JP2008039298A - ヒートポンプサイクル - Google Patents
ヒートポンプサイクル Download PDFInfo
- Publication number
- JP2008039298A JP2008039298A JP2006214923A JP2006214923A JP2008039298A JP 2008039298 A JP2008039298 A JP 2008039298A JP 2006214923 A JP2006214923 A JP 2006214923A JP 2006214923 A JP2006214923 A JP 2006214923A JP 2008039298 A JP2008039298 A JP 2008039298A
- Authority
- JP
- Japan
- Prior art keywords
- evaporator
- refrigerant
- flow rate
- heat pump
- hot gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
【課題】除霜運転の短縮と効率向上を実現するヒートポンプサイクルを提供する。
【解決手段】ヒートポンプサイクルは、圧縮機1と、この圧縮機1から吐出された高圧冷媒の放熱を行い水を加熱する放熱器2と、この放熱器2よりも下流部で減圧された冷媒と送風空気とを熱交換させて空気を冷却し、空気の流れ方向の上流側に設けられた第1蒸発器4、および第1蒸発器4よりも空気流れの下流側に設けられた第2蒸発器5と、第1蒸発器4、第2蒸発器5のそれぞれへ流入させる冷媒流量を調節する減圧弁3および流調弁8と、これらを弁の動作を制御する制御装置6と、を備えている。この制御装置6は、第1蒸発器4および第2蒸発器5の少なくともいずれか一方にホットガスを流入させる除霜運転において、流調弁8の動作を制御して第2蒸発器5に流入させるホットガスの流量を制御する。
【選択図】図1
【解決手段】ヒートポンプサイクルは、圧縮機1と、この圧縮機1から吐出された高圧冷媒の放熱を行い水を加熱する放熱器2と、この放熱器2よりも下流部で減圧された冷媒と送風空気とを熱交換させて空気を冷却し、空気の流れ方向の上流側に設けられた第1蒸発器4、および第1蒸発器4よりも空気流れの下流側に設けられた第2蒸発器5と、第1蒸発器4、第2蒸発器5のそれぞれへ流入させる冷媒流量を調節する減圧弁3および流調弁8と、これらを弁の動作を制御する制御装置6と、を備えている。この制御装置6は、第1蒸発器4および第2蒸発器5の少なくともいずれか一方にホットガスを流入させる除霜運転において、流調弁8の動作を制御して第2蒸発器5に流入させるホットガスの流量を制御する。
【選択図】図1
Description
本発明は、同一の外部流体を冷却するために、外部流体の流れ方向の上流側に配置した第1蒸発器と、この第1蒸発器よりも下流側に配置した第2蒸発器と、を備えるヒートポンプサイクルに関するものである。
従来、この種のヒートポンプサイクルは、特許文献1に示すものが知られている。このヒートポンプサイクルは、放熱器の下流側の冷媒を減圧膨張するノズル部、およびノズル部から噴射される高速度の冷媒流によって冷媒を吸引する吸引部を有するエジェクタと、このエジェクタから排出された冷媒が流入する第1蒸発器と、吸引部に流入する冷媒を排出する第2蒸発器と、を備えている。さらに、第1蒸発器と第2蒸発器は一体に構成されており、共通の冷却対象空間に向かって送風される空気流れを冷却している。そして、第1蒸発器は、第2蒸発器よりも空気流れの上流側に配置されている。
特開2005−308384号公報
ヒートポンプサイクルでは、蒸発器に霜が付着したときには蒸発器の吸熱性能低下を防止するために、通常、高温のガス冷媒(ホットガス)を蒸発器に流入させる除霜運転を行う。そして、この霜の付着量は、空気流れの上流側に配置されている第1蒸発器の方が下流側に配置されている第2蒸発器よりも多くなる。
しかしながら、特許文献1のような構成のヒートポンプサイクルにおいて除霜運転を行う場合には、蒸発器の除霜が完了するまで第1蒸発器と第2蒸発器の両方にホットガスを流し続けることになる。そして、霜の付着量が少ない空気流れ下流側の第2蒸発器の方が、第1蒸発器よりも早く除霜が完了する。なお、特許文献1には、除霜運転を行う場合の具体的実施形態はなんら記載されていない。
このような除霜運転によると、第2蒸発器の除霜が完了した後に、第2蒸発器に流入し続けるホットガスの熱は、外部に放出されるだけで蒸発器の除霜に寄与せず、ヒートポンプサイクルの効率の低下や、全体的な除霜時間の長時間化につながるという問題があった。
本発明の目的は、このような問題点を鑑みてなされたものであり、除霜運転の短縮と効率向上を実現するヒートポンプサイクルを提供することにある。
本発明は上記目的を達成するために、以下に記載の技術的手段を採用する。すなわち、ヒートポンプサイクルに係る第1の発明は、冷媒を吸入し圧縮する圧縮機(1)と、圧縮機(1)から吐出された高圧冷媒の放熱を行い、第1外部流体を加熱する放熱器(2)と、放熱器(2)よりも下流部で減圧された冷媒と第2外部流体とを熱交換させて第2外部流体を冷却し、第2外部流体の流れ方向の上流側に設けられた第1蒸発器(4)、および第1蒸発器(4)よりも第2外部流体の下流側に設けられた第2蒸発器(5)と、第1蒸発器(4)、第2蒸発器(5)のそれぞれへ流入させる冷媒流量を調節する流量調節手段(3、8、9、10、11、13)と、を備えており、
第1蒸発器(4)および第2蒸発器(5)のうち少なくとも第1蒸発器(4)にホットガスを流入させる除霜運転において、流量調節手段(3、8、9、10、11、13)により、第1蒸発器(4)に流入させるホットガスの流量と第2蒸発器(5)に流入させるホットガスの流量とを異なる流量に調節することを特徴としている。
第1蒸発器(4)および第2蒸発器(5)のうち少なくとも第1蒸発器(4)にホットガスを流入させる除霜運転において、流量調節手段(3、8、9、10、11、13)により、第1蒸発器(4)に流入させるホットガスの流量と第2蒸発器(5)に流入させるホットガスの流量とを異なる流量に調節することを特徴としている。
この発明によれば、除霜運転において、着霜状態が異なる第1蒸発器と第2蒸発器のそれぞれに流入させるホットガス流量を、流量調節手段を調節することにより、第1蒸発器よりも着霜量の少ない第2蒸発器に対する除霜運転を軽減することができ、その軽減分を第1蒸発器に対する除霜運転に転換して除霜運転の効率化が図れる。これにより、除霜運転時間の短縮、およびヒートポンプサイクルの効率向上を実現できる。
ヒートポンプサイクルに係る第2の発明は、冷媒を吸入し圧縮する圧縮機(1)と、この圧縮機(1)から吐出された高圧冷媒の放熱を行い、第1外部流体を加熱する放熱器(2)と、この放熱器(2)よりも下流部で冷媒を減圧膨張させるとともに、冷媒を吸引するエジェクタ(13)と、このエジェクタ(13)から流出した冷媒と第2外部流体とを熱交換させて当該第2外部流体を冷却し、当該第2外部流体の流れ方向の上流側に設けられた第1蒸発器(4)と、圧縮機(1)、放熱器(2)、エジェクタ(13)、および第1蒸発器(4)を含む環状の冷媒流路(22)から分岐して設けられ、冷媒をエジェクタ(13)に導き吸引させる分岐流路(23)と、この分岐流路(23)に配置され、さらに第1蒸発器(4)よりも第2外部流体の下流側に設けられた第2蒸発器(5)と、第1蒸発器(4)、第2蒸発器(5)のそれぞれへ流入させる冷媒流量を調節する流量調節手段(10、11)と、を備えており、
第1蒸発器(4)および第2蒸発器(5)のうち少なくとも第1蒸発器(4)にホットガスを流入させる除霜運転において、流量調節手段(10、11)およびエジェクタ(13)の流路開度の調節により、第1蒸発器(4)に流入させるホットガスの流量と第2蒸発器(5)に流入させるホットガスの流量とを異なる流量に調節することを特徴としている。
第1蒸発器(4)および第2蒸発器(5)のうち少なくとも第1蒸発器(4)にホットガスを流入させる除霜運転において、流量調節手段(10、11)およびエジェクタ(13)の流路開度の調節により、第1蒸発器(4)に流入させるホットガスの流量と第2蒸発器(5)に流入させるホットガスの流量とを異なる流量に調節することを特徴としている。
この発明によれば、除霜運転において、着霜状態が異なる第1蒸発器と第2蒸発器のそれぞれに流入させるホットガス流量を、流量調節手段の動作およびエジェクタの流路開度を調節することにより、第1蒸発器よりも着霜量の少ない第2蒸発器に対する除霜運転を軽減することができ、その軽減分を第1蒸発器に対する除霜運転に転換して除霜運転の効率化が図れる。これにより、除霜運転時間の短縮、およびヒートポンプサイクルの効率向上を実現できる。
第3の発明は、上記第1の発明における流量調節手段が、放熱器(2)で放熱した高圧冷媒を減圧膨張させる減圧機構部(3)と、第2蒸発器(5)に流入させる冷媒流量を調節する流調機構部(8)と、から構成されることが好ましい。
この発明によれば、高圧冷媒を減圧膨張させる減圧機構部がホットガス流量を調整する機能も備えることにより、流量調節手段を少ない部品で構成することができる。
さらに上記第1の発明において、流量調節手段は、圧縮機(1)、放熱器(2)、および第1蒸発器(4)を含む環状の冷媒流路(22)に設けられ、放熱器(2)で放熱した高圧冷媒を減圧膨張させる第1減圧機構部(9)と、冷媒流路(22)から分岐して冷媒を第2蒸発器(5)に導く分岐流路(25)に設けられ、放熱器(2)で放熱した高圧冷媒を減圧膨張させる第2減圧機構部(10)と、から構成されることが好ましい。
この発明によれば、放熱器下流の高圧側流路において、第1蒸発器、第2蒸発器のそれぞれにつながる流路に分岐することにより、第1減圧機構部、第2減圧機構部のそれぞれを流れる冷媒量はほぼ等しくなるので、第1減圧機構部および第2減圧機構部を小型に構成することができる。
さらに上記第1の発明において、放熱器(2)を経由しないで圧縮機(1)の下流部と第1蒸発器(4)および第2蒸発器(5)の上流部とを連絡するバイパス回路(12)を有することが好ましい。この発明によれば、放熱器でのホットガスの放熱が起こらないので、蒸発器に高い温度のホットガスが流入することになり、さらなる除霜時間の短縮と効率の向上が得られる。
さらに上記第2の発明において、前記放熱器(2)を経由しないで前記圧縮機(1)の下流部と前記第1蒸発器(4)の上流部とを連絡するバイパス回路(24)を有することが好ましい。この発明によれば、放熱器でのホットガスの放熱が起こらないので、蒸発器に高い温度のホットガスが流入することになり、さらなる除霜時間の短縮と効率の向上が得られる。
さらに上記すべての発明のいずれかにおいて、除霜運転において第2蒸発器(5)に流入させるホットガスの総流量を第1蒸発器(4)に流入させるホットガスの総流量よりも少なくなるように制御することが好ましい。
この発明によれば、除霜運転開始から終了までの間に、第1蒸発器と第2蒸発器のそれぞれに流入させるホットガス流量に差を設けて第2蒸発器に流入させる流量を少なくすることにより、着霜量の少ない第2蒸発器に対する除霜運転の効率化が図れ、全体として除霜運転に要する時間およびエネルギーを改善できる。
さらに上記すべての発明のいずれかにおいて、除霜運転において第1蒸発器(4)にのみホットガスを流入させるステップ(S50)と、第1蒸発器(4)および第2蒸発器(5)にホットガスを流入させるステップ(S60)と、を実行することが好ましい。この発明によれば、除霜運転における流量調節手段の動作制御を簡単化することできる。
第4の発明は、さらに上記すべての発明のいずれかにおいて、第1蒸発器(4)および第2蒸発器(5)の少なくともいずれか一方の蒸発器に関する温度情報を検出する温度検知手段(7)を備えており、除霜運転において、温度検出手段(7)によって検出された温度情報に基づいて第1蒸発器(4)または第2蒸発器(5)に流入させるホットガスの流量を調節することが好ましい。
この発明によれば、除霜運転中に蒸発器の着霜状況を監視しながらホットガスの流量を調整するので、霜の溶け残りの発生をさらに確実に防止することができる。
上記第4の発明を除く上記すべての発明のいずれにおいて、除霜運転においてあらかじめ記憶された所定時間(T1、T2)に基づいて第1蒸発器(4)または第2蒸発器(5)に流入させるホットガスの流量を変更することが好ましい。
この発明によれば、記憶された所定時間に基づいてホットガスの流量を変更することにより、確実にホットガスの流量が変更されることになるので、蒸発器への無駄なホットガスの流入を減らすことができる。
さらに上記すべての発明のいずれかにおいて、第1蒸発器(4)または第2蒸発器(5)において外部流体から吸熱する通常運転を挟んで複数回実施される除霜運転において、第1蒸発器(4)にのみホットガスを流入させる運転(S125、S135)と、この運転(S125、S135)と処理回数が異なる第1蒸発器(4)および第2蒸発器(5)にホットガスを流入させる運転(S145)と、を実行することが好ましい。
この発明によれば、着霜量が少ない第2蒸発器の除霜頻度が少ない除霜運転が行われるので、全体としての除霜運転時間を短縮することができる。
さらに上記すべての発明のいずれかにおける第1外部流体は、水であることが好ましい。
さらに上記すべての発明のいずれかにおける冷媒は、二酸化炭素であることが好ましい。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
(第1実施形態)
本発明の第1実施形態について図1および図2を用いて説明する。本実施形態のヒートポンプサイクルは、ヒートポンプにより加熱した湯と貯湯タンクに貯留した湯を混合して出湯したり、ヒートポンプにより加熱した湯を直接出湯したりするヒートポンプ式給湯装置に使用されるものである。また、その他の使用例としては、車両用空調装置や車両用冷凍冷蔵装置に適用することができる。
本発明の第1実施形態について図1および図2を用いて説明する。本実施形態のヒートポンプサイクルは、ヒートポンプにより加熱した湯と貯湯タンクに貯留した湯を混合して出湯したり、ヒートポンプにより加熱した湯を直接出湯したりするヒートポンプ式給湯装置に使用されるものである。また、その他の使用例としては、車両用空調装置や車両用冷凍冷蔵装置に適用することができる。
図1は、本実施形態におけるヒートポンプサイクルの構成を示した模式図である。図2は、本実施形態のヒートポンプサイクルの除霜運転に係る制御処理手順を示したフローチャートである。
ヒートポンプサイクルは、圧縮機1、放熱器2、減圧弁3、第1蒸発器4および第2蒸発器5が順次環状に冷媒配管により接続されて形成されている。冷媒配管内を循環する冷媒は二酸化炭素である。
圧縮機1は、内蔵される図示しない電動モータによって駆動され、吸入した気相冷媒を臨界圧力以上に圧縮して吐出する。なお、圧縮機1は、制御装置6によって稼働およびその冷媒吐出量(回転数)が制御されるようになっている。
放熱器2は、給湯用熱交換器であり、圧縮機1から吐出された高温冷媒と、第1外部流体である水との間で熱交換し、放熱作用によって水を加熱して湯にする。加熱される水は、図示しない貯湯タンク内から供給される給湯用水であって、再び貯湯タンク内に戻された後、出湯されたり、貯湯タンクを経由しないで出湯配管内を通って出湯されたりする。
この放熱器2は、冷媒が流れる冷媒流路(図示せず)と、給湯用水が流れる給湯用水流路(図示せず)とを有し、冷媒流路を流れる冷媒の流れ方向と給湯用水流路を流れる給湯用水の流れ方向とが対向するように構成されている。なお、放熱器2を流れる二酸化炭素冷媒は、圧縮機1で臨界圧力以上に加圧されているので、放熱器2を流通する給湯用水に放熱して温度低下しても凝縮することはない。
減圧弁3は、放熱器2から流出する冷媒を弁開度に応じて減圧する減圧機構部であり、第1蒸発器4や第2蒸発器5に流入させる冷媒流量を調節する流量調節手段でもある。減圧弁3は、弁開度を小さくするほど大きく減圧したり、流量を絞ったりすることができる。また、減圧弁3は、制御装置6によってその弁開度が電気的に制御されるようになっている。
第1蒸発器4および第2蒸発器5は、減圧弁3で減圧された冷媒と第2外部流体である空気とを熱交換させる熱源用熱交換器である。この空気は図示しないファンによって外気から送風される。第1蒸発器4はこの空気流れの上流側に配置され、第2蒸発器5は第1蒸発器4よりも空気流れの下流側に配置されている。
第1蒸発器4および第2蒸発器5は、減圧弁3で減圧された冷媒が冷媒分岐部20で分岐し、並行して両蒸発器に流入するように、並列に設けられた冷媒配管にそれぞれ配置されている。そして、両蒸発器を流出した冷媒は、冷媒合流部21で合流して圧縮機1に吸入される。
冷媒分岐部20から第2蒸発器5に至る配管には、流調弁8が設けられている。流調弁8は、減圧弁3で減圧された冷媒を第2蒸発器5に流入させる前に弁開度に応じて流量制御する流調機構部であるとともに、第1蒸発器4と第2蒸発器5に流入させる冷媒流量を調節する流量調節手段でもある。また、流調弁8は、全開または全閉にいずれかの開度のみに制御される開閉弁で構成してもよい。
なお、流調弁8は、冷媒流れの第2蒸発器5よりも下流部に設ける構成としてもよいが、第2蒸発器5よりも上流部に設ける構成の方が、除霜運転時の高温のガス冷媒(ホットガス)を第2蒸発器5に完全に流入させない制御ができるので、より好ましい。また、流調弁8は、制御装置6によってその弁開度が電気的に制御されるようになっている。
冷媒合流部21の出口には、冷媒温度や配管温度を検出する温度検出手段である温度検出器7が設けられている。この温度検出器7は、蒸発器の温度を検出することを目的に設けられており、この検出温度は制御装置6に出力され除霜運転の制御に用いられる。また、温度検出器7は、第1蒸発器4の出口配管や第2蒸発器5の出口配管に設ける構成としてもよい。さらに、温度検出器7は、第1蒸発器4および第2蒸発器5の各コア部の配管や、各コア部のフィンに設ける構成としてもよい。
なお、第1蒸発器4および第2蒸発器5よりも冷媒流れの下流部には、蒸発器より流出する冷媒を気液分離して気相冷媒のみを圧縮機1に吸入させるとともにサイクル中の余剰冷媒を液冷媒として蓄える気液分離器を設けてもよい。
制御装置6は、貯湯タンクユニット(図示せず)を制御する貯湯タンク制御装置(図示せず)と、ヒートポンプサイクルを制御するヒートポンプ制御装置と、により構成されている。制御装置6は、各サーミスタ(図示せず)からの温度情報、貯湯タンクユニットの流量カウンタ(図示せず)からの流量情報、および操作パネル(図示せず)に設けられた操作スイッチからの信号等に基づいて、ヒートポンプサイクル、貯湯タンクユニットのポンプや各バルブ等を制御するように構成されている。
次に、上記構成におけるヒートポンプサイクルの作動について説明する。本実施形態のヒートポンプサイクルが適用されるヒートポンプ式給湯装置では、制御装置6が、電力コスト等に基づいて定まる所定時間帯(例えば電力供給契約に基づく電力コストが安価な深夜時間帯)に、過去の使用実績等に基づく所定熱量を貯湯タンク内に貯留するようにヒートポンプサイクルを運転する。
このとき、制御装置6は、ヒートポンプサイクルによって沸き上げられた給湯用水の温度が貯湯目標温度になるように、ヒートポンプサイクルの沸き上げ運転や、放熱器2と貯湯タンクとの間を循環する水の流量を制御する。これにより、貯湯タンク内下部の水が放熱器2で加熱されて沸き上げられ、貯湯タンク内の上部側から貯えられる。
図2に示すように、制御装置6は、沸き上げ制御がスタートすると、蒸発器が所定の着霜状態である場合に実行される除霜運転条件が成立しているかどうかを判断する(ステップS10)。なお、制御装置6は、除霜運転条件が成立するまで、この判断を繰り返す。
この除霜運転条件の成立は、蒸発器の表面に生成した霜により良好な熱交換ができず、除霜を必要としている状態を制御装置6が検出することである。この条件の成立を判断するパラメータとしては、種々考えられるが、例えば、蒸発器自体の温度、蒸発器内を流通する冷媒の温度、蒸発器の流入冷媒温度と流出冷媒温度との差、蒸発器の流入冷媒温度と蒸発器中間部の冷媒温度との差、蒸発器中間部の冷媒温度と蒸発器の流出冷媒温度との差、外気温度、圧縮機1の回転数などであり、制御装置6は、これらのデータを記憶されたプログラムにより解析して除霜運転条件の成立を判断する。
本実施形態では、制御装置6は、外気温度と、温度検出器7によって検出された温度情報とを使用して除霜運転条件の成立を判断することとする。例えば、外気温度から温度検出器7の検出温度を引いた値が10℃以上となったときに、蒸発器が除霜を必要とする所定着霜状態になったと判断する。
制御装置6は、ステップS10で除霜運転条件が成立していると判断した場合には、第1蒸発器4および第2蒸発器5から霜を除去するために、除霜運転を実行する(ステップS15)。そして、制御装置6は、圧縮機1を駆動した状態で、減圧弁3の開度を所定開度に大きく開くとともに、流調弁8の開度を絞る方向の所定開度に制御して、第1蒸発器4および第2蒸発器5のそれぞれに高温の冷媒を流入させる(ステップS20)。つまり、制御装置6は、第2蒸発器5に流入させるホットガス流量を第1蒸発器4に流入させるホットガス流量よりも少なくなるように流量調節手段の動作を制御する。これにより、第1蒸発器4および第2蒸発器5の外側の霜を融解して除霜する。
具体的には、流調弁8はその開度が絞られまたは全閉とされ、第2蒸発器5に流れる冷媒流量が減少しまたはゼロとなる。そして、温度検出器7による検出温度が第1の所定温度(例えば1℃)以上になると、流調弁8はその開度が拡大されまたは全開とされ、第2蒸発器5に流れる冷媒流量が増加しまたは流通し始める。その後、温度検出器7による検出温度が第2の所定温度(例えば3℃)以上になると、除霜運転を終了し沸き上げ制御に戻る。
制御装置6は、この除霜運転を除霜運転終了条件が成立したと判断するまで継続する(ステップS25)。この除霜運転終了条件は、蒸発器が良好な熱交換ができる状態になったことを制御装置6が検出することである。この条件の成立を判断するパラメータとしては、種々考えられるが、例えば、蒸発器自体の温度、蒸発器内を流通する冷媒の温度、蒸発器出口の配管温度などであり、これらの温度が制御装置6に記憶された所定温度より高くなったときに除霜運転終了条件の成立を判断する。本実施形態では、制御装置6は、温度検出器7によって検出された温度情報が、除霜完了を判断する所定温度よりも高くなったときに、除霜運転終了条件が成立したと判断する。
制御装置6は、この除霜運転を除霜運転終了条件が成立したと判断すると除霜運転を終了し、沸き上げ制御に移行する(ステップS30)。
なお、除霜運転は、上記のような運転の他に、以下のようなものであってもよい。例えば、除霜運転において、第1蒸発器4に流れるホットガスの流量が第2蒸発器5を流れるホットガスの流量よりも多くなる処理を有する制御を実行するものであってもよい。また、除霜運転の開始後しばらくは、流調弁8を略全開とし、第2蒸発器5の着霜状態が改善されてきたと判断できるような所定条件が満たされたところで、その開度を減少し、または全閉するように制御してもよい。また、除霜運転において、第2蒸発器5に流入させるホットガスの総流量を第1蒸発器4に流入させるホットガスの総流量よりも少なくなるように流量調節手段を制御してもよい。
このようにヒートポンプサイクルの制御装置6は、第1蒸発器4および第2蒸発器5の少なくともいずれか一方にホットガスを流入させる除霜運転において、流調弁8の動作を制御して第2蒸発器5に流入させるホットガスの流量を制御する。
この制御によれば、除霜運転において、着霜状態が異なる第1蒸発器4と第2蒸発器5のそれぞれに流入させるホットガス流量を、流調弁8を制御して調節することにより、第1蒸発器4よりも着霜量の少ない第2蒸発器5に対する除霜運転を軽減することができ、その軽減分を第1蒸発器4に対する除霜運転に転換することができるので、除霜運転の効率化および除霜運転時間の短縮が得られる。
また、本実施形態の流量調節手段は、放熱器2で放熱した高圧冷媒を減圧膨張させる減圧機構部である減圧弁3と、第2蒸発器5に流入させる冷媒流量を調節する流調機構部である流調弁8と、から構成されることが好ましい。
この構成を採用した場合には、放熱器2で放熱した高圧冷媒を減圧膨張させる減圧弁3がホットガス流量を調整する機能も備えることになり、流量調節手段を少ない部品で構成することができる。
また、ヒートポンプサイクルの制御装置6は、除霜運転において、第2蒸発器5に流入させるホットガスの総流量を第1蒸発器4に流入させるホットガスの総流量よりも少なくなるように制御することが好ましい。
この制御を採用した場合には、除霜運転開始から終了までの間に、第2蒸発器に流入させる流量を第1蒸発器4へのホットガス流量よりも少なくすることにより、着霜量の少ない第2蒸発器5に対する除霜運転の無駄が改善され、ヒートポンプサイクル全体の効率化が図れる。
(第2実施形態)
第2実施形態では、図1を用いて説明した第1実施形態のヒートポンプサイクルに対して、流量調節手段と、それにかかわる冷媒配管の構成とが相違するヒートポンプサイクルの構成について、図3を用いて説明する。図3は、本実施形態におけるヒートポンプサイクルの構成を示した模式図である。なお、図3において図1と同一の構成要素には、同一符号を付している。
第2実施形態では、図1を用いて説明した第1実施形態のヒートポンプサイクルに対して、流量調節手段と、それにかかわる冷媒配管の構成とが相違するヒートポンプサイクルの構成について、図3を用いて説明する。図3は、本実施形態におけるヒートポンプサイクルの構成を示した模式図である。なお、図3において図1と同一の構成要素には、同一符号を付している。
本実施形態のヒートポンプサイクルは、図3に示すように、圧縮機1、放熱器2、および第1蒸発器4を含む環状の冷媒流路22に設けられ、放熱器2で放熱した高圧冷媒を減圧膨張させる第1減圧機構部としての第1減圧弁9と、冷媒流路22から分岐して冷媒を第2蒸発器5に導く分岐流路25に設けられ、放熱器2で放熱した高圧冷媒を減圧膨張させる第2減圧機構部としての第2減圧弁10と、を備えている。第1減圧弁9と第2減圧弁10は、第1蒸発器4、第2蒸発器5のそれぞれへのホットガス流入流量を調節する流量調節手段をなしている。また、第1減圧弁9、第2減圧弁10のそれぞれは、制御装置6によってその弁開度が電気的に制御されるようになっている。
この構成のヒートポンプサイクルの作動は、第1実施形態に記載のものと同様であり、除霜運転の制御処理手順を示すフローチャートについては、図2と同様である。つまり、図2のステップS20において、制御装置6は、第1減圧弁9の開度を所定開度に大きく開くとともに、第2減圧弁10の開度を絞る方向の所定開度に制御して、第1蒸発器4および第2蒸発器5のそれぞれに高温の冷媒を流入させる。これにより、第1蒸発器4および第2蒸発器5の外側の霜を融解して除霜する。
具体的には、第2減圧弁10はその開度が絞られまたは全閉とされ、第2蒸発器5に流れる冷媒流量が減少しまたはゼロとなる。そして、温度検出器7による検出温度が第1の所定温度(例えば1℃)以上になると、第2減圧弁10はその開度が拡大されまたは全開とされ、第2蒸発器5に流れる冷媒流量が増加しまたは流通し始める。その後、温度検出器7による検出温度が第2の所定温度(例えば3℃)以上になると、除霜運転を終了し沸き上げ制御に戻る。
このように本実施形態のヒートポンプサイクルは、放熱器2の下流の高圧側流路において、第1蒸発器4、第2蒸発器5のそれぞれにつながる流路を分岐して備え、それぞれの流路に放熱器2で放熱した高圧冷媒を減圧膨張させる第1減圧弁9、第2減圧弁10を備えている。この構成により、第1減圧弁9、第2減圧弁10のそれぞれを流れる冷媒量はほぼ等しくなるので、第1減圧弁9および第2減圧弁10を小型に構成することができる。
(第3実施形態)
第3実施形態のヒートポンプサイクルは、図1を用いて説明した第1実施形態のヒートポンプサイクルに対して、放熱器2を経由しないで圧縮機1の下流部と第1蒸発器4および第2蒸発器5とを連通させるバイパス回路12を備えたことが相違している。この構成について図4を用いて説明する。図4は、本実施形態におけるヒートポンプサイクルの構成を示した模式図である。なお、図4において図1と同一の構成要素には、同一符号を付している。
第3実施形態のヒートポンプサイクルは、図1を用いて説明した第1実施形態のヒートポンプサイクルに対して、放熱器2を経由しないで圧縮機1の下流部と第1蒸発器4および第2蒸発器5とを連通させるバイパス回路12を備えたことが相違している。この構成について図4を用いて説明する。図4は、本実施形態におけるヒートポンプサイクルの構成を示した模式図である。なお、図4において図1と同一の構成要素には、同一符号を付している。
本実施形態のヒートポンプサイクルは、図4に示すように、圧縮機1の吐出口よりも下流部の冷媒配管と、冷媒合流部20よりも上流部の冷媒配管とを連絡するように設けられたバイパス回路12と、このバイパス回路12を流れる冷媒流量を調節する開閉弁11と、を備えている。減圧弁3、流調弁8、および開閉弁11は、第1蒸発器4、第2蒸発器5のそれぞれへのホットガス流入流量を調節する流量調節手段をなしている。また、開閉弁11は、制御装置6によってその弁開度が電気的に制御されるようになっている。
この構成のヒートポンプサイクルの作動は、第1実施形態に記載のものと同様であり、除霜運転の制御処理手順を示すフローチャートについては、図2と同様である。つまり、図2のステップS20において、制御装置6は、開閉弁11の開度を所定開度に大きく開きまたは全開にし、減圧弁3を閉じるとともに、流調弁8の開度を絞る方向の所定開度に制御する。これにより、圧縮機1から吐出されたホットガスは、放熱器2側に流れないで、バイパス回路12を流れて冷媒合流部20から分岐して第1蒸発器4および第2蒸発器5に流入する。そして、第1蒸発器4および第2蒸発器5の外側の霜を融解して除霜する。
さらに具体的には、流調弁8はその開度が絞られまたは全閉とされ、第2蒸発器5に流れる冷媒流量が減少しまたはゼロとなる。そして、温度検出器7による検出温度が第1の所定温度(例えば1℃)以上になると、流調弁8はその開度が拡大されまたは全開とされ、第2蒸発器5に流れる冷媒流量が増加しまたは流通し始める。その後、温度検出器7による検出温度が第2の所定温度(例えば3℃)以上になると、除霜運転を終了し沸き上げ制御に戻る。
このように本実施形態のヒートポンプサイクルは、放熱器2を経由しないで圧縮機1の下流部と第1蒸発器4および第2蒸発器5とを連通させるバイパス回路12を有することにより、放熱器2でのホットガスの放熱が起こらないので、両蒸発器に高い温度のホットガスが流入することになり、さらに除霜時間を短縮することができる。
(第4実施形態)
第4実施形態は、第1実施形態および第3実施形態で説明した構成の各ヒートポンプサイクルが実行する除霜運転の制御処理手順を図5を用いて説明する。図5は、本実施形態における除霜運転の制御処理手順を示したフローチャートである。
第4実施形態は、第1実施形態および第3実施形態で説明した構成の各ヒートポンプサイクルが実行する除霜運転の制御処理手順を図5を用いて説明する。図5は、本実施形態における除霜運転の制御処理手順を示したフローチャートである。
図5に示すように、制御装置6は、沸き上げ制御がスタートすると、蒸発器が所定の着霜状態である場合に実行される除霜運転条件が成立しているかどうかを判断する(ステップS40)。このステップS40は図2のステップS10と同様のステップでありその詳細は第1実施形態と同様である。なお、制御装置6は、除霜運転条件が成立するまで、この判断を繰り返す。
制御装置6は、ステップS40で除霜運転条件が成立していると判断した場合には、第1蒸発器4および第2蒸発器5から霜を除去するために、除霜運転を実行する(ステップS45)。そして、制御装置6は、圧縮機1を駆動した状態で、減圧弁3の開度を所定開度に大きく開くとともに、流調弁8の開度を全閉して、風上側に位置する第1蒸発器4に高温の冷媒を流入させる(ステップS50)。
次に、制御装置6は、第1蒸発器4よりも風下側に位置する第2蒸発器5にホットガスを流入させる条件が成立したか否かを判断する(ステップS55)。この条件成立は、温度検出器7により検出温度が所定条件を満たした場合や、ステップS50を開始してから所定時間が経過した場合である。
ステップS55の条件が成立したと判断されると、制御装置6は、流調弁8の開度を所定開度に制御して、第2蒸発器5にも高温の冷媒を流入させる(ステップS60)。つまり、制御装置6は、第1蒸発器4にホットガスを流入させる処理を実行した後、ステップS55の条件が成立すると、さらに第2蒸発器5にもホットガスを流入させる処理を実行する。これにより、除霜運転の開始から終了までの間で、第2蒸発器5にホットガスが一定時間流入することになる。
そして、制御装置6は、この除霜運転を除霜運転終了条件が成立したと判断するまで継続する(ステップS65)。この除霜運転終了条件は、図2のステップS25と同様のステップでありその詳細は第1実施形態と同様である。制御装置6は、この除霜運転を除霜運転終了条件が成立したと判断すると除霜運転を終了し、沸き上げ制御に移行する(ステップS70)。
このようにして制御装置6は、第2蒸発器5に流入させるホットガス流量を第1蒸発器4に流入させるホットガス流量よりも少なくなるように流量調節手段の動作を制御する。これにより、第1蒸発器4および第2蒸発器5の外側の霜を融解して除霜する。
このようにヒートポンプサイクルの制御装置6は、除霜運転において、第2蒸発器5にホットガスを一定時間流入させるステップを含む制御を実行することが好ましい。除霜運転において必ず第2蒸発器の除霜を行うので、外気温度が低い場合に霜の溶け残りが起こるのを低減することができる。
また、制御装置6は、除霜運転において、第1蒸発器4にのみホットガスを流入させるステップ(ステップS50)と、第1蒸発器4および第2蒸発器5にホットガスを流入させるステップ(ステップS60)と、を有する制御を実行することが好ましい。この制御を採用すれば、除霜運転における減圧弁3や流調弁8の開度制御に微妙な開度調整を必要とせず、流量調節手段の動作制御を簡単化することできる。
(第5実施形態)
第5実施形態は、第1実施形態、第2実施形態、および第3実施形態で説明した構成の各ヒートポンプサイクルが実行する除霜運転の制御処理手順を図6を用いて説明する。図6は、本実施形態における除霜運転の制御処理手順を示したフローチャートである。
第5実施形態は、第1実施形態、第2実施形態、および第3実施形態で説明した構成の各ヒートポンプサイクルが実行する除霜運転の制御処理手順を図6を用いて説明する。図6は、本実施形態における除霜運転の制御処理手順を示したフローチャートである。
図6に示すように、制御装置6は、沸き上げ制御がスタートすると、蒸発器が所定の着霜状態である場合に実行される除霜運転条件が成立しているかどうかを判断する(ステップS80)。このステップS80は図2のステップS10と同様のステップでありその詳細は第1実施形態と同様である。なお、制御装置6は、除霜運転条件が成立するまで、この判断を繰り返す。
制御装置6は、ステップS80で除霜運転条件が成立していると判断した場合には、第1蒸発器4および第2蒸発器5から霜を除去するために、除霜運転を実行する(ステップS85)。
このとき、第1実施形態および第2実施形態で説明した構成の各ヒートポンプサイクルにおいては、制御装置6は、圧縮機1を駆動した状態で、減圧弁3や第1減圧弁9の開度を所定開度に大きく開くとともに、流調弁8や第2減圧弁10の開度を全閉して、風上側に位置する第1蒸発器4に高温の冷媒を流入させる(ステップS90)。
また、第3実施形態で説明した構成のヒートポンプサイクルにおいては、制御装置6は、開閉弁11の開度を所定開度に大きく開きまたは全開にし、減圧弁3を閉じるとともに、流調弁8の開度を全閉にして、第1蒸発器4に高温の冷媒を流入させる(ステップS90)。これにより、圧縮機1から吐出されたホットガスは、放熱器2側に流れないで、バイパス回路12を流れて冷媒合流部20から分岐して第1蒸発器4および第2蒸発器5に流入する。
次に、制御装置6は、温度検出器7によって検出した蒸発器の出口温度が第1の所定温度TE1以上であるか否かを判断する(ステップS95)。
ステップS95で検出温度が第1の所定温度TE1以上であると判断されると、制御装置6は、ステップS90による処理によって第1蒸発器4の着霜量が目標レベルまで改善されたと判断し、流調弁8の開度を所定開度に制御して第2蒸発器5にも高温の冷媒を流入させる(ステップS100)。つまり、制御装置6は、第1蒸発器4にホットガスを流入させる処理を実行した後、ステップS95の条件が成立すると、さらに第2蒸発器5にもホットガスを流入させる処理を実行する。これにより、除霜運転の開始から終了までの間で、第2蒸発器5にホットガスが一定時間流入することになる。
そして、制御装置6は、温度検出器7によって検出した蒸発器の出口温度が第2の所定温度TE2以上であるか否かを判断する(ステップS105)。ステップS105で検出温度が第2の所定温度TE2以上であると判断されると、制御装置6は、除霜運転終了条件が成立したと判断して除霜運転を終了し、沸き上げ制御に移行する(ステップS110)。
このようにしてヒートポンプサイクルの制御装置6は、除霜運転において、温度検出器7によって検出された温度情報に基づいて第1蒸発器4または第2蒸発器5に流入させるホットガスの流量を制御する。この制御によれば、除霜運転中に蒸発器の着霜状況を監視しながらホットガスの流量制御を行うので、霜の溶け残りの発生をさらに確実に防止できる。
(第6実施形態)
第6実施形態では、第1実施形態で説明した構成のヒートポンプサイクルが実行する除霜運転の制御処理手順を図7を用いて説明する。図7は、本実施形態における除霜運転の制御処理手順を示したフローチャートである。
第6実施形態では、第1実施形態で説明した構成のヒートポンプサイクルが実行する除霜運転の制御処理手順を図7を用いて説明する。図7は、本実施形態における除霜運転の制御処理手順を示したフローチャートである。
図7に示すように、制御装置6は、沸き上げ制御がスタートすると、蒸発器が所定の着霜状態である場合に実行される除霜運転条件が成立しているかどうかを判断する(ステップS160)。このステップS160は図2のステップS10と同様のステップでありその詳細は第1実施形態と同様である。なお、制御装置6は、除霜運転条件が成立するまで、この判断を繰り返す。
制御装置6は、ステップS160で除霜運転条件が成立していると判断した場合には、第1蒸発器4および第2蒸発器5から霜を除去するために、除霜運転を実行する(ステップS165)。
このとき、第1実施形態および第2実施形態で説明した構成の各ヒートポンプサイクルにおいては、制御装置6は、圧縮機1を駆動した状態で、減圧弁3の開度を所定開度に大きく開くとともに、流調弁8の開度を全閉して、風上側に位置する第1蒸発器4に高温の冷媒を流入させる(ステップS170)。
次に、制御装置6は、ROMなどの記憶手段にあらかじめ記憶されている所定時間T1がステップS170の処理開始から経過した否かを判断する(ステップS175)。
ステップS175で所定時間T1が経過していると判断されると、制御装置6は、ステップS170による処理によって第1蒸発器4の着霜量が目標レベルまで改善されたと判断し、流調弁8の開度を所定開度に制御して第2蒸発器5にも高温の冷媒を流入させる(ステップS180)。つまり、制御装置6は、第1蒸発器4にホットガスを流入させる処理を実行した後、ステップS175の条件が成立すると、さらに第2蒸発器5にもホットガスを流入させる処理を実行する。これにより、除霜運転の開始から終了までの間で、第2蒸発器5にホットガスが一定時間流入することになる。
そして、制御装置6は、記憶手段にあらかじめ記憶されている所定時間T2がステップS180の処理開始から経過した否かを判断する(ステップS185)。ステップS185で所定時間T2が経過していると判断されると、制御装置6は、除霜運転終了条件が成立したと判断して除霜運転を終了し、沸き上げ制御に移行する(ステップS190)。
このようにしてヒートポンプサイクルの制御装置6は、除霜運転において、あらかじめ記憶された所定時間T1やT2に基づいて第1蒸発器4または第2蒸発器5に流入させるホットガスの流量を変更する。この制御によれば、時間の経過とともに、確実にホットガスの流量が変更されることになるので、蒸発器への無駄なホットガスの流入を減らすことができる。
(第7実施形態)
第7実施形態のヒートポンプサイクルは、図8に示すように、第2実施形態において図3を用いて説明したヒートポンプサイクルに対して、蒸発器への流入流量を調節する手段としてエジェクタ13の流路開度を制御するサイクルである。なお、図8において図3と同一の構成要素には、同一符号を付している。
第7実施形態のヒートポンプサイクルは、図8に示すように、第2実施形態において図3を用いて説明したヒートポンプサイクルに対して、蒸発器への流入流量を調節する手段としてエジェクタ13の流路開度を制御するサイクルである。なお、図8において図3と同一の構成要素には、同一符号を付している。
エジェクタを備えたヒートポンプサイクルは、放熱器2よりもさらに冷媒流れ下流側部位にエジェクタ13を備えている。このエジェクタ13は、流体を減圧する減圧手段であるとともに、高速で噴出する作動流体の巻き込み作用によって流体輸送を行う運動量輸送式ポンプである。
このヒートポンプサイクルは、圧縮機1、放熱器2、エジェクタ13、および第1蒸発器4を含む環状の冷媒流路22と、この冷媒流路22から分岐して設けられ、冷媒をエジェクタ13に導き吸引させる分岐流路23と、を備えている。この分岐流路23には、放熱器から流出した高圧液冷媒を減圧膨張する第2減圧弁10と、第1蒸発器4よりも第2外部流体(空気)の下流側に設けられ、第2減圧弁10で減圧された冷媒を取り入れる第2蒸発器5と、が配置されている。
第2蒸発器5は、分岐流路23を流れてきた冷媒を取り入れて蒸発させ、吸引部5bに向けて放出する。第1蒸発器4の出口には、冷媒温度や配管温度を検出する温度検出手段である温度検出器7が設けられている。
エジェクタ13には、放熱器2から流出して冷媒流路22を通って流入してくる高圧液冷媒を絞り込む通路面積の小さいノズル部13aと、ノズル部13aの冷媒噴出口と同一空間に配置され、第2蒸発器5からの気相冷媒を吸引する吸引部13bが備えられている。また、本実施形態のエジェクタ13は、ノズル開度を可変できる可変式エジェクタであり、ノズル部13a内には、その噴出口の開度を制御するためのニードル弁(図示せず)が噴出口と同軸上に配置されており、アクチュエータ(図示せず)によってその軸方向に移動可能なように配置されている。
ニードル弁とアクチュエータとは、制御装置6からの出力で作動する可変ノズル機構を構成しており、エジェクタ13の流路開度の絞り手段および冷媒の流量調節手段となっている。なお、この可変絞り機構は、電子膨張弁などを用いた構成であってもよい。
さらに、ノズル部13aの下流側には、吸引部13bから流入した冷媒とノズル部13aより噴出した冷媒とを混合する混合部と、冷媒を昇圧させるディフューザ部(昇圧部)とが配置されている。このディフューザ部は、冷媒の通路面積を徐々に大きくする形状に形成されており、冷媒流れを減速して冷媒圧力を上昇させる作用、つまり、冷媒の速度エネルギーを圧力エネルギーに変換する作用をする。ディフューザ部の冷媒流れ方向下流側には第1蒸発器4が接続されている。
上記構成のヒートポンプサイクルにおける作動を説明する。圧縮機1を駆動すると、圧縮機1で圧縮されて高温高圧状態となった冷媒が吐出され、放熱器2に流入する。放熱器2では高温の冷媒が水などの第1外部流体により冷却されて凝縮する。放熱器2から流出した液相冷媒は、冷媒流路22を流れる流れと、分岐流路23を流れる流れとに分流する。
冷媒流路22を流れる冷媒は、エジェクタ13に流入し、ノズル部13aで減圧され膨張する。したがって、ノズル部13aで冷媒の圧力エネルギーが速度エネルギーに変換され、このノズル部13aの噴出口から冷媒は高速度となって噴出する。この際の冷媒圧力低下により、吸引部13bから第2蒸発器5にて蒸発した気相冷媒を吸引する。
ノズル部13aから噴出した冷媒と吸引部13bから吸引された冷媒は、ノズル部13aの下流側で混合してディフューザ部に流入する。このディフューザ部では通路面積の拡大により、冷媒の速度(膨張)エネルギーが圧力エネルギーに変換されるため、冷媒の圧力が上昇する。エジェクタ13のディフューザ部から流出した冷媒は、第1蒸発器4に流入する。
第1蒸発器4では、冷媒が図示しない送風機によって送風される空気から吸熱して蒸発する。この蒸発後の気相冷媒は、圧縮機1に吸入され、圧縮されて再び冷媒流路22を流れる。一方、分岐流路23を流れる冷媒は、第2減圧弁10で減圧されて低圧冷媒となり、この低圧冷媒は第2蒸発器5において、すでに第1蒸発器4によって吸熱された空気からさらに吸熱して蒸発する。第2蒸発器5から流出した気相冷媒はエジェクタ13の吸引部13bへ吸引される。
次に、上記構成のヒートポンプサイクルにおける除霜運転について説明する。本実施形態のヒートポンプサイクルは、第1実施形態のヒートポンプサイクルと同様に、ヒートポンプ式給湯装置に適用される。そして、制御装置6は、電力コスト等に基づいて定まる所定時間帯(例えば電力供給契約に基づく電力コストが安価な深夜時間帯)に、過去の使用実績等に基づく所定熱量を貯湯タンク内に貯留するようにヒートポンプサイクルを運転する。
制御装置6は、シャワー、浴槽、給水栓などの使用側端末において出湯操作がなされると、使用側端末へ給湯するための沸き上げ制御を行なう。図9は、本実施形態のヒートポンプサイクルにおける除霜運転に係る制御処理手順を示したフローチャートである。
図9に示すように、制御装置6は、沸き上げ制御がスタートすると、蒸発器が所定の着霜状態である場合に実行される除霜運転条件が成立しているかどうかを判断する(ステップS200)。なお、制御装置6は、除霜運転条件が成立するまで、この判断を繰り返す。
この除霜運転条件の成立は、第1実施形態において説明したステップS10における除霜運転条件の成立と同様であり、ここでは省略する。
制御装置6は、ステップS200で除霜運転条件が成立していると判断した場合には、第1蒸発器4および第2蒸発器5から霜を除去するために、除霜運転を実行する(ステップS205)。そして、制御装置6は、圧縮機1を駆動した状態で、エジェクタ13の可変絞り機構を所定開度に大きく開くとともに、第2減圧弁10の開度を所定開度に絞る制御を実行して、第1蒸発器4および第2蒸発器5のそれぞれに高温の冷媒を流入させる(ステップS210)。つまり、制御装置6は、第2蒸発器5に流入させるホットガス流量を第1蒸発器4に流入させるホットガス流量よりも少なくなるように流量調節手段の動作およびエジェクタの流路開度を制御する。これにより、第1蒸発器4および第2蒸発器5の外側の霜を融解して除霜する。
具体的には、第2減圧弁10はその開度が絞られまたは全閉とされ、第2蒸発器5に流れる冷媒流量が減少しまたはゼロとなる。そして、温度検出器7による検出温度が第1の所定温度(例えば1℃)以上になると、第2減圧弁10はその開度が拡大されまたは全開とされ、第2蒸発器5に流れる冷媒流量が増加しまたは流通し始める。その後、温度検出器7による検出温度が第2の所定温度(例えば3℃)以上になると、除霜運転を終了し沸き上げ制御に戻る。
制御装置6は、この除霜運転を除霜運転終了条件が成立したと判断するまで継続する(ステップS215)。この除霜運転終了条件は、蒸発器が良好な熱交換ができる状態になったことを制御装置6が検出することである。この条件の成立を判断するパラメータとしては、種々考えられるが、例えば、蒸発器自体の温度、蒸発器内を流通する冷媒の温度、蒸発器出口の配管温度などであり、これらの温度が制御装置6に記憶された所定温度より高くなったときに除霜運転終了条件の成立を判断する。本実施形態では、制御装置6は、温度検出器7によって検出された温度情報が、除霜完了を判断する所定温度よりも高くなったときに、除霜運転終了条件が成立したと判断する。
制御装置6は、この除霜運転を除霜運転終了条件が成立したと判断すると除霜運転を終了し、沸き上げ制御に移行する(ステップS220)。
なお、除霜運転は、上記のような運転の他に、以下のようなものであってもよい。例えば、除霜運転において、第1蒸発器4に流れるホットガスの流量が第2蒸発器5を流れるホットガスの流量よりも多くなる処理を有する制御を実行するものであってもよい。また、除霜運転の開始後しばらくは、第2減圧弁10を略全開とし、第2蒸発器5の着霜状態が改善されてきたと判断できるような所定条件が満たされたところで、その開度を減少し、または全閉するように制御してもよい。また、除霜運転において、第2蒸発器5に流入させるホットガスの総流量を第1蒸発器4に流入させるホットガスの総流量よりも少なくなるように第2減圧弁10およびエジェクタ13の可変絞り機構を制御してもよい。
このようにヒートポンプサイクルの制御装置6は、第1蒸発器4および第2蒸発器5の少なくともいずれか一方にホットガスを流入させる除霜運転において、第2減圧弁10の動作およびエジェクタ13の流路開度を制御してホットガスの流量を制御する。
この制御によれば、除霜運転において、着霜状態が異なる第1蒸発器4と第2蒸発器5のそれぞれに流入させるホットガス流量を、第2減圧弁10の動作およびエジェクタ13の流路開度を制御して調節することにより、第1蒸発器4よりも着霜量の少ない第2蒸発器5に対する除霜運転を軽減することができ、その軽減分を第1蒸発器4に対する除霜運転に転換することができるので、除霜運転の効率化および除霜運転時間の短縮が得られる。
(第8実施形態)
第8実施形態のヒートポンプサイクルは、図8を用いて説明した第7実施形態のヒートポンプサイクルに対して、放熱器2を経由しないで圧縮機1の下流部と第1蒸発器4および第2蒸発器5の上流部とを連通させるバイパス回路24を備えたことが相違している。この構成について図10を用いて説明する。図10は、本実施形態におけるヒートポンプサイクルの構成を示した模式図である。なお、図10において図8と同一の構成要素には、同一符号を付している。
第8実施形態のヒートポンプサイクルは、図8を用いて説明した第7実施形態のヒートポンプサイクルに対して、放熱器2を経由しないで圧縮機1の下流部と第1蒸発器4および第2蒸発器5の上流部とを連通させるバイパス回路24を備えたことが相違している。この構成について図10を用いて説明する。図10は、本実施形態におけるヒートポンプサイクルの構成を示した模式図である。なお、図10において図8と同一の構成要素には、同一符号を付している。
本実施形態のヒートポンプサイクルは、図10に示すように、圧縮機1の吐出口の冷媒配管と、第1蒸発器4よりも上流側の冷媒流路22の冷媒配管とを連絡するように設けられたバイパス回路24と、このバイパス回路24を流れる冷媒流量を調節する開閉弁11と、を備えている。第2減圧弁10、および開閉弁11は、第1蒸発器4、第2蒸発器5のそれぞれへのホットガス流入流量を調節する流量調節手段をなしている。また、開閉弁11は、制御装置6によってその弁開度が電気的に制御されるようになっている。
この構成のヒートポンプサイクルの作動は、第1実施形態に記載のものと同様であり、除霜運転の制御処理手順を示すフローチャートについては、図2と同様である。つまり、図9のステップS210に相当する処理において、制御装置6は、第2減圧弁10を全閉するとともに、開閉弁11の開度を所定開度に大きく開きまたは全開にし、エジェクタ13の可変絞り機構を大きく開いた所定開度に制御する。
これにより、圧縮機1から吐出されたホットガスは、放熱器2側に流れないで、バイパス回路24を流れて第1蒸発器4に流入し、第1蒸発器4の外側の霜を融解して除霜する。
さらに具体的には、第2減圧弁10はその開度が絞られまたは全閉とされ、第2蒸発器5に流れる冷媒流量が減少しまたはゼロとなる。そして、温度検出器7による検出温度が第1の所定温度(例えば1℃)以上になると、第2減圧弁10または開閉弁11はその開度が拡大されまたは全開とされ、第2蒸発器5に流れる冷媒流量が増加しまたは流通し始める。その後、温度検出器7による検出温度が第2の所定温度(例えば3℃)以上になると、除霜運転を終了し沸き上げ制御に戻る。
このように本実施形態のヒートポンプサイクルは、放熱器2を経由しないで圧縮機1の下流部と第1蒸発器4の上流部とを連絡するバイパス回路24を有することにより、放熱器2でのホットガスの放熱が起こらないので、蒸発器に高い温度のホットガスが流入することになり、さらに除霜時間を短縮することができる。
(第9実施形態)
第9実施形態では、第7実施形態および第8実施形態で説明した構成の各ヒートポンプサイクルが実行する除霜運転の制御処理手順を説明する。この制御処理手順は、図11に示すフローチャートのとおりである。
第9実施形態では、第7実施形態および第8実施形態で説明した構成の各ヒートポンプサイクルが実行する除霜運転の制御処理手順を説明する。この制御処理手順は、図11に示すフローチャートのとおりである。
図11に示すように、この制御処理手順は、第4実施形態で説明した図5に示すフローチャートと基本的には同様である。そこで、本実施形態は、エジェクタ13を備えるヒートポンプサイクルであるから、ここでは、ホットガス流量の制御処理ステップであるステップS240およびS250についてのみ説明し、他のステップについての説明は第4実施形態と同様として説明を省略する。
制御装置6は、図11のステップS235で除霜運転条件が成立していると判断した場合には、第1蒸発器4および第2蒸発器5から霜を除去するために、除霜運転を実行する。具体的には、制御装置6は、ステップS240において、圧縮機1を駆動した状態で、第2減圧弁10の開度を全閉に制御する。さらに、第8実施形態のヒートポンプサイクルにおいては開閉弁11の開度を全閉に制御する。これにより、風上側に位置する第1蒸発器4のみに高温の冷媒を流入させる。
そして、ステップS245の条件が成立したと判断されると、制御装置6は、ステップS250において、第2減圧弁10の開度を所定開度に制御して第2蒸発器5にも高温の冷媒を流入させる。また、第8実施形態のヒートポンプサイクルにおいては開閉弁11の開度を開いて所定開度に制御する。つまり、制御装置6は、第1蒸発器4にホットガスを流入させる処理を実行した後、ステップS245の条件が成立すると、さらに第2蒸発器5にもホットガスを流入させる処理を実行する。これにより、除霜運転の開始から終了までの間で、第2蒸発器5にホットガスが一定時間流入することになる。
このようにして制御装置6は、第2蒸発器5に流入させるホットガス流量を第1蒸発器4に流入させるホットガス流量よりも少なくなるように、第2減圧弁10、開閉弁11などの流量調節手段の動作を制御する。これにより、第1蒸発器4および第2蒸発器5の外側の霜を融解して除霜する。
このようにヒートポンプサイクルの制御装置6は、除霜運転において、第1蒸発器4にのみホットガスを流入させるステップ(ステップS240)と、第1蒸発器4および第2蒸発器5にホットガスを流入させるステップ(ステップS250)と、を有する制御を実行することが好ましい。この制御を採用すれば、除霜運転における第2減圧弁10や開閉弁11の開度制御に微妙な開度調整を必要とせず、流量調節手段の動作制御を簡単化することできる。
(第10実施形態)
第10実施形態では、第7実施形態および第8実施形態で説明した構成の各ヒートポンプサイクルが実行する除霜運転の制御処理手順を説明する。この制御処理手順は、図12に示すフローチャートのとおりである。
第10実施形態では、第7実施形態および第8実施形態で説明した構成の各ヒートポンプサイクルが実行する除霜運転の制御処理手順を説明する。この制御処理手順は、図12に示すフローチャートのとおりである。
図12に示すように、この制御処理手順は、第5実施形態で説明した図6に示すフローチャートと基本的には同様である。そこで、本実施形態は、エジェクタ13を備えるヒートポンプサイクルであるから、ここでは、ホットガス流量の制御処理ステップであるステップS280およびS290についてのみ説明し、他のステップについての説明は第5実施形態と同様として説明を省略する。
制御装置6は、図12のステップS270で除霜運転条件が成立していると判断した場合には、第1蒸発器4および第2蒸発器5から霜を除去するために、除霜運転を実行する。具体的には、制御装置6は、ステップS280において、圧縮機1を駆動した状態で、第2減圧弁10の開度を全閉に制御する。さらに、第8実施形態のヒートポンプサイクルにおいては開閉弁11の開度を全閉に制御する。これにより、風上側に位置する第1蒸発器4のみに高温の冷媒を流入させる。
そして、制御装置6は、温度検出器7によって検出した蒸発器の出口温度が第1の所定温度TE1以上であるか否かを判断し(ステップS285)、検出温度が第1の所定温度TE1以上であると判断すると、ステップS290において、第2減圧弁10の開度を所定開度に制御して第2蒸発器5にも高温の冷媒を流入させる。また、第8実施形態のヒートポンプサイクルにおいては開閉弁11の開度を開いて所定開度に制御する。
つまり、制御装置6は、第1蒸発器4にホットガスを流入させる処理を実行した後、ステップS285の条件が成立すると、さらに第2蒸発器5にもホットガスを流入させる処理を実行する。これにより、除霜運転の開始から終了までの間で、第2蒸発器5にホットガスが一定時間流入することになる。
そして、制御装置6は、温度検出器7によって検出した蒸発器の出口温度が第2の所定温度TE2以上であるか否かを判断し(ステップS295)、検出温度が第2の所定温度TE2以上であると判断すると、除霜運転終了条件が成立したと判断して除霜運転を終了し、沸き上げ制御に移行する(ステップS300)。
このようにしてヒートポンプサイクルの制御装置6は、除霜運転において、温度検出器7によって検出された温度情報に基づいて第1蒸発器4または第2蒸発器5に流入させるホットガスの流量を制御する。この制御によれば、除霜運転中に蒸発器の着霜状況を監視しながらホットガスの流量制御を行うので、霜の溶け残りの発生をさらに確実に防止できる。
(第11実施形態)
第11実施形態では、第7実施形態および第8実施形態で説明した構成の各ヒートポンプサイクルが実行する除霜運転の制御処理手順を説明する。この制御処理手順は、図13に示すフローチャートのとおりである。
第11実施形態では、第7実施形態および第8実施形態で説明した構成の各ヒートポンプサイクルが実行する除霜運転の制御処理手順を説明する。この制御処理手順は、図13に示すフローチャートのとおりである。
図13に示すように、この制御処理手順は、第6実施形態で説明した図7に示すフローチャートと基本的には同様である。そこで、本実施形態は、エジェクタ13を備えるヒートポンプサイクルであるから、ここでは、ホットガス流量の制御処理ステップであるステップS320およびS330についてのみ説明し、他のステップについての説明は第6実施形態と同様として説明を省略する。
制御装置6は、図13のステップS310で除霜運転条件が成立していると判断した場合には、第1蒸発器4および第2蒸発器5から霜を除去するために、除霜運転を実行する。具体的には、制御装置6は、ステップS320において、圧縮機1を駆動した状態で、第2減圧弁10の開度を全閉に制御する。さらに、第8実施形態のヒートポンプサイクルにおいては開閉弁11の開度を全閉に制御する。これにより、風上側に位置する第1蒸発器4のみに高温の冷媒を流入させる。
そして、制御装置6は、ROMなどの記憶手段にあらかじめ記憶されている所定時間T1がステップS320の処理開始から経過した否かを判断する(ステップS325)。制御装置6は、ステップS325で所定時間T1が経過していると判断すると、ステップS320による処理によって第1蒸発器4の着霜量が目標レベルまで改善されたと判断し、ステップS330において、第2減圧弁10の開度を所定開度に制御して第2蒸発器5にも高温の冷媒を流入させる。また、第8実施形態のヒートポンプサイクルにおいては開閉弁11の開度を開いて所定開度に制御する。
つまり、制御装置6は、第1蒸発器4にホットガスを流入させる処理を実行した後、ステップS325の条件が成立すると、さらに第2蒸発器5にもホットガスを流入させる処理を実行する。これにより、除霜運転の開始から終了までの間で、第2蒸発器5にホットガスが、必ず一定時間流入することになる。
そして、制御装置6は、記憶手段にあらかじめ記憶されている所定時間T2がステップS330の処理開始から経過した否かを判断する(ステップS335)。制御装置6は、ステップS335で所定時間T2が経過していると判断すると、除霜運転終了条件が成立したと判断して除霜運転を終了し、沸き上げ給湯制御に移行する(ステップS340)。
このようにしてヒートポンプサイクルの制御装置6は、除霜運転において、あらかじめ記憶された所定時間T1やT2に基づいて第1蒸発器4または第2蒸発器5に流入させるホットガスの流量を変更する。この制御によれば、時間の経過とともに、確実にホットガスの流量が変更されることになるので、蒸発器への無駄なホットガスの流入を減らすことができる。
(第12実施形態)
第12実施形態では、第1、第2、第3、第7、および第8実施形態で説明した構成の各ヒートポンプサイクルが実行する除霜運転の制御処理手順を説明する。この制御処理手順は、図14に示すフローチャートのとおりである。
第12実施形態では、第1、第2、第3、第7、および第8実施形態で説明した構成の各ヒートポンプサイクルが実行する除霜運転の制御処理手順を説明する。この制御処理手順は、図14に示すフローチャートのとおりである。
図14に示すように、この制御処理手順は、複数の除霜運転がその間に通常運転を挟んで実行される一連のステップからなる。この複数の除霜運転には、第1蒸発器4と第2蒸発器5のそれぞれに流入させるホットガスの流量パターンが異なる運転が含まれている。通常運転とは、冷媒がサイクル内を流れて第1蒸発器4または第2蒸発器5において外部流体から吸熱を行っているときの運転である。
図14に示すに一連の複数のステップの内訳は、第1蒸発器4にのみホットガスを流入させるパターンの運転が2回であり(S125、S135)、第1蒸発器4および第2蒸発器5にホットガスを流入させるパターンの運転(S145)が1回である。そして、S125の運転とS135の運転との間には、除霜運転終了条件が成立した(ステップS126)ときに通常運転が実行され(ステップS127)、同様に、S135の運転とS140の運転との間には、除霜運転終了条件が成立した(ステップS136)ときに通常運転が実行される(ステップS137)。
このように、第1蒸発器4および第2蒸発器5にホットガスを流入させるパターンの運転(S145)の処理回数は、第1蒸発器4にのみホットガスを流入させるパターンの運転(S125、S135)の処理回数と異なるように構成されている。
このように通常運転を間に挟んだ複数の除霜運転を実行することにより、第2蒸発器5に対する除霜頻度が少ない除霜運転が行われるので、全体としての除霜運転時間を短縮することができる。
(他の実施形態)
以上、本発明の好ましい実施形態について説明したが、本発明は上述した実施形態に何ら制限されることなく、本発明の主旨を逸脱しない範囲において種々変形して実施することが可能である。
以上、本発明の好ましい実施形態について説明したが、本発明は上述した実施形態に何ら制限されることなく、本発明の主旨を逸脱しない範囲において種々変形して実施することが可能である。
例えば、本発明の除霜運転は、第1蒸発器4、または第1蒸発器4および第1蒸発器4よりも外部流体の流れ方向下流側に設けられた第2蒸発器5に、ホットガスを流入させる運転であって、蒸発器に付着する霜の除霜またはその予防を行うものであり、上記実施形態に記載されたものに必ずしも限定されない。
また、上記実施形態のヒートポンプサイクルに使用される冷媒は、フロン系冷媒、炭化水素系冷媒、二酸化炭素(CO2)冷媒のいずれか1つを使用した超臨界サイクルおよび亜臨界サイクルのいずれであってもよい。なお、ここでフロンとは炭素、フッ素、塩素、水素からなる有機化合物の総称であり、冷媒として広く使用されているものである。
また、フロン系冷媒には、ハイドロ、クロロ、フルオロ、カーボン(HCFC)系冷媒、ハイドロ、フルオロ、カーボン(HFC)系冷媒などが含まれており、これらはオゾン層を破壊しないため代替フロンと呼ばれる冷媒である。また、炭化水素(HC)系冷媒とは、水素、炭素を含み、自然界に存在する冷媒物質のことである。この炭化水素系冷媒には、イソブタンを用いたR600aやプロパンを用いたR290などがある。
また、上記実施形態において第1蒸発器4と第2蒸発器5は、一体構造に組み付けてもよい。この場合には、第1蒸発器4と第2蒸発器5の各構成部品をアルミニウムで構成し、ろう付けにより接合し一体化する。
1…圧縮機
2…放熱器
3…減圧弁(減圧機構部、流量調節手段)
4…第1蒸発器
5…第2蒸発器
6…制御装置
7…温度検出器(温度検知手段)
8…流調弁(流量調節手段、流調機構部)
9…第1減圧弁(流量調節手段、第1減圧機構部)
10…第2減圧弁(流量調節手段、第2減圧機構部)
11…開閉弁(流量調節手段)
12、24…バイパス回路
13…エジェクタ
22…冷媒流路
23、25…分岐流路
2…放熱器
3…減圧弁(減圧機構部、流量調節手段)
4…第1蒸発器
5…第2蒸発器
6…制御装置
7…温度検出器(温度検知手段)
8…流調弁(流量調節手段、流調機構部)
9…第1減圧弁(流量調節手段、第1減圧機構部)
10…第2減圧弁(流量調節手段、第2減圧機構部)
11…開閉弁(流量調節手段)
12、24…バイパス回路
13…エジェクタ
22…冷媒流路
23、25…分岐流路
Claims (13)
- 冷媒を吸入し圧縮する圧縮機(1)と、
前記圧縮機(1)から吐出された高圧冷媒の放熱を行い、第1外部流体を加熱する放熱器(2)と、
前記放熱器(2)よりも下流部で減圧された冷媒と第2外部流体とを熱交換させて前記第2外部流体を冷却し、前記第2外部流体の流れ方向の上流側に設けられた第1蒸発器(4)、および前記第1蒸発器(4)よりも前記第2外部流体の下流側に設けられた第2蒸発器(5)と、
前記第1蒸発器(4)、前記第2蒸発器(5)のそれぞれへ流入させる冷媒流量を調節する流量調節手段(3、8、9、10、11、13)と、を備え、
前記第1蒸発器(4)および前記第2蒸発器(5)のうち少なくとも前記第1蒸発器(4)にホットガスを流入させる除霜運転において、前記流量調節手段(3、8、9、10、11、13)により、前記第1蒸発器(4)に流入させるホットガスの流量と前記第2蒸発器(5)に流入させるホットガスの流量とを異なる流量に調節することを特徴とするヒートポンプサイクル。 - 冷媒を吸入し圧縮する圧縮機(1)と、
前記圧縮機(1)から吐出された高圧冷媒の放熱を行い、第1外部流体を加熱する放熱器(2)と、
前記放熱器(2)よりも下流部で冷媒を減圧膨張させるとともに、冷媒を吸引するエジェクタ(13)と、
前記エジェクタ(13)から流出した冷媒と第2外部流体とを熱交換させて前記第2外部流体を冷却し、前記第2外部流体の流れ方向の上流側に設けられた第1蒸発器(4)と、
前記圧縮機(1)、前記放熱器(2)、前記エジェクタ(13)、および前記第1蒸発器(4)を含む環状の冷媒流路(22)から分岐して設けられ、冷媒を前記エジェクタ(13)に導き吸引させる分岐流路(23)と、
前記分岐流路(23)に配置され、さらに前記第1蒸発器(4)よりも前記第2外部流体の下流側に設けられた第2蒸発器(5)と、
前記第1蒸発器(4)、前記第2蒸発器(5)のそれぞれへ流入させる冷媒流量を調節する流量調節手段(10、11)と、を備え、
前記第1蒸発器(4)および前記第2蒸発器(5)のうち少なくとも前記第1蒸発器(4)にホットガスを流入させる除霜運転において、前記流量調節手段(10、11)および前記エジェクタ(13)の流路開度の調節により、前記第1蒸発器(4)に流入させるホットガスの流量と前記第2蒸発器(5)に流入させるホットガスの流量とを異なる流量に調節することを特徴とするヒートポンプサイクル。 - 前記流量調節手段は、前記放熱器(2)で放熱した前記高圧冷媒を減圧膨張させる減圧機構部(3)と、
前記第2蒸発器(5)に流入させる冷媒流量を調節する流調機構部(8)と、から構成されることを特徴とする請求項1に記載のヒートポンプサイクル。 - 前記流量調節手段は、前記圧縮機(1)、前記放熱器(2)、および前記第1蒸発器(4)を含む環状の冷媒流路(22)に設けられ、前記放熱器(2)で放熱した前記高圧冷媒を減圧膨張させる第1減圧機構部(9)と、
前記冷媒流路(22)から分岐して冷媒を前記第2蒸発器(5)に導く分岐流路(25)に設けられ、前記放熱器(2)で放熱した前記高圧冷媒を減圧膨張させる第2減圧機構部(10)と、から構成されることを特徴とする請求項1に記載のヒートポンプサイクル。 - 前記放熱器(2)を経由しないで前記圧縮機(1)の下流部と前記第1蒸発器(4)および第2蒸発器(5)の上流部とを連絡するバイパス回路(12)を有することを特徴とする請求項1に記載のヒートポンプサイクル。
- 前記放熱器(2)を経由しないで前記圧縮機(1)の下流部と前記第1蒸発器(4)の上流部とを連絡するバイパス回路(24)を有することを特徴とする請求項2に記載のヒートポンプサイクル。
- 前記除霜運転において前記第2蒸発器(5)に流入させるホットガスの総流量を前記第1蒸発器(4)に流入させるホットガスの総流量よりも少なくなるように制御することを特徴とする請求項1から6のいずれかに記載のヒートポンプサイクル。
- 前記除霜運転において前記第1蒸発器(4)にのみホットガスを流入させるステップ(S50)と、前記第1蒸発器(4)および前記第2蒸発器(5)にホットガスを流入させるステップ(S60)と、を実行することを特徴とする請求項1から7のいずれかに記載のヒートポンプサイクル。
- 前記第1蒸発器(4)および前記第2蒸発器(5)の少なくともいずれか一方の蒸発器に関する温度情報を検出する温度検知手段(7)を備え、
前記除霜運転において前記温度検出手段(7)によって検出された温度情報に基づいて前記第1蒸発器(4)または前記第2蒸発器(5)に流入させる前記ホットガスの流量を調節することを特徴とする請求項1から8のいずれかに記載のヒートポンプサイクル。 - 前記除霜運転においてあらかじめ記憶された所定時間(T1、T2)に基づいて前記第1蒸発器(4)または前記第2蒸発器(5)に流入させる前記ホットガスの流量を変更することを特徴とする請求項1から8のいずれかに記載のヒートポンプサイクル。
- 前記第1蒸発器(4)または前記第2蒸発器(5)において外部流体から吸熱する通常運転を挟んで複数回実施される前記除霜運転において、
前記第1蒸発器(4)にのみホットガスを流入させる運転(S125、S135)と、
前記運転(S125、S135)と処理回数が異なる前記第1蒸発器(4)および前記第2蒸発器(5)にホットガスを流入させる運転(S145)と、
を実行することを特徴とする請求項1から10のいずれかに記載のヒートポンプサイクル。 - 前記第1外部流体は水であることを特徴とする請求項1から11のいずれかに記載のヒートポンプサイクル。
- 前記冷媒は二酸化炭素であることを特徴とする請求項1から12のいずれかに記載のヒートポンプサイクル。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006214923A JP2008039298A (ja) | 2006-08-07 | 2006-08-07 | ヒートポンプサイクル |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006214923A JP2008039298A (ja) | 2006-08-07 | 2006-08-07 | ヒートポンプサイクル |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008039298A true JP2008039298A (ja) | 2008-02-21 |
Family
ID=39174515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006214923A Pending JP2008039298A (ja) | 2006-08-07 | 2006-08-07 | ヒートポンプサイクル |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008039298A (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010002127A (ja) * | 2008-06-20 | 2010-01-07 | Denso Corp | 冷凍サイクル装置 |
JP2010164291A (ja) * | 2008-12-15 | 2010-07-29 | Denso Corp | エジェクタ式冷凍サイクル |
JP2011247547A (ja) * | 2010-05-28 | 2011-12-08 | Denso Corp | 冷凍サイクル装置 |
KR101208929B1 (ko) * | 2009-12-04 | 2012-12-07 | 한라공조주식회사 | 2중 증발 시스템 |
KR101240188B1 (ko) * | 2010-09-06 | 2013-03-07 | 한라공조주식회사 | 차량용 공조장치 |
JP2018096578A (ja) * | 2016-12-09 | 2018-06-21 | ダイキン工業株式会社 | 冷却装置 |
JPWO2021095124A1 (ja) * | 2019-11-12 | 2021-05-20 | ||
KR102369304B1 (ko) * | 2020-09-08 | 2022-03-04 | 제주대학교 산학협력단 | 이젝터를 이용한 냉동장치의 제어방법 |
CN114838537A (zh) * | 2022-05-10 | 2022-08-02 | 西安交通大学 | 一种延缓空气源热泵机组结霜的装置及控制方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS438227Y1 (ja) * | 1964-11-28 | 1968-04-12 | ||
JPS62255762A (ja) * | 1986-04-30 | 1987-11-07 | 株式会社日立製作所 | 空気調和機 |
JPS6372464U (ja) * | 1986-10-31 | 1988-05-14 | ||
JPH11304309A (ja) * | 1998-04-20 | 1999-11-05 | Fujitsu General Ltd | 空気調和機 |
JP2002089980A (ja) * | 2000-09-20 | 2002-03-27 | Fujitsu General Ltd | 空気調和機 |
JP2002243298A (ja) * | 2001-02-20 | 2002-08-28 | Fujitsu General Ltd | 空気調和機 |
JP2004239493A (ja) * | 2003-02-05 | 2004-08-26 | Denso Corp | ヒートポンプサイクル |
JP2006118849A (ja) * | 2004-09-22 | 2006-05-11 | Denso Corp | エジェクタ式冷凍サイクル |
-
2006
- 2006-08-07 JP JP2006214923A patent/JP2008039298A/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS438227Y1 (ja) * | 1964-11-28 | 1968-04-12 | ||
JPS62255762A (ja) * | 1986-04-30 | 1987-11-07 | 株式会社日立製作所 | 空気調和機 |
JPS6372464U (ja) * | 1986-10-31 | 1988-05-14 | ||
JPH11304309A (ja) * | 1998-04-20 | 1999-11-05 | Fujitsu General Ltd | 空気調和機 |
JP2002089980A (ja) * | 2000-09-20 | 2002-03-27 | Fujitsu General Ltd | 空気調和機 |
JP2002243298A (ja) * | 2001-02-20 | 2002-08-28 | Fujitsu General Ltd | 空気調和機 |
JP2004239493A (ja) * | 2003-02-05 | 2004-08-26 | Denso Corp | ヒートポンプサイクル |
JP2006118849A (ja) * | 2004-09-22 | 2006-05-11 | Denso Corp | エジェクタ式冷凍サイクル |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010002127A (ja) * | 2008-06-20 | 2010-01-07 | Denso Corp | 冷凍サイクル装置 |
JP2010164291A (ja) * | 2008-12-15 | 2010-07-29 | Denso Corp | エジェクタ式冷凍サイクル |
US8783060B2 (en) | 2008-12-15 | 2014-07-22 | Denso Corporation | Ejector-type refrigerant cycle device |
KR101208929B1 (ko) * | 2009-12-04 | 2012-12-07 | 한라공조주식회사 | 2중 증발 시스템 |
JP2011247547A (ja) * | 2010-05-28 | 2011-12-08 | Denso Corp | 冷凍サイクル装置 |
KR101240188B1 (ko) * | 2010-09-06 | 2013-03-07 | 한라공조주식회사 | 차량용 공조장치 |
JP2018096578A (ja) * | 2016-12-09 | 2018-06-21 | ダイキン工業株式会社 | 冷却装置 |
JPWO2021095124A1 (ja) * | 2019-11-12 | 2021-05-20 | ||
WO2021095124A1 (ja) * | 2019-11-12 | 2021-05-20 | 三菱電機株式会社 | 冷凍サイクル装置 |
KR102369304B1 (ko) * | 2020-09-08 | 2022-03-04 | 제주대학교 산학협력단 | 이젝터를 이용한 냉동장치의 제어방법 |
CN114838537A (zh) * | 2022-05-10 | 2022-08-02 | 西安交通大学 | 一种延缓空气源热泵机组结霜的装置及控制方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008039298A (ja) | ヒートポンプサイクル | |
JP4738293B2 (ja) | ヒートポンプ装置及びヒートポンプ給湯機 | |
JP4867749B2 (ja) | ヒートポンプ給湯装置 | |
JP4539553B2 (ja) | ヒートポンプ式給湯器 | |
EP2597381B1 (en) | Cold/hot water supply apparatus | |
JP5653451B2 (ja) | ヒートポンプ式給湯装置 | |
JP5939764B2 (ja) | ヒートポンプ装置及びヒートポンプ給湯機 | |
JP2008002796A (ja) | エジェクタ式冷凍サイクル | |
JP2002107014A (ja) | 空気調和機 | |
WO2013065233A1 (ja) | 冷凍サイクル装置およびそれを備えた空気調和機 | |
JP2015064169A (ja) | 温水生成装置 | |
JP2005147610A (ja) | ヒートポンプ給湯装置 | |
JP4858399B2 (ja) | 冷凍サイクル | |
JP2005024210A (ja) | 蒸気圧縮式冷凍機 | |
JP2007292390A (ja) | ヒートポンプ式給湯器 | |
JP6817735B2 (ja) | ヒートポンプ式空調システム | |
JP2008241176A (ja) | 冷凍サイクル装置 | |
JP2008224067A (ja) | ヒートポンプ給湯装置 | |
JP4021374B2 (ja) | ヒートポンプ給湯装置 | |
JP2009250537A (ja) | ヒートポンプ式給湯装置 | |
JP5381749B2 (ja) | 冷凍サイクル装置 | |
JP4417396B2 (ja) | ヒートポンプ装置 | |
JP2006132888A (ja) | ヒートポンプ給湯装置 | |
JP2009030905A (ja) | ヒートポンプ式加熱装置 | |
JP4465986B2 (ja) | ヒートポンプ式給湯装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081002 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110208 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110726 |