JP2008076344A - 光検出装置、電気光学装置、および電子機器 - Google Patents

光検出装置、電気光学装置、および電子機器 Download PDF

Info

Publication number
JP2008076344A
JP2008076344A JP2006258778A JP2006258778A JP2008076344A JP 2008076344 A JP2008076344 A JP 2008076344A JP 2006258778 A JP2006258778 A JP 2006258778A JP 2006258778 A JP2006258778 A JP 2006258778A JP 2008076344 A JP2008076344 A JP 2008076344A
Authority
JP
Japan
Prior art keywords
voltage
light
node
current
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006258778A
Other languages
English (en)
Other versions
JP4353224B2 (ja
Inventor
Shin Koide
慎 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epson Imaging Devices Corp
Original Assignee
Epson Imaging Devices Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epson Imaging Devices Corp filed Critical Epson Imaging Devices Corp
Priority to JP2006258778A priority Critical patent/JP4353224B2/ja
Priority to US11/882,906 priority patent/US7531776B2/en
Publication of JP2008076344A publication Critical patent/JP2008076344A/ja
Application granted granted Critical
Publication of JP4353224B2 publication Critical patent/JP4353224B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4204Photometry, e.g. photographic exposure meter using electric radiation detectors with determination of ambient light

Abstract

【課題】周囲温度にかかわらず対象光の強度を精度よく検出することのできる光検出装置、この光検出装置を備えた電気光学装置、およびこの電気光学装置を備えた電子機器を提供すること。
【解決手段】光検出装置300は、入射光の光量に応じた第1電流を出力する主センサ310Aと、外乱光の光量に応じた第2電流を出力する副センサ310Bとが直列に電気的接続されたセンサ回路310と、センサ回路310の両端に電圧を印加したときにノードQから取り出される差分電流を検出する差分電流検出回路340とを有している。センサ回路310の両端に印加される電圧を第1電圧とし、ノードQの電圧を第2電圧としたとき、第2電圧が所定の基準電圧値になったときの差分電流に基づいて対象光の強度を検出する。
【選択図】図1

Description

本発明は、対象光と外乱光とが入射光として入射する光検出装置、この光検出装置を備えた電気光学装置、およびこの電気光学装置を備えた電子機器に関するものである。
電気光学装置を表示装置として搭載したパーソナルコンピュータや携帯電話機などの電子機器は、環境光の強度が異なる様々な環境下で使用される。従って、環境光に変化に応じて、電気光学装置での駆動条件を変化させれば、画像品位の向上や低消費電力化を図ることができる。例えば、透過型又は反透過型の液晶装置では、液晶パネルの背面にバックライト装置が設けられており、バックライト装置からの出射光は、液晶パネルによって変調される。このような液晶装置において、バックライト装置の消費電力は大きいが、液晶装置に光検出装置を設け、環境光の大きさに応じてバックライト装置の強度を調整すれば、低消費電力化を図ることができる。また、光センサを液晶装置の素子基板上に形成すれば、部品コストの削減を図ることもできる。但し、素子基板上に光センサを設けると、光センサには検出対象の対象光とバックライト装置から光が入射してしまう。
そこで、入射光の光量に応じた第1電流を出力する主センサと、外乱光の光量に応じた第2電流を出力する副センサとを直列に電気的接続し、主センサと副センサとのノードから取り出される第1電流と第2電流との差分電流を、キャパシタを介して検出する構成が提案されている(例えば、特許文献1参照)。
特開2006−118965号公報
しかしながら、特許文献1に開示の構成では、主センサと副センサとして、光電変換特性が等しいものを用いた場合でも、周囲温度によっては、環境光の強度を精度よく検出できない結果、電気光学装置を最適な条件で駆動できないという問題点がある。
本願発明者は、主センサと副センサとして、光電変換特性が等しいものを用いた場合でも、周囲温度によっては、環境光(対象光)の強度を精度よく検出できない理由を種々、検討した結果、以下の知見を得た。
まず、主センサおよび副センサとして用いられるフォトダイオードに電圧を印加したときの周囲温度とPINダイオードが出力する電流との関係を検討し、図12(a)、(b)に示す結果を得た。ここで用いたフォトダイオードは、ポリシリコン膜にN型領域、真性領域およびP型領域が形成されたPINフォトダイオードである。
フォトダイオードの電流−電圧特性は、図12(a)に実線で表わされるが、周囲温度が高くなると、図12(a)に実線で示す特性から、一点鎖線、二点鎖線、点線で示す特性にシフトする傾向がある。かかる理由は、図12(b)を参照して説明する暗電流に起因する。ここで、暗電流とは、フォトダイオードに入射する光を遮光した場合でもダイオードに流れる電流であり、フォトダイオードの真性領域の温度に起因するものと考えられる。特に、バルクのシリコンを用いたPINフォトダイオードのようにN型領域、真性領域およびP型領域を積層した構造と違って、ポリシリコン膜を用いたPINフォトダイオードでは、N型領域、真性領域およびP型領域を横方向に形成する必要があり、接合面積が狭いため、暗電流が発生しやすい傾向にある。
図12(b)には、主センサおよび副センサとして用いられるフォトダイオードに−4Vの逆バイアスを印加したときの周囲温度とPINダイオードが出力する電流との関係を示してあり、図12(b)において、実線L1は、各周囲温度においてフォトダイオードに500lxの光を入射させた際に流れるみかけの光電流(真の光電流と暗電流の和)を示し、点線L2は、フォトダイオードに入射する光を遮光した状況下で流れる暗電流のみ電流値を示している。図12(b)から分かるように、みかけの光電流のレベルは25℃以下(室温以下)では温度によってほとんど変化しないが、50℃を超えると増大する。一方、暗電流は25℃以下(室温以下)では極めて低レベルであり、無視できるが、温度上昇とともに増大し、50℃を超えると、みかけの光電流のレベルと略等しくなる。すなわち、フォトダイオードは、周囲温度が上昇すると、みかけの光電流において暗電流が支配的になり、かかる暗電流は、印加電圧が高くなるに伴って増大する。
それ故、特許文献1に開示の光検出装置において、高温条件下で、例えば、主センサが光照射によってインピーダンスが低下すると、主センサおよび副センサに印加される逆バイアスの電圧バランスが崩れ、その結果、暗電流が差分電流に大きな影響を及ぼすので、対象光の強度を精度よく検出できなくなるのである。
以上の問題点に鑑みて、本発明は、周囲温度にかかわらず対象光の強度を精度よく検出することのできる光検出装置、この光検出装置を備えた電気光学装置、およびこの電気光学装置を備えた電子機器を提供することにある。
上記課題を解決するために、本発明は、図12(a)、(b)を参照して説明した知見に基づいて達成されたものであり、以下の構成を有している。すなわち、本発明では、対象光と外乱光とが入射光として入射する光検出装置において、前記入射光の光量に応じた第1電流を出力する主センサと、前記外乱光の光量に応じた第2電流を出力する副センサとが直列に電気的接続されたセンサ回路と、該センサ回路の両端に電圧を印加したときに前記ノードから取り出される前記第1電流と前記第2電流との差分電流を検出する差分電流検出回路と、を有し、前記センサ回路の両端に印加される電圧を第1電圧とし、前記ノードの電圧を第2電圧としたとき、前記第2電圧が所定の基準電圧値になったときの前記差分電流に基づいて前記対象光の強度を検出することを特徴とする。本発明において、「対象光」とは、検出の対象となる光の意味であり、例えば、実施形態の環境光(外光)が該当する。これに対して、本発明において、「外乱光」とは、検出の対象とならない光の意味であり、例えば、実施形態の背景光が該当する。
本発明では、主センサおよび副センサが出力する第1電流および第2電流の差分(差分電流)は、対象光の光量に応じたものとなるため、差分電流を検出すれば、対象光の強度を検出することができる。また、周囲温度が高い場合主センサと副センサとの間でインピーダンスに差が生じ、主センサおよび副センサの各々に印加される電圧が変動しても、主センサと副センサのノードの電圧が前記基準電圧値になったときの差分電流に基づいて対象光の強度を検出する。このため、暗電流も相殺できるので、周囲温度にかかわらず、対象光の強度を精度よく検出することができる。
本発明において、前記副センサは、前記対象光が入射する面に対して、前記対象光および前記外乱光のうち、前記対象光を遮光する遮光体が配置されている構成を採用することができる。このように構成すると、簡素な構成で、副センサが外乱光の光量に応じた第2電流を出力する構成を実現することができる。
本発明において、前記主センサと前記副センサとは、光電変換特性が等しく、前記第2電圧が、前記基準電圧値として、前記第1電圧の1/2倍の電圧値になったときの前記差分電流に基づいて前記対象光の強度を検出することが好ましい。
本発明において、前記センサ回路の両端に前記第1電圧を印加したときの前記第2電圧を前記基準電圧値に補正するノード電圧補正回路を備え、該ノード電圧補正回路によって前記第2電圧が前記基準電圧値になったときの前記差分電流に基づいて前記対象光の強度を検出する構成を採用することができる。
この場合、前記ノード電圧補正回路は、前記センサ回路の両端に前記第1電圧を印加したときの前記第2電圧を前記基準電圧値と比較し、その比較結果に基づいて、前記ノードから前記差分電流を取り出す出力ラインに印加する電圧値を調整して前記第2電圧を前記基準電圧値に維持する構成を採用することができる。
また、前記ノード電圧補正回路は、前記ノードから前記差分電流を取り出すべき出力ラインに印加する電圧値を変化させていき、前記第2電圧が前記基準電圧値になったときの前記差分電流に基づいて前記対象光の強度を検出する構成を採用してもよい。
本発明において、前記差分電流検出回路は、前記差分電流を増幅する増幅回路を備え、当該増幅された電流値に基づいて前記対象光の強度を検出することが好ましい。差分電流は極めて低レベルの電流であるが、増幅回路によって差分電流を増幅すれば、対象光の強度を精度よく検出することができる。また、抵抗体に通電させてその電圧値を読み取るには、抵抗値が大きな抵抗体を用いることになるため、抵抗体がアンテナと同様、様々な電波ノイズをひろってしまい、対象光の強度を精度よく検出することができなくなるおそれがあるが、増幅回路によって差分電流を増幅すれば、かかる問題を回避することができる。
例えば、前記差分電流検出回路は、前記ノードと前記ノード電圧補正回路の電圧出力部との間に介挿された第1抵抗体と、該第1抵抗体より抵抗値が低く、前記ノード電圧補正回路の電圧出力部と基準電圧との間に介挿された第2抵抗体とを備えた増幅回路を有し、前記差分電流は、前記第2抵抗体により増幅されて検出される構成を採用することができる。
また、前記差分電流検出回路は、前記ノードと前記ノード電圧補正回路の電圧出力部との間に介挿された第1トランジスタと、該第1トランジスタとカレントミラー回路を構成する第2トランジスタとを備えた増幅回路を有し、前記差分電流は、前記第2トランジスタにより増幅されて検出される構成を採用してもよい。
本発明において、前記主センサおよび前記副センサは、例えば、前記第1電圧によって逆バイアスが印加されたフォトダイオードである。フォトダイオードであれば、例えば、電気光学装置の素子基板に薄膜トランジスタを形成する際、その製造工程を利用して、素子基板に主センサおよび副センサを形成することができる。
本発明において、前記フォトダイオードは、ポリシリコン膜に不純物が導入されたN型領域およびP型領域を備えていることが好ましい。このようなフォトダイオードであれば、低温プロセスを用いてTFT(Thin Film Transistor/薄膜トランジスタ)を形成する際、その製造工程を利用して、素子基板に主センサおよび副センサを形成することができる。ここで、前記フォトダイオードは、前記N型領域と前記P型領域との間に真性のポリシリコン膜を備えている構成を採用してもよい。
本発明を適用した光検出装置を備えた電気光学装置では、前記光検出装置による前記対象光の検出結果に基づいて駆動条件が調整されることが好ましい。例えば、電気光学装置が光源装置と、該光源装置から出射された光を変調可能な電気光学パネルとを備えている場合、前記光検出装置による前記対象光の検出結果に基づいて前記光源装置から出射される光量が調整されることが好ましい。
本発明を適用した電気光学装置は、例えばパーソナルコンピュータ、携帯電話機、情報携帯端末等の電子機器に用いることができる。
以下に、図面を参照して本発明について説明する。
(光検出装置の基本構成およびその原理)
図1(a)、(b)は、本発明を適用した光検出装置の概略構成図、およびその試験装置の概略構成図である。図2は、図1に示す光検出装置に用いた光センサ(フォトダイオード)の構成例を示す断面図である。
図1(a)に示すように、本形態の光検出装置300には、対象光と外乱光とが入射光として入射するが、対象光に応じた出力に基づいて、対象光の強度を検出する。すなわち、本形態の光検出装置300は、入射光(対象光および外乱光)の光量に応じた第1電流を出力する主センサ310Aと、外乱光の光量に応じた第2電流を出力する副センサ310BとがノードQを介して直列に電気的接続されたセンサ回路310を備えている。ここで、副センサ310Bには、遮光体320が配置されているため、外乱光は入射するが、対象光は入射しない。なお、主センサ310Aには、遮光体320が配置されていないため、対象光および外乱光が入射する。
本形態において、主センサ310Aおよび副センサ310Bはいずれもフォトダイオードであり、主センサ310Aのカソード側には、第1電圧(例えば、4V)が印加され、副センサ310Bのアノードは接地されている。従って、センサ回路310の両端には、第1電圧が印加され、主センサ310Aおよび副センサ310Bには逆バイアスが印加されている。また、主センサ310Aと副センサ310BとのノードQには、ノードQから取り出される第1電流と第2電流との差分電流を検出する差分電流検出回路340が構成されている。
主センサ310Aおよび副センサ310Bは、例えば、図2に示すように、ガラス製の素子基板311上で互いに近接した位置に同一素子サイズをもって形成される。このような主センサ310Aおよび副センサ310Bを構成するにあたって、素子基板311上に、下地絶縁膜316、ポリシリコン膜310X、絶縁膜317、層間絶縁膜318、電極層319A、319B、319Cが形成されている。ポリシリコン膜310Xには、N型の不純物が導入されたN型領域313、不純物が導入されていない真性領域312、およびP型の不純物が導入されたP型領域314が形成されており、N−I−P構造を有している。ここで、ポリシリコン膜310Xは、素子基板311に対してアモルファスシリコン膜を形成した後、レーザアニールやランプアニールなどにより多結晶化された半導体層である。なお、絶縁膜317の上層には、真性領域312と平面的に重なる領域に金属膜315が形成されており、かかる金属膜315は、ポリシリコン膜310Xに対してN型の不純物あるいはP型の不純物を導入する際、ポリシリコン膜310Xへの不純物の導入を阻止するカバー層として利用されたものである。従って、ポリシリコン膜310Xに不純物を導入した後、除去してもよいが、金属膜315を除去する場合には、その分、製造工程が増えることになる。なお、電極層319A、319B、319Cは、層間絶縁膜318および絶縁膜317を貫通するコンタクトホールを介してN型領域313およびP型領域314に各々接続されている。
このような構成の主センサ310Aおよび副センサ310Bは、LTPS(Low‐Temperature Poly‐Silicon)により構成されたPINフォトダイオードあるため、光感度が非常に優れ、対象光を検出する光センサ素子として適切である。また、このような構成の主センサ310Aおよび副センサ310Bは、TFTと略共通した構造を有しているので、後述する液晶装置において、画素回路、走査線駆動回路、およびデータ線駆動回路を構成するTFTと同一のプロセスで素子基板上に形成することができる。この場合、ポリシリコン膜310XはTFTの能動層と同時形成され、絶縁膜317はゲート絶縁膜と同時形成され、金属膜315は、ゲート電極と同時形成される。
このような構成は、主センサ310Aおよび副センサ310Bのいずれにおいても同一であるが、素子基板311に対向配置されたガラス製の対向基板321には、副センサ310Bと平面的に重なる位置に遮光膜322が形成されており、図1(a)に示す遮光体320として機能する。このため、主センサ310Aには、対象光および外乱光が入射光として入射するが、副センサ310Bには、対象光が入射せず、外乱光のみが入射する。ここで、「対象光」とは、検出の対象となる光の意味であり、例えば、後述する対象光が該当する。これに対して、「外乱光」とは、検出の対象とならない光の意味であり、例えば、後述する背景光が該当する。なお、対向基板321に形成した遮光膜322は、後述する液晶装置に用いた対向基板にブラックマトリクスを形成する際、同時に形成することができる。
さらに、本形態では、素子基板311の外表面のうち、主センサ310Aおよび副センサ310Bが形成されている領域と平面的に重なる領域には反射板325が重ねて配置されている。このため、主センサ310Aおよび副センサ310Bには、素子基板311側からの外乱光の入射光が妨げられるので、対象光に起因する光電流量を相対的に増大させることができる。
再び図1(a)において、本形態の光検出装置300では、主センサ310Aおよび副センサ310Bは、ノードQを介して接続されているため、ノードQからは、第1電流I1と第2電流I2の差分電流Δi(=I1−I2)が出力される。ここで、第1電流I1は、対象光および外乱光によって生じる光電流と、周囲温度(熱)によって発生する暗電流とを含み、第2電流I2は、外乱光によって生じる光電流と、周囲温度(熱)によって発生する暗電流とを含む。従って、第1電流I1と第2電流I2の差分電流Δi(=I1−I2)は、対象光によって生じる光電流のみに相当するはずである。なお、かかる原理が成り立つためには、主センサ310Aおよび副センサ310Bの周囲の温度が等しく、かつ、主センサ310Aおよび副センサ310Bの対温度特性および光電変換特性が等しいことが必要である。ここで、対温度特性とは、主センサ310Aおよび副センサ310Bにおいて、周囲の温度とこれに応じて出力される電流の大きさとの関係を規定するものである。主センサ310Aおよび副センサ310Bは、同一の製造プロセスで製造されるので、それらの対温度特性の差は許容される程度のものである。また、主センサ310Aおよび副センサ310Bは近接して配置されるので、周囲の温度の差も無視することができる。
かかる測定原理において、暗電流が検出結果に及ぼす影響を説明するために、外乱光が一切、入射しないとする。このように仮定すると、第1電流I1は、真の光電流Ipと暗電流Idとを含み、第2電流I2は暗電流Idのみを含むことになる。この場合、差分電流Δiは、以下の式
Δi=I1−I2=(Ip+Id)−Id=Ip・・・(1)
で表れる。
しかしながら、PINフォトダイオードにおいては、周囲の温度が上昇すると、熱の発生により生じる電流が大きくなり、これにより、第1電流I1および第2電流I2において、暗電流Ibが占める割合が多くなってしまい、暗電流は電圧依存性が大きい。このため、周囲温度が上昇した状態で、例えば、主センサ310Aが光照射によりインピーダンスが低下すると、主センサ310Aと副センサ310Bとの間にインピーダンスの差が生じ、主センサ310Aおよび副センサ310Bの各々に印加される逆バイアスの電圧が変動し、対象光を正確に検出することができなくなってしまうという問題点がある。
そこで、本形態では、センサ回路310の両端に電圧を印加した際、ノードQの電圧(第2電圧)が所定の基準電圧値になったときの差分電流Δiに基づいて対象光の強度を検出する。ここで、主センサ310Aと副センサ310Bとは、光電変換特性などが等しいので、第2電圧が、基準電圧値として、第1電圧の1/2倍の電圧値になったときの差分電流に基づいて対象光の強度を検出する。
例えば、センサ回路310の両端に第1電圧として4Vを印加した場合には、図1に示すように、第2電圧を2Vに保持したときの差分電流Δiに基づいて対象光の強度を検出する。従って、周囲温度が高い条件下で主センサ310Aと副センサ310Bとの間でインピーダンスに差が生じ、主センサ310Aおよび副センサ310Bの各々に印加される電圧が変動しても、主センサ310Aと副センサ310Bのノードの電圧が所定の電圧になったときの差分電流Δiに基づいて対象光の強度を検出するため、暗電流も相殺できる。それ故、周囲温度が高くても対象光の強度を精度よく検出することができる。
(本発明の光検出装置300における有効性の検証)
次に、上述した実施形態に係る電気光学装置に搭載された光検出装置300の有効性について検証する。図1(b)は、本発明の光検出装置300の有効性を検証するための実験装置の回路図である。図3は、本発明を適用した光検出装置の作用、効果を示す説明図であり、図3(a)は、図1(b)に示す実験装置によって、照度と出力する電流との関係を示すグラフ、図3(b)は、フォトダイオードの真の光電流の安定領域を説明するためのグラフである。
本発明の光検出装置300の有効性を検証するために、図1(b)に示す試験装置300Xでは、図1(a)、および図2を参照して説明した光検出装置300と同様、入射光(対象光および外乱光)の光量に応じた第1電流を出力する主センサ310Aと、外乱光の光量に応じた第2電流を出力する副センサ310Bとが直列に電気的接続されたセンサ回路310を設け、センサ回路310の両端には、4Vの第1電圧を印加し、主センサ310Aおよび副センサ310Bに逆バイアスを印加する。また、副センサ310Bは遮光体320によって遮光する。さらに、主センサ310Aと副センサ310BとのノードQには、ノードQから第1電流と第2電流との差分電流Δiを出力するラインに対してノード電圧補正回路330を設けるともに、ラインに電流計391A(差分電流検出回路340)を介挿する。
さらに、主センサ310Aのカソードと駆動ラインとの間には電流計391Bを介挿し、副センサ310Bのアノードとグランドとの間には電流計391Cを介挿する。ここで、電流計391A、391B、391Cで測定される電流を各々、IA、IB、ICとする。
このように構成された試験装置300Xを用いて、周囲温度およびノードQに印加する電圧を1.9V、2.0Vに変化させた場合における電流の測定結果との関係を検討した。その検討結果が、図3(a)に示すグラフである。図3(a)中のL11〜L14は各々、以下に示す条件で得られた測定結果である。なお、実線L10は、y=axα、α=1をグラフに示したものである。
Figure 2008076344
図3(a)において、マークL11、L12で示す結果が重なることから、主センサ310Aおよび副センサ310Bを流れる電流IA、IBの差分は、ノードQから出力されることが明らかである。また、マークL11、L12で示す結果は、実線L10と略一致することから、ノードQから出力される電流IA(差分電流)は、照度に対して比例関係を有する。それ故、温度が23℃であれば、ノードQの電圧が1.9Vでも、ノードQから出力される電流IAにより照度を検出することができる。
しかしながら、点線L13で示すように、ノードQの電圧が1.9Vの場合において、周囲温度が50℃になると、1〜100lxの範囲において、測定結果が実線L10から大きく外れ、ノードQから出力される電流IA(差分電流)により照度を検出できなくなる。これは、周囲温度が高温(50℃)である場合において、ノードQの電圧値が最適値に保たれていないと、対象光の照度と電流IA(差分電流)との比例関係が成り立たず、対象光の照度を正確に検出することができないことを意味する。
これに対して、一点鎖線L14で示すように、ノードQの電圧が2.0V(基準電圧)の場合には、周囲温度が50℃になっても、1〜100lxの範囲において、測定結果が実線L10に沿う結果が得られ、ノードQから出力される電流IA(差分電流)により照度を検出できる。すなわち、周囲温度が高温(50℃)である場合であっても、ノードQの電圧値を最適値(基準電圧値)に保持すれば、対象光の照度と電流IA(差分電流)との比例関係が成り立ち、対象光の照度を正確に検出することができることを意味する。
さらに、図3(b)を参照して、ノードQの電圧値を最適値(基準電圧値)に保持すれば、対象光の照度と電流IA(差分電流)との比例関係が成り立つ根拠を説明する。図3(b)には、図12(b)に示すみかけの光電流(実線L1で示すレベル)から暗電流(点線L2で示すレベル)を差し引いて、真の光電流を算出した結果であり、図3(b)には、周囲温度が23℃、50℃における光電流−印加電圧特性を各々、実線(Solid Lines)および点線(Dot Lines)で示してある。図3(b)から分かるように、真の光電流は、温度および照度によってレベルが変化するが、印加電圧によって電流レベルが変化しない安定領域を有する。従って、この安定領域に基準電圧を設定して差分電流を検出すれば、暗電流を確実に相殺でき、真の光電流を検出することができる。
[電気光学装置への第1の適用例]
(電気光学装置の全体構成)
図4は、本発明を適用した電気光学装置の全体構成を示すブロック図である。図5は、図4に示す電気光学装置の画像表示領域の構成例を示す回路図である。図6は、図4に示す電気光学装置の走査線駆動回路およびデータ線駆動回路の動作を示すタイミングチャートである。
図4において、本発明を適用した電気光学装置1は、電気光学材料として液晶を用いた液晶装置であり、主要部として液晶パネル10(電気光学パネルの一例)を備えている。液晶パネル10は、スイッチング素子としてTFTを形成した素子基板と対向基板とを互いに電極形成面を対向させて、かつ、一定の間隙を保って貼付し、この間隙に液晶が挟持されている。このような構成は、周知の液晶装置と同様であるため、説明を省略する。
本形態の電気光学装置1は、液晶パネル10、調光回路500、バックライト装置600(光源装置)、制御回路800、および画像処理回路900を備えている。液晶パネル10は透過型であるが、半透過型であってもよい。液晶パネル10は、素子基板上に画像表示領域10A、走査線駆動回路100、およびデータ線駆動回路200を備えている。制御回路800は、X転送開始パルスDXおよびXクロック信号XCKを生成してデータ線駆動回路200に供給すると共に、Y転送開始パルスDYおよびYクロック信号YCKを生成して走査線駆動回路100に供給する。画像表示領域10Aには、複数の画素回路10Bがマトリクス状に形成されており、画素回路10Bごとに透過率を制御することができる。バックライト装置600からの光は、画素回路10Bを介して射出される。これによって、光変調による階調表示が可能となる。
図5に示すように、画像表示領域10Aには、m(mは2以上の自然数)本の走査線2が、X方向に沿って平行に配列して形成される一方、n(nは2以上の自然数)本のデータ線3が、Y方向に沿って平行に配列して形成されている。そして、走査線2とデータ線3との交差付近においては、TFT50のゲートが走査線2に接続される一方、TFT50のソースがデータ線3に接続されるとともに、TFT50のドレインが画素電極6に接続される。そして、各画素は、画素電極6と、対向基板に形成される対向電極と、これら両電極間に挟持された液晶とによって構成される。この結果、走査線2とデータ線3との各交差に対応して、画素はマトリクス状に配列されることとなる。
また、TFT50のゲートが接続される各走査線2には、走査信号Y1、Y2、…、Ymが、パルス的に線順次で印加される。このため、ある走査線2に走査信号が供給されると、当該走査線に接続されるTFT50がオンするので、データ線3から所定のタイミングで供給されるデータ信号X1、X2、…、Xnは、対応する画素に順番に書き込まれた後、所定の期間保持されることとなる。
各画素に印加される電圧レベルに応じて液晶分子の配向や秩序が変化するので、光変調による階調表示が可能となる。例えば、液晶を通過する光量は、ノーマリーホワイトモードであれば、印加電圧が高くなるにつれて制限される一方、ノーマリーブラックモードであれば、印加電圧が高くなるにつれて緩和されるので、電気光学装置1全体では、画像信号に応じたコントラストを持つ光が各画素に出射される。このため、所定の表示が可能となる。
また、保持された画像信号がリークするのを防ぐために、蓄積容量51が、画素電極6と対向電極との間に形成される液晶容量と並列に付加される。例えば、画素電極6の電圧は、ソース電圧が印加された時間よりも3桁も長い時間だけ蓄積容量51により保持されるので、保持特性が改善される結果、高コントラスト比が実現される。
図6に示すように、走査線駆動回路100は、1フレーム(1F)周期のY転送開始パルスDYを、Yクロック信号YCKに従って順次シフトして走査信号Y1、Y2、…Ymを生成する。走査信号Y1〜Ymは各水平走査期間(1H)において順次アクティブとなる。データ線駆動回路200は、水平走査周期のX転送開始パルスDXをXクロック信号XCKに従って転送して、サンプリング信号S1、S2、…Snを内部的に生成する。そして、データ線駆動回路200は、画像信号VIDをサンプリング信号S1、S2、…Snを用いてサンプリングしてデータ信号X1、X2、…Xnを生成する。
(光検出装置300の構成)
図7は、本発明を適用した電気光学装置に構成した光検出装置の概略構成図である。図4に示す電気光学装置1において、表示画像の見え易さは環境の明るさによって左右される。例えば、日中の自然光の下では、バックライト装置600の発光輝度を高く設定し、明るい画面を表示する必要がある。一方、夜間の暗い環境の下では、バックライト装置600の発光起動が日中ほど高くなくても鮮明な画像を表示することができる。従って、バックライト装置600の発光輝度は、環境光の照度に応じて調整することが望ましい。
そこで、本形態の電気光学装置1には、光検出装置300が構成されており、かかる光検出装置300は、環境光の照度を計測する。また、調光回路500は、光検出装置300により得られた照度データ300aに応じた輝度でバックライト装置600が発光するように制御する。なお、照度データ300aは、環境の照度を示すデータである。本形態では、光検出装置300を構成するにあたって、図1(a)および図2を参照して説明した光検出装置300が構成されている。
すなわち、図7に示すように、光検出装置300は、入射光(環境光(外光/対象光)、および背景光(バックライト装置600からの漏れ光(外乱光))の光量に応じた第1電流を出力する主センサ310Aと、外乱光の光量に応じた第2電流を出力する副センサ310Bとが直列に電気的接続されたセンサ回路310を備えている。ここで、副センサ310Bには、遮光体320(図2に示す遮光膜322)が配置されているため、外乱光は入射するが、対象光は入射しない。なお、主センサ310Aには、遮光体320が配置されていないため、対象光および外乱光が入射する。
主センサ310Aおよび副センサ310Bはいずれもフォトダイオードであり、主センサ310Aのカソード側には、4Vの第1電圧が印加され、副センサ310Bのアノードは接地されている。従って、センサ回路310の両端には、4Vの第1電圧が印加され、主センサ310Aおよび副センサ310Bには、各々2Vの逆バイアスが印加されている。また、主センサ310Aと副センサ310BとのノードQ(ノード)には、ノードQから取り出される第1電流と第2電流との差分電流を検出する差分電流検出回路340が構成されている。
また、本形態の光検出装置300では、ノードQからの差分電流Δiの出力ライン360に対して、ノードQの電圧を所定の基準電圧値に補正するノード電圧補正回路330が構成されている。このノード電圧補正回路330は、ノードQの電圧を調整するための電圧源333と、電圧源333を制御するコンパレータ331および電圧コントローラ332とによって構成されている。コンパレータ331は、ノードQの電圧と基準電圧Vrefとを比較して、ノードQの電圧が基準電圧Vrefよりも高ければハイレベルを、低ければローレベルを電圧コントローラ332へと出力する。電圧コントローラ332は、コンパレータ331の出力結果に応じて、電圧源333がノードQへと印加する電圧を調節する。したがって、本形態では、ノード電圧補正回路330は、ノードQの電圧を常に基準電圧Vrefに維持する。本形態では、基準電圧Vrefは、センサ回路310の両端に印加した4Vの第1電圧の1/2倍の電圧値=2Vである。従って、ノード電圧補正回路330は、ノードQの電圧を常に2Vに維持する。
さらに、本形態の光検出装置300は、差分電流Δiを増幅する増幅回路350を備えている。すなわち、差分電流検出回路340は、ノードQとノード電圧補正回路330の電圧出力部(電圧源333)との間(ノードQからの差分電流Δiの出力ライン360)に介挿された第1抵抗体350Aと、第1抵抗体350Aより抵抗値が低い第2抵抗体350Bとを備えており、第2抵抗体350Bは、ノード電圧補正回路330の電圧出力部と基準電圧(2Vの定電圧)との間に介挿されている。また、第2抵抗体350Bと基準電圧(2Vの定電圧)との間には、第2抵抗体350Bを流れる電流を測定する電流計390が介挿されている。ここで、第1抵抗体350Aの抵抗値をRとすると、第2抵抗体350Bの抵抗値はRの1/1000倍である。このため、第2抵抗体350Bには、第1抵抗体350Aの1000倍の電流が流れる。なお、第1抵抗体350Aおよび第2抵抗体350Bの抵抗値は、差分電流Δiを十分に増幅できる値であるならば任意である。また、第1抵抗体350Aおよび第2抵抗体350Bは、金属膜、ポリシリコン膜、ITO(Indium Tin Oxide)膜などにより構成することができ、これらの薄膜はいずれも、電気光学装置1の素子基板を製造する際、TFT、配線、画素電極に使用される薄膜である。また、コンパレータ331、電圧コントローラ332、および電圧源333については、TFTなどの製造工程を利用して、素子基板上に形成してもよいし、液晶パネルとは別体で構成してもよい。
(本形態の主な効果)
以上説明したように、本形態の電気光学装置1では、主センサ310Aおよび副センサ310Bが出力する第1電流および第2電流の差分(差分電流Δi)は、バックライト装置600から漏れた光(外乱光)を相殺した電流値であり、環境光の光量に応じたものとなる。このため、差分電流Δiを検出すれば、対象光の強度を検出することができる。また、光検出装置300での検出結果に基づいて、バックライト装置600の発光輝度を調整したので、環境照度に応じて画面の明るさを制御することが可能となり、電気光学装置1の消費電力を削減することができる。また、TFT等の素子を製造する工程を利用して、主センサ310Aおよび副センサ310Bを形成したので、電気光学装置1の生産性を向上することができる。
また、本形態の電気光学装置1において、光検出装置300では、主センサ310Aと副センサ310Bとの間でインピーダンスに差が生じ、主センサ310Aおよび副センサ310Bの各々に印加される電圧が変動しても、主センサ310Aと副センサ310BのノードQの電圧を基準電圧Vrefに保持して差分電流Δiを検出する。このため、周囲温度にかかわらず、環境光(対象光)の強度を精度よく検出することができる。
[電気光学装置への第2の適用例]
図8は、電気光学装置への第2の適用例で用いた本発明の光検出装置の概略構成図である。なお、本形態の電気光学装置は、基本的な構成が、上記の実施形態と同様であるため、共通する部分には同一の符号を付してそれらの説明を省略する。
本形態の電気光学装置でも、図1(a)および図2を参照して説明した光検出装置300が構成されている。すなわち、図8に示すように、光検出装置300は、入射光の光量に応じた第1電流を出力する主センサ310Aと、外乱光の光量に応じた第2電流を出力する副センサ310Bとが直列に電気的接続されたセンサ回路310を備えている。副センサ310Bには、遮光体320(図2に示す遮光膜322)が配置されている。主センサ310Aおよび副センサ310Bはいずれもフォトダイオードであり、センサ回路310の両端には、4Vの第1電圧が印加され、主センサ310Aおよび副センサ310Bには、各々2Vの逆バイアスが印加されている。また、主センサ310Aと副センサ310BとのノードQには、ノードQから取り出される第1電流と第2電流との差分電流を検出する差分電流検出回路340が構成されている。また、光検出装置300では、ノードQからの差分電流Δiの出力ライン360に対して、ノードQの電圧を所定の基準電圧値に補正するノード電圧補正回路330が構成されており、ノードQの電圧を常に基準電圧Vrefに維持する。本形態では、基準電圧Vrefは、センサ回路310の両端に印加した4Vの第1電圧の1/2倍の電圧値=2Vである。従って、ノード電圧補正回路330は、ノードQの電圧を常に2Vに維持する。
本形態の光検出装置300において、差分電流検出回路340は、ノードQとノード電圧補正回路330の電圧出力部との間(ノードQからの差分電流Δiの出力ライン360)に介挿された抵抗体370と、この抵抗体370の両端電圧を計測して、抵抗体370に流れる電流値を測定する電圧計392とを備えている。
その他の構成は、上記実施形態と同様であるため、説明を省略するが、本形態の電気光学装置1および光検出装置300でも、上記実施の形態1と同様、主センサ310Aと副センサ310Bとの間でインピーダンスに差が生じ、主センサ310Aおよび副センサ310Bの各々に印加される電圧が変動しても、主センサ310Aと副センサ310BのノードQの電圧を基準電圧Vrefに保持して差分電流Δiを検出する。このため、周囲温度にかかわらず、環境光(対象光)の強度を精度よく検出することができる。
[本発明の別の実施形態]
図9は、電気光学装置への第1の適用例で用いた光検出装置の変形例を示す構成図である。図7を参照して説明した光検出装置300では、抵抗値が相違する2つの抵抗体350A、350Bによって増幅回路350を構成したが、図7に示す第1抵抗体350Aに代えて第1トランジスタ381Aを用い、第2抵抗体350Bに代えて、第1トランジスタ381Aとカレントミラー回路380を構成する第2トランジスタ381Bを用いて、増幅回路350を構成してもよい。この場合、第2トランジスタ381Bのチャネル幅を第1トランジスタ381Aのチャネル幅より大きくすれば、差分電流は、第2トランジスタにより増幅されて検出される。また、第1トランジスタ381Aおよび第2トランジスタ382Bはいずれも、TFTにより形成できるので、素子基板に形成することができる。
[本発明のさらに別の実施形態]
図7および図8に示す形態でおいて、ノード電圧補正回路330によって、ノードQの電圧を常に2Vに維持するように構成したが、図10(a)、(b)に示すように、ノード電圧補正回路330によって、ノードの電圧を直線的あるいは階段状に変化させていき、ノードQの電圧が2Vになったときに検出された差分電流に基づいて対象光の強度を検出してもよい。
上記形態においては、主センサ310Aおよび副センサ310Bとして、低温プロセスで形成したポリシリコン膜を用いたフォトダイオードを説明したが、アモルファスシリコン膜を用いたフォトダイオードを主センサ310Aおよび副センサ310Bとして用いてもよい。また、主センサ310Aおよび副センサ310Bとしては、PINフォトダイオードに代えて、PNフォトダイオードを用いてもよく、さらには、N型あるいはP型のTFTを主センサ310Aおよび副センサ310Bとして用い、TFTのオフリーク電流によって、光電流を検出してもよい。
また、上記形態では、主センサ310Aおよび副センサ310Bが1つずつの場合を説明したが、主センサ310Aおよび副センサ310Bを複数組構成し、各々のノードQを相互に接続して差分電流を取り出してもよい。このように構成すれば、複数の主センサ310Aと複数の副センサ310Bを用いるので、より正確に対象光を検出することができる。また、差分電流の大きさを大きくすることができので、ノイズマージンを向上させることができる。この場合、主センサ310Aおよび副センサ310Bの配列としては、各々が並列した構成、および主センサ310Aと副センサ310Bとを交互に配置した構成などを採用することができる。
[その他の電気光学装置への適用例]
上記実施形態では、液晶装置において光検出装置300での検出結果に基づいて、バックライト装置からの出射光量を制御したが、光検出装置300での検出結果に基づいて、各画素に供給される信号を制御してもよい。また、上記実施形態では、電気光学装置として液晶装置を例に説明したが、有機エレクトロルミネッセンス装置において、光検出装置300での検出結果に基づいて、各画素に供給される信号を制御してもよい。
[電子機器への搭載例]
次に、上述した実施形態に係る電気光学装置1を適用した電子機器について説明する。図11(a)に、電気光学装置1を備えたモバイル型のパーソナルコンピュータの構成を示す。パーソナルコンピュータ2000は、表示ユニットとしての電気光学装置1と本体部2010を備える。本体部2010には、電源スイッチ2001及びキーボード2002が設けられている。図11(b)に、電気光学装置1を備えた携帯電話機の構成を示す。携帯電話機3000は、複数の操作ボタン3001及びスクロールボタン3002、並びに表示ユニットとしての電気光学装置1を備える。スクロールボタン3002を操作することによって、電気光学装置1に表示される画面がスクロールされる。図11(c)に、電気光学装置1を適用した情報携帯端末(PDA:Personal Digital Assistants)の構成を示す。情報携帯端末4000は、複数の操作ボタン4001及び電源スイッチ4002、並びに表示ユニットとしての電気光学装置1を備える。電源スイッチ4002を操作すると、住所録やスケジュール帳といった各種の情報が電気光学装置1に表示される。
なお、電気光学装置1が適用される電子機器としては、図11に示すものの他、デジタルスチルカメラ、液晶テレビ、ビューファインダ型、モニタ直視型のビデオテープレコーダ、カーナビゲーション装置、ページャ、電子手帳、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、タッチパネルを備えた機器等などが挙げられる。そして、これらの各種電子機器の表示部として、前述した電気光学装置1が適用可能である。
(a)、(b)は、本発明を適用した光検出装置の概略構成図、およびその試験装置の概略構成図である。 図1に示す光検出装置に用いた光センサ(フォトダイオード)の構成例を示す断面図である。 本発明を適用した光検出装置の作用、効果を示す説明図である。 本発明を適用した電気光学装置の全体構成を示すブロック図である。 図4に示す電気光学装置の画像表示領域の構成例を示す回路図である。 図4に示す電気光学装置の走査線駆動回路およびデータ線駆動回路の動作を示すタイミングチャートである。 図4に示す電気光学装置に構成した光検出装置の概略構成図である。 本発明を適用した電気光学装置に用いた別の光検出装置の概略構成図である。 本発明を適用した光検出装置の変形例を示す構成図である。 本発明を適用した光検出装置の別の変形例を示す説明図である。 本発明を適用した電気光学装置を備えた電子機器の説明図である。 従来の光検出装置の問題点を示す説明図である。
符号の説明
300 光検出装置、310 センサ回路、310A 主センサ、310B 副センサ、320 遮光体、330 ノード電圧補正回路、340 差分電流検出回路、350 増幅回路

Claims (15)

  1. 対象光と外乱光とが入射光として入射する光検出装置において、
    前記入射光の光量に応じた第1電流を出力する主センサと、前記外乱光の光量に応じた第2電流を出力する副センサとがノードを介して直列に電気的接続されたセンサ回路と、
    該センサ回路の両端に電圧を印加したときに前記ノードから取り出される前記第1電流と前記第2電流との差分電流を検出する差分電流検出回路と、を有し、
    前記センサ回路の両端に印加される電圧を第1電圧とし、前記ノードの電圧を第2電圧としたとき、前記第2電圧が所定の基準電圧値になったときの前記差分電流に基づいて前記対象光の強度を検出することを特徴とする光検出装置。
  2. 前記副センサは、前記対象光が入射する面に対して、前記対象光および前記外乱光のうち、前記対象光を遮光する遮光体が配置されていることを特徴とする請求項1に記載の光検出装置。
  3. 前記主センサと前記副センサとは、光電変換特性が等しく、
    前記第2電圧が、前記基準電圧値として、前記第1電圧の1/2倍の電圧値になったときの前記差分電流に基づいて前記対象光の強度を検出することを特徴とする請求項1または2に記載の光検出装置。
  4. 前記センサ回路の両端に前記第1電圧を印加したときの前記第2電圧を前記基準電圧値に補正するノード電圧補正回路を備え、
    該ノード電圧補正回路によって前記第2電圧が前記基準電圧値になったときの前記差分電流に基づいて前記対象光の強度を検出することを特徴とする請求項1乃至3の何れか一項に記載の光検出装置。
  5. 前記ノード電圧補正回路は、前記センサ回路の両端に前記第1電圧を印加したときの前記第2電圧を前記基準電圧値と比較し、その比較結果に基づいて、前記ノードから前記差分電流を取り出す出力ラインに印加する電圧値を調整して前記第2電圧を前記基準電圧値に維持することを特徴とする請求項4に記載の光検出装置。
  6. 前記ノード電圧補正回路は、前記ノードから前記差分電流を取り出すべき出力ラインに印加する電圧値を変化させていき、
    前記第2電圧が前記基準電圧値になったときの前記差分電流に基づいて前記対象光の強度を検出することを特徴とする請求項4に記載の光検出装置。
  7. 前記差分電流検出回路は、前記差分電流を増幅する増幅回路を備え、
    当該増幅された電流値に基づいて前記対象光の強度を検出することを特徴とする請求項1乃至6の何れか一項に記載の光検出装置。
  8. 前記差分電流検出回路は、前記ノードと前記ノード電圧補正回路の電圧出力部との間に介挿された第1抵抗体と、該第1抵抗体より抵抗値が低く、前記ノード電圧補正回路の電圧出力部と基準電圧との間に介挿された第2抵抗体とを備え、
    前記差分電流は、前記第2抵抗体により増幅されて検出されることを特徴とする請求項4乃至6の何れか一項に記載の光検出装置。
  9. 前記差分電流検出回路は、前記ノードと前記ノード電圧補正回路の電圧出力部との間に介挿された第1トランジスタと、該第1トランジスタとカレントミラー回路を構成する第2トランジスタとを備え、
    前記差分電流は、前記第2トランジスタにより増幅されて検出されることを特徴とする請求項4乃至6の何れか一項に記載の光検出装置。
  10. 前記主センサおよび前記副センサは、前記第1電圧によって逆バイアスが印加されたフォトダイオードであることを特徴とする請求項1乃至9の何れか一項に記載の光検出装置。
  11. 前記フォトダイオードは、ポリシリコン膜に不純物が導入されたN型領域およびP型領域を備えていることを特徴とする請求項10に記載の光検出装置。
  12. 前記フォトダイオードは、前記N型領域と前記P型領域との間に真性のポリシリコン膜を備えていることを特徴とする請求項11に記載の光検出装置。
  13. 請求項1乃至12の何れか一項に記載の光検出装置を備えた電気光学装置であって、
    前記光検出装置による前記対象光の検出結果に基づいて駆動条件が調整されることを特徴とする電気光学装置。
  14. 光源装置と、該光源装置から出射された光を変調可能な電気光学パネルとを備え、前記光検出装置による前記対象光の検出結果に基づいて前記光源装置から出射される光量が調整されることを特徴とする請求項13に記載の電気光学装置。
  15. 請求項13または14に記載の電気光学装置を備えた電子機器。
JP2006258778A 2006-09-25 2006-09-25 光検出装置、電気光学装置、および電子機器 Expired - Fee Related JP4353224B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006258778A JP4353224B2 (ja) 2006-09-25 2006-09-25 光検出装置、電気光学装置、および電子機器
US11/882,906 US7531776B2 (en) 2006-09-25 2007-08-07 Photodetector, electro-optical device, and electronic apparatus having a differential current detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006258778A JP4353224B2 (ja) 2006-09-25 2006-09-25 光検出装置、電気光学装置、および電子機器

Publications (2)

Publication Number Publication Date
JP2008076344A true JP2008076344A (ja) 2008-04-03
JP4353224B2 JP4353224B2 (ja) 2009-10-28

Family

ID=39223910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006258778A Expired - Fee Related JP4353224B2 (ja) 2006-09-25 2006-09-25 光検出装置、電気光学装置、および電子機器

Country Status (2)

Country Link
US (1) US7531776B2 (ja)
JP (1) JP4353224B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209555A (ja) * 2007-02-26 2008-09-11 Epson Imaging Devices Corp 電気光学装置、半導体装置、表示装置およびこれを備える電子機器
JP2010025764A (ja) * 2008-07-18 2010-02-04 Toshiba Corp 光検出装置、光検出機能付き表示装置及び光検出方法
JP2010127635A (ja) * 2008-11-25 2010-06-10 Sharp Corp 光検出半導体装置およびモバイル機器
WO2010097984A1 (ja) * 2009-02-27 2010-09-02 シャープ株式会社 光センサおよびこれを備えた表示装置
CN106164400A (zh) * 2014-02-04 2016-11-23 江森自控科技公司 一种车辆的箱门的锁闩组件
WO2018168250A1 (ja) * 2017-03-14 2018-09-20 株式会社デンソー ライトセンサ
JP2021528653A (ja) * 2018-06-29 2021-10-21 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 周囲光検出器、検出器アレイ、および方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2158503A4 (en) * 2007-06-20 2010-10-13 T C View Ltd METHODS, SYSTEMS, AND DEVICES FOR USING LIGHT-EMITTING DIRECTIONS
JP2009074855A (ja) * 2007-09-19 2009-04-09 Oki Semiconductor Co Ltd 光検出装置
JP2009109288A (ja) * 2007-10-29 2009-05-21 Toshiba Matsushita Display Technology Co Ltd 光検出回路
NL2001016C2 (nl) * 2007-11-20 2009-05-25 Datascan Group B V Inrichting en werkwijze voor het detecteren van kleine hoeveelheden licht, omvattende een in halfgeleidertechniek uitgevoerde elektronische beeldopnemer.
US7955890B2 (en) * 2008-06-24 2011-06-07 Applied Materials, Inc. Methods for forming an amorphous silicon film in display devices
KR101015884B1 (ko) * 2008-07-16 2011-02-23 삼성모바일디스플레이주식회사 손가락 열에 의한 전류를 제거하는 터치 패널 구동회로 및 이를 포함하는 터치 패널
KR101535894B1 (ko) * 2008-08-20 2015-07-13 삼성디스플레이 주식회사 광 감지회로, 이를 구비한 액정표시장치 및 이의 구동방법
JP4797189B2 (ja) * 2009-02-09 2011-10-19 奇美電子股▲ふん▼有限公司 ディスプレイ装置及びこれを備える電子機器
JP4919303B2 (ja) * 2009-04-02 2012-04-18 奇美電子股▲ふん▼有限公司 ディスプレイ装置及びこれを備える電子機器
JP4868425B2 (ja) * 2009-08-07 2012-02-01 奇美電子股▲ふん▼有限公司 ディスプレイ装置、これを有する電子機器及び光センサ装置
BR112012007297A2 (pt) 2009-09-30 2016-04-19 Sharp Kk dispositivo de exibição
WO2011040094A1 (ja) * 2009-09-30 2011-04-07 シャープ株式会社 表示装置
EP2503228A1 (en) * 2009-11-20 2012-09-26 Sharp Kabushiki Kaisha Optical member, lighting device, display apparatus, television receiver, and manufacturing method of optical member
JP5323903B2 (ja) * 2011-08-31 2013-10-23 シャープ株式会社 センサ回路および電子機器
US9154228B2 (en) * 2012-10-15 2015-10-06 University Of North Dakota Method and apparatus for signal reception with ambient light compensation
US9116043B2 (en) 2013-03-18 2015-08-25 Apple Inc. Ambient light sensors with photodiode leakage current compensation
US10228398B2 (en) 2015-04-02 2019-03-12 Rosemount Aerospace Inc. System and method for minimizing magnetic field effect on an isolated magnetometer
CN105241547B (zh) * 2015-10-10 2018-05-18 京东方科技集团股份有限公司 一种显示面板、显示装置和检测紫外线强度的方法
CN108627243B (zh) * 2017-03-17 2020-11-24 敦宏科技股份有限公司 具光二极管漏电流补偿功能的环境光感测电路
CN107591127B (zh) * 2017-10-13 2019-06-04 京东方科技集团股份有限公司 像素电路、阵列基板、有机电致发光显示面板及显示装置
CN109713000B (zh) * 2017-10-26 2021-12-10 上海耕岩智能科技有限公司 一种光侦测装置和光侦测器件
US10742183B2 (en) 2018-12-21 2020-08-11 Industrial Technology Research Institute Processing device for position sensing comprising a transforming differential current signal to a voltage signal performance
WO2021031117A1 (en) * 2019-08-20 2021-02-25 Boe Technology Group Co., Ltd. Array substrate, display apparatus, and method of fabricating array substrate

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224373A (ja) 1987-03-13 1988-09-19 Nippon Telegr & Teleph Corp <Ntt> 増幅機能を有する受光素子およびその製作法
US5376782A (en) * 1992-03-04 1994-12-27 Fuji Xerox Co., Ltd. Image pickup device providing decreased image lag
JP3363272B2 (ja) 1993-11-25 2003-01-08 松下電工株式会社 赤外線検知回路
JP3404984B2 (ja) 1995-04-27 2003-05-12 富士通株式会社 光出力モニタ回路
JPH09229763A (ja) 1996-02-22 1997-09-05 Osaka Gas Co Ltd 火炎センサ
JPH10300574A (ja) 1997-04-23 1998-11-13 N Ii C Tele Netsutowaakusu Kk 光パワーメータ
JP2002176192A (ja) 2000-09-12 2002-06-21 Rohm Co Ltd 照度センサチップ、照度センサ、照度測定装置、および照度測定方法
DE60134143D1 (de) * 2001-10-16 2008-07-03 Suisse Electronique Microtech Photodetektor mit grossem Dynamikbereich und erhöhtem Arbeitstemperaturbereich
JP2005345286A (ja) 2004-06-03 2005-12-15 Seiko Epson Corp 光センサ、光センサ出力処理方法、表示装置および電子機器
JP2006058058A (ja) 2004-08-18 2006-03-02 Seiko Epson Corp 光検出回路及び自動調光回路
JP4192880B2 (ja) 2004-10-12 2008-12-10 セイコーエプソン株式会社 電気光学装置および電子機器
JP4599985B2 (ja) 2004-10-21 2010-12-15 セイコーエプソン株式会社 光検出回路、電気光学装置、および電子機器
JP2006194612A (ja) 2005-01-11 2006-07-27 Denso Corp 光センサ付き機器

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209555A (ja) * 2007-02-26 2008-09-11 Epson Imaging Devices Corp 電気光学装置、半導体装置、表示装置およびこれを備える電子機器
JP2010025764A (ja) * 2008-07-18 2010-02-04 Toshiba Corp 光検出装置、光検出機能付き表示装置及び光検出方法
JP2010127635A (ja) * 2008-11-25 2010-06-10 Sharp Corp 光検出半導体装置およびモバイル機器
JP4647004B2 (ja) * 2008-11-25 2011-03-09 シャープ株式会社 光検出半導体装置およびモバイル機器
WO2010097984A1 (ja) * 2009-02-27 2010-09-02 シャープ株式会社 光センサおよびこれを備えた表示装置
US8654266B2 (en) 2009-02-27 2014-02-18 Sharp Kabushiki Kaisha Optical sensor and display device provided with same
CN106164400A (zh) * 2014-02-04 2016-11-23 江森自控科技公司 一种车辆的箱门的锁闩组件
WO2018168250A1 (ja) * 2017-03-14 2018-09-20 株式会社デンソー ライトセンサ
JP2018151294A (ja) * 2017-03-14 2018-09-27 株式会社デンソー ライトセンサ
JP2021528653A (ja) * 2018-06-29 2021-10-21 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 周囲光検出器、検出器アレイ、および方法
JP7186247B2 (ja) 2018-06-29 2022-12-08 エイエムエス-オスラム インターナショナル ゲーエムベーハー 周囲光検出器、検出器アレイ、および方法

Also Published As

Publication number Publication date
US20080073490A1 (en) 2008-03-27
JP4353224B2 (ja) 2009-10-28
US7531776B2 (en) 2009-05-12

Similar Documents

Publication Publication Date Title
JP4353224B2 (ja) 光検出装置、電気光学装置、および電子機器
US8519992B2 (en) Display apparatus and electronic apparatus
JP4599985B2 (ja) 光検出回路、電気光学装置、および電子機器
TWI416484B (zh) 光檢測裝置、光電裝置與電子機器及光劣化修正方法
US8432510B2 (en) Liquid crystal display device and light detector having first and second TFT ambient light photo-sensors alternatively arranged on the same row
CN101634765B (zh) 显示装置和电子设备
US20070268206A1 (en) Image display device
CN110071164B (zh) 一种显示基板及其亮度调节方法、显示装置
JP2007248815A (ja) 電気光学装置および電子機器
GB2446821A (en) An ambient light sensing system
JP2007114315A (ja) 表示装置
JP5106784B2 (ja) 電気光学装置および電子機器
JP2007316243A (ja) 表示装置及びその制御方法
JP2006091462A (ja) 表示装置
JP2007322830A (ja) 表示装置及びその制御方法
Lee et al. In-cell adaptive touch technology for a flexible e-paper display
KR101420437B1 (ko) 광 센서의 온도 보상 장치
JP4656082B2 (ja) 電気光学装置及び電子機器
US9001096B2 (en) Display device
JP2009109288A (ja) 光検出回路
JP2008064828A (ja) 液晶装置および電子機器
US8098345B2 (en) Liquid crystal display device and electronics device
US20070229484A1 (en) Electro-optical device and electronic apparatus
JP2009098512A (ja) 表示装置及び表示装置の制御方法
TWI425490B (zh) A display device and an electronic device of the display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

R150 Certificate of patent or registration of utility model

Ref document number: 4353224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees