (4) In the first embodiment, as shown in FIG. 23, the double cylinder component 65 is provided with a rotation restricting protrusion 65T, and the upper support base 20A is provided with a receiving recess 20U for receiving the rotation regulating protrusion 65T. You may. In this case, the rotation-regulating protrusion 65T and the receiving recess 20U engage with each other in a concavo-convex manner, so that the rotation of the double-cylinder component 65 is restricted and the cylinder penetrating portion 13B and the base penetrating portion 13A are prevented from being displaced. In addition, the generation of noise due to the rotation of the double cylinder component 65 can be prevented.
 (5)上記第1実施形態では、筒貫通部13Bが長円形状であったが、これに限られるものではなく、楕円形状であってもよいし、長方形状であってもよいし、円形の孔を上下方向に複数並べた構成であってもよい。 (5) In the first embodiment, the cylinder penetrating portion 13B has an oval shape, but the present invention is not limited to this, and it may be an elliptical shape, a rectangular shape, or a circular shape. A plurality of holes may be arranged in the vertical direction.
 (6)上記第1実施形態では、二重筒部品65と上側支持ベース20Aとの間、及び、二重筒部品65と下側支持ベース20Bとの間が別個のOリング66Rでシールされていたが、例えば、上側支持ベース20Aと下側支持ベース20Bとの境界部分に対応する位置に溝66Mを設けたり、上側支持ベース20Aの上側筒受容部25又は下側支持ベース20Bの下側筒受容部26の開口縁に切欠きを設け、1つのOリング66Rで両方の支持ベース20A,20Bとの間をシールする構成であってもよい。なお、後者のように、Oリング66R用の溝(切り欠き)を、二重筒部品65ではなく、上側支持ベース20A又は下側支持ベース20Bに配すると、樹脂製の二重筒部品65にパーティングラインが発生しないため、より確実にシールすることができる。 (6) In the first embodiment, the double cylinder component 65 and the upper support base 20A and the double cylinder component 65 and the lower support base 20B are sealed with separate O-rings 66R. However, for example, a groove 66M may be provided at a position corresponding to the boundary between the upper support base 20A and the lower support base 20B, or the upper cylinder receiving portion 25 of the upper support base 20A or the lower cylinder of the lower support base 20B may be provided. A notch may be provided at the opening edge of the receiving portion 26, and one O-ring 66R may be configured to seal between the two support bases 20A and 20B. If the groove (notch) for the O-ring 66R is arranged not in the double cylinder part 65 but in the upper support base 20A or the lower support base 20B as in the latter, the resin double cylinder part 65 is formed. Since no parting line is generated, it is possible to seal more reliably.
 (7)上記第1実施形態では、二重筒部品65と上側及び下側の支持ベース20A,20Bとの間をシールしているのがOリングであったが、ガスケットであってもよい。また、Oリング又はガスケットを8の字状とし、二重筒部品65と導入路部材19Aとを共に囲む構成であってもよい。 (7) In the first embodiment, the O-ring seals between the double-cylinder component 65 and the upper and lower support bases 20A and 20B, but a gasket may also be used. Further, the O-ring or the gasket may have a figure eight shape and may be configured to surround the double cylinder component 65 and the introduction path member 19A together.
 (8)上記第1実施形態では、筒貫通部13Bの第1対向面13B1が気液分離室12の内周面12Bの接線からずれた位置に配されていたが、気液分離室12の内周面12Bの接線上に配されていてもよい。また、第1対向面13B1が、気液分離室12の内周面12Bの接線に対して傾斜していてもよいし、第1対向面13B1と第2対向面13B2とが内側に向かうにつれて幅狭になるように傾斜していてもよい。 (8) In the first embodiment, the first facing surface 13B1 of the cylinder penetrating portion 13B is arranged at a position deviated from the tangent line of the inner peripheral surface 12B of the gas-liquid separation chamber 12, but the gas-liquid separation chamber 12 It may be arranged on the tangent line of the inner peripheral surface 12B. Further, the first facing surface 13B1 may be inclined with respect to the tangent line of the inner peripheral surface 12B of the gas-liquid separation chamber 12, and the width of the first facing surface 13B1 and the second facing surface 13B2 becomes wider toward the inside. It may be inclined so as to be narrow.
 (9)上記第2実施形態では、連通孔34が1つであったが、複数設けられていてもよい。この場合であっても、複数の連通孔34の開口全体が、シャッター部70Aに上方から覆われていることが好ましい。なお、連通孔34に、シャッター部70Aに覆われていない部分が含まれる構成であってもよい。 (9) In the second embodiment, the number of communication holes 34 is one, but a plurality of communication holes 34 may be provided. Even in this case, it is preferable that the entire opening of the plurality of communication holes 34 is covered with the shutter portion 70A from above. The communication hole 34 may include a portion not covered by the shutter portion 70A.
 (10)上記第2実施形態では、シャッター部材70Wの脚部70Cが、帯板を折り曲げて構成されていたが、帯板を水平方向に張り出した構成であってもよい。この場合、下側支持ベース20Bの第2凹部20Hに、上側支持ベース20Aの円筒部20Gの下端部と協働して脚部70Cを挟持する当接部を設ける必要がある。また、シャッター部材70Wが、円板の外縁寄り位置に複数の貫通孔を有する構成であってもよい。 (10) In the second embodiment, the leg portion 70C of the shutter member 70W is configured by bending the strip plate, but the strip plate may be overhanging in the horizontal direction. In this case, it is necessary to provide a contact portion for sandwiching the leg portion 70C in the second recess 20H of the lower support base 20B in cooperation with the lower end portion of the cylindrical portion 20G of the upper support base 20A. Further, the shutter member 70W may have a plurality of through holes at positions near the outer edge of the disk.
 (11)上記第2実施形態において、シャッター部材70Wの回転止めを備えた構成であってもよい。例えば、図24に示すように、シャッター部材70Wに、規制バー72に挿通される挿通孔70Sを有する回転止め脚部70Kを設ける構成であってもよい。 (11) In the second embodiment, the shutter member 70W may be provided with a rotation stopper. For example, as shown in FIG. 24, the shutter member 70W may be provided with a rotation stop leg 70K having an insertion hole 70S to be inserted into the regulation bar 72.
 (12)図25に示すように、上記第1実施形態の二重筒部品65と上記第2実施形態のシャッター部材70Wとを両方有する構成であってもよい。この場合、二重筒部品65の下端と区画壁39の上面との間にクリアランスを設け、その間にシャッター部材70Wが挟持されることとなる。二重筒部品65は、同図に示すように、シャッター部材70Wの脚部70Cにより上下方向で位置決めされる構成であってもよいし、位置決め用のフランジ等を外筒部66に形成する構成であってもよい。 (12) As shown in FIG. 25, the configuration may include both the double cylinder component 65 of the first embodiment and the shutter member 70W of the second embodiment. In this case, a clearance is provided between the lower end of the double cylinder component 65 and the upper surface of the partition wall 39, and the shutter member 70W is sandwiched between them. As shown in the figure, the double cylinder component 65 may be positioned in the vertical direction by the legs 70C of the shutter member 70W, or a positioning flange or the like may be formed on the outer cylinder portion 66. It may be.
 10,10W  統合弁
 11  ボディ
 11A  上側ボディ
 11B  下側ボディ
 12  気液分離室
 12A  円筒体
 12B  内周面
 13  流入ポート
 13B  筒貫通部
 20A  上側支持ベース
 20B  下側支持ベース
 34  連通孔
 39  区画壁
 65  二重筒部品
 66  外筒部
 67  内筒部
 69  流入ガイド突部
 70,70W  シャッター部材
 70A  シャッター部
 70C  脚部
 80  ヒートポンプサイクル
10,10W integrated valve 11 body 11A upper body 11B lower body 12 gas-liquid separation chamber 12A cylindrical body 12B inner peripheral surface 13 inflow port 13B cylinder penetration 20A upper support base 20B lower support base 34 communication hole 39 partition wall 65 Heavy cylinder parts 66 Outer cylinder part 67 Inner cylinder part 69 Inflow guide protrusion 70, 70W Shutter member 70A Shutter part 70C Leg part 80 Heat pump cycle

Claims (10)

  1.  室内コンデンサと室外エバポレータとコンプレッサとを有するヒートポンプサイクルに組み込まれ、前記室内コンデンサから流入する気液混合の冷媒を気液分離室の内周面に沿って旋回させて気液分離し、かつ、分離された液相の冷媒を前記室外エバポレータへ流出する第1状態と、分離された気相の冷媒を前記コンプレッサへ流出する第2状態と、に切り替え可能な統合弁において、
     前記気液分離室の内部に配され、分離された気相の冷媒を前記気液分離室から流出させる気相冷媒流出パイプと、
     前記気相冷媒流出パイプと、筒状であり、その内周面が前記気液分離室の前記内周面をなす外筒部と、前記気相冷媒流出パイプと前記外筒部との間を連絡する連絡板部と、が樹脂により一体成形された二重筒部品と、を備える統合弁。
    It is incorporated in a heat pump cycle having an indoor condenser, an outdoor evaporator, and a compressor, and the gas-liquid mixed refrigerant flowing from the indoor condenser is swirled along the inner peripheral surface of the gas-liquid separation chamber to separate and separate the gas and liquid. In the integrated valve that can be switched between the first state in which the liquid phase refrigerant is discharged to the outdoor evaporator and the second state in which the separated gas phase refrigerant is discharged to the compressor.
    A gas-phase refrigerant outflow pipe arranged inside the gas-liquid separation chamber and allowing the separated gas-phase refrigerant to flow out of the gas-liquid separation chamber.
    Between the gas-phase refrigerant outflow pipe and the outer cylinder portion which is tubular and whose inner peripheral surface forms the inner peripheral surface of the gas-liquid separation chamber, and between the gas-phase refrigerant outflow pipe and the outer cylinder portion. An integrated valve including a contact plate portion for communication and a double-cylinder component integrally molded with resin.
  2.  前記二重筒部品を軸方向で挟み、統合弁の使用時に上下に並ぶ金属製の上側及び下側の支持ベースと、
     前記二重筒部品の前記外筒部と前記上側又は下側の支持ベースとにそれぞれ形成され、互いに連通し、気液混合の冷媒を前記気液分離室内に取り込む外筒貫通孔及びベース貫通孔と、
     前記外筒貫通孔の内面に設けられ、前記気液分離室の前記内周面の接線上に延びる又は前記接線寄り位置に前記接線と平行に延びる第1対向部と、
     前記外筒貫通孔の内面に設けられ、前記第1対向部より内側で前記第1対向部に対向する第2対向部と、を備える請求項1に記載の統合弁。
    The double-cylinder parts are sandwiched in the axial direction, and the metal upper and lower support bases that line up vertically when the integrated valve is used, and the support bases on the upper and lower sides.
    An outer cylinder through hole and a base through hole formed in the outer cylinder portion of the double cylinder component and the upper or lower support base, respectively, communicating with each other and taking in the gas-liquid mixing refrigerant into the gas-liquid separation chamber. When,
    A first facing portion provided on the inner surface of the outer cylinder through hole and extending on the tangent line of the inner peripheral surface of the gas-liquid separation chamber or extending in parallel with the tangent line at a position near the tangent line.
    The integrated valve according to claim 1, further comprising a second facing portion that is provided on the inner surface of the outer cylinder through hole and faces the first facing portion inside the first facing portion.
  3.  前記外筒貫通孔の断面形状は、前記気液分離室の軸方向に長くなっていて、前記ベース貫通孔の断面形状は、外側から見て前記外筒貫通孔の全体を露出させる円形になっている請求項2に記載の統合弁。 The cross-sectional shape of the outer cylinder through hole is elongated in the axial direction of the gas-liquid separation chamber, and the cross-sectional shape of the base through hole is a circle that exposes the entire outer cylinder through hole when viewed from the outside. The integrated valve according to claim 2.
  4.  前記外筒貫通孔には、前記第1対向部と前記第2対向部との間を連絡し、前記外筒貫通孔の長手方向に並んだ複数の整流板が配されている請求項3に記載の統合弁。 According to claim 3, a plurality of straightening vanes are arranged in the outer cylinder through hole so as to communicate between the first facing portion and the second facing portion and arranged in the longitudinal direction of the outer cylinder through hole. The integrated valve described.
  5.  前記整流板は、前記気液分離室に向かうにつれ下方へ傾斜している請求項4に記載の統合弁。 The integrated valve according to claim 4, wherein the straightening vane is inclined downward toward the gas-liquid separation chamber.
  6.  第2対向部は、前記外筒部の筒壁を貫通する部分から内側に延長された流入ガイド部を有している請求項2から5の何れか1の請求項に記載の統合弁。 The integrated valve according to any one of claims 2 to 5, wherein the second facing portion has an inflow guide portion extending inward from a portion penetrating the cylinder wall of the outer cylinder portion.
  7.  前記外筒部に、前記気液分離室の前記内周面より内側に突出して設けられ、前記流入ガイド部と、前記流入ガイド部の内側端部から、前記第1対向部と反対側へ湾曲して延び、前記気液分離室の前記内周面に連絡する湾曲面と、を有する流入ガイド突部を備える請求項6に記載の統合弁。 The outer cylinder portion is provided so as to project inward from the inner peripheral surface of the gas-liquid separation chamber, and is curved from the inflow guide portion and the inner end portion of the inflow guide portion to the side opposite to the first facing portion. The integrated valve according to claim 6, further comprising an inflow guide protrusion having a curved surface that extends and contacts the inner peripheral surface of the gas-liquid separation chamber.
  8.  前記流入ガイド突部は、下方へ向かうにつれて前記気液分離室の前記内周面からの突出量が小さくなっている請求項7に記載の統合弁。 The integrated valve according to claim 7, wherein the inflow guide protrusion has a smaller amount of protrusion from the inner peripheral surface of the gas-liquid separation chamber as it goes downward.
  9.  前記外筒貫通孔は、内側に向かうにつれ下方へ傾斜している請求項2から8の何れか1の請求項に記載の統合弁。 The integrated valve according to claim 1, wherein the outer cylinder through hole is inclined downward as it goes inward.
  10.  前記二重筒部品の前記外筒部は円筒状をなし、
     前記二重筒部品と前記上側又は下側の支持ベースとには、凹凸係合して前記二重筒部品の回転を規制する係合部が形成されている請求項2から9の何れか1の請求項に記載の統合弁。
    The outer cylinder portion of the double cylinder component has a cylindrical shape.
    Any one of claims 2 to 9 in which an engaging portion that engages with the double-cylinder component and the upper or lower support base in an uneven manner to regulate the rotation of the double-cylinder component is formed. The integrated valve according to the claim.
PCT/JP2019/043069 2019-11-01 2019-11-01 Integrated valve WO2021084740A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020530530A JP7157809B2 (en) 2019-11-01 2019-11-01 integrated valve
PCT/JP2019/043069 WO2021084740A1 (en) 2019-11-01 2019-11-01 Integrated valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/043069 WO2021084740A1 (en) 2019-11-01 2019-11-01 Integrated valve

Publications (1)

Publication Number Publication Date
WO2021084740A1 true WO2021084740A1 (en) 2021-05-06

Family

ID=75716098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043069 WO2021084740A1 (en) 2019-11-01 2019-11-01 Integrated valve

Country Status (2)

Country Link
JP (1) JP7157809B2 (en)
WO (1) WO2021084740A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53163348U (en) * 1977-05-30 1978-12-21
JP2002061993A (en) * 2000-08-21 2002-02-28 Mitsubishi Electric Corp Oil separator and outdoor unit
JP2003336588A (en) * 2002-03-12 2003-11-28 Matsushita Electric Ind Co Ltd Compressor
JP2011094946A (en) * 2009-09-30 2011-05-12 Daikin Industries Ltd Gas refrigerant separator, gas refrigerant separator-cum-refrigerant flow divider, expansion valve, and refrigeration device
JP2014196880A (en) * 2013-03-29 2014-10-16 株式会社デンソー Integrated valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53163348U (en) * 1977-05-30 1978-12-21
JP2002061993A (en) * 2000-08-21 2002-02-28 Mitsubishi Electric Corp Oil separator and outdoor unit
JP2003336588A (en) * 2002-03-12 2003-11-28 Matsushita Electric Ind Co Ltd Compressor
JP2011094946A (en) * 2009-09-30 2011-05-12 Daikin Industries Ltd Gas refrigerant separator, gas refrigerant separator-cum-refrigerant flow divider, expansion valve, and refrigeration device
JP2014196880A (en) * 2013-03-29 2014-10-16 株式会社デンソー Integrated valve

Also Published As

Publication number Publication date
JP7157809B2 (en) 2022-10-20
JPWO2021084740A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
EP3018434B1 (en) Electromagnetic valve
JP5906372B2 (en) Control valve
KR101930347B1 (en) Suction dampening device with internal dampening for vehicle air conditioning compressor
WO2002014724A1 (en) Motor-operated selector valve and refrigerating cycle device for refrigerator-freezer
KR101856001B1 (en) Rotary compressor with vapor injection system
US20130330177A1 (en) Suction arrangement for a refrigeration compressor
CN118565117A (en) Gas-liquid separation device
WO2021084740A1 (en) Integrated valve
WO2021084741A1 (en) Integrated valve
JP2018044483A (en) Axial vane type compressor
JP5626260B2 (en) Vane type compressor
CN109964090B (en) Liquid storage device
JP7139446B2 (en) integrated valve
JP2018193884A (en) Control valve
WO2014083441A1 (en) Cartridge (extractable) valve to be mounted in a coolant pump discharge with an improved seal between the valve and the pump casing
JP2014074472A (en) Control valve for variable displacement compressor
JP2016191354A (en) Check valve and gas compressor with check valve
KR100874435B1 (en) Motorized valve
JP6026368B2 (en) valve
JP5611115B2 (en) Gas compressor
KR101692871B1 (en) Expansion valve for an air-conditioner of a vehicle
JP2024537007A (en) Scroll Compressor
JP2024032336A (en) compressor
JP2015017552A (en) Gas compressor
JP2006200555A (en) Channel selector valve and air-conditioner

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020530530

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951172

Country of ref document: EP

Kind code of ref document: A1