JP2008025349A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2008025349A
JP2008025349A JP2006195258A JP2006195258A JP2008025349A JP 2008025349 A JP2008025349 A JP 2008025349A JP 2006195258 A JP2006195258 A JP 2006195258A JP 2006195258 A JP2006195258 A JP 2006195258A JP 2008025349 A JP2008025349 A JP 2008025349A
Authority
JP
Japan
Prior art keywords
compressor
chamber
separation chamber
hole
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006195258A
Other languages
Japanese (ja)
Inventor
Maki Shimoyama
真樹 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006195258A priority Critical patent/JP2008025349A/en
Publication of JP2008025349A publication Critical patent/JP2008025349A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent lubricating oil separation efficiency in a separation chamber at the time of high speed rotation of a compressor since the reliability and durability of the compressor is damaged due to a reduced amount of lubricating oil (OCR) at the time of high speed rotation regarding OCR in an air-conditioning system. <P>SOLUTION: The separation chamber 51 has two columnar space sections in which an introduced air body is whirled, and introductory holes 53 are provided on respective columnar space sections. When a flow velocity of coolant gas becomes fast at the time of high speed rotation of the compressor by communication between a high pressure chamber 14 and separation chamber 51, the coolant gas led to an oil storage chamber 52 through a second re-introductory hole 56 is again led to the separation chamber 51 through a first re-introductory hole 55, and is discharged into the air-conditioning system through a gas discharge outlet 57. Therefore, the reliability and durability of the compressor can be improved so that the OCR does not become too low at the time of high speed rotation of the compressor. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車空調装置などに用いられる圧縮機に関するものである。   The present invention relates to a compressor used in an automobile air conditioner or the like.

従来、この種の圧縮機においては、圧縮機構摺動部を潤滑する潤滑油の一部が圧縮された流体と共に圧縮機から吐出され、冷凍・空調サイクル中を循環することとなる。流体と共に吐出される潤滑油の量がサイクル中に多く吐出されるほどシステム効率(熱効率)が低下する。また、冷媒ガス中に混ざった潤滑油を利用してベーンやロータ等の圧縮機の摺動部を潤滑していることは従来からよく知られている。   Conventionally, in this type of compressor, part of the lubricating oil that lubricates the sliding portion of the compression mechanism is discharged from the compressor together with the compressed fluid and circulates in the refrigeration / air conditioning cycle. The system efficiency (thermal efficiency) decreases as the amount of lubricating oil discharged along with the fluid increases in the cycle. In addition, it has been well known that lubricating parts mixed in refrigerant gas are used to lubricate sliding portions of compressors such as vanes and rotors.

かかる事情から、システム効率の向上を図るため、圧縮機構により圧縮された流体から、そこに含まれる潤滑油を極力分離した後、該流体を冷凍サイクル中に吐出するようにしている。そのような例として、圧縮機構の吐出側に、圧縮された流体から潤滑油を分離する遠心分離式の分離室を設けた圧縮機が公知となっている(例えば、特許文献1参照)。   For this reason, in order to improve the system efficiency, the lubricating oil contained therein is separated as much as possible from the fluid compressed by the compression mechanism, and then the fluid is discharged into the refrigeration cycle. As such an example, a compressor in which a centrifugal separation chamber that separates lubricating oil from a compressed fluid is provided on the discharge side of the compression mechanism is known (for example, see Patent Document 1).

かかる圧縮機では、圧縮機構により圧縮され潤滑油を含む高圧の冷媒ガスが遠心分離式の分離室に導かれ、略円柱状の分離室内を旋回し、旋回による遠心力により冷媒ガスに含まれるミスト状の潤滑油が分離室内壁に接触することで冷媒ガスから分離されるようになっている。   In such a compressor, a high-pressure refrigerant gas compressed by a compression mechanism and containing lubricating oil is guided to a centrifugal separation chamber, swirls in a substantially cylindrical separation chamber, and mist contained in the refrigerant gas by centrifugal force due to swirling. The lubricating oil is separated from the refrigerant gas by contacting the separation chamber wall.

図4は、特許文献1に記載された従来の圧縮機を示すものである。図4に示すように、シリンダ101と、前部側板106と、後部側板107と、高圧ケース112と、駆動軸105と、ベーン104と、高圧室114と、分離室151と、導入孔153と、排油孔154と、貯油室152と、連通路(再導入孔)157から構成されている。
特開2003−336588号公報
FIG. 4 shows a conventional compressor described in Patent Document 1. In FIG. As shown in FIG. 4, the cylinder 101, the front side plate 106, the rear side plate 107, the high pressure case 112, the drive shaft 105, the vane 104, the high pressure chamber 114, the separation chamber 151, and the introduction hole 153 The oil drain hole 154, the oil storage chamber 152, and the communication path (reintroduction hole) 157 are configured.
JP 2003-336588 A

しかしながら、前記従来の構成では、圧縮機の低速運転時及び高速運転時においても潤滑油の分離効率が良いため、高速運転時に冷凍サイクル中に吐出される冷媒ガス中の潤滑油量が若干不足気味となるという課題を有していた。   However, in the conventional configuration, since the separation efficiency of the lubricating oil is good even when the compressor is operating at a low speed and a high speed, the amount of the lubricating oil in the refrigerant gas discharged during the refrigeration cycle during the high speed operation is slightly insufficient. Had the problem of becoming.

一般的に、圧縮機の高速運転時では空調システムの冷房能力は十分に確保されている場合が多く、このような場合には潤滑油の分離効率を向上させることよりも、意図的に分離室での高圧冷媒ガスに混ざった潤滑油を分離する効率(以後分離効率という)を低下させることにより、冷凍サイクル中を循環する潤滑油を増加させ、圧縮機の信頼性をさらに高めることが望まれる。また、最近は軽量化への要求が大きくあり、圧縮機では要素部品の軽量化はさながら、圧縮機の回転数を上げて空調システムの能力を確保する方向のため、最近では高速回転仕様の圧縮機が望まれている。   In general, the cooling capacity of the air conditioning system is often sufficiently secured during high-speed operation of the compressor. In such a case, the separation chamber is intentionally used rather than improving the separation efficiency of the lubricating oil. It is desired to increase the lubricating oil circulating in the refrigeration cycle and further improve the reliability of the compressor by lowering the efficiency of separating the lubricating oil mixed with the high-pressure refrigerant gas in the factory (hereinafter referred to as separation efficiency) . Recently, there is a great demand for weight reduction, and in order to secure the capacity of the air-conditioning system by increasing the rotation speed of the compressor, the compression of high-speed rotation specifications has recently been made. A machine is desired.

本発明は、前記従来の課題を解決するもので、圧縮機の運転速度により冷凍サイクル中の冷媒中の潤滑油量を考慮し、信頼性・耐久性を向上とする圧縮機を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and provides a compressor that improves the reliability and durability in consideration of the amount of lubricating oil in the refrigerant in the refrigeration cycle according to the operating speed of the compressor. Objective.

前記従来の課題を解決するために、本発明の圧縮機は、貯油室と分離室を連通する再導入孔を略円筒状分離室の円周内周面に開口する第一の再導入孔と、円筒状分離室の円周内
周面より貯油室に前記流体が入り込む方向に開口する第二の再導入孔を設けたものである。
In order to solve the above-described conventional problems, the compressor of the present invention includes a first reintroduction hole that opens a reintroduction hole that communicates between the oil storage chamber and the separation chamber to a circumferential inner circumferential surface of the substantially cylindrical separation chamber; A second reintroduction hole is provided that opens from the circumferential inner peripheral surface of the cylindrical separation chamber into the oil storage chamber in the direction in which the fluid enters.

これによって、第二の再導入孔より高圧冷媒ガスが貯油室に入り込み貯油面が乱され第一の再導入孔より潤滑油が押し出されることになるため分離効率が低下し、冷凍サイクル中の潤滑油量が増えることになるため、圧縮機の信頼性・耐久性は向上することになる。   As a result, the high-pressure refrigerant gas enters the oil storage chamber from the second reintroduction hole, disturbs the oil storage surface, and pushes out the lubricating oil from the first reintroduction hole. Since the amount of oil increases, the reliability and durability of the compressor will be improved.

また、第二の再導入孔の断面積の大きさを変えることで、分離効率を変えられるため、圧縮機の種類・特性に合わせ、冷凍サイクル中に必要な潤滑油量にすることが可能となる。   Also, since the separation efficiency can be changed by changing the size of the cross-sectional area of the second reintroduction hole, the amount of lubricating oil required during the refrigeration cycle can be adjusted according to the type and characteristics of the compressor. Become.

本発明の圧縮機は、空調システムの能力を十分確保しながら、圧縮機の高速運転時の課題である冷媒ガス中の潤滑油量不足を解決し信頼性・耐久性を向上することができる。   The compressor of the present invention can solve the shortage of lubricating oil in the refrigerant gas, which is a problem at the time of high-speed operation of the compressor, and improve the reliability and durability while sufficiently securing the capacity of the air conditioning system.

第1の発明は、前記導入孔は前記略円筒状分離室の円周内周面の接線方向に連通し、前記再導入孔は前記貯油室から前記略円筒状分離室の円周内周面に開口する第一の再導入孔と、前記略円筒状分離室の円周内周面より貯油室に前記流体が入り込む方向に開口する第二の再導入孔を設けることにより、圧縮機の高速運転時、分離室での分離効率が若干低下し、冷凍サイクル中に吐出する潤滑油量が増えることになり、高速運転時の課題である冷媒ガス中の潤滑油量不足を解決し、信頼性・耐久性を向上することができる。   In the first invention, the introduction hole communicates in a tangential direction of the circumferential inner circumferential surface of the substantially cylindrical separation chamber, and the reintroduction hole extends from the oil storage chamber to the circumferential inner circumferential surface of the substantially cylindrical separation chamber. And a second reintroduction hole that opens in a direction in which the fluid enters the oil storage chamber from the circumferential inner circumferential surface of the substantially cylindrical separation chamber. During operation, the separation efficiency in the separation chamber is slightly reduced, and the amount of lubricating oil discharged during the refrigeration cycle is increased, which solves the lack of lubricating oil in refrigerant gas, which is a problem during high-speed operation, and is reliable -Durability can be improved.

第2の発明は、第二の再導入孔の断面積の大きさを変えることにより、貯油室へ入り込む高圧冷媒ガスの量が変わり分離室での分離効率が変わることになり、冷凍サイクル中に必要な潤滑油量を変えることが可能となる。これによって、開発するシステムごと、あるいはコンプレッサの排気量、種類によって調整することが可能となる。   In the second invention, by changing the size of the cross-sectional area of the second reintroduction hole, the amount of high-pressure refrigerant gas entering the oil storage chamber is changed, and the separation efficiency in the separation chamber is changed. It becomes possible to change the required amount of lubricating oil. This makes it possible to make adjustments for each system to be developed, or for the displacement and type of compressor.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本出願にかかる発明の一部が適用された圧縮機の縦断面図であり、図2は図1のA−A断面図(作動室断面図)である。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a compressor to which a part of the invention according to the present application is applied, and FIG. 2 is an AA sectional view (working chamber sectional view) of FIG.

同図に示した圧縮機は、いわゆるベーンロータリタイプの圧縮機であり、図示したように、円筒状の内壁を有するシリンダ1内に略円柱状のロータ2が配置されている。ロータ2はその外周の一部がシリンダ1の内壁と微少隙間を形成する位置に配置されている。ロータ2には複数のべ一ンスロット3が設けられ、それぞれのべ一ンスロット3内にはベーン4が摺動自在に挿入されている。ロータ2は回転自在に軸支された駆動軸5と一体的に形成されている。   The compressor shown in the figure is a so-called vane rotary type compressor, and as illustrated, a substantially columnar rotor 2 is disposed in a cylinder 1 having a cylindrical inner wall. The rotor 2 is disposed at a position where a part of the outer periphery forms a minute gap with the inner wall of the cylinder 1. The rotor 2 is provided with a plurality of vane slots 3, and vanes 4 are slidably inserted into the vane slots 3. The rotor 2 is formed integrally with a drive shaft 5 that is rotatably supported.

前記シリンダ1及びロータ2はロータ2の回転軸方向において前部側板6及び後部側板7の間に挟み込まれており、シリンダ1の両端はこれらにより閉塞され、シリンダ内に流体圧縮のための作動室8が形成されている。   The cylinder 1 and the rotor 2 are sandwiched between the front side plate 6 and the rear side plate 7 in the rotation axis direction of the rotor 2, and both ends of the cylinder 1 are closed by these, and a working chamber for fluid compression in the cylinder. 8 is formed.

前記作動室8には吸入口9及び吐出口10が連通し、冷媒ガス等の気流体は吸入口9から作動室8に吸入されて圧縮された後、吐出口10から吐出される。吐出口10の出口には、例えばリード弁からなる吐出弁11が配設されている。   A suction port 9 and a discharge port 10 communicate with the working chamber 8, and a gas fluid such as a refrigerant gas is sucked into the working chamber 8 from the suction port 9 and compressed and then discharged from the discharge port 10. A discharge valve 11 made of, for example, a reed valve is disposed at the outlet of the discharge port 10.

前記後部側板7の後部側には高圧ケース12が取り付けられており、高圧ケース12には作動室8にて圧縮された冷媒ガスに含まれるミスト状の潤滑油を分離、収集する分離室51が設けられている。   A high pressure case 12 is attached to the rear side of the rear side plate 7, and the high pressure case 12 has a separation chamber 51 that separates and collects mist-like lubricating oil contained in the refrigerant gas compressed in the working chamber 8. Is provided.

前記作動室8にて圧縮され、吐出口10から吐出された気流体はシリンダ1、後部側板7及び高圧ケース12に連続して設けられた案内通路13により案内され、分離室51の側壁に形成された導入孔53を介して高圧室14より分離室51内に導入される。前記分離室51の上部には、分離室51にて潤滑油が分離された冷媒ガスを冷凍サイクル中に排気するガス排出口57が開口し、分離室51の下部には分離室51にて冷媒ガスから分離、収集された潤滑油が貯油室52に排出される排油孔55を開口している。   The gas fluid compressed in the working chamber 8 and discharged from the discharge port 10 is guided by the guide passage 13 continuously provided in the cylinder 1, the rear side plate 7 and the high pressure case 12, and formed on the side wall of the separation chamber 51. It is introduced into the separation chamber 51 from the high-pressure chamber 14 through the introduced introduction hole 53. A gas discharge port 57 for exhausting the refrigerant gas from which the lubricating oil has been separated in the separation chamber 51 into the refrigeration cycle is opened at the upper portion of the separation chamber 51. An oil drain hole 55 through which lubricating oil separated and collected from the gas is discharged to the oil storage chamber 52 is opened.

前記分離室51からガス排出口57を介して排出される冷媒ガスは、冷凍サイクルを循環し、やがて上述した吸入口9に帰還し、再び圧縮されて前述のサイクルを循環する。分離室51下部に開口した排油孔55は高圧ケース12及び後部側板7の相互間に形成された貯油室52に連通する。従って、分離室にて冷媒ガスから分離、収集された潤滑油は、排油孔55を通じて貯油室52に貯留される。   The refrigerant gas discharged from the separation chamber 51 through the gas discharge port 57 circulates in the refrigeration cycle, eventually returns to the suction port 9 described above, is compressed again, and circulates in the aforementioned cycle. The oil drain hole 55 opened at the lower part of the separation chamber 51 communicates with an oil storage chamber 52 formed between the high pressure case 12 and the rear side plate 7. Therefore, the lubricating oil separated and collected from the refrigerant gas in the separation chamber is stored in the oil storage chamber 52 through the oil drain hole 55.

前記貯油室52に貯留された潤滑油は、給油通路17を介して圧縮機構を構成するロータ2、ベーン4、シリンダ1内壁等に供給され各部を潤滑すると共に、ベーン背圧室16に供給され、その圧力によりベーン4をロータ2の外側へ付勢する働きをする。潤滑油の給油は、貯油室52から圧縮機構に潤滑油を供給する給油通路17を介して行われ、給油通路17にはベーン背圧調整装置15を介して貯油室52に貯留されている潤滑油が供給される。ベーン背圧調整装置15は圧縮機構へ供給する潤滑油の給油圧力や給油量を圧縮機構周辺の冷媒ガス圧力に応じて制御する。貯油室52内上部に溜まったガスを第一の再導入孔55を介して再度分離室52内に導入する。   The lubricating oil stored in the oil storage chamber 52 is supplied to the rotor 2, the vane 4, the inner wall of the cylinder 1, and the like constituting the compression mechanism via the oil supply passage 17, lubricates each part, and is supplied to the vane back pressure chamber 16. The pressure acts to urge the vane 4 to the outside of the rotor 2. Lubricating oil is supplied through an oil supply passage 17 for supplying the lubricating oil from the oil storage chamber 52 to the compression mechanism, and the lubricating oil stored in the oil storage chamber 52 through the vane back pressure adjusting device 15 is supplied to the oil supply passage 17. Oil is supplied. The vane back pressure adjusting device 15 controls the oil supply pressure and the amount of oil supplied to the compression mechanism according to the refrigerant gas pressure around the compression mechanism. The gas accumulated in the upper part of the oil storage chamber 52 is introduced again into the separation chamber 52 through the first reintroduction hole 55.

これによって、貯油室52内の油面上昇が促進され、分離能力の向上を図ることができる。   Thereby, the oil level rise in the oil storage chamber 52 is promoted, and the separation ability can be improved.

また第二の再導入孔56からは、高圧冷媒の旋回流が分離室51から貯油室52に入ってくる。これによって、貯油室52の上部に溜まったガスと第二の再導入孔56から貯油室に導入された高圧冷媒ガスが再度分離室52内に導入されガス排出孔57からサイクル中に吐出されるため分離室での分離効率が低下する。   In addition, the swirling flow of the high-pressure refrigerant enters the oil storage chamber 52 from the separation chamber 51 from the second reintroduction hole 56. As a result, the gas accumulated in the upper portion of the oil storage chamber 52 and the high-pressure refrigerant gas introduced into the oil storage chamber from the second reintroduction hole 56 are again introduced into the separation chamber 52 and discharged from the gas discharge hole 57 during the cycle. Therefore, the separation efficiency in the separation chamber is reduced.

以下、上述した実施例にかかる圧縮機の動作について説明する。   Hereinafter, the operation of the compressor according to the above-described embodiment will be described.

車載エンジンなどの駆動源から動力伝達を受けて駆動軸5及びロータ2が、図2において時計方向に回転すると、これに伴い低圧の冷媒ガスが吸入口9より作動室8内に流入する。ロータ2の回転に伴い圧縮された高圧の冷媒ガスは吐出口10より吐出弁11を押し上げて案内通路13内に流入する。更に、高圧の冷媒ガスは導入孔53を通り分離室51内に導入され、分離室51にて冷媒ガスに含まれる潤滑油が分離、収集される。   When power is transmitted from a drive source such as an in-vehicle engine and the drive shaft 5 and the rotor 2 rotate clockwise in FIG. 2, a low-pressure refrigerant gas flows into the working chamber 8 from the suction port 9 accordingly. The high-pressure refrigerant gas compressed with the rotation of the rotor 2 pushes up the discharge valve 11 from the discharge port 10 and flows into the guide passage 13. Further, the high-pressure refrigerant gas is introduced into the separation chamber 51 through the introduction hole 53, and the lubricating oil contained in the refrigerant gas is separated and collected in the separation chamber 51.

ところで、前記分離室51はいわゆる遠心分離式のオイルセパレータであり、図1に示したように、互いに結合された円柱状空間部Xと逆円錐状空間部Yとから構成される。導入孔53は、分離室51の円柱状空間部Xの中心軸から偏心して設けられ、分離室51内に導入される冷媒ガスを円柱状空間部Xの接線方向に導くように、すなわち、冷媒ガスを円柱状空間部Xの内周面50に沿って分離室51内に導入し得るように設けられている。   By the way, the separation chamber 51 is a so-called centrifugal oil separator, and is composed of a cylindrical space portion X and an inverted conical space portion Y which are coupled to each other as shown in FIG. The introduction hole 53 is provided eccentrically from the central axis of the cylindrical space portion X of the separation chamber 51 so as to guide the refrigerant gas introduced into the separation chamber 51 in the tangential direction of the cylindrical space portion X, that is, the refrigerant It is provided so that gas can be introduced into the separation chamber 51 along the inner peripheral surface 50 of the cylindrical space portion X.

従って、分離室51内に導入された冷媒ガスは分離室51内で周方向に旋回し、旋回による遠心力の働きにより比重の大きい潤滑油が分離室51内壁に接触して冷媒ガスから分
離される。分離された潤滑油は内周面50に沿って下方に移動し、逆円錐状空間部Yにより中央部に凝集される。
Accordingly, the refrigerant gas introduced into the separation chamber 51 rotates in the circumferential direction in the separation chamber 51, and the lubricating oil having a large specific gravity comes into contact with the inner wall of the separation chamber 51 and is separated from the refrigerant gas due to the centrifugal force caused by the rotation. The The separated lubricating oil moves downward along the inner peripheral surface 50 and is aggregated in the central portion by the inverted conical space portion Y.

ここで、一般的に冷凍サイクル中の潤滑油循環率(OCR)は、圧縮機回転数に対して前述したように次のような特性が望まれる。まず車両の車速が低速から中速域においては、すなわち圧縮機回転数が低速域から中速域においてはOCRが低く、次に車両の車速が高速域の場合は、すなわち圧縮機回転数が高速域においてはOCRが比較的高いことが望まれる。   Here, generally, the lubricating oil circulation rate (OCR) in the refrigeration cycle is desired to have the following characteristics as described above with respect to the rotational speed of the compressor. First, when the vehicle speed is low to medium speed, that is, when the compressor speed is low to medium speed, the OCR is low. Next, when the vehicle speed is high speed, the compressor speed is high. It is desired that the OCR is relatively high in the region.

本実施の形態では、図1に示すように柱状の分離室51を2つにし、ガス排出口57に近い分離室51の柱状部を径で1ミリ程度大きくしている。導入孔の大きさは、圧縮機圧縮機の排気量により違うが、圧縮機の排気量が80cc程度では、導入孔53の大きさをφ6.5ぐらいにし、排油孔をφ4.0、第一再導入孔55をφ3.5で第二の再導入孔56はφ1.0ほどがいい。   In the present embodiment, as shown in FIG. 1, two columnar separation chambers 51 are provided, and the columnar portion of the separation chamber 51 close to the gas discharge port 57 is enlarged by about 1 mm in diameter. The size of the introduction hole differs depending on the displacement of the compressor, but when the displacement of the compressor is about 80 cc, the introduction hole 53 is about φ6.5, the oil discharge hole is φ4.0, One reintroduction hole 55 is preferably φ3.5 and the second reintroduction hole 56 is preferably about φ1.0.

但し、導入孔の大きさは、空調システム、圧縮機の排気量等で最適な大きさが変わるので、たとえ排気量が同じでも空調システムにより最適な大きさが同じとは言えないので実験等で確認し設定する必要がある。   However, since the optimum size of the introduction hole varies depending on the air conditioning system and the displacement of the compressor, the optimal size cannot be said to be the same depending on the air conditioning system even if the displacement is the same. It is necessary to confirm and set.

これによって、第二の再導入孔56貯油室52の上部に溜まったガスが再度分離室52内に導入されガス排出孔57からサイクル中に吐出されるため分離室での分離効率が低下することになりOCRが高くなる。従って圧縮機の低速回転時、すなわち高圧冷媒ガスの旋回流の流速が小さいほど分離効率の低下への影響は少なく、高速になればなるほど影響があるので、圧縮機が高速になるほどOCRが高くなることになる。   As a result, the gas accumulated in the upper portion of the second reintroduction hole 56 oil storage chamber 52 is again introduced into the separation chamber 52 and discharged from the gas discharge hole 57 during the cycle, so that the separation efficiency in the separation chamber decreases. And OCR increases. Therefore, the lower the rotation speed of the compressor, that is, the smaller the flow velocity of the swirling flow of the high-pressure refrigerant gas, the less the effect on the reduction in separation efficiency, and the higher the speed, the greater the effect. It will be.

従って、圧縮機の高速運転時では空調システムの冷房能力は十分に確保されているためOCRを必要以上に低くすることは無く、むしろ圧縮機の高速回転時にはOCRを少し高くすることにより信頼性が向上することになる。   Therefore, since the cooling capacity of the air conditioning system is sufficiently secured during high-speed operation of the compressor, the OCR is not lowered more than necessary. Rather, the reliability is improved by slightly increasing the OCR during high-speed rotation of the compressor. Will improve.

なお、上述の実施の形態では、圧縮機としてベーン型ロータリ圧縮機を例に説明したが、本発明はこれに限定されるものではなくローリングピストン型、スクロール型等その他の圧縮機にも適用可能である。   In the above-described embodiment, the vane type rotary compressor is described as an example of the compressor. However, the present invention is not limited to this and can be applied to other compressors such as a rolling piston type and a scroll type. It is.

本発明の一部が適用された実施の形態を示す圧縮機の縦断面図The longitudinal cross-sectional view of the compressor which shows embodiment to which a part of this invention was applied 図1のA−A断面図AA sectional view of FIG. 図1のB−B断面図BB sectional view of FIG. 従来例の圧縮機の断面図Sectional view of a conventional compressor

符号の説明Explanation of symbols

1 シリンダ
2 ロ一夕
3 ベーンスロット
4 ベーン
5 駆動軸
6 前部側板
7 後部側板
8 作動室
9 吸入口
10 吐出口
11 吐出弁
12 高圧ケース
13 案内通路
14 高圧室
15 ベーン背圧調整装置
16 ベーン背圧室
17 給油通路
50 内周面
51 分離室
52 貯油室
53 導入孔
54 排油孔
55 第一の再導入孔
56 第二の再導入孔
57 ガス排出口
DESCRIPTION OF SYMBOLS 1 Cylinder 2 Rollover 3 Vane slot 4 Vane 5 Drive shaft 6 Front side plate 7 Rear side plate 8 Working chamber 9 Suction port 10 Discharge port 11 Discharge valve 12 High pressure case 13 Guide passage 14 High pressure chamber 15 Vane back pressure adjustment device 16 Vane Back pressure chamber 17 Oil supply passage 50 Inner peripheral surface 51 Separation chamber 52 Oil storage chamber 53 Introduction hole 54 Oil drain hole 55 First reintroduction hole 56 Second reintroduction hole 57 Gas exhaust port

Claims (2)

潤滑油を含む流体を圧縮する圧縮機構と、前記圧縮機構により圧縮された前記流体が導かれる吐出室と、前記流体に含まれる潤滑油の一部を分離する略円筒状分離室と、前記流体から分離された潤滑油が貯えられる貯油室を備え、前記吐出室と前記略円筒状分離室を連通する導入孔と、前記分離室と前記貯油室を連通する排出孔と、前記貯油室と前記分離室を連通する再導入孔を備えた圧縮機において、前記導入孔は前記略円筒状分離室の円周内周面の接線方向に連通し、前記再導入孔は前記貯油室から前記略円筒状分離室の円周内周面に開口する第一の再導入孔と、前記略円筒状分離室の円周内周面より貯油室に前記流体が入り込む方向に開口する第二の再導入孔を備えることを特徴とする圧縮機。 A compression mechanism for compressing a fluid containing lubricating oil; a discharge chamber into which the fluid compressed by the compression mechanism is guided; a substantially cylindrical separation chamber for separating a part of the lubricating oil contained in the fluid; and the fluid An oil storage chamber for storing the lubricating oil separated from the discharge chamber, an introduction hole that communicates the discharge chamber and the substantially cylindrical separation chamber, a discharge hole that communicates the separation chamber and the oil storage chamber, the oil storage chamber, and the In the compressor having a reintroduction hole that communicates with the separation chamber, the introduction hole communicates with a tangential direction of a circumferential inner peripheral surface of the substantially cylindrical separation chamber, and the reintroduction hole extends from the oil storage chamber to the substantially cylindrical shape. A first reintroduction hole that opens to the circumferential inner circumferential surface of the cylindrical separation chamber, and a second reintroduction hole that opens in the direction in which the fluid enters the oil storage chamber from the circumferential inner circumferential surface of the substantially cylindrical separation chamber A compressor comprising: 前記第二の再導入孔は前記第一の再導入孔より断面積を小さくしたことを特徴とする請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the second reintroduction hole has a smaller cross-sectional area than the first reintroduction hole.
JP2006195258A 2006-07-18 2006-07-18 Compressor Pending JP2008025349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195258A JP2008025349A (en) 2006-07-18 2006-07-18 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195258A JP2008025349A (en) 2006-07-18 2006-07-18 Compressor

Publications (1)

Publication Number Publication Date
JP2008025349A true JP2008025349A (en) 2008-02-07

Family

ID=39116262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195258A Pending JP2008025349A (en) 2006-07-18 2006-07-18 Compressor

Country Status (1)

Country Link
JP (1) JP2008025349A (en)

Similar Documents

Publication Publication Date Title
JP4788746B2 (en) Compressor
US7186099B2 (en) Inclined scroll machine having a special oil sump
JP4218373B2 (en) Compressor
KR100964495B1 (en) A scroll compressor having driving shaft of oil separating type
JP2009221960A (en) Compressor
JP4013554B2 (en) Compressor
JP2008014174A (en) Compressor
JP2005083234A (en) Compressor
JP2019056322A (en) Compressor
JP2008025349A (en) Compressor
JP5222420B2 (en) Gas compressor
JP2007309282A (en) Compressor
JP2005054745A (en) Compressor
JP2008075619A (en) Compressor
JP2008157174A (en) Variable displacement gas compressor
JP2006291732A (en) Compressor
JP2006329102A (en) Compressor
JP2005325735A (en) Compressor
JP2006037895A (en) Compressor
KR100724377B1 (en) Apparatus for reducing oil discharge of high pressure scroll compressor
JP4378970B2 (en) Compressor
JP2005054714A (en) Compressor
JP2005054713A (en) Compressor
JP2005307897A (en) Compressor
JP2008267212A (en) Compressor