JP4409185B2 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP4409185B2
JP4409185B2 JP2003042848A JP2003042848A JP4409185B2 JP 4409185 B2 JP4409185 B2 JP 4409185B2 JP 2003042848 A JP2003042848 A JP 2003042848A JP 2003042848 A JP2003042848 A JP 2003042848A JP 4409185 B2 JP4409185 B2 JP 4409185B2
Authority
JP
Japan
Prior art keywords
pressure chamber
lubricating oil
wall
compressor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003042848A
Other languages
Japanese (ja)
Other versions
JP2004251209A (en
Inventor
清澄 草野
隆博 葉瀬垣
剛 荒木
徹 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003042848A priority Critical patent/JP4409185B2/en
Publication of JP2004251209A publication Critical patent/JP2004251209A/en
Application granted granted Critical
Publication of JP4409185B2 publication Critical patent/JP4409185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、気流体の圧縮を行う圧縮機に関するもので、たとえば自動車用空調装置などに用いられる圧縮機に関するものである。
【0002】
【従来の技術】
従来のベーン型圧縮機においては、高圧室内に貯油部が設けられており、起動直後を除く通常運転時にはベーン背圧付与装置もしくはそれに準じる機構を使用して、高圧室貯油部に貯まった潤滑油をベーン背圧部に供給することによってベーンをロータから押し出す働きと、シリンダ、ベーン、ロータ等の潤滑を行っている(例えば特許文献1および2参照)。
【0003】
このような圧縮機においては、圧縮された気流体と共に圧縮機潤滑油の一部が常に冷凍サイクル中へ排出する構成となっている。
【0004】
【特許文献1】
特開昭62−58082号公報(第3−4頁、第1−2図)
【0005】
【特許文献2】
特開昭56−107992号公報(第2−3頁、第2図)
【0006】
【発明が解決しようとする課題】
ところで上記圧縮機においては、高圧室貯油部に貯えられる潤滑油は最低でも油面が潤滑油供給開口位置より高くなることが必要である。
【0007】
高圧室貯油部に貯えられた潤滑油面は圧縮された気流体の流れによって常に波立ち状態、泡立ち状態にある。
【0008】
そのため、波立ち、泡立ちが大きい場合には、その潤滑油の一部が圧縮された気流体の流れに巻き込まれ、圧縮機のガス排出口から冷凍サイクル中へ吐出され、高圧室貯油部の潤滑油量が減少する。
【0009】
これらの要因で本来潤滑油のみを供給すべき潤滑油供給口から気体(ガス)成分が圧縮機の潤滑部に混入する。このガス成分が混入すると、ベーン背圧部に供給される潤滑油の圧力が不安定になり、ベーンのジャンプ現象が発生し、ベーンとシリンダの衝突による圧縮機の振動・騒音問題が発生する。また、ジャンプ現象によりベーン先端磨耗が大きくなり耐久性・信頼性が低下する。
【0010】
特に、圧縮機のガス排出口を略水平方向に設ける場合は、貯油部の潤滑油面とガス排出口が近くなるため貯油部の潤滑油は空調装置のシステムサイクル中に排出され易くなる。また車輌においては、山道・路面の状態により車輌が傾くため、圧縮機が通常の状態より傾くことがあり、高圧室貯油部の潤滑油が空調装置のシステムサイクル中への排出される量がさらに多くなり空調装置のシステム効率が悪くなる。また高圧室貯油部の潤滑油量が減少するため、圧縮機の焼き付き問題、ベーンの磨耗、騒音問題が起こり信頼性・耐久性が低下する。
【0011】
本発明は、上述の従来の課題に鑑み、簡単な構成によって高圧室貯油部に貯えられた潤滑油面の波立ち・泡立ち防止と貯油量の減少を抑制する構造を持つ圧縮機を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記課題を達成するために、本発明による圧縮機においては圧縮機の高圧室内に潤滑油表面と略平行になるように略L字形の波立防止壁を形成し、この波立防止壁の水平方向の面積が波立防止壁位置での高圧室内側横断面積の20〜50%に設定するとともに、前記波立防止壁をガス排出口開口部の鉛直下方であって当該ガス排出口開口部が設けられた側の高圧室壁面に前記ガス排出口開口部の幅寸法よりも縦幅及び横幅ともに大きく突出させて設ける構成にし、波立防止壁の位置を空調システムの標準状態において、貯油部の潤滑油面とほぼ同一面位置としたものである。
【0013】
空調システムの標準状態で貯油部の潤滑面より波立防止壁が上方にある場合は、標準状態での潤滑油面の平準化抑制できないので、波立防止壁の位置・断面積は、圧縮機の構造・構成・用途により波立防止位置を設定するとよい。
【0014】
このように設定した波立防止壁は、高圧室貯油部に貯えられた潤滑油面の波立ち・泡立ちを抑制し、波立ち・泡だった潤滑油の一部が気流体の流れに巻き込まれて空調装置のシステムサイクル中へ排出されることも抑制する。また、貯油部の潤滑油量の減少も抑制することができる。
【0015】
これにより、ベーン背圧部に供給される潤滑油の中にガス成分の混入が抑制され、ベーン背圧部の圧力を安定するため、圧縮機の振動・騒音の発生を防止することができる。また、ベーン先端の磨耗を抑制し圧縮機の耐久性が向上させることができる。
【0016】
また、この波立防止壁を潤滑油面から高圧室内のガス排出口開口部へ向かう壁面に沿った流れを遮るように形成することにより、高圧室貯油部に貯えられた潤滑油の一部が圧縮機外部に排出されることをさらに抑制することができる。
【0017】
【発明の実施の形態】
(実施の形態1)
以下、本発明の実施の形態1について図面を参照しながら説明する。図1〜図4において、1は円筒内壁を有するシリンダ、2はその外周の一部がシリンダ1内壁と微少隙間を形成するロータ、3はロータ2に設けられた複数のべ一ンスロット内に摺動自在に挿入された複数のベーン、4はロータ2と一体的に形成され回転自在に軸支される駆動軸、5及び6はそれぞれシリンダ1の両端を閉塞して内部に作動室を形成する前部側板及び後部側板、7は高圧側の作動室から圧縮した流体を吐出する吐出孔、8は吐出孔に配設された吐出弁、9は圧縮された流体を高圧室10へ導く高圧通路、11は高圧室10を形成する高圧ケース、整流壁21はこの高圧ケース11に一体成型されている。
【0018】
12は圧縮された流体を高圧室10から空調装置のシステムサイクルに排出するガス排出口、13はベーン背圧付与装置、14はベーン背圧付与装置13の下部に設けられた潤滑油供給口、15はゴミ・細かい金属の破片の流入を防止するストレーナ、16は給油路、17はベーン背圧部で、ベーン背圧付与装置13によって、高圧室10下部の貯油部10aに貯まった潤滑油を潤滑油供給口14から給油路16を通じてベーン背圧部17に供給している。
【0019】
エンジンなどの駆動源より動力伝達を受けて駆動軸4及びロータ2が回転すると、圧縮された高圧流体は吐出孔7より吐出弁8を押し上げて高圧通路9より高圧室10内に流入し、高圧ケースに設けられたガス排出口12より圧縮機外部へ排出される。この時、高圧室10上部で分離された潤滑油は、高圧室貯油部10aに滴下し貯えられる。
【0020】
波立防止壁21は、高圧通路9からガス排出口12に向かう流体を平準化することで、高圧室貯油部10aに貯えられた潤滑油の波立ち・泡立ちを抑制すると共に、高圧室貯油部10aに貯えられた潤滑油の一部が再度流体の流れに乗って圧縮機外部へ排出されることを抑制し、図5に示すように貯油量の減少を抑制することができる。これにより、ベーン背圧付与装置13の潤滑油供給口14から圧縮機構に安定して潤滑油を供給することができる。
【0021】
また、ベーン背圧部へガス成分を含まない潤滑油が供給されることでベーン背圧が安定し、ベーンの往復摺動運動が安定し図6に示すように圧縮機の騒音・振動の発生を防止することができると共に信頼性の向上を図ることができる。
【0022】
さらに、この波立防止壁21を潤滑油面から高圧室10内のガス排出口開口12へ向かう壁面に沿った流れを遮るように形成しているので、高圧室貯油部10aに貯えられた潤滑油の一部が圧縮機外部に排出されることをさらに抑制することができる。
【0023】
そして、波立防止壁21の断面積が、その波立防止壁21形成位置での高圧室10内側横断面積に対して20〜50%の場合、上記効果が得られることを確認した。20%より小さい場合潤滑油の波立ち・泡立ちを抑制する効果が小さくなる場合があり、50%を越えると潤滑油供給口14の配置自由度に支障が出るとともに貯油部10aへの潤滑油戻りがスムーズに行えない場合が生じる。
【0024】
なお、波立防止壁21は高圧室貯油部10aの波立ち・泡立ちを抑制するため、その波立防止壁21を設ける位置は、冷凍サイクル内潤滑油の全量を高圧室貯油部10aに封入した場合の油面高さよりも下方にする。
【0025】
(実施の形態2)
本発明の実施の形態2は、図7に示すように、ガス排出口12が貯油部に近い場合である。波立防止壁21をガス排出口12の近辺下部に形成したことを特徴とする。整流壁の幅aはガス排出口のb寸法より大きくした方が効果的である場合もあり、ケースバイケースでその寸法は変える。
【0026】
実施の形態2では実施の形態1と同様の効果を得ると共に、高圧室貯油部10aに溜まっている潤滑油や圧縮機で圧縮された速い気体流れによる高圧貯油部の潤滑油面の乱れ・泡立った一部の潤滑油をガス排出口12から排出されるのを抑制する効果がある。特に車両においては、山道・路面形状により車両が傾いたりジャンプしたりするため、貯油部に溜まっている潤滑油がガス排出口12から排出されるのを抑制する大きな効果が得ることができる。
【0027】
【発明の効果】
以上説明したように、本発明の圧縮機における整流壁により、高圧室貯油部に貯えられた潤滑油面の波立ち・泡立ちの発生や圧縮機から空調装置のシステムサイクル中への潤滑油の吐出を抑制し、圧縮機構に安定して潤滑油を供給することができるようになるため、圧縮機構の潤滑不良による焼き付き等、圧縮機の耐久性の低下を防止することができる。
【0028】
また、ベーン背圧部へガス成分を含まない潤滑油が供給されることでベーン背圧が安定し、ベーンの往復摺動運動が安定することにより、圧縮機の騒音・振動の発生を防止することができると共に信頼性の向上を図ることができる。
【0029】
また、高圧室内に波立防止壁を追加構成しているため、圧縮機の外形寸法を変える必要が無い。さらに、整流壁と高圧ケースを一体成型できるように構成しているため、組み立て工数低減を図ることができ、生産性の向上及び圧縮機の製造原価低減を図ることができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1を示す圧縮機の横断面図
【図2】 同圧縮機の高圧通路側から見た高圧ケースの正面図
【図3】 同圧縮機の高圧ケース断面図
【図4】 図2のA−A断面図
【図5】 同圧縮機の特性を示すグラフ
【図6】 同圧縮機の特性を示す波形図
【図7】 本発明の実施の形態2における圧縮機の要部正面図
【図8】 図7のA−A断面図
【図9】 図7のB−B断面図
【符号の説明】
1 シリンダ
2 ロー他
3 ベーン
4 駆動軸
5 前部側板
6 後部側板
7 吐出孔
8 吐出弁
9 高圧通路
10 高圧室
10a 高圧室貯油部
11 高圧ケース
12 ガス排出口
13 ベーン背圧付与装置
14 潤滑油供給口
15 ストレーナ
16 給油路
17 ベーン背圧部
21 波立防止壁
21a 波立防止壁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a compressor that compresses a gas fluid, and relates to a compressor that is used, for example, in an air conditioner for an automobile.
[0002]
[Prior art]
In conventional vane type compressors, an oil storage section is provided in the high pressure chamber, and during normal operation except immediately after startup, lubricating oil stored in the high pressure chamber oil storage section using a vane back pressure application device or a similar mechanism is used. Is supplied to the vane back pressure portion to push the vane out of the rotor, and the cylinder, vane, rotor, and the like are lubricated (see, for example, Patent Documents 1 and 2).
[0003]
In such a compressor, a part of compressor lubricating oil is always discharged into the refrigeration cycle together with the compressed gas fluid.
[0004]
[Patent Document 1]
JP 62-58082 A (page 3-4, Fig. 1-2)
[0005]
[Patent Document 2]
JP 56-107992 (page 2-3, FIG. 2)
[0006]
[Problems to be solved by the invention]
By the way, in the above-mentioned compressor, the lubricating oil stored in the high-pressure chamber oil storage section needs to have an oil surface that is at least higher than the lubricating oil supply opening position.
[0007]
The surface of the lubricating oil stored in the high-pressure chamber oil storage section is always in a undulating state and a bubbling state due to the flow of the compressed gas fluid.
[0008]
Therefore, when undulations and foaming are large, a part of the lubricating oil is caught in the compressed gas-fluid flow and discharged from the gas discharge port of the compressor into the refrigeration cycle. The amount decreases.
[0009]
Due to these factors, a gas (gas) component is mixed into the lubricating portion of the compressor from the lubricating oil supply port to which only the lubricating oil should be supplied. When this gas component is mixed, the pressure of the lubricating oil supplied to the vane back pressure part becomes unstable, a vane jump phenomenon occurs, and a compressor vibration / noise problem due to the collision between the vane and the cylinder occurs. In addition, the vane tip wear increases due to the jump phenomenon, and durability and reliability deteriorate.
[0010]
In particular, when the gas discharge port of the compressor is provided in a substantially horizontal direction, the lubricating oil surface of the oil storage unit and the gas discharge port are close to each other, so that the lubricating oil in the oil storage unit is easily discharged during the system cycle of the air conditioner. In addition, in a vehicle, since the vehicle is tilted depending on the state of the mountain road or road surface, the compressor may be tilted from the normal state, and the amount of lubricating oil in the high-pressure chamber oil storage part is further discharged during the system cycle of the air conditioner. The system efficiency of the air conditioner becomes worse. In addition, since the amount of lubricating oil in the high-pressure chamber oil storage section is reduced, problems such as compressor seizure, vane wear, and noise will occur, reducing reliability and durability.
[0011]
In view of the above-described conventional problems, the present invention provides a compressor having a structure with a simple structure that prevents undulation and foaming of a lubricating oil surface stored in a high-pressure chamber oil storage unit and suppresses a decrease in the amount of oil storage. Objective.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, in the compressor according to the present invention, a substantially L-shaped anti-wave wall is formed in the high-pressure chamber of the compressor so as to be substantially parallel to the surface of the lubricating oil. The area is set to 20 to 50% of the cross-sectional area inside the high-pressure chamber at the position of the anti-shake wall, and the anti-shake wall is vertically below the gas outlet opening and the side provided with the gas outlet opening. In the standard condition of the air conditioning system, the position of the anti-ripening wall is substantially the same as the lubricating oil level of the oil storage part. The same plane position is used.
[0013]
If the anti-wave wall is above the lubrication surface of the oil storage unit in the standard condition of the air conditioning system, the leveling and cross-sectional area of the anti-wave wall is not the same as the structure of the compressor.・ It is recommended to set the anti-rippling position according to the configuration and application.
[0014]
The anti-ripple wall set in this way suppresses undulation and foaming of the lubricating oil surface stored in the high-pressure chamber oil storage part, and a part of the undulating and foamed lubricating oil is caught in the flow of the air-fluid It is also suppressed that it is discharged during the system cycle. In addition, a decrease in the amount of lubricating oil in the oil storage section can be suppressed.
[0015]
Thereby, mixing of gas components in the lubricating oil supplied to the vane back pressure part is suppressed, and the pressure of the vane back pressure part is stabilized, so that the vibration and noise of the compressor can be prevented. In addition, the wear of the vane tip can be suppressed and the durability of the compressor can be improved.
[0016]
In addition, by forming the anti-rippling wall so as to block the flow along the wall surface from the lubricating oil surface to the gas outlet opening in the high pressure chamber, a part of the lubricating oil stored in the high pressure chamber oil storage portion is compressed. It is possible to further suppress discharge to the outside of the machine.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
Embodiment 1 of the present invention will be described below with reference to the drawings. 1 to 4, 1 is a cylinder having a cylindrical inner wall, 2 is a rotor in which a part of the outer periphery forms a minute gap with the inner wall of the cylinder 1, and 3 is in a plurality of vane slots provided in the rotor 2. A plurality of vanes 4 slidably inserted, 4 is a drive shaft that is integrally formed with the rotor 2 and is rotatably supported, and 5 and 6 are respectively closed at both ends of the cylinder 1 to form working chambers therein. The front side plate and the rear side plate, 7 is a discharge hole for discharging the compressed fluid from the working chamber on the high pressure side, 8 is a discharge valve disposed in the discharge hole, and 9 is a high pressure for guiding the compressed fluid to the high pressure chamber 10. The passage 11 is a high-pressure case forming the high-pressure chamber 10, and the rectifying wall 21 is integrally formed with the high-pressure case 11.
[0018]
12 is a gas discharge port for discharging the compressed fluid from the high pressure chamber 10 to the system cycle of the air conditioner, 13 is a vane back pressure applying device, 14 is a lubricating oil supply port provided at the lower part of the vane back pressure applying device 13, 15 is a strainer that prevents inflow of debris and fine metal fragments, 16 is an oil supply passage, 17 is a vane back pressure portion, and the vane back pressure applying device 13 is used to store the lubricating oil stored in the oil storage portion 10a at the lower portion of the high pressure chamber 10. The vane back pressure part 17 is supplied from the lubricating oil supply port 14 through the oil supply path 16.
[0019]
When power is transmitted from a driving source such as an engine and the drive shaft 4 and the rotor 2 rotate, the compressed high pressure fluid pushes up the discharge valve 8 from the discharge hole 7 and flows into the high pressure chamber 10 from the high pressure passage 9. The gas is discharged out of the compressor through a gas discharge port 12 provided in the case. At this time, the lubricating oil separated in the upper part of the high pressure chamber 10 is dropped and stored in the high pressure chamber oil storage part 10a.
[0020]
The anti-rippling wall 21 leveles the fluid from the high-pressure passage 9 toward the gas discharge port 12, thereby suppressing the undulation and bubbling of the lubricating oil stored in the high-pressure chamber oil storage portion 10a, and the high-pressure chamber oil storage portion 10a. It is possible to suppress a part of the stored lubricating oil from being discharged again outside the compressor on the flow of the fluid, and to suppress a decrease in the oil storage amount as shown in FIG. Thereby, it is possible to stably supply the lubricating oil from the lubricating oil supply port 14 of the vane back pressure applying device 13 to the compression mechanism.
[0021]
In addition, supply of lubricating oil containing no gas component to the vane back pressure section stabilizes the vane back pressure and stabilizes the reciprocating sliding movement of the vane, resulting in the generation of noise and vibration of the compressor as shown in FIG. Can be prevented and reliability can be improved.
[0022]
Further, since the anti-rippling wall 21 is formed so as to block the flow along the wall surface from the lubricating oil surface toward the gas discharge port opening 12 in the high pressure chamber 10, the lubricating oil stored in the high pressure chamber oil storage portion 10a is used. Can be further suppressed from being discharged to the outside of the compressor.
[0023]
And it confirmed that the said effect was acquired when the cross-sectional area of the anti-wave wall 21 was 20 to 50% with respect to the cross-sectional area inside the high-pressure chamber 10 at the position where the anti-wave wall 21 was formed. If the ratio is less than 20%, the effect of suppressing the undulation and foaming of the lubricant may be reduced. If the ratio exceeds 50%, the degree of freedom of arrangement of the lubricant supply port 14 will be hindered and the return of the lubricant to the oil storage section 10a may occur. There are cases where it cannot be performed smoothly.
[0024]
The anti-rippling wall 21 suppresses the undulation and foaming of the high-pressure chamber oil storage unit 10a. Therefore, the position where the anti-wave wall 21 is provided is the oil when the entire amount of lubricating oil in the refrigeration cycle is sealed in the high-pressure chamber oil storage unit 10a. Make it lower than the surface height.
[0025]
(Embodiment 2)
The second embodiment of the present invention is a case where the gas discharge port 12 is close to the oil storage section as shown in FIG. The wave preventing wall 21 is formed in the lower part of the vicinity of the gas discharge port 12. In some cases, it is more effective to make the width a of the rectifying wall larger than the dimension b of the gas discharge port, and the dimension changes on a case-by-case basis.
[0026]
In the second embodiment, the same effect as in the first embodiment is obtained, and the lubricating oil surface of the high-pressure oil storage section is disturbed and foamed by the lubricant accumulated in the high-pressure chamber oil storage section 10a or the fast gas flow compressed by the compressor. Further, there is an effect of suppressing a part of the lubricating oil from being discharged from the gas discharge port 12. In particular, in a vehicle, the vehicle tilts or jumps depending on the shape of a mountain road or road surface. Therefore, a great effect of suppressing the lubricating oil accumulated in the oil storage part from being discharged from the gas discharge port 12 can be obtained.
[0027]
【The invention's effect】
As described above, the flow straightening wall in the compressor of the present invention prevents the lubricating oil surface that is stored in the high-pressure chamber oil storage section from generating undulations and bubbles, and discharging the lubricating oil from the compressor into the system cycle of the air conditioner. Therefore, it is possible to stably supply the lubricating oil to the compression mechanism, so that it is possible to prevent deterioration of the durability of the compressor, such as seizure due to poor lubrication of the compression mechanism.
[0028]
In addition, the supply of lubricating oil that does not contain gas components to the vane back pressure section stabilizes the vane back pressure and stabilizes the reciprocating sliding movement of the vane, thereby preventing compressor noise and vibration. And reliability can be improved.
[0029]
Moreover, since the anti-wave wall is additionally configured in the high-pressure chamber, there is no need to change the external dimensions of the compressor. Furthermore, since the rectifying wall and the high-pressure case can be integrally molded, the number of assembling steps can be reduced, and the productivity can be improved and the manufacturing cost of the compressor can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a compressor showing Embodiment 1 of the present invention. FIG. 2 is a front view of a high-pressure case as viewed from the high-pressure passage side of the compressor. 4 is a cross-sectional view taken along the line AA in FIG. 2. FIG. 5 is a graph showing the characteristics of the compressor. FIG. 6 is a waveform chart showing the characteristics of the compressor. Front view of main part of machine [FIG. 8] AA sectional view of FIG. 7 [FIG. 9] BB sectional view of FIG.
DESCRIPTION OF SYMBOLS 1 Cylinder 2 Low others 3 Vane 4 Drive shaft 5 Front side plate 6 Rear side plate 7 Discharge hole 8 Discharge valve 9 High pressure passage 10 High pressure chamber 10a High pressure chamber oil storage portion 11 High pressure case 12 Gas discharge port 13 Vane back pressure applying device 14 Lubricating oil Supply port 15 Strainer 16 Oil supply passage 17 Vane back pressure part 21 Anti-rippling wall 21a Anti-rippling wall

Claims (1)

潤滑油を含む気流体を圧縮する圧縮機構と、前記圧縮機構により圧縮された前記気流体が導かれ、前記気流体に含まれる潤滑油の一部が分離され貯えられる貯油部を持つ高圧室を備え、前記貯油部には貯えられた潤滑油を前記圧縮機構に供給する給油路が連通するとともに、前記高圧室にはガス排出口開口部が形成され、さらに前記高圧室は前記圧縮機構からの前記気流体が高圧室内の貯油部側に向かうように開口している圧縮機であって、前記高圧室内に潤滑油表面と略平行になるように略L字形の波立防止壁を形成するとともに、前記給油路は前記波立防止壁と前記高圧室の内壁との間を通して貯油部に連通させ、かつ、前記波立防止壁の断面積は、前記波立防止壁形成位置での高圧室内側横断面積の20〜50%に設定するとともに、前記波立防止壁を前記ガス排出口開口部の鉛直下方であって当該ガス排出口開口部が設けられた側の高圧室壁面に前記ガス排出口開口部の幅寸法よりも縦幅及び横幅ともに大きく突出させて設けることで、潤滑油面から前記ガス排出口開口部へ向かう壁面に沿う潤滑油の流れを遮る構成とした圧縮機。A compression mechanism for compressing a gas fluid containing lubricating oil, and a high-pressure chamber having an oil storage unit in which the gas fluid compressed by the compression mechanism is guided and a part of the lubricating oil contained in the gas fluid is separated and stored. And an oil supply passage for supplying the stored lubricating oil to the compression mechanism communicates with the oil storage section, a gas discharge port opening is formed in the high pressure chamber, and the high pressure chamber is connected to the compression mechanism. The compressor is opened so that the gas fluid is directed toward the oil storage section in the high-pressure chamber, and a substantially L-shaped anti-wave wall is formed in the high-pressure chamber so as to be substantially parallel to the surface of the lubricating oil. The oil supply passage communicates with the oil storage portion through between the anti-wave wall and the inner wall of the high-pressure chamber, and the cross-sectional area of the anti-wave wall is 20% of the cross-sectional area inside the high-pressure chamber at the position where the anti-wave wall is formed. with set to 50%, The vertical wall and the lateral width are larger than the width of the gas outlet opening on the wall of the high pressure chamber vertically below the gas outlet opening and on the side where the gas outlet opening is provided. A compressor configured to block the flow of the lubricating oil along the wall surface from the lubricating oil surface toward the gas discharge port opening by providing the protruding portion.
JP2003042848A 2003-02-20 2003-02-20 Compressor Expired - Fee Related JP4409185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003042848A JP4409185B2 (en) 2003-02-20 2003-02-20 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003042848A JP4409185B2 (en) 2003-02-20 2003-02-20 Compressor

Publications (2)

Publication Number Publication Date
JP2004251209A JP2004251209A (en) 2004-09-09
JP4409185B2 true JP4409185B2 (en) 2010-02-03

Family

ID=33026019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003042848A Expired - Fee Related JP4409185B2 (en) 2003-02-20 2003-02-20 Compressor

Country Status (1)

Country Link
JP (1) JP4409185B2 (en)

Also Published As

Publication number Publication date
JP2004251209A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
JP4788746B2 (en) Compressor
JP4218373B2 (en) Compressor
US7878771B2 (en) Hermetic type compressor with wave-suppressing member in the oil reservoir
KR20160108036A (en) Compressor
JP4376554B2 (en) Scroll compressor
JP4409185B2 (en) Compressor
JP2008169740A (en) Compressor
US11668308B2 (en) Compressor having sliding portion provided with oil retainer
WO2003006828A1 (en) Compressor
JP2020133523A (en) Hermetic type compressor
JP4045856B2 (en) Compressor
JP2007309282A (en) Compressor
JP2006161738A (en) Compressor
JP2011111993A (en) Hermetic rotary compressor
JP2019019678A (en) Screw compressor
JP2010116836A (en) Rotary type fluid machine
US11493041B2 (en) Scroll compressor
JP2005054745A (en) Compressor
JP4263047B2 (en) Horizontal type compressor
JP2013060937A (en) Compressor
JP2005036741A (en) Horizontal compressor
JP4485882B2 (en) Vane rotary compressor
JP2006037928A (en) Compressor
JP2007154743A (en) Compressor
JP2006118365A (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees