JP2007529349A - 映像化されたレイヤを使用する3次元プリントのための装置 - Google Patents

映像化されたレイヤを使用する3次元プリントのための装置 Download PDF

Info

Publication number
JP2007529349A
JP2007529349A JP2007504134A JP2007504134A JP2007529349A JP 2007529349 A JP2007529349 A JP 2007529349A JP 2007504134 A JP2007504134 A JP 2007504134A JP 2007504134 A JP2007504134 A JP 2007504134A JP 2007529349 A JP2007529349 A JP 2007529349A
Authority
JP
Japan
Prior art keywords
assembled
sintered
powder
drum
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007504134A
Other languages
English (en)
Inventor
ヒッカーソン,ケビン
ベダル,ブライアン
ディーピュイス,リチャード
Original Assignee
デスクトップ ファクトリー,インコーポレイティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デスクトップ ファクトリー,インコーポレイティド filed Critical デスクトップ ファクトリー,インコーポレイティド
Publication of JP2007529349A publication Critical patent/JP2007529349A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/214Doctor blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/379Handling of additively manufactured objects, e.g. using robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)

Abstract

3次元物体を造形するようになっている3次元プリンタ(100、200)が開示されている。例示的な実施形態では、このプリンタは、ナイロン粉末のようなポリマーである焼結性粉末のバルクレイヤ(114)を受けるようになっている第1の表面(102、310)と、焼結性粉末レイヤから画像を焼結するために熱エネルギーを集束させるようになっている非干渉性の熱源のような放射エネルギー源(104、330)と、その焼結画像(112A)を第1の表面から組立中の物体に転写すなわちプリントすると同時にその組立中の物体に焼結画像を融合させる転写機構とを含む。この転写機構(202、224、226)が、組立中の物体に対して焼結画像を付着させると同時に融合させるようになっていることが好ましい。画像を形成して組立中の物体にその画像を転写するこのプロセスが、組み立てられている物体が完成されるまで、各々の横断面に関して繰り返される。

Description

本発明は、複数の横断面情報から3次元物体を造形するシステムおよび方法に関する。特に、本発明は、安価な熱源と単純なモーションシステムとを使用して3次元物体を造形するためのシステムおよび方法に関する。
現在では、3次元(3D)プリンタおよびラピッドプロトタイピング(RP)システムが、主として3Dコンピュータ援用設計(CAD)ツールから物体とプロトタイプ部品とを迅速に作るために、使用されている。大半のRPシステムは、物理的な物体を造形するために液体、粉末、または、シート材料を接合することによって部品を造形することに対して、加法レイヤバイレイヤ(layer−by−layer)アプローチを使用する。レイヤを形成するために参照されるデータが、モデルの薄い水平横断面を使用してCADシステムから生成される。材料を互いに接合させるために熱を必要とする従来技術の3Dプリントシステムは、一般的に、部品を造形するために、高出力レーザと、複数のアクチュエータを含む高精度モーションシステムとを使用し、このことが、一般的に家庭/趣味愛好家ユーザまたは小規模の機械設計集団にとっては高価すぎる3Dプリンタを結果的にもたらす。
したがって、高出力レーザまたは他の高価なエネルギー源を伴わず、かつ、より安価なモーションシステムを有する、レイヤバイレイヤに基づいて部品を造形することが可能な3DプリンタとRPシステムとが必要とされている。
本発明は、1つの表面上に形成された後に、事前に形成され付着させられているレイヤのスタックに対して後で付着させられる物体の横断面レイヤから3次元物体を造形するようになっている3次元プリンタ(3DP)を特徴とする。この好ましい実施態様では、その3DPは、焼結性粉末のバルクレイヤを受けるようになっている第1の表面と、焼結された画像を形成するために焼結性粉末のレイヤの選択された一部分を融かすようになっている放射エネルギー源と、その焼結画像を第1の表面から組立中の物体に転写すなわちプリントすると同時にこの組立中の物体に焼結画像を融合させるようになっている転写機構とを含む。焼結性粉末のレイヤが、例えば、ハロゲンランプのような非干渉性の熱源によって供給されるエネルギーを使って、ローラまたはドラムの上で溶融させられることが可能である、ナイロンのようなポリマーであることが好ましい。この転写機構は、組立中の物体に対して焼結画像を押し付けて融合させるように、この組立中の物体の端から端までドラムを転がすと同時に平行移動させるようになっている、1つまたは複数のアクチュエータとその関連の制御装置とを含む。この転写機構は、さらに、レイヤが物体に付着させられる直前に焼結画像とこの物体とを加熱するための定着加熱器(transfixing heater)を含んでもよい。画像を生成して、この画像を組立中の物体に転写させるというこのプロセスは、典型的には、組み立てられている物体が完成させられるまで、各々の横断面に関して繰り返される。
特定の実施態様では、3DPは、焼結のために予め決められた量の焼結性粉末をドラムに付着させるようになっている粉末アプリケータを含む。この好ましい実施態様では、このアプリケータは、焼結性粉末をリザーバから取り出して、その粉末が短時間の間に自由落下することを可能にし、これによって、リザーバ内で圧縮されていた可能性がある微粒子を分離させて、ドラムに対してレイヤの形態で付着させられる微粒子の密度を標準化する。この粉末アプリケータはさらにブレードを含んでもよく、このブレードは、ドラムに対して選択された距離と角度に配置される時に、そのドラムが回転させられるにつれてそのドラム上に均一な厚さと密度で焼結性粉末のレイヤを生じさせる。
特定の実施態様では、3DPのドラムは、このドラム上のバルク粉末レイヤから焼結画像をプリントするために放射エネルギー源によって必要とされるエネルギーを低減させるために、焼結性粉末の融点または融点付近にそのドラムの温度を加熱するようになっている、温度調整器とドラム加熱要素とを含む。この3DPは、さらに、組立中の物体に焼成画像を融合させるために必要とされるエネルギーを低減させるために、第1の加熱要素、または、第2の加熱要素、または、この両方を含んでもよい。例えば、物体が上で組み立てられているプラットホームアセンブリの中に組み入れられている第1の加熱要素は、周囲温度よりも高い第1の予め決められた温度にその物体を維持するようになっている。第2の加熱要素が、組立中の物体の上部表面に対して次の焼結画像が付着させられるまで、この上部表面に接触しかつこの上部表面の温度を第2の決められた温度に維持するようになっているホットパッド(hot pad)であることが好ましい。この第2の決められた温度は焼結性粉末の溶融温度よりも低い。
特定の実施態様では、3DPは、さらに、組立中の物体に融合させられる焼結画像の厚さを調整するようになっているレイヤ厚さ調整プロセッサも含む。このレイヤ厚さ調整プロセッサは、例えば、アプリケータによって計量供給される焼結性粉末の量を変化させることによって、ドラムに対するアプリケータブレードの相対的位置を調整することによって、組立中の物体に対して焼結画像を転写するためにドラムによって使用される時間と圧力とを調整することによって、組立中の物体に対して焼結画像が融合された後にその焼結画像を圧縮することによって、および、組立中の物体から材料除去機構によって過剰な材料を取り除くことによって、組立中の物体に対する転写の前または後に焼結画像の厚さを変化させてもよい。
本発明が添付図面の図において例示的にかつ非限定的に図解されている。
第1の好ましい実施形態の3次元プリンタ(3DP)の動作を示す略図が、図1Aから図1Cに示されている。この3DP 100は、3次元(3D)部品または物体の横断面レイヤに対応する複数のレイヤを使用して、この3次元(3D)部品または物体のディジタルモデルからこの3次元(3D)部品または物体を造形するようになっている。この好ましい実施形態では、横断面レイヤは、加熱によって合着塊(coherent mass)の形に形成されるようにその粉末の微粒子が焼結されることが可能な粉末から形成されている。焼結画像と呼ばれている焼結粉末のレイヤは個別に形成され、および、物体を造形するようにスタックの上に逐次的にアセンブリまたはプリントされる。個別のレイヤを形成するように粉末の微粒子を互いに融合させるために、および、3D物体の形に個々のレイヤを互いに融合させるために、熱が使用される。
図1Aに示すように、3DP 100が、レイヤ処理表面102と、放射エネルギー源104と、加工表面(work surface)106とを含むことが好ましい。例えば処理ドラム102の連続表面または平らな表面のようなレイヤ処理表面は、その縦軸線を中心として回転(120)し、マイクロプロセッサ(図示していない)の制御を受けて平行移動動作の形で加工表面全体を通過し、および、加工表面上に焼結粉末レイヤを転写または他の形で付着させるようになっている。この加工表面は、第1の焼結画像が上に付着させられる組立表面(build surface)であるか、または、組立中の物体上の先行の焼結画像である。組立中の物体とは別のレイヤ処理表面上で焼結画像が形成される時には、その焼結画像は、例えばその焼結画像がその物体に付着させられる前に、溶融と密度変化とを原因とする何らかの変形を呈することが可能にされ、これによってその物体内に生じる可能性がある内部応力を減少させる。後述するように、ドラム102の連続表面または他の加熱されたレイヤ処理表面の上で焼結画像を形成することは、この好ましい実施形態では、典型的には、先行のレイヤに焼結画像を同時に融合させるために必要とされるエネルギーを必要としない。
この好ましい実施形態では、処理ドラム102は、使用される焼結性粉末の溶融温度の付近の予め決められた値にそのドラムの外側表面の温度を上昇させるようになっている加熱要素(図示されていない)を含む。この好ましい実施形態では、焼結性粉末は結晶質ナイロン粉末であり、および、ドラムの外側表面の温度が上昇させられる温度は、焼結性粉末を焼結画像の形に溶融させた後にその焼結画像を造形中の物体に溶接または他の形で付着させるために投入されなければならないエネルギーを減少させるように、粉末が完全に溶融することを防止するのに十分なだけ低いが焼結性粉末の周囲温度よりも十分に高いことが好ましい。焼結性粉末の均一なレイヤ110がドラム102にバルクの形で付着させられる。ドラム102の熱によって粘着性にされている焼結性粉末は、レイヤ110の微粒子が互いに融合することなしにドラムに付着する。ドラム102に対して焼結性粉末を着脱自在にまたは除去可能な形で付着させるために、静電引力が、加熱されたドラムと組み合わせて使用されるか、または、加熱されていないドラムと共に単独で使用されることが可能である。
造形されている物体の横断面レイヤに相当する焼結性粉末110のレイヤの一部分が、放射エネルギー源104によって焼結させられる。ドラム102すなわちこのドラムの連続表面上に焦点105を有する集束熱源であることが好ましいこのエネルギー源104は、その粉末を溶融させるのに十分な温度にその粉末を加熱する。この粉末は、この粉末を部分的に液化させることによって、または、エネルギー源104が除去された直後に冷えてローラの温度で固体に戻る粉末を完全に液化させることによって溶融されてよい。焼結画像112Aが、焼結性粉末のレイヤ110の全体にわたって焼結粉末の線または領域をトレースするように、ドラム102の連続表面に対して相対的に熱源104を移動させることによって形成される。この好ましい実施形態では、物体の横断面レイヤは、マイクロプロセッサの制御を受けてドラム102を回転させる(120)ことと熱源104を平行移動させる(122)こととによって、あらゆる複雑な形状を呈することができる。この例示的な例では、未焼結の粉末がドラム102に付着し続ける。
その次に、図1Bに示すように、ダイヤモンド112Aの形で示されている焼結画像が、加工表面全体にわたってドラムを平行移動(126)させながら同時にドラム102を回転(124)させることによって、加工表面106に転写させられる。ドラム102が、点線で示されているその初期位置から加工表面106全体にわたって前進するのにつれて、その焼結画像112Aがドラムから分離して加工表面に転写する。特定の実施形態では、焼結画像とこの焼結画像を受け取る物体の一部分とが、組立中の物体に対して焼結画像を定着させるために熱源に曝される。定着ランプ(より詳細に後述する)のような定着加熱器が、レイヤ間の融合または溶接を強化するために、かつ、焼結画像がドラム102に対してよりも加工表面に対して高い粘着性を有することを確実なものにするために、焼結画像と加工表面との粘着性を増大させる。平行移動させられるドラム表面102と加工表面106との間の距離が、焼結画像112Aの厚さに概ね等しいかまたはこの厚さよりも小さい。上述したように、本明細書で使用する場合の術語「加工表面106」は、現時点の焼結画像が上に付着している表面を意味し、この表面は、3DP 100のプラットホームであるか、または、3D物体のアセンブリの最中に下に位置した先行の焼結画像レイヤであってよい。
この好ましい実施形態では、焼結画像は、組立中の物体に対して同時に転写させられると同時に融合させられる。しかし、特定の実施形態では、焼結画像は、最初にその物体上に付着させられ、その次に、例えば、ドラムに追従する定着器ランプによって、バルク加熱プロセスによって、ホットパッド(より詳細に後述する)によって、または、これらの組合せによって融合させられるだろう。
図1Cに示すように、ドラム102が加工表面の長さを横断し終わって、このドラムが点線で示されている最終位置に達すると、焼結画像全体が加工表面106上に付着させられている。焼結画像が形成された後に残されている未焼結の粉末が、焼結画像を物体に転写させる前または転写させた後に取り除かれてもよく、または、転写後に加工表面106から取り除かれてもよく、または、後続の焼結画像、特に、物体122B上に付着させられている次の焼結レイヤの張り出し部分のための支持を提供するために、転写後に加工表面に保持されてもよい。焼結画像を形成して付着させるというこのプロセスが、モデルから造形されている物体の横断面の各々に関して繰り返される。
本発明の第2の好ましい実施形態による3DP 200が、図2と図3とに示されている。第1の実施形態と一致して、第2の実施形態は、ドラムアセンブリ202と、焼結アセンブリと、プラットホームアセンブリと、マイクロプロセッサ250とを含む。3DP 200のこの実施形態は、さらに、焼結性粉末アプリケータ210と、焼結性粉末リザーバ212と、物体加熱要素208と、次の焼結画像のための準備としてローラおよび加工表面とをクリーニングする手段とを含む。ドラムアセンブリ202は、ドラムフレーム218と、1つまたは複数の減速歯車222を介してその処理ドラムに作動的に連結されているステップモータ220であることが好ましい第1のアクチュエータに応答して回転するようになっている処理ドラム310とを含む。
図4にも示されているこの実施形態のドラムアセンブリは、さらに、好ましくは親ねじ224によって加工表面の長さの端から端まで横方向(ドラム310の縦軸線に対して垂直な方向)にドラム310を駆動するために、第2のアクチュエータ、好ましくはステップモータ226を含む。ドラム310が、焼結性粉末が上に塗布される滑らかな陽極処理アルミニウムドラムであることが好ましい。他の熱伝導性でかつ非導電性の材料が使用されてもよいが、陽極処理アルミニウムドラムが熱安定性と耐久性とを実現する。この好ましい実施形態では、ドラム310の円周長さが、造形されている物体の長さ(ドラム軸線に対して垂直な方向)に等しいかまたはこれよりも長い。しかし、他の実施形態では、粉末を塗布する段階と、粉末を画像化する段階と、焼結画像を付着させる段階とが、連続プロセスの一部分として実質的に同時に行われる場合には、ドラムは加工表面の長さよりも短い円周長さを有してもよい。焼結画像または未焼結画像がドラム310に過度に付着することを防止するために、または、画像化の最中にドラムの中への熱損失を最小限にするために、または、粉末の付着を補助するように電界が使用されることを可能にするために、ドラム310の外側表面が、例えばTEFLON(登録商標)のような非粘着性の表面で被覆されてもよい。
このドラムアセンブリは、さらに、温度調整器(図示していない)と、焼結性粉末の融点に概ね近いがこの融点よりも低い温度にドラム310を加熱するようになっているドラム加熱要素(ドラム310の内側に取り付けられている(図8を参照されたい)、例えば管状ハロゲンランプまたはカートリッジ加熱器802であることが好ましい)とを含んでもよい。この好ましい実施形態では、焼結性粉末は結晶質ナイロン粉末であり、ドラムの外側表面が上昇させられる温度がその粉末の融点よりも約2℃から約15℃低い温度である。ローラ上の粉末の偶発的な焼結を結果的に生じさせる可能性があるローラ温度の変動と粉末温度の変動との影響をこの3DPシステムが受けやすいだろうが、一般的に、より高いローラ温度が、画像化ランプシステムからの最小限の入力エネルギーで粉末の比較的迅速な焼結を容易にするために使用される。これとは対照的に、焼結プロセスと物体造形全体とにより長い時間を要する可能性があるが、焼結画像の品質を改善するためにより低い温度にドラムが維持されてもよい。特定の実施形態では、ドラムアセンブリは、さらに、物体の先行の焼結画像の上に焼結画像が付着させられる直前に焼結画像の外側を加熱するための定着加熱器804(図8Aを参照されたい)を含む。同様に、特定の実施形態では、この加熱要素は、さらに、造形中の物体の事前に付着させられた焼結画像の上部表面も加熱してよい。例えばハロゲンランプ、タングステン線加熱器、または、ニクロム線加熱器のような定着加熱器804が、ドラムとプラットホームアセンブリまたは加工表面との付近において、ドラム310を収容するアセンブリ上に取り付けられてもよい。付着させられるべき表面に加えられる熱の量を調整するために、定着加熱器が、各表面に関する露出面積を制限するための調整可能なマスクをさらに含むことが好ましい。
図5にも示されている、この第2の好ましい実施形態における焼結アセンブリは、小さい熱集中区域を実現するために反射器230またはレンズを経由してドラム310上またはドラム310の付近にそのエネルギーが集束させられる非干渉性のエネルギー源330を支持するハウジング232とフレーム338とを含む。この熱源330が、その縦軸線が焦点対称軸(focal axis of symmetry)に一致する軸方向フィラメントを有するハロゲンランプであることが好ましい。タングステン電球とアークランプとを含む他の任意の熱源が使用可能であるが、このハロゲンランプは、Sylvania(Danvers、Massachusetts)から入手可能である。図3の横断面図に示されているように、反射器230は、熱源330からのエネルギーの集中を最適化するために実質的に楕円形の横断面を有する。適切な反射器230が、Melles Griot(Carlsbad、CA)から部品番号02 REM 001として入手可能である。特定の実施形態では、焼結アセンブリは、さらに、第2の好ましい実施形態では約254μm(約10mil)から約5,080μm(約200mil)の間で変化させられることが可能な焦点のスポットサイズをさらに調整するための調整可能なアパーチャまたは複数の選択可能なアパーチャを有するマスク502を含む。マスク502の設計は、さらに、より小さいスポットを生じさせ、これによって電力消費を最小限にしかつ(この実施形態では)レーザエネルギー源を不要にするために、熱源330からのエネルギーをさらに集中させる、例えばウィンストンコーンのような放射線状の回転面を含んでもよい。特定の実施形態では、焼結アセンブリは、さらに、エネルギービームを効果的に遮断するために熱源330とドラム310との間に挿入されたシャッタ504も含む。アパーチャサイズが選択され動的に変更されることが可能な実施形態では、熱源が粉末の端から端まで移動する速度が、焦点に入射する出力の変化を補正するために焼結画像または物体の造形中に変化させられることが可能である。熱源330が、例えばステップモータ236のようなアクチュエータと親ねじ234とによって、ドラム310の軸線に対して平行に移動するようになっていることが好ましい。
特定の別の実施形態では、焼結アセンブリは、焼結性粉末の吸収バンドに適合させられたレーザまたはレーザダイオードを熱源として使用する。この焼結アセンブリは、さらに、ドラム310上にレーザ熱を向けるようになっている固定位置にある操作可能な鏡または回転鏡を含んでよく、これによってドラム310上で焼結アセンブリを動かすことを不要にし、かつ、高精度アクチュエータの数を減少させる。
この第2の好ましい実施形態のプラットホームアセンブリは、第1の焼結レイヤが上に付着させられる水平な組立表面(build surface)と、組み立てられた完成した物体とを含む。この好ましい実施形態では、組立表面240は、プリントされた焼結画像から物体がその上で造形される組立表面の中に加熱パッド241A(後述する)を組み入れる。この組立表面240の高さは、2つの交差腕(cross arm)242と、どちらかの末端に左ねじと右ねじとを有する親ねじ244と、好ましくはステップモータ246であるアクチュエータとを含む、シザーリフト(scissor lift)206によって、ドラム310に対して相対的に調整される。親ねじ244の回転が、回転方向に応じて2つの交差腕242が互いに向かってまたは互いから遠ざかって回転することを引き起こし、これによって組立表面240がそれぞれに上昇または下降することを可能にする。特定の実施形態では、この組立表面240は、シザーリフト206に対して相対的に水平平面内で回転するようになっており、これによって、補正されない場合には造形される物体における垂直方向の非均一性または非直線性を結果的に生じさせることがある反復的な誤差またはアーチファクトの累積を防止するために、各々の焼結画像の付着の前に、組立表面240がランダムな角度に回転させられることを可能にする。当業者は、ドラム310上に形成された焼結画像の方向配置が組立表面240と同一の角回転を反映すべきであるということを理解するだろう。
付着させられた各々の焼結画像に関して、造形されている物体の頂部が、この物体に付与された焼結画像の厚さに実質的に等しい距離だけドラム310よりも低いように、ドラム310に対する相対的な組立表面240の高さが調整される。この実施形態では、各々の画像が物体に付与された後にプラットホームが下降させられるが、別の実施形態では、ドラムの高さは、物体が組み立てられるにつれてこの物体の厚さを補償するために上向きに調整されることが可能である。特定の実施形態では、組立表面240は、物体と、焼結画像のプリントの後に残っている未焼結粉末との両方を収容する、側壁(図示していない)を有する物体組立容器(object build vat)の底面であり、これによって、直ぐ下に物体を有しない後続の焼結画像の一部分のための基本的な支持を提供する。
ドラムアセンブリで使用されるステップモータの作動と、焼結アセンブリの作動と、プラットホームアセンブリの作動とが、物体を造形する複数の横断面の各々を付着させるために、ドラム310を回転させると同時に焼結アセンブリを平行移動させるようになっているマイクロプロセッサ250によって協働的に制御されることが好ましい。
特定の実施形態では、3DPは、さらに、ドラム310に粉末を塗布するための焼結性粉末アプリケータと、ドラム310から回収された未焼結粉末と加工表面から回収された未焼結粉末とを収集するために使用される1つまたは複数の焼結性粉末リザーバ212とを含む。図2と図3と図6とを参照すると、この実施形態の粉末アプリケータ600は、例えば粉末コンベヤベルト314とプーリ312とを使用してドラム310に焼結性粉末がそれから計量供給されて塗布される焼結性粉末貯蔵箱210を含む。焼結性粉末レイヤの形成を示す図7Aから図7Cにおいて粉末アプリケータ略図によって示されているように、焼結性粉末710は、プーリ312が回転させられベルト314が前進させられるのにつれて貯蔵箱210から抜き出される。貯蔵箱210内のまたは貯蔵箱210に取り付けられている撹拌機(図示していない)が、粉末の転写を促進するために使用されてもよい。ベルト314によって計量供給される焼結性粉末の体積が、調整可能なゲート702とその下の間隙とによって正確に調整されることが好ましい。コンベヤベルトからアプリケータブレードの上の空洞に粉末が落下するにつれて、その粉末の密度が、粉末貯蔵箱内でその粉末がどのように圧縮されていたかに係わりなしに、ドラムに対してその粉末が供給される時に均一かつ反復可能な密度を確実なものにするように標準化される。この計量供給される粉末712は、ドラム310と、ドラム310に塗布される粉末の厚さと均一性とを調整するために使用されるレイヤ調整ブレード706とに対して蓄積させられる。ブレード706とドラム310との間に形成された空洞708が、適正に粉末を抜き出すための比較的幅広の上部間隙と、ドラムが回転させられるにつれてドラム310の幅の端から端まで均一に粉末を拡散させ(および、好ましくは、適正な密度に粉末を圧縮する)ためのより狭幅の下部間隙とを有する、くさび形であることが好ましい。形成された焼結レイヤの厚さは、必要とされる物体の垂直分解能に応じて127μm(5mil)から508μm(20mil)の厚さであることが好ましい。上述したように、結果的に得られた焼結性粉末レイヤ714は、ドラム内部の加熱ランプ802によって生じさせられた固有の粘着性によってドラム310に付着する。
この好ましい実施形態では、焼結性粉末は例えば3Dプリントの要件と製造方法とに応じて様々であるが、この焼結性粉末は、60ミクロンの平均粒度を有するナイロン#12のような結晶質プラスチック粉末である。特定の実施形態では、この焼結性粉末は2つ以上の粒度の分布を含み、すなわち、第1の組の比較的大きい粒子と、比較的小さい粒子とを含み、この場合に、より小さい粒子の直径が、より大きい粒子の間に存在する粒子間の空隙を実質的に満たすように選択され、これによって焼結粉末の密度を増大させかつ物体の収縮を低減させる。本明細書ではモード分布と呼ぶ粒度の分布は、複数の公称粒度を含んでよく、この公称粒度の各々は最大限の粉末密度を提供するように連続的により小さい。
ナイロン#12の代わりに、ナイロン#11、アクリラートブタジエンスチレン(ABS)、ポリスチレン、および、同様の粒度を有する他の粉末のような様々な他の焼結性材料が使用されてもよい。焼結性粉末は、さらに、熱源によって放出される放射の波長帯域内でのその粉末の有効吸収率(放出性(emmisivity)に対して実質的に対称である)を増大させる放射吸収剤または染料を含んでもよい。例えば、熱源が可視光である場合には、黒または灰色の着色剤が、粉末のエネルギー吸収を増大させるために使用されてよく、これによって、その粉末が焼結させられかつ物体が組み立てられる速度を増大させる。この放射吸収剤は、さらに、ランプを含むより低電力の非干渉性エネルギー源と、レーザおよびレーザダイオードを含む干渉性のエネルギー源とが、焼結放射源として使用されることを可能にするだろう。レーザまたはレーザダイオードを使用する他の実施形態では、染料が主としてレーザの狭い発光帯において吸収性があるだろう。
特定の実施形態では、3DP 200は、例えば金属を含む焼結性粉末から1つまたは複数の焼結画像を形成するようになっている。1つの例示的な製品が、Hi−Temp Structures(Gardena、California)によって商品名METAL MATRIX PLASTICとして販売されている。
図3に示されている第2の好ましい実施形態では、3DP 200は、さらに、プラットホームアセンブリに回転自在に取り付けられている第1の加熱パッド241Aと第2の加熱パッド241Bとを含むことが好ましい、1つまたは複数の物体加熱要素を含む。第1の加熱パッド241Aは、造形中の物体の底面に接触する。第2の加熱パッド241B(より詳細に後述する)は、一般的に、物体(図示していない)の上面の付近にまたはこの上面に接触して配置されている。第1の加熱パッド241Aと第2の加熱パッド241Bは、協働して、または、個別に、その次の焼結画像と物体との間の接着を強化するために物体の温度を上昇させ、および、その部品における温度勾配を減少させ、したがって物体における寸法上の不正確さを生じさせる可能性がある内部応力を抑制する。
3DP 200が焼結画像を形成してそれを造形中の物体に付着させる機械的な動作が、斜視図の形で描かれている横断面図である図8Aから図8Dに示されている。図8Aを参照すると、単一の焼結レイヤのために十分なだけの焼結性粉末が、貯蔵箱210の付近のそのホームポジションに位置しているドラム310に一括して計量供給される。ドラム310は回転させられ、および、新たに塗布された焼結性粉末が、ドラムが回転させられるにつれてレイヤの形に形成される。カートリッジ加熱器802と定着加熱器804とが図8Aから図8Dの幾つかの図に明瞭に見てとれる。
図8Bを参照すると、この実施形態のドラム310は、ランプアセンブリの焦点に一致する位置に前進し、および、粉末レイヤの一部分が、関連したモデルの横断面を反映する1つまたは複数の固体部分を形成するように焼結される。その焦点は、モデルの横断面データのディジタルフォーマットに応じて、例えば、ラスタパターンにしたがって、または、モデルのベクトルデータにしたがって、ドラム表面上を移動させられるだろう。この好ましい実施形態では、ラスタシーケンスおよびパターンが、画像化レイヤ内の内部応力を最小限にするために使用される。
図8Cを参照すると、焼結画像を伴うドラム310は、この図では右に駆動されてプラットホームの頂部上を移動しながら、回転させられる。ドラム310と加工表面との間の間隙は焼結画像の厚さ以下であり(焼結画像の厚さに実質的に等しいことが好ましい)、および、この焼結画像が加工表面上に付着させられるように回転させられるドラムが、造形中の物体の滑りまたは移動を防止するために加工表面に対して相対的に静止している。ドラム310と加工表面との間の間隙が焼結画像の厚さよりも小さい時には、その焼結画像に加えられる圧力が、その焼結画像と物体との間の融合を改善し、および、物体の密度を増大させるだろう。
特定の実施形態では、3DP 200は、さらに、レイヤ厚さ調整プロセッサを含み、このレイヤ厚さ調整プロセッサは、造形中の物体に焼結画像が付与される時にその物体の厚さを動的に調整するマイクロプロセッサ250または別個のプロセッサの形で具体化されるだろう。このレイヤ厚さ調整プロセッサが、その物体全体の厚さを検出するか、または、その物体が造形されている時に1つまたは複数の焼結画像の厚さを検出し、および、フィードバックを使用して、ドラム310に対して塗布される焼結性粉末の厚さを変化させるか、または、その物体に対して焼結画像を溶接するために使用される圧力を変更することが好ましい。この圧力は、例えば、加工表面の端から端までのドラムの平行移動が焼結画像と物体との間の溶接を強化する圧力を生じさせるようにドラム310と加工表面との間の干渉間隙を変化させることによって、調整されることが可能である。他の実施形態では、レイヤ厚さ調整プロセッサは、所望のレイヤ密度を実現するために、かつ、接着を確実なものにするために、ドラムと物体との間に加えられる圧力の時間と温度とを調整する。特に、このレイヤ厚さ調整プロセッサは、画像の厚さを標準化するために、かつ、最適の接着品質を実現するために、画像レイヤの相互間で加工表面の端から端までドラム310が平行移動させられる際の速度と温度とを変化させるようになっている。定着加熱器804が、ドラム310が加工表面の長さを横断する時に動作可能にされることが好ましい。
図8Dに示されているプラットホームの右へのドラムの伸長位置では、例えばスクレーパ354またはブラシがドラム310に接触させられており、一方、そのドラムが、残留する粉末または屑をすべて除去するためにそのスクレーパに対して押し付けられている。スクレーパ354とドラム310との間の角度が0度から45度の間であることが好ましく、および、ドラムが回転させられる速度が10インチ/分から100インチ/分であることが好ましい。特定の実施形態では、3DP 200は、さらに、スクレーパ354によって除去される粉末または屑を収集するための粉末リザーバ(図示していない)を含む。代替案では、ドラム310に対して相対的に高い電位差を有する電界ワイヤおよびコロナワイヤが、ドラムから過剰な粉末を取り除くために使用されてもよい。
ドラム310はそのホームポジションに戻され、加工表面は過剰な未焼結粉末を除去するためにクリーニングされ、組立プラットホームは、新たに付与された焼結画像の厚さを補償するためにシザーリフト206によって下降させられ、加熱パッドは造形中の物体に対して再び使用され、および、上述のプロセスがその物体が完成させられるまで繰り返される。この第2の好ましい実施形態では、加工表面をクリーニングするかまたは他の形で準備するための手段が、加工表面をドラム310が横断する時にそのドラムを追跡するようにドラムアセンブリの中に組み入れられている、引き込み式の回転ブラシ352を含む。この好ましい実施形態では、固定していない粉末すべてを加工表面からクリーニングするために、または、新たに付着させられた焼結画像の高さと同じ高さに未焼結粉末を均すために、ブラシ352は、図8Aから図8Dの図解例では左に、そのホームポジションに戻る前に、ドラム310の下方に伸長させられ、および、円筒形のブラシ頭部が物体と接触して時計回りに回転する。引き込み式の回転ブラシ352は、図示されているように、新たに付着させられた焼結画像が十分に冷却され終わる前にその新たに付着させられた焼結画像をかき乱すことを避けるために、ドラムが左から右に通過して焼結画像を付着させる時には、引っ込んだ形状となる。
特定の他の実施形態では、加工表面をクリーニングするための材料除去機構は、真空、静電引力を使用して加工表面から粉末を引き寄せるための導体、非引き込み式のブラシ、高速の空気を供給するためのブロア、または、これらの組合せを含む。ドラム310に連結されている非引き込み式のブラシは、例えば、画像が転写された直後に加工表面を掃除するために加工表面に対する干渉を維持するようになっているブラシ頭部を有するだろう。さらに別の実施形態では、3Dプリンタは、新たに付着させられた焼結画像が冷却される速度を加速し、これによって、画像が付着させられる直前にまたは画像が付着させられた直後に、すなわち、ドラム310が加工表面を左または右に横断する時に、ブラシ352によって物体がクリーニングされることを可能にするように、例えば物体の上に空気を方向付けるための物体冷却手段をさらに含む。
上述したように、3DP 200は、特定の実施形態において、ドラムアセンブリに回転自在に取り付けられている第2の加熱ヘッド241Bとこれに対応する支持フレーム208とを含む。この第2の加熱ヘッド241Bは、「ホットパッド」とも呼ばれるが、次の焼結画像が付与されるまで物体の上面の温度を上昇させ、および、また、維持するようになっている。図8Dと図8Aとに示されているように、パッド241Bとフレーム208は、画像が物体上に付着させられる時にドラム310のための隙間を提供するために回転して上昇し、および、その次に、ドラム310がそのホームポジションに戻る時に、それが物体に接触しておりかつ加工表面の未焼結粉末がクリーニングされる箇所へと回転して戻る。この第2の加熱パッド241Bは、物体と接触している時に、その物体の融点の数度以内に物体の上面を上昇させる。このことが、物体に対して次の焼結画像を溶接するために、および、次の焼結画像と物体との間の接着を強化するために、および、温度勾配によって生じさせられる内部応力からの寸法歪みを被りやすい物体の上面の寸法均一性を維持するために加えられなければならないエネルギーの量を減少させる。
特定の実施形態では、第2の加熱パッド241Bは、さらに、3次元プリントプロセス中に各レイヤの付着を伴う先行して形成された物体の最上部に決められた熱と圧力とを加えるために、圧力検出機構(図示していない)とレイヤ厚さ調整プロセッサ(上述した)と共に協働する。新たに付着させられた焼結画像の厚さは、決められた力で第2の加熱パッド241Bに対して物体の一番上のレイヤを押し付けるように、物体が上で造形されている組立表面240を上昇させることによって減少させられることが可能である。物体は、一般的に、次のレイヤの造形中に第2の加熱パッド241Bに対して押し付けられて保持され、このことは、湾曲力(curl force)が緩むために十分な時間であり、および、または、調整されたレイヤ厚さ。当業者は理解するように、圧力検出機構は、さらに、物体の間隙に対してドラムを動的に調整するために使用されてもよく、すなわち、この圧力検出機構は、物体の実際の高さと、したがって、次の焼結レイヤの付与の前に最適の間隙を得るために組立プラットホームが下降されなければならない距離とを測定するために使用される。
特定の実施形態では、3DP 200は、個別の焼結レイヤを形成するために処理ドラム310以外のレイヤ処理表面を含む。このレイヤ処理表面は、例えば、プラットホームアセンブリ上の加工表面上に押し付けられるかまたは他の形で圧迫される前に焼結レイヤがその表面上に形成される平らな表面であってよい。
特定の実施形態では、ドラム310と焼結性粉末貯蔵箱210とが、取り外し可能で交換可能なユニットとして設けられ、ユーザがそのユニットを容易に取り外して交換または修理することを可能にする。この焼結性粉末貯蔵箱210が、トナーカートリッジに類似した密封されているかまたは改ざん防止包装されている容器であることが好ましい。
3DPの第3の好ましい実施形態では、物体が、その物体が中で造形される組立容器(build vat)の中で焼結させられる焼結画像から形成される。この3DPは、さらに、第2の容器(vat)、すなわち、物体を造形するためにアセンブリ容器(assembly vat)に対して粉末を供給する粉末容器(powder vat)を含むだろう。両方の容器も、例えば、粉末を溶融させるために必要とされるエネルギーの量を減少させるために、粉末の融点の直ぐ下の温度に加熱される。
組立容器内の加工表面の高さは、その組立容器に対する粉末の供給を容易にするために粉末容器内の粉末の高さと概ね同一の高さに保たれる。この好ましい実施形態では、互いに比例して、組立容器は下降させられ、および、粉末容器は上昇させられる。これらの容器各々の高さは、マイクロプロセッサに作動的に接続されている別個のシザーリフトによって調整されることが好ましい。粉末のレイヤを粉末容器から組立容器に移動させて、粉末レイヤを均一な厚さと密度で供給するために、粉末ローラが使用される。組立容器内で付着させられる粉末レイヤは、約127μm(約5mil)から約508μm(約200mil)の厚さである。この第3の好ましい実施形態では、その粉末ローラは、既存のアクチュエータを利用するために同一の焼結アセンブリに取り付けられているが、別個の制御機構に取り付けられてもよい。
焼結アセンブリが、組立容器内の一番上の粉末レイヤを焼結させるために、集束された熱を供給するようになっている安価な非干渉性のエネルギー源を含むことが好ましい。この熱源が、楕円反射器、および、または、ウィンストンコーンを含むことが好ましい。第2の実施形態と同様に、焼結アセンブリは、さらに、ビームのスポットサイズを調整するための穴を有するマスクと、そのビームを遮断するためのシャッタとを使用するだろう。この例におけるスポットサイズの一例が約30ミルから約70ミルである。第2の実施形態とは対照的に、この焦点は、組立容器内の一番上の焼結性粉末レイヤと、モデルの関連した横断面レイヤにしたがって組立容器の幅および長さの全体にわたって焼結アセンブリを移動させることによって生じさせられる焼結画像とに一致している。
部分的に焼結された支持構造を使用する物体の形成を示す断面図が、図9Aから図9Eに示されている。本明細書で使用される「部分的に焼結された支持構造」とは、焼結粉末の先行レイヤに対して突き出すかまたは張り出す物体の一部分のための構造的支持を組立中に提供するように、物体が組み立てられると同時に焼結粉末で形成される積層構造を意味する。この部分的に焼結された支持構造は、組立中の物体の先行レイヤに画像化レイヤが転写された後に非画像化焼結性粉末が加工表面から除去される本発明と他のラピッドプロトタイピング用途とにおいて使用されてよい。支持構造は、一般的に、(1)組立中の物体と同一のエネルギー密度で焼結させられる実質的に硬質の部分と、(2)その硬質部分と物体との間の取り外し可能な境界を実現するための、その物体よりも少ないエネルギーで焼結させられた境界部分とを含む、2つの部分を備える。
図9Aに示す例示的な構造と物体とを参照すると、組み立てられている支持構造900が、物体の第1のレイヤの以前に付着させられた1つまたは複数のレイヤ901−902を含んでよい複数の焼結粉末レイヤ901−905を備える。組立中の物体の第1の焼結画像レイヤ951の付近に、実質的に硬質の部分920と境界部分930とを有する第3の焼結画像レイヤ903が形成されている。物体の第1の焼結画像レイヤ951に隣接した実質的に硬質の部分921と境界部分931とを有する第4の焼結画像レイヤ904が形成されている。第5の焼結画像レイヤ905が、実質的に硬質の部分922と、境界部分932と、物体の第1の焼結画像レイヤ951とを含む。基部レイヤ901−902と実質的に硬質の部分920−922とが、第1の焼結画像レイヤ951を含む組立中の物体と同一である単位時間当たり単位面積当たりのエネルギーによって融合させられる。
境界部分930−932は、物体のレイヤよりも少ない単位時間当たり単位面積当たりのエネルギーによって融合させられる。この好ましい実施形態では、境界部分930−932は、物体および硬質部分の領域よりも短い時間期間にわたって境界の領域内の焼結性粉末を放射エネルギー源に曝すことによって焼結させられる。この放射エネルギー源は、例えば物体に関連した領域よりも40%から100%高速である速度でドラムを横断するようにされ、および、境界の領域を抜き出しすなわち焼結させるようにされ、これによってその部分および支持構造よりも境界部分を脆弱にする。一般的に、境界部分に関連している焼結性粉末の微粒子は、物体または硬質部分の微粒子よりも低い度合いに融合させられ、これによって境界を構造的に比較的脆弱にする密度差を生じさせる。
図9Bの横断面図を参照すると、物体の追加レイヤと支持構造900とが画像化されると同時に転写される。完成された支持構造900は、基部レイヤ901−902と、硬質部分920−924と、境界部分930−935とを含む。図示されているように、硬質部分920−924と境界部分930−935は、この例では球形である、組立中の物体の輪郭に一致するようになっている。特に、支持構造900のレイヤは、転写されているレイヤが先行の物体レイヤを越えて突き出すかまたはこの先行の物体レイヤに対して片持ち梁状に突き出す場合にさえ、物体のレイヤが、わずかな歪みしか伴わずに、または、全く歪みを伴わずに、効果的に転写されることを可能にし、このことが物体レイヤ951−956の各々に当てはまる。この後に、組立中の物体にその物体の他のレイヤ957−958がプリントされて転写され(図9Cを参照されたい)、完成された物体950が、境界部分931−936によって画定されている境界において支持構造900から分離させられ(図9Dを参照されたい)、および、完成した物体950を出現させるために境界部分が除去される(図9Eを参照されたい)。
図10Aから図10Cを参照すると、図9A−9Eの物体950は、組立速度を増加させるために、および、寸法誤差を生じさせる内部応力を減少させるために、および、部品の脆性を低減させ、すなわち、部品の耐久性を向上させるために、最適化された境界と塗りつぶしパターン(fill pattern)とを有するレイヤから形成されるだろう。特に、焼結画像1000の境界106内の領域は、未焼結粉末の区域1004によって隔てられている、堅固に融合させられた焼結粉末の複数の互いに平行な区域1002から形成されている。後続の焼結画像1010は、境界1016と、堅固に融合させられた焼結粉末の平行区域1012と、先行レイヤに対して90度だけ回転した方向を有する未焼結粉末の区域1014とを含む、開いた塗りつぶしパターンとを有するだろう。この好ましい実施形態では、塗りつぶしパターンを形成する堅固に融合させられた焼結粉末の平行区域1002が、焼結されられている画像の特定の区域が許容する可能最大スポットサイズを生じさせるように、熱源のためのアパーチャを選択することによって、形成されることが好ましい。このことが、画像を形成するために要する時間、従って、物体を形成するために要する時間を著しく低減させるだろう。堅固に融合させられた焼結粉末の平行区域1002、1012の幅および間隔と、境界1004、1014の幅とが、特徴(feature)のサイズおよび形状によって決定されるだろう。例えば、より小さい特徴が、境界と塗りつぶし(fill)とに関するより小さいスポットサイズを必要とするだろうし、一方、より大きい特徴の境界と塗りつぶしは、より大きいスポットサイズだけによって形成されるだろう。同様に、より小さいスポットサイズは、小さい物体を形成するために使用されるだろうし、一方、大きいスポットサイズは大きい物体を形成するために使用されるだろう。境界と塗りつぶしパターンは、さらに、速度と強度と冷却とに関して最適化され、または、組立中の物体1020から、または、組立が完了した後に、未焼結粉末が取り除かれることを可能にするバイアス(vias)1022を生じさせるために最適化されてよい。
組立中の物体の高さを正確に付着させ補正するために使用されるレイヤ厚さ基準(LTR)壁1110が、図11Aと図11Bとに示されている。この壁1110は、物体950と同時にレイヤ毎に形成され、および、完全に融合させられた焼結粉末から作られている。一貫した形状を有する壁1110の上面1112、1122の高さは、一般的に、レイヤ厚さにおける小さな誤差が累積することが許容される場合に非平面になることがある物体の高さよりも均一である。したがって、壁1110の上面1112は、高いスポットを削り取るか他の形で取り除くために物体950の端から端まで通過させられる材料除去機構(好ましくは、ドクターブレードとも呼ばれるスクレーパ刃1120)のためのガイドとして使用されるだろう。その次に、後続の焼結画像1104と壁レイヤ1122とが付着させられ、および、スクレーパ刃1120が、あらゆる非均一性を補正するために再び上面1106全体にわたって通過させられる。このプロセスが、組立中の物体の各レイヤに関して繰り返されるだろう。スクレーパ刃1120は移動方向に対して平行な壁1110のわずかに1つまたは2つの側面を必要とするが、組立中の物体を完全に取り囲む壁は、さらに、後続の焼結画像のための基礎となる支持を提供するために未焼結粉末を保持する働きをする。
上述の説明は多くの明細事項を含むが、これらの明細事項が、本発明の範囲を限定するものとして解釈されるべきでなく、むしろ、本発明の現時点での好ましい実施形態の幾つかの例示を単に示すものとして解釈されるべきである。
したがって、本発明は、例示として非限定的に開示されており、および、本発明の範囲を決定するためには次の特許請求項が参照されなければならない。
図1Aは、本発明の第1の好ましい実施形態の3次元プリンタの動作を示す略図である。 図1Bは、本発明の第1の好ましい実施形態の3次元プリンタの動作を示す略図である。 図1Cは、本発明の第1の好ましい実施形態の3次元プリンタの動作を示す略図である。 図2は、本発明の第2の好ましい実施形態による3次元プリンタの等角図である。 図3は、本発明の第2の好ましい実施形態による3次元プリンタの断面図である。 図4は、本発明の第2の好ましい実施形態によるドラムアセンブリの等角図である。 図5は、本発明の第2の好ましい実施形態による焼結アセンブリの断面図である。 図6は、本発明の第2の好ましい実施形態による粉末アプリケータの等角図である。 図7Aは、本発明の第2の好ましい実施形態による粉末アプリケータの動作を示す略図である。 図7Bは、本発明の第2の好ましい実施形態による粉末アプリケータの動作を示す略図である。 図7Cは、本発明の第2の好ましい実施形態による粉末アプリケータの動作を示す略図である。 図8Aは、本発明の第2の好ましい実施形態による、焼結画像を形成して造形中の物体にその焼結画像を付与する3次元プリンタを示す断面等角図である。 図8Bは、本発明の第2の好ましい実施形態による、焼結画像を形成して造形中の物体にその焼結画像を付与する3次元プリンタを示す断面等角図である。 図8Cは、本発明の第2の好ましい実施形態による、焼結画像を形成して造形中の物体にその焼結画像を付与する3次元プリンタを示す断面等角図である。 図8Dは、本発明の第2の好ましい実施形態による、焼結画像を形成して造形中の物体にその焼結画像を付与する3次元プリンタを示す断面等角図である。 図9Aは、本発明の実施形態による、部分焼結支持構造を使用する物体の形成を示す断面図である。 図9Bは、本発明の実施形態による、部分焼結支持構造を使用する物体の形成を示す断面図である。 図9Cは、本発明の実施形態による、部分焼結支持構造を使用する物体の形成を示す断面図である。 図9Dは、本発明の実施形態による、部分焼結支持構造を使用する物体の形成を示す断面図である。 図9Eは、本発明の実施形態による、部分焼結支持構造を使用する物体の形成を示す断面図である。 図10Aは、本発明の実施形態による、交互の開いたハッチパターンを示す個別の焼結画像の平面図である。 図10Bは、本発明の実施形態による、交互の開いたハッチパターンを示す個別の焼結画像の平面図である。 図10Cは、本発明の実施形態による交互の開いたハッチパターンを有する複数の焼結画像から組み立てられている物体の平面図である。 図11Aは、本発明の実施形態によるレイヤ厚さ基準壁内の組立中の物体の斜視図である。 図11Bは、本発明の実施形態によるレイヤ厚さ基準壁内の組立中の物体の斜視図である。

Claims (50)

  1. 複数の横断面から組み立てられた物体を形成するようになっている3次元プリンタ(3DP)であって、
    焼結性粉末レイヤを受けるようになっている第1の表面と、
    前記第1の表面上の前記焼結性粉末レイヤの少なくとも一部分を焼結画像の形に溶融させるようになっている放射エネルギー源であって、前記焼結画像は前記横断面の1つに対応する放射エネルギー源と、
    前記第1の表面から組立中の前記物体に前記焼結画像を転写するようになっている転写機構と、
    を備える3DP。
  2. 前記第1の表面は、ドラムを備えるレイヤ処理表面である請求項1に記載の3DP。
  3. 前記第1の表面は、平らな表面を備えるレイヤ処理表面である請求項1に記載の3DP。
  4. 前記放射エネルギー源は熱源を備える請求項1に記載の3DP。
  5. 前記熱源はハロゲンランプを備える請求項4に記載の3DP。
  6. 前記熱源はさらに反射器も備える請求項4に記載の3DP。
  7. 前記熱源は楕円反射器を備える請求項4に記載の3DP。
  8. 前記熱源は、さらに、前記第1の表面の上に前記熱源からのエネルギーを集中させるようになっている1つまたは複数のアパーチャを備える請求項4に記載の3DP。
  9. 前記焼結性粉末はポリマーを含む請求項1に記載の3DP。
  10. 前記ポリマーはナイロンを含む請求項9に記載の3DP。
  11. 前記焼結性粉末レイヤは127μmから254μmの厚さである請求項1に記載の3DP。
  12. 前記3DPは、さらに、前記組立中の物体を支持するようになっているプラットホームアセンブリを含む請求項1に記載の3DP。
  13. 前記組立中の物体に対して相対的に前記第1の表面を転がすと同時に平行移動させることによって、前記焼結画像が前記第1の表面から前記組立中の物体に転写される請求項12に記載の3DP。
  14. 前記第1の表面と前記組立中の物体との間の間隙が前記焼結性粉末レイヤの厚さより小さいかまたは前記焼結性粉末の厚さに等しい請求項13に記載の3DP。
  15. 前記プラットホームアセンブリは、さらに、焼結画像レイヤが前記組立中の物体の上に付着された後に前記第1の表面に対して相対的に前記組立表面を下降させるようになっている請求項12に記載の3DP。
  16. 前記3DPは、さらに、前記ドラムに対して前記焼結性粉末レイヤを付着させるようになっている粉末アプリケータを備える請求項2に記載の3DP。
  17. 前記粉末アプリケータは、前記ドラムに隣接したレイヤ調整ブレードを備え、前記ドラムの表面と前記レイヤ調整ブレードとの間の内角の間の角度が0度から45度である請求項16に記載の3DP。
  18. 前記粉末アプリケータは、
    焼結性粉末を保持するようになっているリザーバと、
    前記レイヤ調整ブレードと前記ドラムとの間の前記リザーバから焼結性粉末を計量供給するようになっているコンベヤと、
    を備える請求項17に記載の3DP。
  19. 前記粉末アプリケータは、前記焼結性粉末が前記ドラムに自由落下することを引き起こし、および、前記ドラムに付着させられる前記焼結性粉末の密度が実質的に標準化される請求項16に記載の3DP。
  20. 前記3DPは、前記組立中の物体を第1の予め決められた温度に保つようになっている第1の加熱要素をさらに備える請求項1に記載の3DP。
  21. 前記3DPは、前記組立中の物体の加工表面を前記物体の組立中に第2の決められた温度と圧力とに保つようになっている第2の加熱要素をさらに備える請求項1に記載の3DP。
  22. 前記第2の決められた温度は、前記焼結性粉末の溶融温度に実質的に等しいが、この溶融温度よりも低い請求項21に記載の3DP。
  23. 前記第2の加熱要素は、
    前記焼結画像が前記組立中の物体に転写される前に前記加工表面に接触し、および、
    前記焼結画像が前記組立中の物体に転写される時に引っ込む
    ようになっている平らな表面を備える
    請求項22に記載の3DP。
  24. 前記加工表面は、前記焼結画像の以前に転写された先行の焼結画像である請求項23に記載の3DP。
  25. 前記転写機構は、前記組立中の物体に前記焼結画像を融合させるようになっている定着加熱器を備え、および、前記定着加熱器は、前記焼結画像と前記組立中の物体との付近に存在する請求項1に記載の3DP。
  26. 前記定着加熱器は前記第1の表面に平行でありかつ前記第1の表面と共に移動する請求項25に記載の3DP。
  27. 前記3DPは、前記組立中の物体に融合させられる焼結レイヤの厚さを調整するようになっているレイヤ厚さ調整プロセッサをさらに備える請求項1に記載の3DP。
  28. 前記レイヤ厚さ調整プロセッサは、アプリケータによって計量供給される焼結性粉末の量を調整するようになっている請求項27に記載の3DP。
  29. 前記レイヤ厚さ調整プロセッサは、前記第1の表面に対するブレードの位置を調整するようになっている請求項27に記載の3DP。
  30. 前記レイヤ厚さ調整プロセッサは、前記組立中の物体に前記焼結画像を転写するために使用される時間と圧力とを調整するようになっている請求項27に記載の3DP。
  31. 前記3DPは、前記組立中の物体の高さを測定するための機構をさらに備え、および、前記レイヤ厚さ調整プロセッサは、前記測定された高さに基づいて前記組立中の物体を圧縮するようになっている請求項27に記載の3DP。
  32. 前記3DPは、前記焼結画像が前記組立中の物体に転写された後に前記第1の表面をクリーニングする手段をさらに備える請求項1に記載の3DP。
  33. 前記第1の表面をクリーニングする前記手段は、スクレーパ、ブラシ、真空、ブロア、および、コロナワイヤから成るグループから選択される請求項32に記載の3DP。
  34. 前記3DPは、前記組立中の物体の加工表面をクリーニングする手段をさらに備える請求項1に記載の3DP。
  35. 前記加工表面をクリーニングする前記手段は、回転ブラシ、真空、ブロア、および、静電引力を使用して前記加工表面から粉末を取り除くコロナワイヤから成るグループから選択される請求項34に記載の3DP。
  36. 前記3DPは、前記組立中の物体に融合させられた前記焼結画像の冷却を加速するようになっている物体冷却手段をさらに備える請求項1に記載の3DP。
  37. 前記第1の表面は、前記焼結性粉末の融点に実質的に等しくかつこの融点よりも低い温度に前記第1の表面の温度を加熱するようになっている温度調整器と加熱手段とを備える請求項1に記載の3DP。
  38. 前記1つまたは複数のアパーチャの中の少なくとも1つのアパーチャのサイズは調整可能である請求項8に記載の3DP。
  39. 前記熱源は複数のアパーチャの中の1つのアパーチャを選択するようになっており、および、前記アパーチャの各々は、異なるスポットサイズによって前記第1の表面の上に前記放射エネルギー源からのエネルギーを集中させるようになっている請求項4に記載の3DP。
  40. 前記転写機構は、さらに、前記組立中の物体に前記焼結画像を融合するようになっている請求項1に記載の3DP。
  41. 前記転写機構は、前記第1の表面から前記焼結画像を転写すると同時に前記焼結画像を前記組立中の物体に融合させるようになっている請求項40に記載の3DP。
  42. さらに、後続の焼結画像のための支持を提供するために未焼結粉末を前記第1の表面から前記組立中の物体の上に付着させるようになっている請求項1に記載の3DP。
  43. 前記第1の表面は、陽極酸化アルミニウムの連続表面を備える請求項1に記載の3DP。
  44. 前記3DPは、物体の特徴のサイズに基づいて複数のスポットサイズの各々によって前記第1の表面上に前記焼結画像を融合させるようになっており、および、前記複数のスポットサイズは、前記焼結画像の第1の部分を融合させるための第1のスポットサイズと、前記焼結画像の第2の部分を融合させるための第2のスポットサイズとを備え、および、前記第1のスポットサイズは前記第2のスポットサイズとは異なる請求項1に記載の3DP。
  45. 前記3DPは、複数のスポットサイズの中の1つのスポットサイズによって前記物体の複数の焼結画像の各々を融合させるようになっている請求項1に記載の3DP。
  46. 複数の横断面から組み立てられた物体を形成するようになっている3次元プリンタ(3DP)であって、
    焼結性粉末から成るレイヤを受けるようになっているドラムと、
    粉末アプリケータであって、
    前記ドラムに焼結性粉末を計量供給し、
    前記ドラムに計量供給される焼結性粉末の密度を標準化する
    ようになっている粉末アプリケータと、
    前記エネルギーを集束させ、かつ、前記ドラム上の前記焼結性粉末レイヤの少なくとも一部分を焼結画像の形に溶融させるようになっている非干渉性エネルギー源であって、前記焼結画像は前記横断面の1つに対応する非干渉性エネルギー源と、
    転写機構であって、
    前記焼結画像を前記第1の表面から前記組立中の物体に転写すると同時に、
    前記組立中の物体に前記焼結画像を融合させる
    転写機構と、
    第1の予め決められた温度に前記組立中の物体を保つようになっている第1の加熱要素と、
    前記物体の組立中に第2の決められた温度に前記組立中の物体の表面を保つようになっている第2の加熱要素と、
    を備える3DP。
  47. 複数の横断面から組み立てられた物体を形成する方法であって、
    焼結性粉末を備えるレイヤを第1の表面上に形成する段階と、
    前記焼結性粉末レイヤの少なくとも一部分を前記第1の表面上に融合させるようになっている放射エネルギー源を使用して焼結画像を形成する段階と、
    前記焼結画像を前記第1の表面から前記組立中の物体に転写する段階と、
    を含む方法。
  48. 前記方法は、さらに、
    前記焼結画像を前記第1の表面から前記組立中の物体に転写するのと同時に前記組立中の物体に前記焼結画像を接着させる段階
    を含む請求項47に記載の方法。
  49. 前記焼結性粉末はポリマーを含む請求項47に記載の方法。
  50. 前記ポリマーは、ナイロン11とナイロン12とから成るグループから選択される請求項49に記載の方法。
JP2007504134A 2004-03-18 2005-03-17 映像化されたレイヤを使用する3次元プリントのための装置 Pending JP2007529349A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US55425104P 2004-03-18 2004-03-18
US11/078,894 US7261542B2 (en) 2004-03-18 2005-03-11 Apparatus for three dimensional printing using image layers
PCT/US2005/009024 WO2005089463A2 (en) 2004-03-18 2005-03-17 Apparatus for three dimensional printing using imaged layers

Publications (1)

Publication Number Publication Date
JP2007529349A true JP2007529349A (ja) 2007-10-25

Family

ID=34986614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007504134A Pending JP2007529349A (ja) 2004-03-18 2005-03-17 映像化されたレイヤを使用する3次元プリントのための装置

Country Status (5)

Country Link
US (3) US7261542B2 (ja)
EP (1) EP1735133B1 (ja)
JP (1) JP2007529349A (ja)
AT (1) ATE516128T1 (ja)
WO (1) WO2005089463A2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011504819A (ja) * 2007-07-04 2011-02-17 エンビジョンテク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 三次元物体を生産するプロセスおよびデバイス
JP2013507275A (ja) * 2009-10-13 2013-03-04 ブループリンター・アンパルトセルスカブ 3次元プリンタ
CN103639412A (zh) * 2013-12-30 2014-03-19 王利民 一种3d打印机
CN104260342A (zh) * 2014-08-25 2015-01-07 丹阳惠达模具材料科技有限公司 一种用于3d打印装备的高温预热装置
JP2015096315A (ja) * 2013-11-15 2015-05-21 株式会社東芝 三次元造形ヘッド、及び三次元造形装置
JP2017177594A (ja) * 2016-03-30 2017-10-05 株式会社松浦機械製作所 サポート及びワーク並びに当該サポートの造形方法
JP2018521875A (ja) * 2015-04-30 2018-08-09 ザ エクスワン カンパニー 3次元プリンタ用の粉末リコータ

Families Citing this family (209)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10130968B4 (de) * 2001-06-27 2009-08-20 Envisiontec Gmbh Beschichtetes Polymermaterial, dessen Verwendung sowie Verfahren zu dessen Herstellung
US20070151097A1 (en) * 2003-03-19 2007-07-05 Dimitri Philippou Assembling system
DE102004022606A1 (de) * 2004-05-07 2005-12-15 Envisiontec Gmbh Verfahren zur Herstellung eines dreidimensionalen Objekts mit verbesserter Trennung ausgehärteter Materialschichten von einer Bauebene
DE102004022961B4 (de) * 2004-05-10 2008-11-20 Envisiontec Gmbh Verfahren zur Herstellung eines dreidimensionalen Objekts mit Auflösungsverbesserung mittels Pixel-Shift
WO2005110722A1 (de) 2004-05-10 2005-11-24 Envisiontec Gmbh Verfahren zur herstellung eines dreidimensionalen objekts mit auflösungsverbesserung mittels pixel-shift
US7521652B2 (en) * 2004-12-07 2009-04-21 3D Systems, Inc. Controlled cooling methods and apparatus for laser sintering part-cake
DE102004062761A1 (de) * 2004-12-21 2006-06-22 Degussa Ag Verwendung von Polyarylenetherketonpulver in einem dreidimensionalen pulverbasierenden werkzeuglosen Herstellverfahren, sowie daraus hergestellte Formteile
US7730746B1 (en) 2005-07-14 2010-06-08 Imaging Systems Technology Apparatus to prepare discrete hollow microsphere droplets
JP4481331B2 (ja) * 2005-07-27 2010-06-16 株式会社松風 積層造形装置
DE102006019963B4 (de) 2006-04-28 2023-12-07 Envisiontec Gmbh Vorrichtung und Verfahren zur Herstellung eines dreidimensionalen Objekts durch schichtweises Verfestigen eines unter Einwirkung von elektromagnetischer Strahlung verfestigbaren Materials mittels Maskenbelichtung
DE102006019964C5 (de) * 2006-04-28 2021-08-26 Envisiontec Gmbh Vorrichtung und Verfahren zur Herstellung eines dreidimensionalen Objekts mittels Maskenbelichtung
US7467939B2 (en) * 2006-05-03 2008-12-23 3D Systems, Inc. Material delivery tension and tracking system for use in solid imaging
US7931460B2 (en) * 2006-05-03 2011-04-26 3D Systems, Inc. Material delivery system for use in solid imaging
EP2024168B1 (en) * 2006-05-26 2012-08-22 3D Systems, Inc. Apparatus, method and multiport valve for handling powder in a 3-d printer
EP1876012A1 (en) * 2006-07-07 2008-01-09 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO System and method for producing a tangible object
US7636610B2 (en) * 2006-07-19 2009-12-22 Envisiontec Gmbh Method and device for producing a three-dimensional object, and computer and data carrier useful therefor
WO2008057844A1 (en) * 2006-11-09 2008-05-15 Valspar Sourcing, Inc. Powder compositions and methods of manufacturing articles therefrom
US8247492B2 (en) 2006-11-09 2012-08-21 Valspar Sourcing, Inc. Polyester powder compositions, methods and articles
US7892474B2 (en) 2006-11-15 2011-02-22 Envisiontec Gmbh Continuous generative process for producing a three-dimensional object
US20080122141A1 (en) * 2006-11-29 2008-05-29 Bryan Bedal Sinterable Powder
US7614866B2 (en) * 2007-01-17 2009-11-10 3D Systems, Inc. Solid imaging apparatus and method
US20080226346A1 (en) * 2007-01-17 2008-09-18 3D Systems, Inc. Inkjet Solid Imaging System and Method for Solid Imaging
US7771183B2 (en) * 2007-01-17 2010-08-10 3D Systems, Inc. Solid imaging system with removal of excess uncured build material
US7706910B2 (en) * 2007-01-17 2010-04-27 3D Systems, Inc. Imager assembly and method for solid imaging
US8105066B2 (en) * 2007-01-17 2012-01-31 3D Systems, Inc. Cartridge for solid imaging apparatus and method
US7731887B2 (en) * 2007-01-17 2010-06-08 3D Systems, Inc. Method for removing excess uncured build material in solid imaging
US8221671B2 (en) * 2007-01-17 2012-07-17 3D Systems, Inc. Imager and method for consistent repeatable alignment in a solid imaging apparatus
US20080170112A1 (en) * 2007-01-17 2008-07-17 Hull Charles W Build pad, solid image build, and method for building build supports
US20080181977A1 (en) * 2007-01-17 2008-07-31 Sperry Charles R Brush assembly for removal of excess uncured build material
US8003039B2 (en) 2007-01-17 2011-08-23 3D Systems, Inc. Method for tilting solid image build platform for reducing air entrainment and for build release
DE112008000475T5 (de) * 2007-02-23 2010-07-08 The Ex One Company Austauschbarer Fertigungsbehälter für dreidimensionalen Drucker
EP2052693B2 (en) 2007-10-26 2021-02-17 Envisiontec GmbH Process and freeform fabrication system for producing a three-dimensional object
WO2009073498A1 (en) * 2007-11-29 2009-06-11 3M Innovative Properties Company Three-dimensional fabrication
US9789540B2 (en) * 2008-02-13 2017-10-17 Materials Solutions Limited Method of forming an article
JP5711538B2 (ja) 2008-03-14 2015-05-07 ヴァルスパー・ソーシング・インコーポレーテッド 粉末組成物および当該粉末組成物から物品を製造する方法
US8666142B2 (en) * 2008-11-18 2014-03-04 Global Filtration Systems System and method for manufacturing
US20100155985A1 (en) 2008-12-18 2010-06-24 3D Systems, Incorporated Apparatus and Method for Cooling Part Cake in Laser Sintering
JP5873720B2 (ja) 2008-12-22 2016-03-01 ネーデルランデ オルガニサチエ ヴォール トエゲパスト−ナツールウェテンスハペリエク オンデルゾエク ティーエヌオーNederlandse Organisatie Voor Toegepast−Natuurwetenschappelijk Onderzoek Tno 3d有体物の積層製造の方法とそのシステム
US8777602B2 (en) * 2008-12-22 2014-07-15 Nederlandse Organisatie Voor Tobgepast-Natuurwetenschappelijk Onderzoek TNO Method and apparatus for layerwise production of a 3D object
US8678805B2 (en) 2008-12-22 2014-03-25 Dsm Ip Assets Bv System and method for layerwise production of a tangible object
CN102325645B (zh) 2008-12-22 2015-07-15 3D系统公司 聚酯粉末组合物、方法及制品
EP2451630B1 (en) 2009-07-06 2016-03-30 3D Systems, Inc. Imaging system
US20110122381A1 (en) * 2009-11-25 2011-05-26 Kevin Hickerson Imaging Assembly
CN102481729A (zh) * 2009-07-29 2012-05-30 再德克斯私人有限公司 在旋转圆柱表面上的3d印刷
US8372330B2 (en) 2009-10-19 2013-02-12 Global Filtration Systems Resin solidification substrate and assembly
DE202009018948U1 (de) * 2009-12-02 2014-10-10 Exone Gmbh Anlage zum schichtweisen Aufbau eines Formkörpers mit einer Beschichter-Reinigungsvorrichtung
US8668859B2 (en) * 2010-08-18 2014-03-11 Makerbot Industries, Llc Automated 3D build processes
US8562324B2 (en) 2010-08-18 2013-10-22 Makerbot Industries, Llc Networked three-dimensional printing
WO2012106256A1 (en) 2011-01-31 2012-08-09 Global Filtration Systems Method and apparatus for making three-dimensional objects from multiple solidifiable materials
WO2012140658A2 (en) * 2011-04-10 2012-10-18 Objet Ltd. System and method for layer by layer printing of an object with support
FR2974316B1 (fr) * 2011-04-19 2015-10-09 Phenix Systems Procede de fabrication d'un objet par solidification d'une poudre a l'aide d'un laser
US9075409B2 (en) 2011-06-28 2015-07-07 Global Filtration Systems Apparatus and method for forming three-dimensional objects using linear solidification
US9079355B2 (en) 2011-06-28 2015-07-14 Global Filtration Systems Apparatus and method for forming three-dimensional objects using linear solidification
GB2493398B (en) * 2011-08-05 2016-07-27 Univ Loughborough Methods and apparatus for selectively combining particulate material
GB2493538A (en) * 2011-08-10 2013-02-13 Bae Systems Plc Forming a structure by added layer manufacture
GB2493537A (en) * 2011-08-10 2013-02-13 Bae Systems Plc Forming a layered structure
US20130186558A1 (en) 2011-09-23 2013-07-25 Stratasys, Inc. Layer transfusion with heat capacitor belt for additive manufacturing
US8879957B2 (en) 2011-09-23 2014-11-04 Stratasys, Inc. Electrophotography-based additive manufacturing system with reciprocating operation
US8488994B2 (en) 2011-09-23 2013-07-16 Stratasys, Inc. Electrophotography-based additive manufacturing system with transfer-medium service loops
US9720363B2 (en) 2011-09-23 2017-08-01 Stratasys, Inc. Layer transfusion with rotatable belt for additive manufacturing
DE102011089194A1 (de) * 2011-12-20 2013-06-20 BAM Bundesanstalt für Materialforschung und -prüfung Verfahren zur Fertigung eines kompakten Bauteils sowie mit dem Verfahren herstellbares Bauteil
US8545945B2 (en) * 2012-01-27 2013-10-01 Indian Institute Of Technology Kanpur Micropattern generation with pulsed laser diffraction
WO2014014977A2 (en) * 2012-07-18 2014-01-23 Tow Adam P Systems and methods for manufacturing of multi-property anatomically customized devices
RU2620807C2 (ru) * 2012-09-05 2017-05-29 Апреция Фармасьютикалз Компани Система и комплект оборудования для трехмерной печати
US8888480B2 (en) 2012-09-05 2014-11-18 Aprecia Pharmaceuticals Company Three-dimensional printing system and equipment assembly
US9034237B2 (en) 2012-09-25 2015-05-19 3D Systems, Inc. Solid imaging systems, components thereof, and methods of solid imaging
WO2014062972A1 (en) * 2012-10-18 2014-04-24 Kla-Tencor Corporation Symmetric target design in scatterometry overlay metrology
EP2737965A1 (en) * 2012-12-01 2014-06-04 Alstom Technology Ltd Method for manufacturing a metallic component by additive laser manufacturing
US10471547B2 (en) 2012-12-21 2019-11-12 European Space Agency Additive manufacturing method using focused light heating source
EP2746319B1 (en) * 2012-12-21 2015-09-09 Materialise N.V. Method for manufacturing objects by selective sintering
US20160009028A1 (en) 2013-02-25 2016-01-14 Blueprinter Aps Three-dimensional printer
CN105163930B (zh) 2013-03-15 2017-12-12 3D系统公司 用于激光烧结系统的滑道
WO2014165643A2 (en) 2013-04-04 2014-10-09 Global Filtration Systems, A Dba Of Gulf Filtration Systems Inc. Apparatus and method for forming three-dimensional objects using linear solidification with travel axis correction and power control
GB201308565D0 (en) 2013-05-13 2013-06-19 Blueprinter Aps Three-dimensional printer
CN103332017B (zh) * 2013-07-01 2015-08-26 珠海天威飞马打印耗材有限公司 三维打印机及其打印方法
CN103331817B (zh) * 2013-07-01 2016-12-28 北京交通大学 工程结构的3d打印方法
US9604412B2 (en) 2013-07-12 2017-03-28 Xerox Corporation Digital manufacturing system for printing three-dimensional objects on a rotating surface
US9701064B2 (en) 2013-07-15 2017-07-11 Xerox Corporation Digital manufacturing system for printing three-dimensional objects on a rotating core
US9029058B2 (en) 2013-07-17 2015-05-12 Stratasys, Inc. Soluble support material for electrophotography-based additive manufacturing
US9023566B2 (en) 2013-07-17 2015-05-05 Stratasys, Inc. ABS part material for electrophotography-based additive manufacturing
US9144940B2 (en) 2013-07-17 2015-09-29 Stratasys, Inc. Method for printing 3D parts and support structures with electrophotography-based additive manufacturing
US9523934B2 (en) * 2013-07-17 2016-12-20 Stratasys, Inc. Engineering-grade consumable materials for electrophotography-based additive manufacturing
CN105451950B (zh) 2013-08-15 2019-03-12 哈利伯顿能源服务公司 支撑剂的加成制造
US9636871B2 (en) 2013-08-21 2017-05-02 Microsoft Technology Licensing, Llc Optimizing 3D printing using segmentation or aggregation
CN103522547B (zh) * 2013-09-26 2015-07-01 上海大学 数控机床动力驱动的3d打印头组件及三维支架制备的方法
US20150102531A1 (en) 2013-10-11 2015-04-16 Global Filtration Systems, A Dba Of Gulf Filtration Systems Inc. Apparatus and method for forming three-dimensional objects using a curved build platform
US9545302B2 (en) 2013-11-20 2017-01-17 Dermagenesis Llc Skin printing and auto-grafting
US9586364B2 (en) 2013-11-27 2017-03-07 Global Filtration Systems Apparatus and method for forming three-dimensional objects using linear solidification with contourless object data
CN103815992B (zh) * 2014-01-15 2016-01-13 浙江大学 一种多支路三维生物结构的3d打印装置及打印方法
JP6353547B2 (ja) 2014-01-16 2018-07-04 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 3次元物体の生成
EP3626434A1 (en) 2014-01-16 2020-03-25 Hewlett-Packard Development Company, L.P. Generating a three dimensional object
US10583612B2 (en) 2014-01-16 2020-03-10 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing method
US10688772B2 (en) 2014-01-16 2020-06-23 Hewlett-Packard Development Company, L.P. Generating three-dimensional objects
WO2015108544A1 (en) * 2014-01-16 2015-07-23 Hewlett-Packard Development Company, L.P. Polymeric powder composition for three-dimensional (3d) printing
WO2015106838A1 (en) 2014-01-16 2015-07-23 Hewlett-Packard Development Company, L.P. Generating a three-dimensional object
JP6570542B2 (ja) 2014-01-16 2019-09-04 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 三次元物体の生成
US9527244B2 (en) 2014-02-10 2016-12-27 Global Filtration Systems Apparatus and method for forming three-dimensional objects from solidifiable paste
US11104117B2 (en) 2014-02-20 2021-08-31 Global Filtration Systems Apparatus and method for forming three-dimensional objects using a tilting solidification substrate
US10144205B2 (en) 2014-02-20 2018-12-04 Global Filtration Systems Apparatus and method for forming three-dimensional objects using a tilting solidification substrate
US10011076B2 (en) 2014-02-20 2018-07-03 Global Filtration Systems Apparatus and method for forming three-dimensional objects using a tilting solidification substrate
US9770869B2 (en) 2014-03-18 2017-09-26 Stratasys, Inc. Additive manufacturing with virtual planarization control
US10011071B2 (en) 2014-03-18 2018-07-03 Evolve Additive Solutions, Inc. Additive manufacturing using density feedback control
US9868255B2 (en) 2014-03-18 2018-01-16 Stratasys, Inc. Electrophotography-based additive manufacturing with pre-sintering
US9643357B2 (en) 2014-03-18 2017-05-09 Stratasys, Inc. Electrophotography-based additive manufacturing with powder density detection and utilization
US10144175B2 (en) 2014-03-18 2018-12-04 Evolve Additive Solutions, Inc. Electrophotography-based additive manufacturing with solvent-assisted planarization
US9919479B2 (en) 2014-04-01 2018-03-20 Stratasys, Inc. Registration and overlay error correction of electrophotographically formed elements in an additive manufacturing system
US9688027B2 (en) 2014-04-01 2017-06-27 Stratasys, Inc. Electrophotography-based additive manufacturing with overlay control
DE112015002064T5 (de) * 2014-04-30 2017-01-05 Cummins, Inc. Erstellung von Spritzgussformen mithilfe additiver Fertigung
US20150314532A1 (en) * 2014-05-01 2015-11-05 BlueBox 3D, LLC Increased inter-layer bonding in 3d printing
BE1022586B1 (nl) * 2014-06-18 2016-06-10 Cenat Bvba Inrichting en werkwijze voor additieve productie
US9346127B2 (en) 2014-06-20 2016-05-24 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US10676399B2 (en) 2014-06-23 2020-06-09 Applied Cavitation, Inc. Systems and methods for additive manufacturing using ceramic materials
WO2016036348A1 (en) * 2014-09-02 2016-03-10 Hewlett-Packard Development Company, L.P. Additive manufacturing for an overhang
WO2016053364A1 (en) 2014-09-29 2016-04-07 Hewlett-Packard Development Company, L. P. Generating three-dimensional objects and generating images on substrates
WO2016050322A1 (en) 2014-10-03 2016-04-07 Hewlett-Packard Development Company, L.P. Controlling temperature in an apparatus for generating a three-dimensional object
JP2016104550A (ja) * 2014-12-01 2016-06-09 株式会社リコー 情報処理装置、情報処理方法、情報処理プログラム、および三次元造形物
US9592660B2 (en) 2014-12-17 2017-03-14 Arevo Inc. Heated build platform and system for three dimensional printing methods
US10272664B2 (en) 2015-01-14 2019-04-30 Xactiv, Inc. Fabrication of 3D objects via multiple build platforms
US10272618B2 (en) 2015-02-23 2019-04-30 Xactiv, Inc. Fabrication of 3D objects via electrostatic powder deposition
US9902112B2 (en) 2015-04-07 2018-02-27 Global Filtration Systems Apparatus and method for forming three-dimensional objects using linear solidification and a vacuum blade
US10889067B1 (en) * 2015-04-13 2021-01-12 Lockheed Martin Corporation Tension-wound solid state additive manufacturing
US10442175B2 (en) 2015-04-28 2019-10-15 Warsaw Orthopedic, Inc. 3D printing devices and methods
WO2016185966A1 (ja) * 2015-05-15 2016-11-24 コニカミノルタ株式会社 粉末材料、立体造形物の製造方法および立体造形装置
US10335856B2 (en) 2015-06-29 2019-07-02 Applied Materials, Inc. System for temperature controlled additive manufacturing
EP3271141B1 (en) 2015-07-07 2021-04-21 Hewlett-Packard Development Company, L.P. Supplying build material
US9610734B2 (en) * 2015-07-07 2017-04-04 Xerox Corporation Indexing cart for three-dimensional object printing
CN108349160B (zh) * 2015-07-15 2022-07-22 艾德玛泰克欧洲公司 用于制造三维对象的增材制造装置
US10668533B2 (en) 2015-07-17 2020-06-02 Applied Materials, Inc. Additive manufacturing with coolant system
WO2017015217A2 (en) * 2015-07-20 2017-01-26 Velo3D, Inc. Transfer of particulate material
US10486411B2 (en) 2015-07-29 2019-11-26 Canon Kabushiki Kaisha Shaping apparatus and shaping method
BR112017023040A2 (pt) 2015-07-30 2018-07-03 Hewlett Packard Development Co aquecimento controlado para impressão 3d.
WO2017034951A1 (en) 2015-08-21 2017-03-02 Aprecia Pharmaceuticals Company Three-dimensional printing system and equipment assembly
US10733911B2 (en) 2015-10-14 2020-08-04 Humanetics Innovative Solutions, Inc. Three-dimensional ribs and method of three-dimensional printing of ribs for crash test dummy
US10395561B2 (en) 2015-12-07 2019-08-27 Humanetics Innovative Solutions, Inc. Three-dimensionally printed internal organs for crash test dummy
JP6751252B2 (ja) 2015-10-15 2020-09-02 セイコーエプソン株式会社 三次元造形物の製造方法及び三次元造形物の製造装置
CN108367498A (zh) 2015-11-06 2018-08-03 维洛3D公司 Adept三维打印
US10105876B2 (en) 2015-12-07 2018-10-23 Ut-Battelle, Llc Apparatus for generating and dispensing a powdered release agent
WO2017100695A1 (en) 2015-12-10 2017-06-15 Velo3D, Inc. Skillful three-dimensional printing
US10245822B2 (en) 2015-12-11 2019-04-02 Global Filtration Systems Method and apparatus for concurrently making multiple three-dimensional objects from multiple solidifiable materials
US9919360B2 (en) 2016-02-18 2018-03-20 Velo3D, Inc. Accurate three-dimensional printing
EP3436503B2 (en) 2016-04-01 2023-10-25 Solvay Specialty Polymers USA, LLC. Method for manufacturing a three-dimensional object
US10239157B2 (en) 2016-04-06 2019-03-26 General Electric Company Additive machine utilizing rotational build surface
US10369744B2 (en) 2016-04-14 2019-08-06 Xerox Corporation Electrostatic 3-D development apparatus using cold fusing
US10046512B2 (en) 2016-04-14 2018-08-14 Xerox Corporation Electro-photographic 3-D printing using dissolvable paper
US10040250B2 (en) 2016-04-14 2018-08-07 Xerox Corporation Electro-photographic 3-D printing using collapsible substrate
EP3452271A4 (en) * 2016-05-04 2020-01-15 Saint-Gobain Ceramics&Plastics, Inc. METHOD FOR FORMING A THREE-DIMENSIONAL BODY HAVING DIFFERENT DENSITY REGIONS
KR102164726B1 (ko) * 2016-05-12 2020-10-14 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 인쇄 작용제 적용을 통한 온도 보정 기법
GB2550338A (en) 2016-05-12 2017-11-22 Hewlett Packard Development Co Lp Reflector and additive manufacturing system
CN108602266B (zh) * 2016-05-17 2020-10-30 惠普发展公司有限责任合伙企业 具有调谐的融合辐射发射的3d打印机
US11084210B2 (en) * 2016-05-17 2021-08-10 Hewlett-Packard Development Company, L.P. 3D printer with tuned coolant droplets
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
WO2018005439A1 (en) 2016-06-29 2018-01-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
WO2018022034A1 (en) 2016-07-27 2018-02-01 Hewlett-Packard Development Company, L.P. Forming three-dimensional (3d) electronic parts
US9821543B1 (en) * 2016-10-07 2017-11-21 General Electric Company Additive manufacturing powder handling system
CN106670736B (zh) * 2016-10-19 2018-09-14 哈尔滨工业大学 一种大尺寸结构复杂金属构件的叠层制造方法
US20180126460A1 (en) 2016-11-07 2018-05-10 Velo3D, Inc. Gas flow in three-dimensional printing
US10632732B2 (en) 2016-11-08 2020-04-28 3Dbotics, Inc. Method and apparatus for making three-dimensional objects using a dynamically adjustable retaining barrier
FR3058657A1 (fr) 2016-11-14 2018-05-18 Compagnie Generale Des Etablissements Michelin Installation de fabrication additive a base de poudre a dispositif de nettoyage par soufflage
FR3058658A1 (fr) * 2016-11-14 2018-05-18 Compagnie Generale Des Etablissements Michelin Installation de fabrication additive a base de poudre a dispositif de nettoyage par brossage
CN109963700B (zh) * 2016-11-22 2021-08-17 科思创德国股份有限公司 通过在冲压法中逐层构建而制造物件的方法和系统
US10611092B2 (en) 2017-01-05 2020-04-07 Velo3D, Inc. Optics in three-dimensional printing
US10737479B2 (en) 2017-01-12 2020-08-11 Global Filtration Systems Method of making three-dimensional objects using both continuous and discontinuous solidification
WO2018132109A1 (en) * 2017-01-15 2018-07-19 Hewlett-Packard Development Company, L.P. Reflector assembly with partial elliptical cavities
EP3529048A4 (en) 2017-02-10 2020-07-15 Hewlett-Packard Development Company, L.P. MERGER MODULE
US10357829B2 (en) 2017-03-02 2019-07-23 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US11117194B2 (en) 2017-03-15 2021-09-14 Applied Materials, Inc. Additive manufacturing having energy beam and lamp array
US20180281282A1 (en) 2017-03-28 2018-10-04 Velo3D, Inc. Material manipulation in three-dimensional printing
US10369557B2 (en) 2017-04-12 2019-08-06 International Business Machines Corporation Three-dimensional printed objects for chemical reaction control
US10064726B1 (en) 2017-04-18 2018-09-04 Warsaw Orthopedic, Inc. 3D printing of mesh implants for bone delivery
US11660196B2 (en) 2017-04-21 2023-05-30 Warsaw Orthopedic, Inc. 3-D printing of bone grafts
CN110603134A (zh) * 2017-04-21 2019-12-20 惠普发展公司,有限责任合伙企业 3d打印材料阻断
US11230057B2 (en) * 2017-06-01 2022-01-25 University Of Southern California 3D printing with variable voxel sizes
CN110869421A (zh) 2017-07-21 2020-03-06 美国圣戈班性能塑料公司 形成三维本体的方法
US10639852B2 (en) * 2017-09-07 2020-05-05 Xyzprinting, Inc. Stereolithography 3D printer
CN109551759B (zh) * 2017-09-27 2021-08-31 大族激光科技产业集团股份有限公司 一种增材制造落粉装置及方法
DE102017219795A1 (de) 2017-11-08 2019-05-09 Robert Bosch Gmbh Vorrichtung und Verfahren zum generativen Fertigen eines sich aus einer Vielzahl von Querschnitten zusammensetzenden Objekts sowie dreidimensionales Objekt
WO2019094792A1 (en) 2017-11-10 2019-05-16 Local Motors IP, LLC Additive manufactured structure and method for making the same
US10828723B2 (en) 2017-11-13 2020-11-10 General Electric Company Process monitoring for mobile large scale additive manufacturing using foil-based build materials
US10828724B2 (en) * 2017-11-13 2020-11-10 General Electric Company Foil part vectorization for mobile large scale additive manufacturing using foil-based build materials
US11364564B2 (en) 2017-11-13 2022-06-21 General Electric Company Mobile large scale additive manufacturing using foil-based build materials
US10497345B2 (en) * 2017-11-17 2019-12-03 Daniel Pawlovich Integral drum body system for percussion instrument
EP3684595A4 (en) * 2017-12-19 2021-04-28 Hewlett-Packard Development Company, L.P. MERGING IN THREE-DIMENSIONAL (3D) PRINTING
WO2019125406A1 (en) * 2017-12-19 2019-06-27 Hewlett-Packard Development Company, L.P. Variable heating in additive manufacturing
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
WO2019209863A2 (en) 2018-04-23 2019-10-31 Local Motors IP, LLC Method and apparatus for additive manufacturing
US11731342B2 (en) 2018-04-23 2023-08-22 Rapidflight Holdings, Llc Additively manufactured structure and method for making the same
US11426958B2 (en) * 2018-05-30 2022-08-30 The Boeing Company 3D printed end cauls for composite part fabrication
JP7066878B2 (ja) 2018-06-01 2022-05-13 アプライド マテリアルズ インコーポレイテッド 付加製造のためのエアナイフ
US20210331402A1 (en) * 2018-06-28 2021-10-28 Hewlett-Packard Development Company, L.P. 3d printing control
CN112839604B (zh) * 2018-07-02 2023-07-18 柯惠有限合伙公司 用于消融组织的3d打印、定制天线导航
EP3632657B1 (en) 2018-10-03 2022-01-12 Rolls-Royce Power Engineering PLC Manufacturing method
CN109571706A (zh) * 2018-11-28 2019-04-05 苏州美迈快速制造技术有限公司 一种石雕件制造工艺
CN109849335B (zh) * 2018-11-30 2021-05-18 绍兴京越智能科技有限公司 一种采用镜面折射原理的3d打印机灯控结构
US11813790B2 (en) 2019-08-12 2023-11-14 Rapidflight Holdings, Llc Additively manufactured structure and method for making the same
EP4117919A4 (en) * 2019-08-12 2024-01-10 Rapidflight Holdings Llc ADDITIVELY MANUFACTURED STRUCTURE AND METHOD FOR MANUFACTURING SAME
US11400649B2 (en) 2019-09-26 2022-08-02 Applied Materials, Inc. Air knife assembly for additive manufacturing
US11413817B2 (en) 2019-09-26 2022-08-16 Applied Materials, Inc. Air knife inlet and exhaust for additive manufacturing
KR102279708B1 (ko) * 2019-10-14 2021-07-22 (주)메타몰프 방사 방향 적층 공정용 3d 프린터
US11285540B2 (en) * 2020-03-06 2022-03-29 Warsaw Orthopedic, Inc. Method for manufacturing parts or devices and forming transition layers facilitating removal of parts and devices from build-plates
WO2022150305A1 (en) * 2021-01-05 2022-07-14 Quadratic 3D, Inc. Volumetric three-dimensional printing methods
CN113172239B (zh) * 2021-04-12 2023-04-21 东北石油大学 一种选择性激光烧结成型装置
US11951679B2 (en) 2021-06-16 2024-04-09 General Electric Company Additive manufacturing system
US11731367B2 (en) 2021-06-23 2023-08-22 General Electric Company Drive system for additive manufacturing
US11958250B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11958249B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11826950B2 (en) 2021-07-09 2023-11-28 General Electric Company Resin management system for additive manufacturing
US11813799B2 (en) 2021-09-01 2023-11-14 General Electric Company Control systems and methods for additive manufacturing
EP4151392A1 (en) * 2021-09-15 2023-03-22 Sinterit Sp. z o.o. A pbf printer with a bed ejecting mechanism

Family Cites Families (183)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US473901A (en) 1892-05-03 Manufacture of contou r relief-maps
US574583A (en) * 1897-01-05 Beer-tap
US774549A (en) 1902-05-17 1904-11-08 Carlo Baese Photographic process for the reproduction of plastic objects.
US1516199A (en) 1922-09-23 1924-11-18 Monteath Photo Sculpture Ltd Photomechanical process for producing bas-reliefs
US2015457A (en) 1932-03-02 1935-09-24 Morioka Isao Process for manufacturing a relief by the aid of photography
US2189592A (en) 1937-03-11 1940-02-06 Perera Bamunuarchige Victor Process of making relief maps
US2350796A (en) 1940-03-26 1944-06-06 Morioka Isao Process for plastically reproducing objects
US2775758A (en) 1951-05-25 1956-12-25 Munz Otto John Photo-glyph recording
US3264385A (en) 1963-01-14 1966-08-02 American Scient Corp Method of casting a printed pattern on a plastic sheet
US3428503A (en) 1964-10-26 1969-02-18 Lloyd D Beckerle Three-dimensional reproduction method
US4041476A (en) 1971-07-23 1977-08-09 Wyn Kelly Swainson Method, medium and apparatus for producing three-dimensional figure product
US4238840A (en) 1967-07-12 1980-12-09 Formigraphic Engine Corporation Method, medium and apparatus for producing three dimensional figure product
DE2101796A1 (de) * 1970-01-21 1971-08-05 Baxter Laboratories Inc Verfahren zur Bestimmung von Tnglycenden im Blutserum
US3751827A (en) 1971-06-08 1973-08-14 T Gaskin Earth science teaching device
US3866052A (en) 1973-11-02 1975-02-11 Dynell Elec Methods for generating signals defining three-dimensional object surfaces
GB1517283A (en) 1974-06-28 1978-07-12 Singer Alec Production of metal articles
US3932923A (en) 1974-10-21 1976-01-20 Dynell Electronics Corporation Method of generating and constructing three-dimensional bodies
US4001069A (en) 1974-10-21 1977-01-04 Dynell Electronics Corporation Arrangement for generating and constructing three-dimensional surfaces and bodies
US4333165A (en) 1975-01-27 1982-06-01 Formigraphic Engine Corporation Three-dimensional pattern making methods
US4466080A (en) 1975-01-27 1984-08-14 Formigraphic Engine Corporation Three-dimensional patterned media
US4078229A (en) 1975-01-27 1978-03-07 Swanson Wyn K Three dimensional systems
US4132575A (en) 1977-09-16 1979-01-02 Fuji Photo Optical Co., Ltd. Method of producing three-dimensional replica
US4288861A (en) 1977-12-01 1981-09-08 Formigraphic Engine Corporation Three-dimensional systems
US4471470A (en) 1977-12-01 1984-09-11 Formigraphic Engine Corporation Method and media for accessing data in three dimensions
US4412799A (en) 1979-03-12 1983-11-01 Jackson Gates Apparatus and method for stereo relief modeling
US4323756A (en) 1979-10-29 1982-04-06 United Technologies Corporation Method for fabricating articles by sequential layer deposition
US4285754A (en) 1979-11-05 1981-08-25 Solid Photography Inc. Method and apparatus for producing planar elements in the construction of surfaces and bodies
US4292724A (en) 1979-11-05 1981-10-06 Solid Photography, Inc. Arrangement for constructing surfaces and bodies
US4247508B1 (en) 1979-12-03 1996-10-01 Dtm Corp Molding process
US4393450A (en) 1980-08-11 1983-07-12 Trustees Of Dartmouth College Three-dimensional model-making system
US4665492A (en) 1984-07-02 1987-05-12 Masters William E Computer automated manufacturing process and system
US4929402A (en) 1984-08-08 1990-05-29 3D Systems, Inc. Method for production of three-dimensional objects by stereolithography
US5571471A (en) * 1984-08-08 1996-11-05 3D Systems, Inc. Method of production of three-dimensional objects by stereolithography
US4575330A (en) 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
US4707787A (en) 1985-01-10 1987-11-17 Western Geophysical Company Of America Beam-activated complex-solid formation utilizing pattern-independent, coordinate-sequence construction
US4749347A (en) 1985-08-29 1988-06-07 Viljo Valavaara Topology fabrication apparatus
DE3750709T2 (de) 1986-06-03 1995-03-16 Cubital Ltd Gerät zur Entwicklung dreidimensionaler Modelle.
US4752352A (en) 1986-06-06 1988-06-21 Michael Feygin Apparatus and method for forming an integral object from laminations
US5296062A (en) * 1986-10-17 1994-03-22 The Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
US4863538A (en) 1986-10-17 1989-09-05 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
US5076869A (en) 1986-10-17 1991-12-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
US5017753A (en) 1986-10-17 1991-05-21 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
US4944817A (en) 1986-10-17 1990-07-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
ATE116179T1 (de) 1986-10-17 1995-01-15 Univ Texas Verfahren und vorrichtung zur herstellung von formkörpern durch teilsinterung.
US4752498A (en) 1987-03-02 1988-06-21 Fudim Efrem V Method and apparatus for production of three-dimensional objects by photosolidification
US4801477A (en) 1987-09-29 1989-01-31 Fudim Efrem V Method and apparatus for production of three-dimensional objects by photosolidification
US4818562A (en) 1987-03-04 1989-04-04 Westinghouse Electric Corp. Casting shapes
US5389496A (en) * 1987-03-06 1995-02-14 Rohm And Haas Company Processes and compositions for electroless metallization
US5287435A (en) * 1987-06-02 1994-02-15 Cubital Ltd. Three dimensional modeling
US5386500A (en) * 1987-06-02 1995-01-31 Cubital Ltd. Three dimensional modeling apparatus
US5015312A (en) 1987-09-29 1991-05-14 Kinzie Norman F Method and apparatus for constructing a three-dimensional surface of predetermined shape and color
US4775092A (en) 1987-10-30 1988-10-04 The Babcock & Wilcox Company Method and apparatus for building a workpiece by deposit welding
US4842186A (en) 1987-10-30 1989-06-27 The Babock & Wilcox Company Method and apparatus for building a workpiece by deposit welding
IL84752A (en) 1987-12-08 1991-11-21 Elscint Ltd Anatomical models and methods for manufacturing such models
IL109511A (en) 1987-12-23 1996-10-16 Cubital Ltd Three-dimensional modelling apparatus
US4945032A (en) 1988-03-31 1990-07-31 Desoto, Inc. Stereolithography using repeated exposures to increase strength and reduce distortion
EP0366748A4 (en) 1988-04-11 1991-09-25 Australasian Lasers Pty. Ltd. Laser based plastic model making workstation
US5182055A (en) * 1988-04-18 1993-01-26 3D Systems, Inc. Method of making a three-dimensional object by stereolithography
US5141680A (en) * 1988-04-18 1992-08-25 3D Systems, Inc. Thermal stereolighography
US5495328A (en) * 1988-04-18 1996-02-27 3D Systems, Inc. Apparatus and method for calibrating and normalizing a stereolithographic apparatus
US5184307A (en) * 1988-04-18 1993-02-02 3D Systems, Inc. Method and apparatus for production of high resolution three-dimensional objects by stereolithography
US4999143A (en) 1988-04-18 1991-03-12 3D Systems, Inc. Methods and apparatus for production of three-dimensional objects by stereolithography
CA1338521C (en) * 1988-04-18 1996-08-13 Charles William Hull Cad/cam stereolithographic data conversion
US5015424A (en) 1988-04-18 1991-05-14 3D Systems, Inc. Methods and apparatus for production of three-dimensional objects by stereolithography
US5059359A (en) 1988-04-18 1991-10-22 3 D Systems, Inc. Methods and apparatus for production of three-dimensional objects by stereolithography
US4996010A (en) 1988-04-18 1991-02-26 3D Systems, Inc. Methods and apparatus for production of three-dimensional objects by stereolithography
CA1339750C (en) * 1988-04-18 1998-03-17 William Charles Hull Stereolithographic curl reduction
US5130064A (en) 1988-04-18 1992-07-14 3D Systems, Inc. Method of making a three dimensional object by stereolithography
US5137662A (en) 1988-11-08 1992-08-11 3-D Systems, Inc. Method and apparatus for production of three-dimensional objects by stereolithography
US5104592A (en) 1988-04-18 1992-04-14 3D Systems, Inc. Method of and apparatus for production of three-dimensional objects by stereolithography with reduced curl
US5182056A (en) * 1988-04-18 1993-01-26 3D Systems, Inc. Stereolithography method and apparatus employing various penetration depths
US5190624A (en) * 1988-07-15 1993-03-02 The United States Of America As Represented By The Secretary Of The Navy Electrorheological fluid chemical processing
US5194181A (en) * 1988-07-15 1993-03-16 The United States Of America As Represented By The Secretary Of The Navy Process for shaping articles from electrosetting compositions
US4844144A (en) 1988-08-08 1989-07-04 Desoto, Inc. Investment casting utilizing patterns produced by stereolithography
US4943928A (en) 1988-09-19 1990-07-24 Campbell Albert E Elongated carrier with a plurality of spot-sources of heat for use with stereolithographic system
IL88359A (en) 1988-11-10 1993-06-10 Cubital Ltd Method and apparatus for volumetric digitization of 3-dimensional objects
US5135379A (en) 1988-11-29 1992-08-04 Fudim Efrem V Apparatus for production of three-dimensional objects by photosolidification
US5089184A (en) 1989-01-18 1992-02-18 Mitsui Engineering And Shipbuilding Co., Ltd. Optical molding method
JP2715527B2 (ja) 1989-03-14 1998-02-18 ソニー株式会社 立体形状形成方法
US5026146A (en) 1989-04-03 1991-06-25 Hug William F System for rapidly producing plastic parts
US5014207A (en) 1989-04-21 1991-05-07 E. I. Du Pont De Nemours And Company Solid imaging system
US4942060A (en) 1989-04-21 1990-07-17 E. I. Du Pont De Nemours And Company Solid imaging method utilizing photohardenable compositions of self limiting thickness by phase separation
US5128235A (en) 1989-04-21 1992-07-07 E. I. Du Pont De Nemours And Company Method of forming a three-dimensional object comprising additives imparting reduction of shrinkage to photohardenable compositions
US4942066A (en) 1989-04-21 1990-07-17 E. I. Du Pont De Nemours And Company Solid imaging method using photohardenable materials of self limiting thickness
GB2233928B (en) 1989-05-23 1992-12-23 Brother Ind Ltd Apparatus and method for forming three-dimensional article
JP2738017B2 (ja) 1989-05-23 1998-04-08 ブラザー工業株式会社 三次元成形装置
US5143663A (en) 1989-06-12 1992-09-01 3D Systems, Inc. Stereolithography method and apparatus
US5134569A (en) 1989-06-26 1992-07-28 Masters William E System and method for computer automated manufacturing using fluent material
JPH0336019A (ja) 1989-07-03 1991-02-15 Brother Ind Ltd 三次元成形方法およびその装置
JPH0624773B2 (ja) 1989-07-07 1994-04-06 三井造船株式会社 光学的造形法
US5284695A (en) * 1989-09-05 1994-02-08 Board Of Regents, The University Of Texas System Method of producing high-temperature parts by way of low-temperature sintering
US5182170A (en) * 1989-09-05 1993-01-26 Board Of Regents, The University Of Texas System Method of producing parts by selective beam interaction of powder with gas phase reactant
US5053090A (en) 1989-09-05 1991-10-01 Board Of Regents, The University Of Texas System Selective laser sintering with assisted powder handling
US5088047A (en) 1989-10-16 1992-02-11 Bynum David K Automated manufacturing system using thin sections
US5182715A (en) * 1989-10-27 1993-01-26 3D Systems, Inc. Rapid and accurate production of stereolighographic parts
US5133987A (en) 1989-10-27 1992-07-28 3D Systems, Inc. Stereolithographic apparatus and method
US5121329A (en) 1989-10-30 1992-06-09 Stratasys, Inc. Apparatus and method for creating three-dimensional objects
US5136515A (en) 1989-11-07 1992-08-04 Richard Helinski Method and means for constructing three-dimensional articles by particle deposition
US5135695A (en) 1989-12-04 1992-08-04 Board Of Regents The University Of Texas System Positioning, focusing and monitoring of gas phase selective beam deposition
US5017317A (en) 1989-12-04 1991-05-21 Board Of Regents, The Uni. Of Texas System Gas phase selective beam deposition
US5204055A (en) * 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
US5387380A (en) * 1989-12-08 1995-02-07 Massachusetts Institute Of Technology Three-dimensional printing techniques
US5009585A (en) 1989-12-18 1991-04-23 Mitsui Engineering & Shipbuilding Co., Ltd. Optical molding apparatus and movable base device therefor
US5038159A (en) 1989-12-18 1991-08-06 Xerox Corporation Apertured printhead for direct electrostatic printing
US5143817A (en) 1989-12-22 1992-09-01 E. I. Du Pont De Nemours And Company Solid imaging system
DE3942859A1 (de) 1989-12-23 1991-07-04 Basf Ag Verfahren zur herstellung von bauteilen
US5139711A (en) 1989-12-25 1992-08-18 Matsushita Electric Works, Ltd. Process of and apparatus for making three dimensional objects
US5071337A (en) 1990-02-15 1991-12-10 Quadrax Corporation Apparatus for forming a solid three-dimensional article from a liquid medium
US5626919A (en) * 1990-03-01 1997-05-06 E. I. Du Pont De Nemours And Company Solid imaging apparatus and method with coating station
FR2659971B1 (fr) * 1990-03-20 1992-07-10 Dassault Avions Procede de production d'objets a trois dimensions par photo-transformation et appareillage de mise en óoeuvre d'un tel procede.
US5094935A (en) 1990-06-26 1992-03-10 E. I. Dupont De Nemours And Company Method and apparatus for fabricating three dimensional objects from photoformed precursor sheets
US5096530A (en) 1990-06-28 1992-03-17 3D Systems, Inc. Resin film recoating method and apparatus
US5189781A (en) * 1990-08-03 1993-03-02 Carnegie Mellon University Rapid tool manufacturing
US5127037A (en) 1990-08-15 1992-06-30 Bynum David K Apparatus for forming a three-dimensional reproduction of an object from laminations
US5192559A (en) * 1990-09-27 1993-03-09 3D Systems, Inc. Apparatus for building three-dimensional objects with sheets
US5198159A (en) * 1990-10-09 1993-03-30 Matsushita Electric Works, Ltd. Process of fabricating three-dimensional objects from a light curable resin liquid
US5122441A (en) 1990-10-29 1992-06-16 E. I. Du Pont De Nemours And Company Method for fabricating an integral three-dimensional object from layers of a photoformable composition
US5597520A (en) * 1990-10-30 1997-01-28 Smalley; Dennis R. Simultaneous multiple layer curing in stereolithography
US5192469A (en) * 1990-10-30 1993-03-09 3D Systems, Inc. Simultaneous multiple layer curing in stereolithography
US5126529A (en) 1990-12-03 1992-06-30 Weiss Lee E Method and apparatus for fabrication of three-dimensional articles by thermal spray deposition
US5286573A (en) * 1990-12-03 1994-02-15 Fritz Prinz Method and support structures for creation of objects by layer deposition
US5385780A (en) * 1990-12-05 1995-01-31 The B. F. Goodrich Company Sinterable mass of polymer powder having resistance to caking and method of preparing the mass
JP2597778B2 (ja) * 1991-01-03 1997-04-09 ストラタシイス,インコーポレイテッド 三次元対象物組み立てシステム及び組み立て方法
US5348788A (en) * 1991-01-30 1994-09-20 Interpore Orthopaedics, Inc. Mesh sheet with microscopic projections and holes
ATE131111T1 (de) * 1991-01-31 1995-12-15 Texas Instruments Inc Verfahren und vorrichtung zur rechnergesteuerten herstellung von dreidimensionalen gegenständen aus rechnerdaten.
US5594652A (en) * 1991-01-31 1997-01-14 Texas Instruments Incorporated Method and apparatus for the computer-controlled manufacture of three-dimensional objects from computer data
US5157423A (en) * 1991-05-08 1992-10-20 Cubital Ltd. Apparatus for pattern generation on a dielectric substrate
US5079974A (en) 1991-05-24 1992-01-14 Carnegie-Mellon University Sprayed metal dies
NO912220L (no) * 1991-06-10 1992-12-11 Sinvent As Fremgangsmaate og system for lagvis og moenstermessig styrtpaafoering av partikkelformet materiale paa et mottakerelement
US5278442A (en) * 1991-07-15 1994-01-11 Prinz Fritz B Electronic packages and smart structures formed by thermal spray deposition
US5314003A (en) * 1991-12-24 1994-05-24 Microelectronics And Computer Technology Corporation Three-dimensional metal fabrication using a laser
US5281789A (en) * 1992-07-24 1994-01-25 Robert Merz Method and apparatus for depositing molten metal
US5502476A (en) * 1992-11-25 1996-03-26 Tektronix, Inc. Method and apparatus for controlling phase-change ink temperature during a transfer printing process
US5490882A (en) * 1992-11-30 1996-02-13 Massachusetts Institute Of Technology Process for removing loose powder particles from interior passages of a body
JP2853497B2 (ja) * 1993-01-12 1999-02-03 ソニー株式会社 光学的造形装置
US5296335A (en) * 1993-02-22 1994-03-22 E-Systems, Inc. Method for manufacturing fiber-reinforced parts utilizing stereolithography tooling
KR970011573B1 (ko) * 1993-04-14 1997-07-12 마쯔시다덴기산교 가부시기가이샤 3차원 조형방법
US5362427A (en) * 1993-05-10 1994-11-08 Mitchell Jr Porter H Method and apparatus for manufacturing an article using a support structure for supporting an article during manufacture therefor
US5391460A (en) * 1993-07-12 1995-02-21 Hughes Aircraft Company Resin composition and process for investment casting using stereolithography
US5398193B1 (en) * 1993-08-20 1997-09-16 Alfredo O Deangelis Method of three-dimensional rapid prototyping through controlled layerwise deposition/extraction and apparatus therefor
US5496682A (en) * 1993-10-15 1996-03-05 W. R. Grace & Co.-Conn. Three dimensional sintered inorganic structures using photopolymerization
US5490962A (en) * 1993-10-18 1996-02-13 Massachusetts Institute Of Technology Preparation of medical devices by solid free-form fabrication methods
US5393482A (en) * 1993-10-20 1995-02-28 United Technologies Corporation Method for performing multiple beam laser sintering employing focussed and defocussed laser beams
DE4339550C1 (de) * 1993-11-19 1995-09-07 Max Planck Gesellschaft Verfahren und Einrichtung zum Erzeugen dreidimensionaler Strukturen durch optisch stimulierte Materialabscheidung aus einer fluiden Verbindung
US5879489A (en) * 1993-11-24 1999-03-09 Burns; Marshall Method and apparatus for automatic fabrication of three-dimensional objects
SE502020C2 (sv) * 1994-02-03 1995-07-17 Gambro Ab Apparat för peritonealdialys
US5491643A (en) * 1994-02-04 1996-02-13 Stratasys, Inc. Method for optimizing parameters characteristic of an object developed in a rapid prototyping system
BE1008128A3 (nl) * 1994-03-10 1996-01-23 Materialise Nv Werkwijze voor het ondersteunen van een voorwerp vervaardigd door stereolithografie of een andere snelle prototypevervaardigingswerkwijze en voor het vervaardigen van de daarbij gebruikte steunkonstruktie.
US6206672B1 (en) * 1994-03-31 2001-03-27 Edward P. Grenda Apparatus of fabricating 3 dimensional objects by means of electrophotography, ionography or a similar process
US5503785A (en) * 1994-06-02 1996-04-02 Stratasys, Inc. Process of support removal for fused deposition modeling
US5705116A (en) * 1994-06-27 1998-01-06 Sitzmann; Eugene Valentine Increasing the useful range of cationic photoinitiators in stereolithography
US5520715A (en) * 1994-07-11 1996-05-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Directional electrostatic accretion process employing acoustic droplet formation
SE9403165D0 (sv) * 1994-09-21 1994-09-21 Electrolux Ab Sätt att sintra föremål
DE4436695C1 (de) * 1994-10-13 1995-12-21 Eos Electro Optical Syst Verfahren zum Herstellen eines dreidimensionalen Objektes
US5593531A (en) * 1994-11-09 1997-01-14 Texas Instruments Incorporated System, method and process for fabrication of 3-dimensional objects by a static electrostatic imaging and lamination device
US5590454A (en) * 1994-12-21 1997-01-07 Richardson; Kendrick E. Method and apparatus for producing parts by layered subtractive machine tool techniques
US5482659A (en) * 1994-12-22 1996-01-09 United Technologies Corporation Method of post processing stereolithographically produced objects
JPH08183820A (ja) * 1994-12-28 1996-07-16 Takemoto Oil & Fat Co Ltd 光学的立体造形用樹脂及び光学的立体造形用樹脂組成物
US5598200A (en) * 1995-01-26 1997-01-28 Gore; David W. Method and apparatus for producing a discrete droplet of high temperature liquid
US5728345A (en) * 1995-03-03 1998-03-17 General Motors Corporation Method for making an electrode for electrical discharge machining by use of a stereolithography model
DE19511772C2 (de) * 1995-03-30 1997-09-04 Eos Electro Optical Syst Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes
US5733497A (en) * 1995-03-31 1998-03-31 Dtm Corporation Selective laser sintering with composite plastic material
US5596504A (en) * 1995-04-10 1997-01-21 Clemson University Apparatus and method for layered modeling of intended objects represented in STL format and adaptive slicing thereof
DE19514740C1 (de) * 1995-04-21 1996-04-11 Eos Electro Optical Syst Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes
US5596503A (en) * 1995-05-12 1997-01-21 Flint; Mary L. Process for making a doll's head looking like the head of a living person
US6270335B2 (en) * 1995-09-27 2001-08-07 3D Systems, Inc. Selective deposition modeling method and apparatus for forming three-dimensional objects and supports
US5943235A (en) * 1995-09-27 1999-08-24 3D Systems, Inc. Rapid prototyping system and method with support region data processing
US5725586A (en) * 1995-09-29 1998-03-10 Johnson & Johnson Professional, Inc. Hollow bone prosthesis with tailored flexibility
US5705117A (en) * 1996-03-01 1998-01-06 Delco Electronics Corporaiton Method of combining metal and ceramic inserts into stereolithography components
US5730817A (en) * 1996-04-22 1998-03-24 Helisys, Inc. Laminated object manufacturing system
JPH10166460A (ja) * 1996-12-06 1998-06-23 Toyota Motor Corp 積層造形方法及び積層造形装置
US5943234A (en) * 1996-12-13 1999-08-24 Atser Systems, Inc. Paving mixture design system
US5866058A (en) * 1997-05-29 1999-02-02 Stratasys Inc. Method for rapid prototyping of solid models
US5878664A (en) * 1997-07-15 1999-03-09 Hartka; Theodore J Printing system and method
US6025110A (en) * 1997-09-18 2000-02-15 Nowak; Michael T. Method and apparatus for generating three-dimensional objects using ablation transfer
US6022207A (en) * 1998-01-26 2000-02-08 Stratasys, Inc. Rapid prototyping system with filament supply spool monitoring
US6028410A (en) * 1999-01-11 2000-02-22 Stratasys, Inc. Resonance detection and resolution
GB9927127D0 (en) * 1999-11-16 2000-01-12 Univ Warwick A method of manufacturing an item and apparatus for manufacturing an item
US6340528B1 (en) * 2000-01-19 2002-01-22 Xerox Corporation Crosslinkable polymer compositions for donor roll coatings
US6558606B1 (en) * 2000-01-28 2003-05-06 3D Systems, Inc. Stereolithographic process of making a three-dimensional object
US6780368B2 (en) * 2001-04-10 2004-08-24 Nanotek Instruments, Inc. Layer manufacturing of a multi-material or multi-color 3-D object using electrostatic imaging and lamination
GB2378151A (en) * 2001-07-31 2003-02-05 Dtm Corp Fabricating a three-dimensional article from powder
US7435072B2 (en) * 2003-06-02 2008-10-14 Hewlett-Packard Development Company, L.P. Methods and systems for producing an object through solid freeform fabrication

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011504819A (ja) * 2007-07-04 2011-02-17 エンビジョンテク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 三次元物体を生産するプロセスおよびデバイス
US10220565B2 (en) 2007-07-04 2019-03-05 Envisiontec Gmbh Process and device for producing a three-dimensional object
JP2013507275A (ja) * 2009-10-13 2013-03-04 ブループリンター・アンパルトセルスカブ 3次元プリンタ
JP2015110341A (ja) * 2009-10-13 2015-06-18 ブループリンター・アンパルトセルスカブBlueprinter Aps 3次元プリンタ
JP2015096315A (ja) * 2013-11-15 2015-05-21 株式会社東芝 三次元造形ヘッド、及び三次元造形装置
US9776363B2 (en) 2013-11-15 2017-10-03 Kabushiki Kaisha Toshiba Three-dimensional modeling head and three-dimensional modeling device
CN103639412A (zh) * 2013-12-30 2014-03-19 王利民 一种3d打印机
CN104260342A (zh) * 2014-08-25 2015-01-07 丹阳惠达模具材料科技有限公司 一种用于3d打印装备的高温预热装置
JP2018521875A (ja) * 2015-04-30 2018-08-09 ザ エクスワン カンパニー 3次元プリンタ用の粉末リコータ
JP2019196000A (ja) * 2015-04-30 2019-11-14 ザ エクスワン カンパニー 3次元プリンタ用の粉末リコータ
JP2017177594A (ja) * 2016-03-30 2017-10-05 株式会社松浦機械製作所 サポート及びワーク並びに当該サポートの造形方法

Also Published As

Publication number Publication date
EP1735133B1 (en) 2011-07-13
WO2005089463A2 (en) 2005-09-29
EP1735133A2 (en) 2006-12-27
US7261542B2 (en) 2007-08-28
US20100244333A1 (en) 2010-09-30
WO2005089463A3 (en) 2006-12-07
US20080036117A1 (en) 2008-02-14
EP1735133A4 (en) 2010-02-24
US20050208168A1 (en) 2005-09-22
ATE516128T1 (de) 2011-07-15

Similar Documents

Publication Publication Date Title
JP2007529349A (ja) 映像化されたレイヤを使用する3次元プリントのための装置
US8119053B1 (en) Apparatus for three dimensional printing using imaged layers
JP6178492B2 (ja) レーザ焼結システムのためのシュート
US10710307B2 (en) Temperature control for additive manufacturing
US8708685B2 (en) Imaging assembly
JP6302532B2 (ja) 直接金属電子写真積層造形方法
US20170021418A1 (en) Additive manufacturing with pre-heating
CN105939835B (zh) 增材制造装置和用于运行增材制造装置的方法
EP2451630B1 (en) Imaging system
US11117194B2 (en) Additive manufacturing having energy beam and lamp array
US10674101B2 (en) Imaging devices for use with additive manufacturing systems and methods of imaging a build layer
JP2023502502A (ja) 熱管理用の熱源を備えた粉末床融合リコーター
WO2019217438A1 (en) Temperature control for additive manufacturing
US10800154B2 (en) Hybrid fusion system
EP3176647B1 (en) Direct metal electrophotography additive manufacturing machine
WO2021003165A1 (en) Selective layer deposition based additive manufacturing system using laser nip heating
WO2023056034A1 (en) Transfusion pressure control for three-dimensional manufacturing
TW202133970A (zh) 雷射燒結三維列印熱補償系統與方法