JP2008063276A - ジチオトリシクロデカンの製造方法 - Google Patents

ジチオトリシクロデカンの製造方法 Download PDF

Info

Publication number
JP2008063276A
JP2008063276A JP2006242618A JP2006242618A JP2008063276A JP 2008063276 A JP2008063276 A JP 2008063276A JP 2006242618 A JP2006242618 A JP 2006242618A JP 2006242618 A JP2006242618 A JP 2006242618A JP 2008063276 A JP2008063276 A JP 2008063276A
Authority
JP
Japan
Prior art keywords
decane
reaction
substituted
dithiotricyclo
dibromotricyclo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006242618A
Other languages
English (en)
Inventor
Yutaka Awano
裕 粟野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2006242618A priority Critical patent/JP2008063276A/ja
Publication of JP2008063276A publication Critical patent/JP2008063276A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】エポキシ樹脂硬化剤やエンジニアリングプラスチック及び光学材料といった種々のポリマーの原料、可塑剤、又はゴム加硫剤や架橋剤等として有用な3位又は4位置換及び8位又は9位置換のジチオトリシクロ[5.2.1.02,6]デカンの効率的な製造方法を提供する。
【解決手段】3位又は4位置換及び8位又は9位置換のジブロモトリシクロ[5.2.1.02,6]デカンと水硫化アルカリ金属塩とを有機極性溶媒の存在下、0℃から使用する溶媒の沸点以下の温度範囲で反応させる。
【選択図】なし

Description

本発明は、エポキシ樹脂硬化剤やエンジニアリングプラスチック及び光学材料といった種々のポリマーの原料、可塑剤、又はゴム加硫剤や架橋剤等として有用なジチオトリシクロデカンの製造方法に関する。
3位又は4位置換及び8位又は9位置換のジチオトリシクロ[5.2.1.02,6]デカンをはじめとする種々のノルボルネン骨格を有する脂環式ジチオールは、エポキシ樹脂硬化剤やエポキシ樹脂の原料(例えば、特許文献1参照)及びプラスチックレンズの原料(例えば、特許文献2〜4参照)として有用な化合物と考えられている。
一般に脂環式チオールの合成法としては、1)シクロへキセンへの硫化水素による付加反応(例えば、非特許文献1参照)が知られている。また、2)イソチオロニウム塩を経由する反応(例えば、非特許文献2参照)も低収率ながら報告されている。3)それに対し、目的とする3位又は4位置換及び8位又は9位置換のジチオトリシクロ[5.2.1.02,6]デカンの合成は、ジシクロペンタジエンにチオ酢酸を反応させたビス(チオアセトキシ)トリシクロ[5.2.1.02,6]デカンを中間体とし、それをアルカリ加水分解する例が知られている。しかし、中間体であるビス(チオアセトキシ)トリシクロ[5.2.1.02,6]デカンを高収率で得るためには、原料であるジシクロペンタジエンに対して、高価なチオ酢酸を10倍モル程度と大過剰に用いる必要があり(例えば、特許文献1参照)工業的製法には向かない。それに対して、チオ酢酸量を減らした場合には、光触媒によるラジカル付加反応を行っても中間体であるビス(チオアセトキシ)トリシクロ[5.2.1.02,6]デカンを収率良く得ることは困難であった(例えば、特許文献2参照)。
一方、アルカリ金属塩溶液に硫化水素を吹込みながら臭化アルキル化合物を反応させるとアルキルチオールが得られることが知られている(例えば、非特許文献3参照)が、ジチオトリシクロ[5.2.1.02,6]デカンに応用した例は報告されていない。
米国特許第3632654号公報 特開2005−35968公報 特開2005−298736公報 特開2006−56926公報 J.Org.Chem.1969,34,3112 J.Amer.Chem.Soc.1946,68,2103 J.Amer.Chem.Soc.1932,54,1674
本発明は、エポキシ樹脂硬化剤やエンジニアリングプラスチック及び光学材料といった種々のポリマーの原料、可塑剤、又はゴム加硫剤や架橋剤等として有用な3位又は4位置換及び8位又は9位置換のジチオトリシクロ[5,2,1,02,6]デカンの新規で効率的な製造方法を提供するものである。
本発明者等は、従来の問題点を解決すべく鋭意検討した結果、3位又は4位置換及び8位又は9位置換のジチオトリシクロ[5.2.1.02,6]デカンを経済性良く効率的に製造することができる方法を見出した。
すなわち、本発明は、下記一般式(1)で示される3位又は4位置換及び8位又は9位置換のジブロモトリシクロ[5.2.1.02,6]デカンと水硫化アルカリ金属塩とを有機極性溶媒の存在下、0℃から使用する溶媒の沸点以下の温度範囲で反応させることにより、主に3位又は4位置換及び8位又は9位置換のジチオトリシクロ[5.2.1.02,6]デカンからなる下記式(2)で示されるジチオトリシクロ[5.2.1.02,6]デカン混合物を製造することに関する。
Figure 2008063276
Figure 2008063276
以下に、本発明を詳細に説明する。
本発明の方法において、硫黄原子2個により位置選択的に置換されたジチオトリシクロデカンを合成する際には、通常、有機極性溶媒が用いられる。
反応に用いる有機極性溶媒としては、例えば、N,N−ジメチルホルムアミド、N−メチルホルムアミド、ホルムアミド、N,N−ジメチルアセトアミド、アセトアミドなどのアミド系極性溶媒、N−メチルピロリドン、ピロリドンなどのピロリドン系極性溶媒、ピリジンなどの芳香族ヘテロ環極性溶媒、ジメチルスルホキシド、スルホランなどの含硫黄系極性溶媒、ジグライム、トリグライムなどのエチレングリコールエーテル系極性溶媒等を挙げることができる。これらの溶媒は、単独又は混合して用いることができるが、これらのうち特に、N,N−ジメチルホルムアミドは工業的規模で汎用に用いられており、反応溶媒として好ましい。
反応に使用する溶媒の量は、原料として使用するジブロモトリシクロ[5.2.1.02,6]デカンに対し3倍当量以上である。これにより、反応が良好に進行する。具体的な溶媒の量としては、好ましくは4〜10倍当量の範囲である。しかし、大過剰量の溶媒を用いると反応が逆に遅くなり、経済的でない。
反応に用いるジブロモトリシクロ[5.2.1.02,6]デカンは、ジシクロペンタジエンに臭化水素を飽和状態で付加反応させることにより製造することができる。本発明においては、特に3位又は4位置換及び8位又は9位置換のジブロモトリシクロ[5,2,1,02,6]デカンを用いることが好ましい。
反応に用いる水硫化アルカリ金属塩は、無水のものでも結晶水をもつ固体のもののいずれでも使用可能である。特に水硫化ナトリウムは工業的にも使用されており、入手し易く好ましい。
反応に使用する水硫化アルカリ金属塩の量は、原料として使用するジブロモトリシクロ[5.2.1.02,6]デカンの2倍当量以上が必要であり、3倍当量あれば充分である。なお、3倍当量を超える量の水硫化アルカリ金属塩は、反応には使用されない上、溶解させるには多量の溶媒を必要とするため、経済性の面からも好ましくない。なお、水硫化アルカリ金属塩の添加方法は、一括仕込みでも反応は進行するが、反応温度の制御を容易にするため、反応試剤のいずれか一方を少量ずつ添加する方法が適当であるが、ジブロモトリシクロ[5.2.1.02,6]デカンの溶液に水硫化アルカリ金属塩を少量ずつ添加する方が、ジブロモトリシクロ[5.2.1.02,6]デカンを添加する場合よりも収率が高くなるため好ましい。
チオール化の反応温度としては、0℃から使用する溶媒の沸点以下の温度範囲が用いられる。具体的な反応温度は、好ましくは30〜60℃の範囲である。
具体的な反応溶液の処理方法としては、反応終了後に溶媒を留去して濃縮し、酸性水を加えて反応液をpH3以下の酸性とする。次いで、抽出溶媒を加えて抽出分液し、必要に応じて水洗後、蒸留を行って目的物を得ることができる。また、中和する際に用いられる酸としては、塩酸、硫酸、硝酸といった鉱酸の他に、リン酸及び酢酸等の有機酸を挙げることができるが、工業的には経済性の面で塩酸、硫酸等の鉱酸が好ましい。
以上に示した本特許の方法により、エポキシ樹脂硬化剤やエンジニアリングプラスチック及び光学材料といった種々のポリマーの原料、可塑剤、又はゴム加硫剤や架橋剤等として有用な3位又は4位置換及び8位又は9位置換のジチオトリシクロ[5.2.1.02,6]デカンを効率よく提供することができる。
以下に、実施例を用いて本発明を詳細に説明するが、本発明はそれらに限定されるものではない。なお、得られた混合物の構造は、GC−MS、元素分析、H−NMR及びIR測定により確認した。また、本反応により得られた生成物の純度及び収率は、ガスクロマトグラフィーにて確認した。
GC−MS:日本電子(株)製 GC−MS JMS−K9を用い、カラムは5%フェニル−95%ジメチルメチルポリシロキサンを用い、昇温条件にて行った。
元素分析:(パーキンエルマー社製 全自動元素分析装置2400IIを用い、サンプルを酸素フラスコ燃焼法で燃焼後、苛性−過酸化水素溶液に吸収させ、イオンクロマトグラフ(東ソー製 イオンクロマトグラフ IC−2001)にて分析した。
H−NMR:バリアン テクノロジーズ ジャパン リミテッド社製 gemini200を用い、アセトン−D,DO及びCDCl混合溶媒(10:1:1)又はCDCl溶媒中で測定した。
13C−NMR:バリアン テクノロジーズ ジャパン リミテッド社製 gemini200を用い、CDCl溶媒中で測定した。
IR:パーキンエルマー社製 System2000 FT−IRを用い、NaCl板に塗布して測定した。
ガスクロマトグラフィー:島津製作所製 GC−17Aを用い、キャピラリーカラム(J&W Scientific社製 DB−1、又はGL Science社製 NB−5)、検出器(FID)、100℃から250℃まで5℃/分で昇温して行った。
屈折率:ATAGO社製、多波長アッベ屈折率計DR−M2を用いて、25℃、波長 486nm(F線)、546nm(e線)、589nm(d線)、656nm(C線)にて測定し、JIS B7090 2.3に準拠し、アッベ数を算出した。
合成例1(ジブロモトリシクロ[5.2.1.02,6]デカンの合成)
窒素雰囲気下、1000mlの反応器に、ジシクロペンタジエン132.8g(1.0mol)とイソプロピルエーテル132.7gを仕込み、さらに塩化第二鉄2.6g(16mmol)を添加し、遮光状態で撹拌しながら内温を30℃にした。そこに、内温を35℃に保ちながら臭化水素ガス186.2g(2.3mol)を11時間かけて吹込み、さらに同温度条件下、密閉状態で80時間撹拌を継続した。反応終了後、反応液に窒素ガスを吹込んで余分な臭化水素ガスを追い出し、トルエン抽出と水洗を行い、褐色の溶液を得た。
次に、反応処理液を濃縮後、セロキサイド5.5gを添加して減圧蒸留(塔頂温度137℃/減圧度0.4kPa)し、淡黄色の透明な液体246.2gを得た。得られた蒸留品のガスクロマトグラフィー分析を行ったところ、特徴的な4本のピークが観察された。GC−MS測定により、それぞれの分子量は全て質量数が294であり、同一のスペクトルパターンを示すことから、これらの化合物はジブロモトリシクロ[5.2.1.02,6]デカンであることが判明した。4本のピークの合計は97.5GC面%であり、ジシクロペンタジエンからのトータル収率は62.0%であった。この液体の元素分析を行ったところ、観測値が(C:41.5%、H:4.6%、Br:53.9%)であり、理論値(C:40.8%、H:4.8%、Br:54.4%)と良い一致を示した。
さらに、蒸留品10.4gにn−ヘプタン 12.1gを加えたところ、白色粒状結晶3.5gが得られた(融点:73〜75℃)。結晶のH−NMR及び13C−NMR測定したチャートを図1と図2に示したが、いずれもオレフィンの吸収は見られず、二次元NMR解析の結果より、晶析品は4位置換及び8位又は9位置換のジブロモトリシクロ[5,2,1,02,6]デカンであることが分かった。なお、改めて反応処理液のガスクロマトグラフィー分析を行ったところ、ジブロモトリシクロ[5.2.1.02,6]デカンの反応収率は78.5%であった。
実施例1
窒素雰囲気下、500mlの反応器に、合成例1で得られたジブロモトリシクロ[5.2.1.02,6]デカン33.6g(0.1mol)と水硫化ナトリム・n水和物(キシダ化学社製、純度70%)をそのまま乾燥せず24.3g(0.3mol)及びジメチルホルムアミド100.2gを仕込み、撹拌しながら内温を約60℃に保ち、33時間撹拌を継続した。反応終了後、ジメチルホルムアミドを留去して濃縮し、トルエンを添加し、塩酸水を反応液がpH1になるまで加えた後、分液抽出と水洗を行い、褐色の溶液を得た。次いで、反応処理液を濃縮後、減圧蒸留(塔頂温度88℃/減圧度0.3kPa)し、淡黄色の透明な液体9.1gを得た。得られた蒸留品のガスクロマトグラフィー分析を行ったところ、図3に示す様に特徴的な4本のピーク(S−1、S−2、S−3及びS−4)が観察された。GC−MS測定により、それぞれの分子量は全て質量数が200であり、同一のスペクトルパターンを示すことから、これらの化合物はジチオトリシクロ[5.2.1.02,6]デカンであることが判明した。4本のピークの合計は95.0GC面%であり、ジブロモトリシクロ[5.2.1.02,6]デカンからのトータル収率は42.9%であった。この液体の元素分析を行ったところ、観測値が(C:60.1%、H:8.2%、S:30.9%)であり、理論値(C:59.9%、H:8.1%、S:32.0%)と良い一致を示した。
さらに、蒸留品のIR及びH−NMR測定したチャートを図4と図5に示す。特にIRではチオールに特徴的な2550cm−1付近及び1255〜1260cm−1付近の吸収が観察され、さらに1295〜1320cm−1付近の特徴的な吸収が観察された。なお、改めて反応処理液のガスクロマトグラフィー分析を行ったところ、ジチオトリシクロ[5.2.1.02,6]デカンの反応収率は47.8%であった。反応条件及び結果をまとめて表1に示す。
実施例2
窒素雰囲気下、100mlの反応器に、合成例1で得られたジブロモトリシクロ[5.2.1.02,6]デカン3.3g(0.01mol)と水硫化ナトリム・n水和物(キシダ化学社製、純度70%)をそのまま乾燥せず1.6g(0.02mol)及びジメチルホルムアミド10.0gを仕込み、実施例1と同様に反応を行い、処理後、褐色の溶液を得た。得られた反応処理液のガスクロマトグラフィー分析を行ったところ、ジチオトリシクロ[5.2.1.02,6]デカンの収率は34.9%であった。反応条件及び結果をまとめて表1に示す。
実施例3
窒素雰囲気下、100mlの反応器に、合成例1で得られたジブロモトリシクロ[5.2.1.02,6]デカン3.3g(0.01mol)と水硫化ナトリム・n水和物(キシダ化学社製、純度70%)をそのまま乾燥せず4.9g(0.06mol)及びジメチルホルムアミド10.0gを仕込み、実施例1と同様に反応を行い、処理後、褐色の溶液を得た。得られた反応処理液のガスクロマトグラフィー分析を行ったところ、ジチオトリシクロ[5.2.1.02,6]デカンの収率は43.5%であった。反応条件及び結果をまとめて表1に示す。
実施例4
窒素雰囲気下、500mlの反応器に、水硫化ナトリウム・n水和物(キシダ化学社製、純度70%)をそのまま乾燥せず24.4g(0.3mol)とジメチルホルムアミド200.1gを仕込み、撹拌しながら内温を50℃とした。そこに、内温を50〜60℃に保ちながら合成例1で得られたジブロモトリシクロ[5.2.1.02,6]デカン29.8g(0.1mol)を6時間かけて滴下し、さらに同温度条件下で36時間撹拌を継続した。反応終了後、実施例1と同様に処理を行い、褐色の溶液を得た。得られた反応処理液のガスクロマトグラフィー分析を行ったところ、ジチオトリシクロ[5.2.1.02,6]デカンの収率は53.6%であった。反応条件及び結果をまとめて表1に示す。
実施例5
窒素雰囲気下、3000mlの反応器に、合成例1で得られたジブロモトリシクロ[5.2.1.02,6]デカン297g(1.0mol)とジメチルホルムアミド2010gを仕込み、撹拌しながら内温を44℃とした。そこに、内温を44〜63℃に保ちながら水硫化ナトリム・n水和物(キシダ化学社製、純度70%)をそのまま乾燥せず244g(3.0mol)を約40gずつに6分割して4時間かけて少量ずつ添加し、さらに同温度条件下で34時間撹拌を継続した。反応終了後、実施例1と同様に処理を行い、さらに濃縮して淡褐色の濃縮溶液を得た。得られた濃縮溶液のガスクロマトグラフィー分析を行ったところ、ジチオトリシクロ[5.2.1.02,6]デカンの収率は61.9%であった。反応条件及び結果をまとめて表1に示す。次いで、濃縮処理液を薄膜蒸留(加熱部温度180℃/減圧度0.01〜0.02kPa)し、淡黄色の透明な液体106.1gを得たが、ジブロモトリシクロ[5.2.1.02,6]デカンからのトータル収率は53.1%であった。
比較例1
ジシクロペンタジエンにチオ酢酸をラジカル付加する反応を行うにあたり、過酸化ベンゾイルを触媒に用いた高収率なオレフィン化合物へのチオ酢酸付加反応である先行文献例(非特許文献4:J.Chem.Soc.1951,2123)に従い、反応を実施した。
窒素雰囲気下、100mlの反応器に、ジシクロペンタジエン13.2g(0.1mol)と過酸化ベンゾイル0.23g(1.0mmol)を仕込み、撹拌しながら内温を16℃とした。そこに、内温を28℃以下に保ちながら、チオ酢酸18.3g(0.24mol)を1時間かけて滴下し、40℃付近で1時間撹拌を継続した。反応終了後、過剰のチオ酢酸を蒸留にて留去し、得られた濃縮液に水酸化ナトリウム16.8g(0.4mol)と水16.8g及びエチレングリコール16.9gを加え、80℃で12時間加熱撹拌を継続した。反応終了後、実施例1と同様に処理を行い、淡黄色の溶液を得た。次いで、反応処理液を濃縮後、減圧蒸留(塔頂温度87〜92℃/減圧度0.1kPa)し、淡黄色の透明な液体15.0gを得た。得られた蒸留品のガスクロマトグラフィー分析を行ったところ、図6に示す様に特徴的な2本のピーク(S−5及びS−6)が観察された。それぞれの分子量をGC−MSにて測定したところ、いずれも質量数が200であり、実施例1と同一のスペクトルパターンを示すことから、これらの化合物は、ジチオトリシクロ[5.2.1.02,6]デカン類であることが判明した。ジシクロペンタジエンからのトータル収率は27.8%であった。反応条件及び結果をまとめて表1に示す。
さらに、蒸留品のIR及びH−NMR測定したチャートを図7と図8に示す。特にIRではチオールに特徴的な2550cm−1付近の吸収が観察されたが、実施例1〜5で得られたジチオールで観察される比較的強い1255〜1260cm−1付近の吸収、並びに1295〜1320cm−1付近の吸収は認められず、代わりに1280cm−1付近と1290cm−1付近に特徴的な2つの吸収を示した。
参考例1
実施例5と比較例1で得られた2種類の合成法によるジチオトリシクロ[5.2.1.02,6]デカンについて、屈折率とアッベ数を比べた結果を表2に示す。その結果、光学的物性値についての差異は認められず、光学材料として有用な化合物であることが示された。
Figure 2008063276
Figure 2008063276
合成例1で得られた白色粒状結晶のH−NMRスペクトルである。 合成例1で得られた白色粒状結晶の13C−NMRスペクトルである。 実施例1で得られた蒸留品のガスクロマトグラフ(キャピラリーカラム J&W Scientific社製 DB−1)である。 実施例1で得られた蒸留品の粒状結晶のIRスペクトルである。 実施例1で得られた蒸留品の粒状結晶のH−NMRスペクトルである。 比較例1で得られた蒸留品のガスクロマトグラフ(キャピラリーカラム GL Science社製 NB−5)である。 比較例1で得られた蒸留品の粒状結晶のIRスペクトルである。 比較例1で得られた蒸留品の粒状結晶のH−NMRスペクトルである。

Claims (2)

  1. 下記式(1)で示されるジブロモトリシクロ[5.2.1.02,6]デカンと水硫化アルカリ金属塩とを有機極性溶媒の存在下、0℃から使用する溶媒の沸点以下の温度範囲で反応させることを特徴とする、主に3位又は4位置換及び8位又は9位置換のジチオトリシクロ[5.2.1.02,6]デカンからなる下記式(2)で示されるジチオトリシクロ[5.2.1.02,6]デカン混合物の製造方法。
    Figure 2008063276
    Figure 2008063276
  2. ジブロモトリシクロ[5.2.1.02,6]デカンと水硫化アルカリ金属塩との反応を逐次分割して行うことを特徴とする請求項1に記載のジチオトリシクロ[5.2.1.02,6]デカン混合物の製造方法。
JP2006242618A 2006-09-07 2006-09-07 ジチオトリシクロデカンの製造方法 Pending JP2008063276A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006242618A JP2008063276A (ja) 2006-09-07 2006-09-07 ジチオトリシクロデカンの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006242618A JP2008063276A (ja) 2006-09-07 2006-09-07 ジチオトリシクロデカンの製造方法

Publications (1)

Publication Number Publication Date
JP2008063276A true JP2008063276A (ja) 2008-03-21

Family

ID=39286282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006242618A Pending JP2008063276A (ja) 2006-09-07 2006-09-07 ジチオトリシクロデカンの製造方法

Country Status (1)

Country Link
JP (1) JP2008063276A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015505570A (ja) * 2012-01-19 2015-02-23 アクゾ ノーベル コーティングス インターナショナル ビー ヴィ 硬化性コーティング組成物
WO2017176320A1 (en) * 2016-04-05 2017-10-12 Chevron Phillips Chemical Company Lp Mercaptanized dicyclopentadiene compositions and use thereof as a mining chemical collector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015505570A (ja) * 2012-01-19 2015-02-23 アクゾ ノーベル コーティングス インターナショナル ビー ヴィ 硬化性コーティング組成物
WO2017176320A1 (en) * 2016-04-05 2017-10-12 Chevron Phillips Chemical Company Lp Mercaptanized dicyclopentadiene compositions and use thereof as a mining chemical collector
AU2016401944B2 (en) * 2016-04-05 2021-01-21 Chevron Phillips Chemical Company Lp Mercaptanized dicyclopentadiene compositions and use thereof as a mining chemical collector

Similar Documents

Publication Publication Date Title
KR102300816B1 (ko) 플루오레닐리덴디알릴페놀류의 제조 방법 및 플루오레닐리덴디알릴페놀류
JP2008063276A (ja) ジチオトリシクロデカンの製造方法
JP4596663B2 (ja) ビス(ヒドロキシフェニルチオ)フルオレン化合物及びその製造方法
JP5137982B2 (ja) アダマンタン誘導体及びその製造方法
JP2015003882A (ja) ジアミン化合物及びその製造方法
JP6414655B2 (ja) ジアミン化合物及びその製造方法
JP2015017069A (ja) ジアミン化合物及びその製造方法
JP5572910B2 (ja) ジチオール化合物の製造方法
JP6395069B2 (ja) ジアミン化合物及びその製造方法
JP6074670B2 (ja) ペルフルオロアルケニルオキシ基含有アレーン化合物の製造法
US11964939B2 (en) Aromatic tetracarboxylic acid compound
US3329598A (en) Photochemical methods for making sulfopivalic acid anhydride
JP4580165B2 (ja) アダマンタン誘導体及びその製造方法
JP2015020976A (ja) ジアミン化合物及びその製造方法
WO2011114955A1 (ja) 新規ジアリールスルホン化合物、及びその製造方法
US4268457A (en) Process for the preparation of paraphenoxybenzoylchloride
JP2011207793A (ja) 新規ジチオジアリールスルホキシド化合物、その製造方法、およびジメルカプトジアリールスルフィドの製造方法
EP4198028A1 (en) Polythiol compounds and process for preparation thereof
JP5316755B2 (ja) 硫黄原子を含有する新規なノルボルネン化合物およびその製造方法
JP5292888B2 (ja) 硫黄原子を含有する新規なノルボルネン化合物およびその製造方法
JPS63275585A (ja) 含イオウスピロオルトカ−ボナ−ト化合物
JP2018172368A (ja) アミノ基を有する有機リチウム化合物およびその中間体の製造方法、並びに有機リチウム化合物を用いた共役ジエン系重合体の製造方法
JP2005179300A (ja) アダマンタン誘導体の製造方法
JPH0138786B2 (ja)
JP2016094348A (ja) ジアミン化合物及びその製造方法