JP2008017525A - 広帯域インピーダンス変成器 - Google Patents

広帯域インピーダンス変成器 Download PDF

Info

Publication number
JP2008017525A
JP2008017525A JP2007228116A JP2007228116A JP2008017525A JP 2008017525 A JP2008017525 A JP 2008017525A JP 2007228116 A JP2007228116 A JP 2007228116A JP 2007228116 A JP2007228116 A JP 2007228116A JP 2008017525 A JP2008017525 A JP 2008017525A
Authority
JP
Japan
Prior art keywords
transmission line
substrate
transformer
impedance
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007228116A
Other languages
English (en)
Inventor
William Dean Killen
ウィリアム ディーン キレン
Randy T Pike
ランディー テッド パイク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harris Corp
Original Assignee
Harris Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harris Corp filed Critical Harris Corp
Publication of JP2008017525A publication Critical patent/JP2008017525A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/024Dielectric details, e.g. changing the dielectric material around a transmission line
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors

Landscapes

  • Waveguides (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Inorganic Insulating Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

【課題】RF回路の設計自由度を増やし、性能を向上する為に誘電体回路基板材料を最適化すること。
【解決手段】サブストレートは、サブストレートの残りの部分とは異なる比透磁率又は比誘電率を有する少なくとも1つの領域を含む。このように透磁率及び誘電率を制御するために、メタ材料を用いて、サブストレートの一部を選択的に変更する。伝送線路変成器が、サブストレート上に配置され、領域に接続される。
【選択図】図3

Description

本発明は、一般的に、RF回路の設計自由度を増加し、より具体的には、性能を向上する為に誘電体回路基板材料を最適化する方法及び装置に係る。
RF回路、伝送線路、及びアンテナ素子は、一般的に、特別設計されるサブストレート基板上に形成される。このようなタイプの回路の目的のために、インピーダンス特性に関し、注意深い制御を維持することが重要である。回路の異なる部分のインピーダンスが整合しなければ、非効率的な電力伝達、構成要素の不必要な加熱、及び、他の問題が結果として生じる。これらの回路における伝送線路、及び、放射器の電気長も、重要な設計要素となり得る。
サブストレート材料の性能に影響を及ぼす2つの重要な要素は、誘電定数(時に、比誘電率、又は、εと称する)と、損失正接(時に、散逸率と称する)である。比誘電率は、サブストレート材料における信号速度を決定し、従って、伝送線路、及び、サブストレート上に実装される他の構成要素の電気長を決定する。損失正接は、サブストレート材料を通る信号に生じる損失の量を特徴付ける。従って、低損失材料は、周波数が増加するに従いより重要となり、特に、受信器のフロントエンド、及び、低雑音増幅器回路を設計する際に、重要となる。
RF回路に使用する、印刷された伝送線路、受動回路、及び、放射素子は、一般的に、3つの方法のうちいずれかによって形成される。マイクロストリップとして知られる1つの構成は、信号線路を基板面に置き、一般的に、接地面と称する第2の導電層を与える。埋め込みマイクロストリップとして知られる第2のタイプの構成は、信号線路が、誘電体サブストレート材料によって覆われる以外は同様である。ストリップラインとして知られる第3の構成では、信号線路は、2つの導電面(接地面)の間に挟まれる。損失を無視すると、ストリップライン又はマイクロストリップといった伝送線路の特性インピーダンスは、
Figure 2008017525

に等しい。ただし、Lは、単位長あたりのインダクタンスであり、Cは、単位長あたりのキャパシタンスである。L及びCの値は、一般的に、線路構造の物理的な幾何学、及び、間隔、また、伝送線路構造を絶縁するために用いる誘電体の誘電率によって決まる。従来のサブストレート材料は、一般的に、約1.0の透磁率を有する。
従来のRF設計では、その設計に適した比誘電率値を有するサブストレート材料が選択される。サブストレート材料が一度選択されると、伝送線路の特性インピーダンス値は、伝送線路の幾何学、及び、物理的構造を制御することによって、排他的に調節される。
ミクロ電子工学RF回路を設計する際に遭遇する1つの問題は、基板上に形成される様々な受動素子、放射素子、及び、伝送線路回路の全てに対し最適化される誘電体基板サブストレート材料の選択である。特に、特定の回路素子の幾何学は、その素子に必要とされる独自の電気的又はインピーダンス特性によって、物理的に大きいか、又は、小型化される。例えば、多くの回路素子、又は、同調回路は、電気的な1/4波長である必要がある。更に、非常に高い、又は、低い特性インピーダンス値に必要とされる伝送線路の幅は、所与のサブストレートに実際に実装するには、幅が細すぎるか、又は、広すぎる場合がある。マイクロストリップ又はストリップラインの物理寸法は、誘電体の比誘電率に反比例するので、伝送線路の寸法は、サブストレート基板材料の選択によって大きく影響を受ける。
上述から、選択された相対誘電特性を有する回路基板サブストレートの制約は、回路全体の電気的性能、及び/又は、物理的特性に悪影響を与え得る設計上の妥協を、結果としてもたらす。
従来の取り組み方法に特有の問題は、少なくとも従来の回路基板サブストレートに関し、伝送線路のインピーダンスに対する制御変数は、比誘電率のみであることである。この制限は、従来のサブストレート材料における重要な問題を強調する。即ち、従来のサブストレート材料は、特性インピーダンスを決定するもう1つの要素、即ち、L、伝送線路の単位長さあたりのインダクタンスを有利に活用することができない。
伝送線路の4分の1波長セクションは、所望の伝送線路インピーダンスと、所与の負荷との間に整合を与えるよう設計することができる。例えば、図1に示す回路では、伝送線路は、4分の1波長セクションの特性インピーダンス
(外1)
Figure 2008017525

が、式
Figure 2008017525

を用いて選択される場合、4分の1波長セクションの終端における負荷と整合されることが可能である。ただし、
(外2)
Figure 2008017525

は、4分の1波長セクションの特性インピーダンスであり、Z01は、入力伝送線路の特性インピーダンスであり、Z02は、負荷インピーダンスである。
単純な4分の1波長変成器は、変成器の長さが、関心の周波数の4分の1波長に近似する比較的狭い帯域幅のみに亘って最も効果的に動作する。より広い周波数範囲に亘っての整合を供給するために、多数の整合段を有するマルチセクション変成器を設計することが可能である。例えば、50オームのインピーダンスから10オームのインピーダンスに変換するのに1つの4分の1波長伝送線路を用いることを試みるのではなく、2つの4分の1波長セクションを直列接続して用いることが可能である。この場合、第1の4分の1波長セクションは、50オームから30オームに変換するよう設計され、第2の4分の1波長セクションは、30オームから10オームに変換するよう設計され得る。特に、2つの4分の1波長セクションが、直列接続されると、半波長セクションを構成する。しかし、この半波長セクションは、設計周波数の半分において、4分の1波長変成器セクションとして有利に機能する。この技術は、単純な4分の1波長セクションと比較して、より広い帯域に亘る整合を達成するために用いることが可能である。
変成器の段の数が増加するに従い、セクション間のインピーダンス変化は小さくなる。実際、変成器は、原則的に、無限数の段で設計することが可能であり、それにより、結果として、図2に示す、給電線Zと負荷Zとの間のZ(x)として表されるインピーダンスの滑らかで、連続的な変動が得られる。図2中、xは、整合セクションの距離である。最大限に広い通過帯域応答、及び、特定の通過帯域リプルのために、テーパプロファイルは、クロッペンシュタイン(Klopfenstein)テーパとして知られる解析形式を有する。マルチプルセクション伝送線路変成器、及び、テーパ型伝送線路変成器の設計に関する文献は多数ある。
マルチプル変成器セクション、及び、テーパ型伝送線路変成器に関する1つの問題は、それらが、物理的に大きい構造体であることである。実際に、マルチプルセクション変成器は、一般的に、設計周波数で、多数の4分の1波長の長さを有し、テーパ型伝送線路変成器は、一般的に、最低設計周波数で、少なくとも約1波長の長さを有し、最小長は、ある程度、インピーダンス比に依存する。従って、これらの設計は、多くの場合、小型の半導体及び集積回路の適用の流行に沿っていない。
伝送線路インピーダンス変成器に関する別の問題は、マイクロストリップ又はストリップライン構成における実施の実践上の困難さである。例えば、所定の誘電率を有する所与の誘電体サブストレートに対し、伝送線路の特性インピーダンスは、一般的に、伝送線路の幅の関数である。従って、変成器セクションの幅は、設計者が達成しようとしている変換、即ち、変成器セクションの各端におけるインピーダンスに依存して、非実用的に細くなるか、又は、広くなる。
本発明は、誘電体回路基板サブストレートを含むインピーダンス変換装置に係る。サブストレートは、サブストレートの残りの部分とは異なる比透磁率、又は、比誘電率を有する少なくとも1つの領域を有する。このように透磁率、及び、誘電率を制御するには、メタ材料を用いて、サブストレートの一部を選択的に変更する。伝送線路変成器は、サブストレート上に配置され、1つの領域に接続される。本発明の1つの面によると、伝送線路変成器は、変成器の入力回路を、変成器の出力回路に整合させるよう構成されることが可能である。例えば、伝送線路変成器は、装置の所定の動作周波数で、4分の1波長の倍数であり得る。伝送線路変成器は、マイクロストリップ構成、ストリップライン構成、又は、ツインライン構成であってよい。或いは、伝送線路変成器の少なくとも一部を、スタック構成に形成することも可能である。
本発明の別の面によると、装置は、上述したような領域を複数含むことが可能である。その場合、各領域は、残りの領域とは異なる比透磁率、又は、比誘電率を有することが可能である。更に、伝送線路変成器は、複数のセグメントから構成されることも可能である。各セグメントは、複数の領域のうち少なくとも1つの領域に接続される。1つの領域、又は、複数の領域の誘電率、及び、透磁率は、伝送線路変成器の長さに沿っての領域内で変えることが可能である。この技術を用いて、伝送線路変成器の特性インピーダンスを、テーパ伝送線路型変成器に応じて、伝送線路変成器の長さに沿って変えて、概して、長さに対するインピーダンス変換の関数を達成することが可能である。
低誘電定数基板材料は、一般的に、RF設計に対し選択される。例えば、RT/デュロイド(duroid)(登録商標)6002(2.94の誘電定数、0.009の損失正接)、及び、RT/デュロイド(登録商標)5880(2.2の誘電定数、0.0007の損失正接)といったポリテトラフルオロエチレン(PTFE)に基づいた合成物が、ロジャース・マイクロウェイブ・プロダクツ社(100 S.Roosevelt Ave.,Chandler,AZ85226)の高性能回路材料部から入手可能である。これらの材料はどちらも、一般的な基板材料選択である。上述した基板材料は、低い損失正接を伴った比較的低い誘電定数を有する誘電体層を与える。
しかし、従来の基板材料の使用は、変成器セクションといった回路素子の小型化を譲歩しなくてはならず、更に、高誘電定数層から享受できる回路の性能面も譲歩しなくてはならない場合がある。通信回路における一般的なトレードオフは、アンテナ素子の物理的寸法と、効率との間で行われる。これに対し、本発明は、効率及び寸法に対し最適化される誘電率及び透磁率特性が選択的に制御された誘電体層部を用いることを可能にすることにより、回路設計者に対し、追加された自由度レベルを提供する。この追加された自由度は、性能の向上、及び、アンテナ素子の高密度化を可能にし、これらは、本発明の追加された自由度がない限り不可能である。
図3及び図4は、サブストレート300上の4分の1波長変成器セクション304のマイクロストリップ実施を示す。接地面301が、図示するようにサブストレートの下に設けられる。変成器セクション304の下のサブストレート領域308は、入力伝送線路セクション302、及び、出力伝送線路セクション306にそれぞれ接続されるサブストレート300の残りの部分とは異なるサブストレート特性を有する。例えば、領域304における誘電率は、4分の1波長変成器セクション304の物理長を短くするために選択的に増加することが可能である。
図5及び図6は、本発明の別の実施例を示す。ここでは、同様の参照番号は、図3及び図4を参照して説明した同一の構造を表すために用いる。図5及び図6に示すように、変成器304は、デバイス402に整合させるよう用いることが可能である。デバイス402は、インピーダンス整合を与える必要のある任意の回路であってよい。
デバイス402が、非常に高いインピーダンス又は低いインピーダンスを有する場合、デバイス402に整合する正しい特性インピーダンスを有する4分の1波長変成器セクションを、サブストレート300上に形成することは、実質的に不可能である。しかし、サブストレート300の他の部分とは異なるサブストレート特性を、領域308に与えることによって、変成器伝送線路セクション304を形成することが可能となる。このことは、異なるサブストレート特性を、領域308に与えなければ、不可能であるか、又は、少なくとも非実用的である。これらのサブストレート特性は、サブストレートの比誘電率、及び/又は、比透磁率を含むことが可能である。
例えば、領域308の誘電率を高くすれば、物理的に非常に幅の広い伝送線路を、より扱い易い幅に細くすることが可能である。さらに、領域308の透磁率を選択的に増加することによって、実用的な幅を有する高いインピーダンス伝送線路を、サブストレート上に形成することが可能となる。このような高いインピーダンス値は、領域308の透磁率を選択的に増加しなければ、サブストレート300上に実際に実施するには、細すぎる。
図7及び図8は、1つの変成器セクションで達成可能である帯域幅より広い帯域幅に亘って広い範囲のインピーダンス変換が実用的に達成可能であるマルチセクション変成器を示す。図7及び図8では、同様の参照番号は、図3及び図4を参照して説明した同一の構造を表すために用いる。図7及び図8では、第2の4分の1波長変成器セクション702が設けられ、変成器に対し、大きい動作帯域幅を提供する。しかし、2つの変成器セクションは、例示的に過ぎず、本願に開示する概念は、より大きい数のセクションを有する変成器にも拡大適用されることを理解するものとする。
図7及び図8を参照するに、領域308及び領域704における、サブストレートの誘電率及び透磁率は、互いと比較して、及び、サブストレートの残りの部分に対して異なり得る電気的性質を有することが可能である。従って、設計者は、サブストレート300上に生成可能な特性インピーダンスの範囲に関し、かなり大きい自由度が与えられる。領域308及び/又は領域704の透磁率を増加して、増加しないで可能であるよりも高い特性インピーダンスを有する変成器セクションのサブストレート300上における実際の実施を達成することが可能である。領域308及び/又は領域704の誘電率を増加して、増加しないで可能であるよりも低い特性インピーダンスを有する変成器セクションのサブストレート300上における実際の実施を達成することが可能である。
図7及び図8では、4分の1波長変成器セクション304及び702は、異なる幅を有するものとして示す。しかし、変成器セクションの幅は、一定にされてもよく、その場合、各セクションにおける特性インピーダンスは、夫々の4分の1波長変成器セクションの下にある基板領域308及び704の特性を選択することによって、排他的に制御することが可能である。この代案の実施例を図7aに示す。図7aは、変成器セクション304と等しい伝送線路幅を有する変成器セクション702bを示す。
上述した取り組み方法は、図3乃至8に示すマイクロストリップ構造への使用に制限されるものではない。むしろ、上述の取り組み方法は、誘電体サブストレート回路基板上に形成される任意の他の伝送線路にも用いることが可能である。例えば、同一の技術は、伝送線路の上又は下の誘電体の選択領域の誘電率又は透磁率が変更される埋め込みマイクロストリップ及びストリップライン回路に用いることが可能である。更に、これらの技術は、図9及び図10に示すようなツインライン構造体の場合に、特に有用である。
図9及び図10では、マルチプルセクション変成器は、サブストレート900上に配置されるツインライン構造体として示す。ツインライン構造体は、サブストレートの両面に配置され、一緒にされて伝送線路として機能する1対の細長い導体902、903から構成される。図9及び図10の伝送線路の特性インピーダンスは、細長い導体902、903間の接続を含む様々な要素によって決まる。導体間の接続は、伝送線路間の距離、及び、サブストレートの特性により左右される。しかし、従来のサブストレート基板材料を用いてでは、伝送線路セクションに対し異なる特性インピーダンスを達成するために、サブストレートの厚さを変更することは略非現実的である。図9及び図10では、この問題は、領域904、906、908、及び、910におけるサブストレートの特性を選択して、所望の特性インピーダンスを与えることにより、伝送線路902、903間の間隔を増加する必要なく解決される。
更に、サブストレートの領域904、906、908、及び、910は、選択される設計周波数で、4分の1波長段内に寸法が合わされることが可能である。その結果、これらのサブストレート領域上に配置される伝送線路902、903の一部は、4分の1波長変成器セクションを画成し、各セクションの特性インピーダンスは、サブストレートの特性によって決まる。
1つの好適な実施例によると、各領域904、906、908、及び、910におけるサブストレートの誘電率特性及び/又は透磁率特性は、特定の変成器セクションに対し、所望の伝送線路インピーダンスを達成するよう独立して選択されることが可能である。各領域の誘電特性を、このように独立して制御することにより、サブストレート900の厚さを変更する必要なく、広い範囲の特性伝送線路インピーダンスを、事実上達成することが可能である。例えば、領域904、906、908、及び、910の誘電率を増加することにより、増加しないで、従来の低誘電率サブストレートを用いて達成されるインピーダンスより低いインピーダンスの伝送線路を可能にする。反対に、これらの領域のうち1つ以上の領域の透磁率を増加することにより、増加しないで妥協の設計選択であるサブストレートで実質的に可能であるインピーダンスより高いインピーダンスの伝送線路を可能にする。
図11及び図12に示すインピーダンス変成器は、従来のテーパ型伝送線路変成器の概念に基づく。テーパ型伝送線路変成器の全体の長さ及びインピーダンス特性を設計する基本技術は、当業者には周知である。図11及び図12に示すデバイスは、サブストレート1100に形成される伝送線路1102を含む。この場合、変成器は、RFデバイス1104に整合させるよう用いられる。伝送線路1102は、図示するように一定の幅であっても、その長さに亘って幾らか変化する幅を有してもよい。接地面1108が、マイクロストリップ構造体を形成するようサブストレートの下に設けられる。
従来のテーパ型伝送線路変成器とは異なり、図11及び図12に示すデバイスは、必ずしも、変成器の長さに亘って、伝送線路の幅を連続的に増加することによって伝送線路インピーダンスを変化させない。その代わりに、実効誘電率及び/又は実効透磁率を、サブストレート領域1106において、連続的に、又は、一連の小さな段で変化させて、それにより、伝送線路1102の全体の長さに亘って特性インピーダンスを徐々に変化させることが可能である。
例えば、領域1106におけるサブストレートは、第1の端では、1の透磁率と10の誘電率を有し、反対の端では、10の透磁率と1の透過率を有することが可能である。サブストレート領域1106の長さに亘って各サブストレート特性が変化することのできる実際の値と、正確な変化率は、変成器の特定の設計特性と、得ようとしているインピーダンス特性の範囲に依存する。領域1106の各部分における誘電率及び透磁率の正確な値は、実験的に、又は、コンピュータモデリングを用いて決めることが可能である。
図13及び図14は、マルチセクション4分の1波長変成器の別の実施例を示し、この変成器は、異なる特性を有するサブストレートの領域内に配置されるストリップライン構造とマイクロストリップ構造の組合せを用いる。図13及び図14に示す変成器は、接地面1318の上方のサブストレート1300上に配置されるマイクロストリップライン1302を含むことが可能である。トランジション部1309において、マイクロストリップライン1302を形成する導体は、サブストレート1300内に沈み込み、本質的にストリップライン構造1310になることが可能である。ストリップライン構造1310は、交互の接地面フィンガ1306、1308によって上下が境界付けられる。このストリップライン構造の配置は、一般的に、スタック構成と称する。スタック構成は、比較的長い長さを有する伝送線路を実施するのに必要とされるサブストレート領域を減少するのに有用である。
ストリップライン構造1310は、一連の4分の1波長セクションから構成されることが好適である。変成器セクションは、ストリップライン構造の反対側の端にあるRFデバイス1316といった負荷との整合をとるために設けられることが可能である。図14から最も良く分かるように、4分の1波長構造は、サブストレート領域1304、1312、及び、1314内にそれぞれ含まれるストリップライン構造1310の一部として画成される。図14には、3つの4分の1波長セクションを示すが、より大きい数、又は、より少ない数の4分の1波長変成器セクションを用いることが可能であり、また、本発明は、図示する実施例に制限されないことを理解するものとする。
図13及び図14では、各変成器セクションのインピーダンスは、各領域1304、1312、及び、1314のサブストレート特性を選択することにより、少なくとも部分的に制御される。例えば、各領域に対し、異なる比透磁率、及び/又は、比誘電率を選択して、異なる比透磁率及び/又は比誘電率を選択しない場合には非現実的である変成器インピーダンス特性の組合わせを達成することが可能である。
図14aは、本発明の更に別の実施例を示す。図14aでは、同様の構造は、図14と同一の参照番号を用いて表す。図14aに示すシステムは、従来のテーパ型伝送線路と同様の理論に基づいて動作する。しかし、図14aでは、変成器1404のインピーダンスは、領域1402におけるサブストレートの特性を選択することによって変えることが可能である。サブストレートの特性は、連続的に、又は、一連の小さい段として変わるようにされることが可能である。例えば、図14aにおいて、領域1402の上流部では、1の誘電率と10の透磁率として始まり、領域1402の下流部では、10の誘電率と1の透磁率に徐々に移行するようにされ得る。当然ながら、本発明は、特定の範囲の誘電率及び透磁率の値に制限されるものではない。むしろ、これらの値、及び、これらの値が1つの領域内で可変である変化率は、変成器の特定の設計基準に依存する。さらに、変成器セクションは、連続的な線路幅を有してもよいし、又は、インピーダンス要件に応じて幾らか変えてもよい。
局所的且つ選択可能な磁気特性及び誘電特性を与えるメタ材料部分を有する誘電体サブストレート基板は、図15に示すように用意することができる。段階1510において、誘電体基板材料を用意する。段階1520において、誘電体基板材料の少なくとも一部が、以下に説明するように、メタ材料を用いて、差別的に変更され、それにより、変成器の物理的寸法を小さくし、変成器の最良に可能な効率を達成することができる。最後に、段階1530において、金属層が塗布されて、変成器に関連付けられる導電トレースを画成する。この方法は、一度以上繰り返して、図13乃至図15に示すような折り重ねられたストリップライン構造を形成することができる。
本願に記載するように、「メタ材料」という用語は、例えば、オングストローム又はナノメートルレベルの非常に細かいレベルにおいて、2つ以上の異なる材料の混合又は配置から形成される合成材料を示す。メタ材料は、合成物の電磁気特性を調整することを可能にする。合成物の電磁気特性は、実効電気的誘電率(又は誘電定数)、及び、実効磁気透磁率を含む実効電磁気パラメータによって決められる。
段階1510及び段階1520に記載する誘電体基板材料を用意する処理と、誘電体基板材料を差別的に変更する処理をより詳細に説明する。しかし、本願に記載する方法は、例に過ぎず、本発明はこれらの例に制限されるものではないことを理解するものとする。
適切なバルクの誘電体基板材料は、例えば、デュポン(Dupont)社及びフェロ(Ferro)社といった材料製造業者から入手することが可能である。一般的に、グリーンテープ(商標)と称する未処理の材料は、バルクの誘電体テープから、例えば、6平方インチ(15.24平方センチメートル)の断片に切断することができる。例えば、デュポン・マイクロサーキット・マテリアルズは、951ロー・テンプレチュア・コファイア・ダイエレクトリック・テープ(低温焼成誘電テープ)といった、グリーンテープ材料系を提供し、フェロ・エレクトロニック・マテリアルズは、ULF28−30ウルトラ・ロー・ファイアCOG・ダイエレクトリック・フォーミュレーション(超低温焼成COG誘電フォーミュレーション)を提供する。これらのサブストレート材料は、一度焼成されると、マイクロ波振動数での回路動作に対し比較的低い損失正接が伴われる比較的中程度の誘電定数を有する誘電体層を供給するために用いられる。
誘電体サブストレート材料からなる多数のシートを用いてマイクロ波回路を作成する処理では、ビア(via)、ボイド(void)、孔、又は、空隙といった特徴は、1つ以上のテープ層を通して形成されることが可能である。ボイドは、機械的手段(例えば、孔開け器)、又は、指向エネルギー手段(例えば、レーザドリル、光リソグラフィ)を用いて画成可能であるが、ボイドは、任意の他の好適な方法を用いても画成可能である。寸法が決められたサブストレートの厚さ全体を通されるビアもあれば、サブストレートの厚さの異なる部分のみに到達するビアもある。
次に、ビアには、一般的に、充填材料を正確に配置するステンシルを用いて、金属材料、又は、他の誘電材料、又は、磁性材料、或いは、それらの組合せが充填される。テープの個々の層は、従来の方法通りに積層されて、完全な多層サブストレートを生成することが可能である。或いは、テープの個々の層は、積層されて、一般的にサブスタックと呼ばれる部分的な多層サブストレートを生成することが可能である。
ボイドが設けられた領域は、空のままにされることも可能である。選択材料が充填される場合は、選択材料には、メタ材料を含むことが好適である。メタ材料組成の選択は、2以下から約2,650までの比較的連続的な範囲に亘る実効誘電定数を提供することが可能である。磁性特性も、特定のメタ材料から入手可能である。例えば、好適な材料を選択することにより、相対的な実効磁気透磁率は、一般的に、最も実用的なRF適用に対し、約4乃至116の範囲に及ぶことが可能である。しかし、相対実効磁気透磁率は、約2まで低くても、又は、数千に到達することも可能である。
本願にて用いる「差別的に変更する」又は「別様に加工する」という表現は、サブストレートの1つの部分において、別の部分と比較して異なる誘電特性、及び、磁気特性の少なくとも一方を結果としてもたらす、ドーパントを含む、誘電体サブストレートへの変更を意味する。差別的に変更される基板サブストレートは、1つ以上のメタ材料を含有する領域を含むことが好適である。
例えば、変更は、特定の誘電体層部は、第1の誘電特性及び磁気特性のセットを生成するよう変更され、他の誘電体層部は、第1の特性のセットとは異なる誘電特性及び/又は磁気特性を与えるよう差別的に変更されるか又は変更されない選択的な変更であってよい。差別化変更は、様々に異なる方法によって達成することが可能である。
1つの実施例によると、補助誘電体層を、誘電体層に追加することが可能である。様々な噴霧技術、スピンオン技術、様々な蒸着技術、又は、スパッタリング技術といった当該技術において周知である技術を用いて、補助誘電体層を追加することが可能である。補助誘電体層は、ボイド又は孔の内側を含む局所領域、又は、既にある誘電体層全体に選択的に追加することが可能である。例えば、補助誘電体層は、増加された実効誘電定数を有するサブストレート部を提供するよう用いることが可能である。
差別的変更段階は、更に、誘電体層、又は、補助誘電体層に追加の材料を、局所的に追加する段階を含む。材料の追加は、誘電体層の実効誘電定数又は磁気特性を更に制御し、所与の設計目的を達成するよう用いることが可能である。
追加の材料は、複数の金属、及び/又は、セラミック粒子を含むことが可能である。金属粒子は、鉄、タングステン、コバルト、バナジウム、マンガン、特定の希土類金属、ニッケル、又は、ニオブの粒子を含むことが好適である。これらの粒子は、ナノメートル寸法の粒子、即ち、一般的に、サブミクロンの物理寸法を有する粒子であることが好適であり、以下、ナノ粒子と称する。
ナノ粒子といった粒子は、オルガノファンクション(organofunctionalized)された合成粒子であることが好適である。例えば、オルガノファンクション複合粒子(有機機能化された合成粒子)は、絶縁コーティングが設けられた金属コア、又は、金属コーティングが設けられた絶縁コアを有する粒子を含むことが可能である。一般的に、本願に説明した様々な適用における誘電体層の磁気特性を制御するのに好適である磁性メタ材料粒子は、フェライトオルガノセラミック(FexCyHz)−(Ca/Sr/Ba−Ceramic)を含む。これらの粒子は、8乃至40GHzの周波数範囲の適用において良好に作用する。或いは、又は、更に、ニオブオルガノセラミック(NbCyHz)−(Ca/Sr/Ba−Ceramic)が、12乃至40GHzの周波数範囲に有用である。高周波数に指定される材料は、低周波数適用にも適用可能である。これらの合成材料及び他の種類の合成材料は、市販されている。
一般的に、コーティングされた粒子は、ポリマー(例えば、LCP)マトリクス、又は、側鎖部分(Side chain moiety)との結合を促進するので、本発明で使用するには好適である。誘電体の磁気特性の制御に加えて、追加された粒子は、材料の実効誘電率を制御するためにも使用することができる。約1乃至70%の合成粒子の充填率を用いて、サブストレート層及び/又は補助サブストレート層部の誘電定数を上げて、更に、下げることが可能である。例えば、有機機能化されたナノ粒子をサブストレート層に追加することは、変更されたサブストレート層部の誘電率を上げるために利用することが可能である。
粒子は、ポリブレンド法、ミキシング法、及び、攪拌して充填する方法を含む様々な技術を用いて加えることが可能である。例えば、サブストレート層がLCPを含む場合、誘電率は、約70%の充填率を有する様々な粒子を用いて、2である公称LCP値から最大10まで増加され得る。
この目的に有用な金属酸化物は、酸化アルミニウム、酸化カルシウム、酸化マグネシウム、酸化ニッケル、酸化ジルコニウム、及び、酸化ニオブ(II、IV、及び、V)を含む。ニオブ酸リチウム(LiNbO)、及び、ジルコン酸カルシウム及びジルコン酸マグネシウムといったジルコン酸塩も使用することが可能である。
選択可能な誘電特性は、最小約10ナノメートルの面積まで局所的にされるか、又は、基板サブストレート面全体を含む大きい面積をカバーすることが可能である。堆積技術に関するリソグラフィ、及び、エッチングといった従来の技術を用いて、局所的な誘電特性及び磁気特性を取り扱う。
材料は、他の材料と混ぜ合わされて、又は、様々な密度のボイド領域(一般的に空気を導入する)を含むものとして用意され、それにより、2乃至約2,650の略連続的な範囲の実効誘電定数、及び、他の潜在的に所望されるサブストレート特性を生成することができる。例えば、低誘電率(<2乃至約4)を示す材料は、密度の異なるボイド領域を有するシリカを含む。密度の異なるボイド領域を有するアルミナは、約4乃至9の誘電定数を与えることが可能である。シリカ及びアルミナはいずれも、任意の顕著な磁気透磁率を有さない。しかし、磁性粒子を、最大で20重量パーセントまで追加し、これらの材料又は他の材料をかなり磁気的にすることが可能である。例えば、磁気特性は、有機機能性で調整され得る。磁性材料を追加することによる誘電率への影響は、一般的に、誘電率の増加をもたらす。
中位の誘電定数材料は、一般的に、70乃至500+/−10%の範囲の誘電率を有する。上述したように、この材料は、他の材料、又は、ボイドと混合されて、所望の実効誘電率を与え得る。この材料は、フェライトがドープされたチタン酸カルシウムを含むことが可能である。ドーピング金属は、マグネシウム、ストロンチウム、及び、ニオブを含むことが可能である。この材料は、45乃至600の範囲の相対な磁気透磁率を有する。
高値誘電率の適用には、フェライト、又は、ニオブがドープされたチタン酸ジルコン酸カルシウム又はバリウムを用いることが可能である。これらの材料は、約2,200乃至2,650の誘電定数を有する。これらの材料のドーピング率は、一般的に、約1乃至10パーセントである。他の材料に関して、これらの材料は、他の材料、又は、ボイドと混合されて、所望の実効誘電率を与え得る。
これらの材料は、一般的に、様々な分子修飾(molecular modification)処理を介して変更されることが可能である。修飾処理には、ボイド形成と、その後に続く、例えば、ポリテトラフルオロエチレン(PTFE)のような炭素及びフッ素に基づいた有機機能材料といった材料の充填が含まれ得る。
有機機能的組込み(integration)の代わりに、又は、有機機能的組込みに追加して、処理は、固体自由形式形成(SFF:solid freeform fabrication)、光、紫外線(uv)、X線、電子ビーム、又はイオンビーム放射を含むことが可能である。リソグラフィも、光、uv、X線、電子ビーム、又は、イオンビーム放射を用いて行うことが可能である。
メタ材料を含む異なる材料を、サブストレート層上の異なる領域(サブスタック)に加えて、複数のサブストレート層の領域(サブスタック)が、異なる誘電特性及び磁気特性を有するようにすることが可能である。上述したような充填材料を、1つ以上の追加の処理段階と同時に使用して、バルクサブストレート部の局所、又は、全体に、所望の誘電特性及び/又は磁気特性が得られる。
次に、一般的に、上部層導体プリントが、変更されたサブストレート層、サブスタック、又は、完全なスタックに塗布される。導体トレースを、薄膜技術、厚膜技術、電気メッキ、又は、任意の他の好適な技術を用いて設けることが可能である。導体パターンを画成するために用いる処理は、以下に制限されないが、標準リソグラフィ及びステンシルを含む。
次に、一般的に、ベースプレートが、複数の変更されたサブストレートをまとめて整列するために得られる。このために、複数のサブストレート基板のそれぞれに形成される整列孔を用いることが可能である。
複数のサブストレート層、1つ以上のサブスタック、又は、層とサブスタックの組合せは、次に、材料に全ての方向から圧力を加える平衡圧力、又は、材料に1つの方向のみから圧力を加える1軸圧力を用いて、(例えば、機械的に加圧されることによって)ラミネートされ得る。次に、ラミネートサブストレートは、上述したように更に処理されるか、又は、オーブン内で処理サブストレートに適した温度(上述の材料では、約850℃乃至900℃)まで焼成される。
複数のセラミックテープ層及び積層されたサブストレートサブスタックは、次に、使用するサブストレート材料に適した速度で温度を上昇するよう制御可能な燃焼炉を用いて焼成される。温度上昇率、最終温度、冷却特性、及び、任意の必要な一時停止といった処理条件は、サブストレート材料と、サブストレートに充填される、又は、サブストレート上に蒸着される材料を考慮して選択される。焼成の後、積層されたサブストレート基板は一般的に、光学顕微鏡を用いて、欠陥を見つけるべく検査される。
積層されるセラミックサブストレートは、次に、選択的に、回路機能要件を満たすために必要とされる寸法の帯状片に裁断される。最終検査の後、帯状のサブストレート片は、試験装置に取付けられ、誘電特性、磁気特性、及び、電気的性質が、特定の制限内にあることを確認するよう様々な特性が評価される。
従って、サブストレート材料には、局所的な誘電特性及び/又は磁気特性が与えられて、回路の密度及び性能を向上することが可能である。誘電体の自由度は、回路素子の独立した最適化を可能にする。
本発明の好適な実施例を例示的に説明したが、本発明は、これらの実施例に制限されるものではないことは明らかである。当業者は、本発明の目的及び範囲から逸脱することなく、多数の改修、変更、変形、置換、及び、等価を考え付くであろう。
以下、本発明により教示される手段を例示的に列挙する。
(付記1)
サブストレートの一部を画成する少なくとも1つの領域を有し、上記サブストレートの一部は、上記サブストレートの残りの部分とは異なる比透磁率、及び、比誘電率のうち少なくとも一方を有する、誘電体回路基板サブストレートと、
上記サブストレート上に配置され、上記少なくとも1つの領域に接続される伝送線路変成器と、を含み、
上記伝送線路変成器は、上記伝送線路変成器の入力回路を、上記伝送線路変成器の出力回路に整合させるよう構成されるインピーダンス変換装置。
(付記2)
上記伝送線路変成器は、マイクロストリップ構成、ストリップライン構成、及び、ツインライン構成のうち少なくとも1つの構成である付記1記載のインピーダンス変換装置。
(付記3)
複数の上記領域を更に含み、
各領域は、上記複数の領域の残りの領域とは異なる上記比透磁率、及び、上記比誘電率のうち少なくとも一方を有し、
上記伝送線路変成器は、複数のセグメントを含み、
各セグメントは、上記複数の領域のうち少なくとも1つの領域に接続する付記1記載のインピーダンス変換装置。
(付記4)
上記伝送線路変成器は、上記インピーダンス変換装置の所定の動作周波数において、4分の1波長の倍数である付記1記載のインピーダンス変換装置。
(付記5)
上記誘電率、及び、上記透磁率のうち少なくとも一方は、上記伝送線路変成器の或る長さに沿っての上記領域内で変えられる付記1記載のインピーダンス変換装置。
(付記6)
上記伝送線路変成器の少なくとも一部は、スタック構成に形成される付記1記載のインピーダンス変換装置。
(付記7)
複数の上記領域を更に含み、
各領域は、上記複数の領域の残りの領域とは異なる上記比透磁率、及び、上記比誘電率のうち少なくとも一方を有し、
上記伝送線路変成器は、複数のセグメントを含み、
各セグメントは、上記複数の領域のうち少なくとも1つの領域に接続する付記6記載のインピーダンス変換装置。
(付記8)
上記伝送線路変成器のその長さに沿っての特性インピーダンスは、テーパ伝送線路型変成器に応じて変わる付記1記載のインピーダンス変換装置。
(付記9)
上記サブストレートは、メタ材料を含む付記1記載のインピーダンス変換装置。
(付記10)
上記伝送線路変成器は、少なくとも2つのセクションを含み、
各セクションは、所定の動作周波数における4分の1波長の倍数を含む付記1記載のインピーダンス変換装置。
(付記11)
上記伝送線路変成器の特性インピーダンスは、上記伝送線路変成器の或る長さに沿っての上記比誘電率、及び、上記比透磁率のうち少なくとも一方の漸次移行によって少なくとも部分的に決められる付記1記載のインピーダンス変換装置。
従来の4分の1波長インピーダンス変成器を示す概略図である。 従来のテーパ型伝送線路変成器を示す概略図である。 本発明の理解に有用なインピーダンス変成器を示す平面図である。 線4−4についての図3の断面図である。 図2のインピーダンス変成器の別の実施例を示す平面図である。 線6−6についての図5の断面図である。 本発明の理解に有用なマルチセクションインピーダンス変成器を示す平面図である。 図7のマルチセクションインピーダンス変成器の別の実施例を示す平面図である。 線8−8についての図7の断面図である。 本発明の理解に有用なマルチセクションツインラインインピーダンスを示す平面図である。 線10−10についての図9のマルチセクションインピーダンス変成器を示す断面図である。 様々なサブストレート特性を有するサブストレート領域上に形成されるインピーダンス変成器を示す平面図である。 線12−12についての図11のインピーダンス変成器を示す断面図である。 本発明の理解に有用なスタック構成インピーダンス変成器を示す平面図である。 線14−14についての図13のスタック構成インピーダンス変成器を示す断面図である。 図14の変成器の別の実施例を示す断面図である。 本発明の構成によるインピーダンス変成器を製造する処理の説明に有用なフローチャートである。
符号の説明
300 サブストレート
301 接地面
302 入力伝送線路セクション
304 変成器セクション
306 出力伝送線路セクション
308 変成器セクション304下のサブストレート領域
402 デバイス
702 第2の変成器セクション
704 第2の変成器セクション702下のサブストレート領域
706 デバイス
900 サブストレート
902、903 導体
904、906、908、910 サブストレート領域
1100 サブストレート
1102 伝送線路
1104 RFデバイス
1106 サブストレート領域
1108 接地面
1300 サブストレート
1302 マイクロストリップライン
1304、1312、1314 サブストレート領域
1306、1308 接地面フィンガ
1309 トランジション部
1310 ストリップライン構造
1316 RFデバイス
1318 接地面

Claims (10)

  1. 少なくとも1つの誘電層を含む誘電体回路基板サブストレートと、
    上記誘電体回路基板サブストレート上に配置され、少なくとも1つの基板領域に接続された伝送線路変成器と、
    を有するインピーダンス変換装置であって、上記誘電層は、該誘電層の一部を規定する少なくとも1つの基板領域を有し、該基板領域は、上記誘電層の残りの部分とは異なる比透磁率及び比誘電率の少なくとも1つを有し、上記誘電体回路基板サブストレートはメタ材料を含み、
    上記伝送線路変成器は、上記伝送線路変成器の入力回路を、上記伝送線路変成器の出力回路に整合させるよう構成され、前記メタ材料は電気的な絶縁性被覆物を有する金属コアを有する粒子より成るインピーダンス変換装置。
  2. 上記伝送線路変成器は、マイクロストリップ構成、ストリップライン構成及びツインライン構成のうちの少なくとも1つを有する請求項1記載のインピーダンス変換装置。
  3. 複数の基板領域を更に含み、各基板領域は、基板領域の残りのものとは異なる比透磁率及び比誘電率のうち少なくとも1つを有し、
    上記伝送線路変成器は複数の伝送線路部分を有し、各伝送線路部分は、上記複数の領域の少なくとも1つに接続される請求項1記載のインピーダンス変換装置。
  4. 上記伝送線路変成器は、当該インピーダンス変換装置の所定の動作周波数における4分の1波長の奇数倍である請求項1記載のインピーダンス変換装置。
  5. 上記比誘電率及び上記比透磁率の少なくとも一方は、上記伝送線路変成器の上記誘電層の基板領域内で長さ方向に沿って変化している請求項1記載のインピーダンス変換装置。
  6. 上記伝送線路変成器の少なくとも一部は、複数の誘電層を有するスタック構成に形成されている請求項1記載のインピーダンス変換装置。
  7. 複数の基板領域を更に含み、各基板領域は、基板領域の残りのものとは異なる比透磁率及び比誘電率の少なくとも1つを有し、
    上記伝送線路変成器は、複数の伝送線路部分を有し、各伝送線路部分は、上記複数の領域の少なくとも1つに接続される請求項6記載のインピーダンス変換装置。
  8. 上記伝送線路変成器の長さ方向に沿って特性インピーダンスが、テーパ状の伝送線路型変成器の形状に応じて変化している請求項1記載のインピーダンス変換装置。
  9. 上記伝送線路変成器は、少なくとも2つの伝送線路部分を含み、
    各伝送線路部分は、所定の動作周波数において4分の1波長の奇数倍である請求項1記載のインピーダンス変換装置。
  10. 上記伝送線路変成器の特性インピーダンスは、上記伝送線路変成器の或る長さに沿っての比誘電率及び比透磁率の少なくとも一方の漸次移行によって少なくとも部分的に決められる請求項1記載のインピーダンス変換装置。
JP2007228116A 2002-06-27 2007-09-03 広帯域インピーダンス変成器 Pending JP2008017525A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/185,847 US6737932B2 (en) 2002-06-27 2002-06-27 Broadband impedance transformers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003177081A Division JP2004032766A (ja) 2002-06-27 2003-06-20 広帯域インピーダンス変成器

Publications (1)

Publication Number Publication Date
JP2008017525A true JP2008017525A (ja) 2008-01-24

Family

ID=29718013

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003177081A Pending JP2004032766A (ja) 2002-06-27 2003-06-20 広帯域インピーダンス変成器
JP2007228116A Pending JP2008017525A (ja) 2002-06-27 2007-09-03 広帯域インピーダンス変成器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2003177081A Pending JP2004032766A (ja) 2002-06-27 2003-06-20 広帯域インピーダンス変成器

Country Status (7)

Country Link
US (1) US6737932B2 (ja)
EP (1) EP1376749B1 (ja)
JP (2) JP2004032766A (ja)
AT (1) ATE339780T1 (ja)
AU (1) AU2003204661A1 (ja)
CA (2) CA2432193C (ja)
DE (1) DE60308265T2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070178766A1 (en) * 2006-01-31 2007-08-02 Intel Corporation Passive impedance equalization of high speed serial links
WO2008007303A1 (en) * 2006-07-07 2008-01-17 Nxp B.V. Circuit comprising transmission lines
US7724484B2 (en) * 2006-12-29 2010-05-25 Cobham Defense Electronic Systems Corporation Ultra broadband 10-W CW integrated limiter
KR101472371B1 (ko) * 2007-09-21 2014-12-15 삼성전자주식회사 다중 주파수 대역 사용을 위한 안테나 및 이를 이용하는안테나 시스템
US7855614B2 (en) * 2008-05-16 2010-12-21 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Integrated circuit transmission lines, methods for designing integrated circuits using the same and methods to improve return loss
US7994997B2 (en) * 2008-06-27 2011-08-09 Raytheon Company Wide band long slot array antenna using simple balun-less feed elements
US20100314040A1 (en) * 2009-06-10 2010-12-16 Toyota Motor Engineering & Manufacturing North America, Inc. Fabrication of metamaterials
US9054647B2 (en) 2010-07-02 2015-06-09 Nec Corporation High frequency power amplifier
CN102710144B (zh) * 2012-06-11 2014-09-10 苏州贝昂科技有限公司 一种调整变压器运行频率的方法及系统
US9645171B1 (en) * 2012-11-03 2017-05-09 Hrl Laboratories, Llc Traveling wave detector
US9583836B2 (en) * 2013-11-12 2017-02-28 Murata Manufacturing Co., Ltd. High-frequency transmission line and antenna device
US9066391B1 (en) * 2013-12-02 2015-06-23 Avago Technologies General Ip (Singapore) Pte. Ltd. Passive peaking circuit comprising a step-down impedance transformer
EP2897217A1 (de) * 2014-01-21 2015-07-22 Delphi Technologies, Inc. Vorrichtung zur Impedanzanpassung
US10340876B2 (en) * 2015-04-17 2019-07-02 Psemi Corporation Tunable and integrated impedance matching and filter circuit
RU2626296C2 (ru) * 2015-12-08 2017-07-25 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" Трансформатор сопротивлений
US9966180B2 (en) * 2016-01-22 2018-05-08 Raytheon Company Impedance transformer
WO2020115978A1 (ja) * 2018-12-06 2020-06-11 ソニーセミコンダクタソリューションズ株式会社 伝送装置、印刷配線基板、並びに情報機器
US10536128B1 (en) 2019-06-25 2020-01-14 Werlatone, Inc. Transmission-line-based impedance transformer with coupled sections
WO2021220460A1 (ja) * 2020-04-30 2021-11-04 日本電信電話株式会社 インピーダンス変換器
US11672077B2 (en) * 2021-01-26 2023-06-06 Dell Products L.P. Zoned dielectric loss circuit board system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283619A (ja) * 1994-04-07 1995-10-27 Murata Mfg Co Ltd 誘電体基板
JPH0951209A (ja) * 1995-08-08 1997-02-18 Nippon Telegr & Teleph Corp <Ntt> 誘電体基板および配線基板
JP2001067963A (ja) * 1999-07-26 2001-03-16 Internatl Business Mach Corp <Ibm> 多孔質誘電体の製造方法
JP2001338813A (ja) * 2000-05-29 2001-12-07 Tdk Corp 電子部品

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3419813A (en) 1967-06-22 1968-12-31 Rca Corp Wide-band transistor power amplifier using a short impedance matching section
US3571722A (en) 1967-09-08 1971-03-23 Texas Instruments Inc Strip line compensated balun and circuits formed therewith
US3678418A (en) 1971-07-28 1972-07-18 Rca Corp Printed circuit balun
US4525720A (en) 1982-10-15 1985-06-25 The United States Of America As Represented By The Secretary Of The Navy Integrated spiral antenna and printed circuit balun
US4495505A (en) 1983-05-10 1985-01-22 The United States Of America As Represented By The Secretary Of The Air Force Printed circuit balun with a dipole antenna
US4800344A (en) 1985-03-21 1989-01-24 And Yet, Inc. Balun
US4825220A (en) 1986-11-26 1989-04-25 General Electric Company Microstrip fed printed dipole with an integral balun
GB2210510A (en) 1987-09-25 1989-06-07 Philips Electronic Associated Microwave balun
US4924236A (en) 1987-11-03 1990-05-08 Raytheon Company Patch radiator element with microstrip balian circuit providing double-tuned impedance matching
US4916410A (en) 1989-05-01 1990-04-10 E-Systems, Inc. Hybrid-balun for splitting/combining RF power
US5039891A (en) 1989-12-20 1991-08-13 Hughes Aircraft Company Planar broadband FET balun
US5148130A (en) 1990-06-07 1992-09-15 Dietrich James L Wideband microstrip UHF balun
US5678219A (en) 1991-03-29 1997-10-14 E-Systems, Inc. Integrated electronic warfare antenna receiver
JPH06291519A (ja) 1993-03-31 1994-10-18 Nippon Chemicon Corp マイクロストリップラインによるインピーダンス変換器
US5379006A (en) 1993-06-11 1995-01-03 The United States Of America As Represented By The Secretary Of The Army Wideband (DC to GHz) balun
JP3175876B2 (ja) 1993-07-28 2001-06-11 日本電信電話株式会社 インピーダンス変成器
US5455545A (en) 1993-12-07 1995-10-03 Philips Electronics North America Corporation Compact low-loss microwave balun
US5728470A (en) * 1994-05-13 1998-03-17 Nec Corporation Multi-layer wiring substrate, and process for producing the same
US5523728A (en) 1994-08-17 1996-06-04 The United States Of America As Represented By The Secretary Of The Army Microstrip DC-to-GHZ field stacking balun
JPH08225371A (ja) 1995-02-22 1996-09-03 Murata Mfg Co Ltd 誘電体磁器
US6184845B1 (en) 1996-11-27 2001-02-06 Symmetricom, Inc. Dielectric-loaded antenna
JPH118111A (ja) 1997-06-17 1999-01-12 Tdk Corp バルントランス用コア材料、バルントランス用コアおよびバルントランス
US6052039A (en) 1997-07-18 2000-04-18 National Science Council Lumped constant compensated high/low pass balanced-to-unbalanced transition
US6133806A (en) 1999-03-25 2000-10-17 Industrial Technology Research Institute Miniaturized balun transformer
US6307509B1 (en) 1999-05-17 2001-10-23 Trimble Navigation Limited Patch antenna with custom dielectric
WO2001001453A2 (en) 1999-06-29 2001-01-04 Sun Microsystems, Inc. Method and apparatus for adjusting electrical characteristics of signal traces in layered circuit boards
US6137376A (en) 1999-07-14 2000-10-24 International Business Machines Corporation Printed BALUN circuits
US6596462B2 (en) * 1999-12-17 2003-07-22 Konica Corporation Printing plate element and preparation method of printing plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283619A (ja) * 1994-04-07 1995-10-27 Murata Mfg Co Ltd 誘電体基板
JPH0951209A (ja) * 1995-08-08 1997-02-18 Nippon Telegr & Teleph Corp <Ntt> 誘電体基板および配線基板
JP2001067963A (ja) * 1999-07-26 2001-03-16 Internatl Business Mach Corp <Ibm> 多孔質誘電体の製造方法
JP2001338813A (ja) * 2000-05-29 2001-12-07 Tdk Corp 電子部品

Also Published As

Publication number Publication date
EP1376749B1 (en) 2006-09-13
US6737932B2 (en) 2004-05-18
EP1376749A1 (en) 2004-01-02
DE60308265D1 (de) 2006-10-26
AU2003204661A1 (en) 2004-01-22
CA2432193C (en) 2006-03-14
CA2432193A1 (en) 2003-12-27
CA2432192C (en) 2008-06-10
CA2432192A1 (en) 2003-12-27
DE60308265T2 (de) 2007-09-06
ATE339780T1 (de) 2006-10-15
US20040000963A1 (en) 2004-01-01
JP2004032766A (ja) 2004-01-29

Similar Documents

Publication Publication Date Title
JP2008017525A (ja) 広帯域インピーダンス変成器
JP4142507B2 (ja) 複合材料の誘電性基板を用いたダイポールアンテナ
EP1376742B1 (en) High efficiency four port circuit
US6731244B2 (en) High efficiency directional coupler
JP2008029024A (ja) 高効率シングルポート共振線路
JP2008029025A (ja) 高効率共振線
JP2008029026A (ja) チャネル推定装置
JP2004032769A (ja) 高効率結合線路フィルタ
JP2007318813A (ja) 高効率3ポート回路
JP2008072732A (ja) 高周波4分の1波長変換器
JP2004032768A (ja) 高性能な低域通過フィルタ

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100310

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130