JP2007527610A - 電気試験データに基づいてゲート絶縁層の特性および特徴を制御するための方法、これを実施するためのシステム - Google Patents

電気試験データに基づいてゲート絶縁層の特性および特徴を制御するための方法、これを実施するためのシステム Download PDF

Info

Publication number
JP2007527610A
JP2007527610A JP2006518625A JP2006518625A JP2007527610A JP 2007527610 A JP2007527610 A JP 2007527610A JP 2006518625 A JP2006518625 A JP 2006518625A JP 2006518625 A JP2006518625 A JP 2006518625A JP 2007527610 A JP2007527610 A JP 2007527610A
Authority
JP
Japan
Prior art keywords
insulating layer
gate insulating
electrical test
memory device
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006518625A
Other languages
English (en)
Other versions
JP4960088B2 (ja
JP2007527610A5 (ja
Inventor
ジェイ. ソンダーマン トーマス
ラル ピレインダー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Micro Devices Inc
Original Assignee
Advanced Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Devices Inc filed Critical Advanced Micro Devices Inc
Publication of JP2007527610A publication Critical patent/JP2007527610A/ja
Publication of JP2007527610A5 publication Critical patent/JP2007527610A5/ja
Application granted granted Critical
Publication of JP4960088B2 publication Critical patent/JP4960088B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本発明は、一般に、電気試験データ(46)に基づいてゲート絶縁層(16)の特性および特徴を制御する各種方法、ならびにこれを実施するためのシステムを対象としている。例示的な一実施形態では、上記方法は、少なくとも1つの半導体デバイスに少なくとも1つの電気試験を実施するステップと、以降形成する半導体デバイスに少なくとも1つのゲート絶縁層(16)を形成するために実施する少なくとも1つのプロセス操作の少なくとも1つのパラメータを、電気試験から得られた電気データに基づいて決定するステップと、決定されたパラメータを含む少なくとも1つのプロセス操作を実施して、ゲート絶縁層(16)を形成するステップとを有する。

Description

本発明は、一般に半導体製造技術に関し、より詳細には、電気試験データに基づいてゲート絶縁層の特性および特徴を制御する各種方法、ならびにこれを実施するためのシステムに関する。
半導体産業では、マイクロプロセッサやメモリデバイスなどの集積回路デバイスの動作速度の高速化が絶えず追求されている。この傾向は、消費者がより高速に動作するコンピュータおよび電子デバイスを求めていることにより一層拍車が掛かっている。高速化に対するニーズを受けて、トランジスタなどの半導体デバイスが絶えず微細化されてきた。つまり、典型的な電界効果トランジスタ(FET)のチャネル長、接合深さ、ゲート絶縁部の厚さなどの多くの要素が微細化されている。例えば、他の条件が全て同じであれば、トランジスタのチャネル長が短いほど、あるいはゲート絶縁層の膜厚が薄いほど、トランジスタの動作が高速になる。このように、典型的なトランジスタの各種要素の寸法すなわちスケールを微細化して、トランジスタやそのトランジスタを搭載した集積回路デバイスの全体の速度の向上が絶えず進められている。
消去可能書込み可能読出し専用メモリ(erasable programmable read-only memories:EPROM)、電気的消去可能書込み可能読出し専用メモリ(electrically erasable programmable read-only memories:EEPROM)、または一括消去型消去可能書込み可能読出し専用メモリ(flash erasable programmable read-only memories:FEPROM)などのメモリデバイスは、名前のとおり消去可能である。このような消去可能なメモリセルは、デジタル携帯電話、デジタルカメラ、LANスイッチ、ノートパソコン用のカードなど、様々な機器に使用されている。メモリセルは、電気的に絶縁されたフローティングゲートに電荷を蓄積させる(これは「オン」状態を表す)ことで動作し、このフローティングゲートがトランジスタに組み込まれている。この蓄積電荷によって、トランジスタの挙動が影響を受け、記憶素子の読出しが可能となる。このようなメモリセルが「オン」状態から「オフ」状態に切り替わるスイッチング速度は、フローティングゲートから電荷を逃がす速度(すなわち消去速度)によって部分的に制限される。消去速度が上がればスイッチング速度が高速化するため、この種のメモリデバイスの消去速度を上げると共に、メモリセル内の消去の均一性を上げるための努力が続けられている。
フラッシュメモリセルは、通常、ソース領域、ドレイン領域、トンネル酸化物層、フローティングゲート、酸化物の絶縁層、窒化シリコンの層、酸化物の別の層、およびスタックゲート構造内でフローティングゲートの上部に配置された制御ゲートを有する。フローティングゲートは、通常、多結晶シリコン(すなわち「ポリシリコン」)を含み、薄いゲート絶縁層(通常は酸化シリコンから形成される)によって、下層の半導体基板から電気的に絶縁されている。量子力学的トンネル現象によって、電荷がゲート絶縁層を越えて移動するため、このゲート絶縁層は「トンネル酸化物」層と呼ばれることが多い。このようなトンネル酸化物層は、通常、膜厚が約100Åである。電荷のトラップまたはリークによるデータの損失を防ぎつつ、トンネル現象によって読込み及び書込みが確実に行われるようにするには、トンネル酸化物層の特性を厳密に制御する必要がある。制御ゲートは、フローティングゲートの上部に配置されており、酸化物−窒化物−酸化物(ONO)スタックなどの貯蔵誘電体層によって、フローティングゲートから電気的に絶縁されている。
フローティングゲートに電荷を蓄積させることにより、メモリセルに書込みが行われる。この書込みは、制御ゲートに高い正電圧(約12V)を印加し、ドレイン−ソース間に高いバイアス電圧(約45V)を印加することで、ホットエレクトロン注入により行われる。この制御ゲート電圧によって、ソース−ドレイン間に反転領域が形成され、ドレインのバイアス電圧によってソースからドレインに電子が加速される。この電子の一部が、トンネル酸化物のバリアの高さを越え、フローティングゲートに移動するのに充分なエネルギーをもつようになる。このため、このような電子を集めて蓄積し、「オン」状態を表すようにすることによって、フローティングゲートに書込みが行われる。
フローティングゲートにトラップされた負荷電によって、チャネルの正極性が強まり、このため導電率が低下する。その結果、電荷が蓄積されたセルのスレッショルド電圧は、電荷が蓄積されていないセルよりも高くなる。このため、制御ゲートに所定の電圧を印加すると、不揮発性メモリセルは、フローティングゲートに電荷が蓄積されていない場合には導通するが、フローティングゲートに電荷が蓄積されている場合には導通しない。このため、所定のしきい電圧をかけたときに不揮発性メモリセルが導通するかどうかに基づき、論理ローまたは論理ハイのいずれかが与えられる。
フローティングゲートから電荷を逃がすには、不揮発性メモリセルに紫外光を照射する。紫外光により、トンネル酸化物層のバリアを越えるのに十分なエネルギーが、フローティングゲートに蓄積された電子に与えられる。しかし、この工程は比較的時間がかかる。この工程の完了に要する時間を短縮するために、消去中に、不揮発性メモリアレイの温度を上げて、紫外光からのエネルギーにエネルギーが追加される。しかし、高温を使用すると、不揮発性メモリアレイが作製されている比較的薄いウェハの破損の発生率が上昇してしまう。
フラッシュメモリデバイスは、EEPROM(電気的消去可能書込み可能読出し専用メモリ)の一種である。「フラッシュ」との用語は、メモリをブロック単位で消去可能であることを示している。ほかの非揮発性メモリデバイスと同様に、フラッシュメモリデバイスは、通常、フローティングゲートまたは電荷トラップ誘電体を有するトランジスタに、データを表す電荷を蓄積している。蓄積された電荷により、トランジスタのスレッショルド電圧が影響を受ける。例えば、nチャネルフローティングゲートトランジスタでは、フローティングゲート電極に電子が蓄積されると、トランジスタのスレッショルド電圧が上昇する。制御ゲート、ソースおよびドレインに適切な電圧を印加したときに、トランジスタのソース領域とドレイン領域の間に電流が流れるかどうかによって、蓄積電荷の有無を調べることができる。
上記から、ゲート絶縁層の製造、およびその特性を制御することは、トランジスタやメモリデバイスなどの半導体デバイスを製造するうえで非常に重要な側面であるという点が理解されよう。製造業者が所望の特性および特徴のゲート絶縁層を作製するのを支援する方法および装置が所望されている。
本発明は、上記の問題の一部または全てを解決するか、少なくとも軽減させるための方法ならびにシステムを対象とするものである。
本発明は、一般に、電気試験データに基づいてゲート絶縁層の特性および特徴を制御する各種方法、ならびにこれを実施するためのシステムを対象としている。例示的な一実施形態では、上記方法は、少なくとも1つの半導体デバイスに少なくとも1つの電気試験を実施するステップと、以降形成する半導体デバイスに少なくとも1つのゲート絶縁層を形成するために実施する少なくとも1つのプロセス操作の少なくとも1つのパラメータを、電気試験から得られた電気データに基づいて決定するステップと、決定されたパラメータを含む1つのプロセス操作を実施して、以降形成する半導体デバイスにゲート絶縁層を形成するステップとを有する。
例示的な別の実施形態では、上記方法は、少なくとも1つのメモリデバイスに少なくとも1つの電気試験を実施するステップと、以降形成するメモリデバイスに少なくとも1つのゲート絶縁層を形成するために実施する少なくとも1つのプロセス操作の少なくとも1つのパラメータを、電気試験から得られた電気データに基づいて決定するステップと、決定されたパラメータを含む1つのプロセス操作を実施して、以降形成するメモリデバイスにゲート絶縁層を形成するステップとを有する。
例示的な更に別の実施形態では、上記方法は、少なくとも1つのトランジスタに少なくとも1つの電気試験を実施するステップと、以降形成するトランジスタに少なくとも1つのゲート絶縁層を形成するために実施する少なくとも1つのプロセス操作の少なくとも1つのパラメータを、電気試験から得られた電気データに基づいて決定するステップと、決定されたパラメータを含む1つのプロセス操作を実施して、以降形成するトランジスタにゲート絶縁層を形成するステップとを有する。
例示的な更に別の実施形態では、上記方法は、少なくとも1つのメモリデバイスに少なくとも1つの電気試験を実施して、メモリデバイスに実行する書込みサイクルの時間を決定するステップと、以降形成するメモリデバイスに少なくとも1つのゲート絶縁層を形成するために実行される少なくとも1つのプロセス操作の少なくとも1つのパラメータを、決定された書込みサイクルの時間に基づいて決定するステップと、決定されたパラメータを含むプロセス操作を実施して、以降形成するメモリデバイスにゲート絶縁層を形成するステップとを有する。
例示的な更に別の実施形態では、上記方法は、少なくとも1つのメモリデバイスに少なくとも1つの電気試験を実施して、メモリデバイスに実行する消去サイクルの時間を決定するステップと、以降形成するメモリデバイスに少なくとも1つのゲート絶縁層を形成するために実行される少なくとも1つのプロセス操作の少なくとも1つのパラメータを、決定された消去サイクルの時間に基づいて決定するステップと、決定されたパラメータを含むプロセス操作を実施して、以降形成するメモリデバイスにゲート絶縁層を形成するステップとを有する。
添付の図面と併せて下記の説明を読めば、本発明が理解されるであろう。添付の図面においては、同一の参照符号は同じ要素を参照している。
本発明は、種々の変形および代替形態を取り得るが、その特定の実施形態が、図面に例として図示され、ここに詳細に記載されているに過ぎない。しかし、この特定の実施形態の詳細な説明は、本発明を開示した特定の形態に限定することを意図するものではなく、反対に、添付の特許請求の範囲によって規定される本発明の趣旨ならびに範囲に含まれる全ての変形例、均等物および代替例を含むことを理解すべきである。
本発明の例示的な実施形態を下記に記載する。簡潔を期すために、実際の実装の特徴を全て本明細書に記載することはしない。当然、実際の実施形態の開発においては、システム上の制約及びビジネス上の制約に適合させるなど、開発の具体的な目的を達成するために、実装に固有の判断が数多く必要とされ、これは実装によって変わるということが理解される。更に、この種の開発作業は複雑かつ時間がかかるものであるが、本開示の利益を受ける当業者にとって日常的な作業であるということが理解されよう。
添付の図面を参照して本発明を説明する。半導体デバイスの各種構造およびドープ領域は、非常に正確かつ鋭利な構成およびプロファイルを有するものとして図示されているが、これら領域および構造が実際には正確に図面に記載されていない可能性があることを当業者は理解する。更に、図面に記載した各種フィーチャおよび注入領域の相対的な寸法は、製造されたデバイスでのこれらフィーチャおよび領域のサイズよりも大きく記載されていることもあれば、小さく記載されていることもある。それにも関わらず、本発明の例示的な例を記載および説明するために、添付の図面を添付する。本明細書において使用される語句は、関連技術の当業者が理解している意味と同じ意味に使用されていると理解および解釈すべきである。本明細書においてある語句が矛盾なく用いられている場合、その語句が特別な定義を有する、すなわち通常かつ慣用的に用いられ、当業者が理解している意味と異なる定義を有することはない。ある語句が特別な意味を有する、すなわち当業者の理解とは異なる意味に用いられる場合は、そのような特別な定義は本明細書に明示的に記載して、その特別な定義を直接的かつ明確に示す。
一般に、本発明は、電気試験データに基づいてゲート絶縁層の特性および特徴を制御する各種方法、ならびにこれを実施するためのシステムを対象としている。本願をすべて読めば当業者に容易にわかるように、本発明は、メモリデバイス、トランジスタなど、様々な種類の半導体デバイスのゲート絶縁層の形成に関連して使用することができる。このため、本発明は、添付の特許請求の範囲に明記されている場合を除き、ここに開示した実施形態に限定されるとみなすべきではない。説明のみを目的として、メモリセル用のゲート絶縁層の製作に関して本発明を開示する。
図1は、本発明の例示的な一実施形態に関連して使用されうる例示的なメモリセル10の一部を示す断面図である。本図に示すように、メモリセル10は、半導体基板12の上部の、基板12に形成された浅部トレンチアイソレーション領域14同士の間に形成されている。メモリセル10は、一般に、複数の材料の層を有する膜積層体11を有する。特に例示的な一実施形態では、膜積層体11は、ゲート絶縁層16(「トンネル酸化物層」と呼ばれることもある)、フローティングゲート18、中間絶縁層20(一般に、酸化物の層20A、窒化物の層20B、酸化物の層20Cを有する)(いわゆるONOスタック)、および制御ゲート22を有する。中間絶縁層20は、「インターポリ」絶縁層と呼ばれることもある。メモリセル10は、側壁スペーサ24、ソース領域26A、ドレイン領域26B、および例えば窒化シリコンを含むキャッピング絶縁層30を更に有する。図1には図示していないが、誘電体層(図示せず)を1層以上、キャッピング絶縁層30の上部に形成してもよい。その後、メモリセル10の各種構成要素への電気的接続を取るために、複数の導電性コンタクト(図示せず)が誘電体層に形成されうる。また、他の構造を設けてメモリセル10の形成を完成させてもよい。しかし、本発明を不明瞭にしないように、このような構造を図面に図示し、ここに記載することはしない。
フラッシュメモリ製品などの代表的なメモリデバイスは、行と列に構成された数百万個のメモリセル10を有しうる。セル10の行位置および列位置に基づいてセルにアクセスすることによって、個々のメモリセル10またはメモリセルの集合に対し、読込み/書込み動作が実行されうる。このようなアクセス技術は、当業者に公知であるため、ここにこれ以上詳しく記載しない。
図1に示す例示的なメモリセル10は各種の公知技術によって形成でき、様々な構成要素を各種の公知技術によって形成できる。例えば、ゲート絶縁層16は、熱成長二酸化シリコンの層を含みうる。フローティングゲート18および制御ゲート22は、ドープまたは未ドープのポリシリコンを含みうる。側壁スペーサ24は、二酸化シリコン、窒化シリコンなどの各種材料を含みうる。図1には図示していないが、代表的なメモリセルにほかの材料層を形成してもよいことを理解されたい。例えば、裏面反射防止コーティング層(図示せず)や別の材料の層(図示せず)を、制御ゲート22の上面23の上部に形成してもよい。
図2は、従来技術による例示的なトランジスタ32の断面図である。本図に示すように、トランジスタ32は、ゲート絶縁層16、ゲート電極33、側壁スペーサ24およびソース/ドレイン領域34を有する。このトランジスタは、基板12の、分離領域14同士の間に形成されている。
本発明は、メモリデバイス、トランジスタ、マイクロプロセッサ、特定用途向け集積回路などの、様々な種類の半導体デバイス用のゲート絶縁層の形成に関連して使用することができる。特定の用途に応じて、ゲート絶縁層16の物理的性質(膜厚など)が変わりうる。また、ゲート絶縁層16は、用途に応じて、二酸化シリコンおよび窒化シリコンなどの様々な材料を含みうる。ゲート絶縁層16は、熱成長プロセス、堆積プロセスなどの各種プロセスによって形成できる。当然、製造する製品の種類と、その目的の用途に応じて、ゲート絶縁層16の電気特性および物理特性が変わりうる。このため、ここに記載し説明するゲート絶縁層16の例示的な実施形態と、そのような層の製造方法とは、添付の特許請求の範囲に明記されている場合を除き、本発明を限定するものとみなすべきではない。
一態様において、本発明は、各種電気試験データに基づいて、絶縁層16の1つ以上の特性を制御することを対象としている。図3は、本発明の一実施形態に従って使用されうる例示的なシステム40の模式図である。電気試験装置42を使用して、メモリデバイス、トランジスタなどの1つ以上の半導体デバイス44の電気試験データ46が取得され、この電気試験データを使用して、後続のデバイスに形成するゲート絶縁層16の1つ以上の特性またはパラメータが制御されうる。例示のみを目的として例を挙げると、図3の半導体デバイス44は、複数のゲートスタック11が形成されたものとして図示されている。例えば、図3に示すように、電気試験データ46が制御装置48に提供されうる。これを受けて、制御装置48は、以降形成するトランジスタ、メモリセルなどのデバイスに、ゲート絶縁層16を製造するのに使用されうるプロセス装置50の1つ以上のパラメータを決定、制御または調整しうる。図3に示す例示的な実施形態では、プロセス装置50が炉50Aと堆積装置50Bとして例示されている。特定の用途(ゲート絶縁層16の所望の特性および/または材料など)に応じて、制御されうるプロセス装置50の種類が変わりうる。プロセス装置50は、シングルチャンバ装置であってもマルチチャンバ装置であってもよい。
電気試験装置42は、ここに記載した電気試験を実施することができる装置であれば、どのような種類の装置であってもよい。また、電気試験装置42の複数の要素を使用して、半導体デバイス44の電気試験を実施してもよいため、電気試験装置42は、必ずしも1台の装置でなくてもよい。例えば、このような電気試験装置42は、例えば、四針プローブを備えていてもよい。
電気試験装置42を使用して、半導体デバイス44の各種電気特性に関して、電気試験データ46が収集されうる。例えば、電気試験装置42を使用して、降伏電圧(BV)、スレッショルド電圧(V)、蓄積−破壊(charge-to-rupture)特性(QDTR)、静電荷(state charge)(Q)、界面電荷(Qit)、トラップ電荷(Qat)、表面電荷(Qss)、書込みサイクルタイムおよび/または消去サイクルタイムに関してデータが収集されうる。場合によっては、上に記載した様々な電気特性を複数まとめて、1枚のウェハまたは複数のウェハの電気試験データ46を表す1つ以上の値(metrics)(ウェハレベルの信頼性の値など)が取得されうる。また、このような電気試験データ46の集合の平均値を求めたり、別の統計学的操作を行ってから、この電気試験データ46に基づいて何らかの制御動作を行ってもよい。電気試験は、ウェハの処理中に行っても(インライン測定)、あるいは製造完了後にラインの終点で行ってもよい。
制御装置48は、この電気試験データ46に基づいて、以降形成する半導体デバイス44に絶縁層16を形成するのに使用するプロセス装置50の少なくとも1台において実施されるプロセス操作の1つ以上のパラメータを決定、制御または調整しうる。例えば、このようなプロセス操作は、堆積プロセス(PECVD、CVD、LPCVD等)または熱成長プロセスなどでありえるが、これらに限定されない。決定、制御または調整されうるプロセスパラメータは、温度、圧力、時間、処理用ガスの組成または流量、処理用液体の組成または流量、電力レベルなどでありえるが、これらに限定されない。
例えば、電気試験データ46により、降伏電圧または蓄積−破壊(charge-to-rupture)を示す値が許容水準を下回っていることが示されるとする。このような状況では、制御装置48は、以降形成するデバイスにゲート絶縁層を形成するために実施するプロセス操作の1つ以上のパラメータを制御または調整するように動作しうる。例えば、このような状況で、制御装置48は、以前作製したゲート絶縁層16と比べてゲート絶縁層16の膜厚を増やすために、以降形成するデバイスにゲート絶縁層16を形成するために実施する、炉50Aで実施する熱成長プロセスの処理時間を増やすように動作しうる。制御可能なほかのプロセス変数には、温度、プロセスガス流量、圧力などがあるが、これらに限定されない。その後、決定または調整されたパラメータを使用して、プロセス装置50でプロセス操作が実施され、更なる半導体デバイスにゲート絶縁層16が形成される。
ほかの例を挙げると、電気試験データにより、メモリデバイスまたはセルの書込みサイクルの時間が長過ぎるかあるいは許容可能な仕様を越えていることが示される場合、以降形成するメモリデバイスのゲート絶縁層の膜厚を減らして、以降形成するデバイスの書込みサイクルタイムが短縮されうる。同様に、メモリセルまたはデバイスの消去サイクルの時間が長過ぎると判定された場合、今後形成するメモリセルの消去サイクルタイムを短縮するため、以降形成するメモリデバイスのゲート絶縁層の膜厚を減らしてもよい。また、本発明は、ゲート絶縁層の膜厚を増やすことが望ましい状況が生じた場合にも、そのような状況で使用することができる。決定された書込みサイクルの時間または消去サイクルの時間に基づいて、以降形成するメモリセルにゲート絶縁層を形成する際に使用するプロセスパラメータを様々に調整して、ゲート絶縁層の膜厚を所望のように調整することができる。
電気試験データ46に基づいて1つ以上のプロセスの調整を行うことによって、メモリデバイス、トランジスタなどの半導体デバイスを、完成後に所望の電気性能特性を示しやすいように製造することができる。また、ゲート絶縁層16の特性が電気試験データに基づいて制御されるため、完成したデバイスが、製品のエンドユーザにとって重要な性能基準(高速な消去サイクルタイムなど)を満たす可能性が高くなる。
図に示した実施形態では、制御装置48は、ここに記載した機能を実行するため、ソフトウェアによってプログラムされているコンピュータである。また、制御装置48について記載した機能は、半導体製造施設に広く存在する1台以上の制御装置によって実行されうる。例えば、制御装置48は、半導体製造施設の全体にわたって、またはその一部で制御処理操作に使用されている工場レベルの制御装置であり得る。あるいは、制御装置48は、製造設備の一部分またはセルのみを制御する下位のレベルのコンピュータであってもよい。また、制御装置48はスタンドアロンの装置であっても、プロセス装置50に組み込まれていてもよい。しかし、当業者が理解しているように、特定の機能を実行するように設計されたハードウェア制御装置(図示せず)を使用してもよい。
本発明の一部とその詳細な説明は、ソフトウェア、またはコンピュータメモリ内部でのデータビットに対する操作のアルゴリズムおよび記号的表記の形で提示される。このような記述および表現は、当業者が、自身の作業の内容を他の当業者に効率的に伝えるために用いられているものである。本明細書において使用する「アルゴリズム」との用語は、通常用いられているのと同義であり、所望の結果に導くための自己矛盾のないシーケンスのことを指す。ステップとは、物理量の物理的操作を必要とするステップである。この物理量は通常、記憶、転送、結合、比較などの操作が可能な光学信号、電気信号または磁気信号の形を取るが、必ずしもこれらに限定されない。主に公共の利用に供するという理由で、これらの信号を、ビット、値、要素、記号、文字、語(term)、数字などと呼べば、時として利便性が高いことが知られている。
しかし、上記の全用語ならびに類似の用語は、適切な物理量に対応しており、この物理量に適用される簡便な標識に過ぎないという点を留意すべきである。特段の断りのない限り、もしくは記載内容から明らかな場合、「処理」、「演算」、「計算」、「判定」、「表示」などの用語は、コンピュータシステムのレジスタ内およびメモリ内で物理的電子的量として表されるデータを、コンピュータシステムのメモリ、レジスタ等の情報の記憶装置、伝送装置または表示装置内で同様に物理量として表される他のデータへと操作および変換するコンピュータシステムないし類似の電子演算装置の動作および処理を指す。
記載のような制御装置48の機能の一部を実行するように適合可能なソフトウェア・システムの例に、ケー・エル・エー・テンコール・インコーポレイテッド(KLA Tencor, Inc)が提唱しているカタリスト(Catalyst)システムがある。カタリストシステムは、半導体製造装置材料協会(SEMI:Semiconductor Equipment and Materials International)のコンピュータ統合生産(CIM:Computer Integrated Manufacturing)フレームワークに準拠したシステム技術を用いており、高度プロセス制御(APC)フレームワークをベースとしている。CIM(SEMI E81−0699:CIMフレームワークドメインアーキテクチャ暫定仕様)およびAPC(SEMI E93−0999:CIMフレームワーク高度プロセス制御コンポーネント暫定仕様)の仕様は、SEMIから公的に入手可能である。
本発明は、一般に、電気試験データに基づいてゲート絶縁層の特性および特徴を制御する各種方法、ならびにこれを実施するためのシステムを対象としている。例示的な一実施形態では、上記方法は、少なくとも1つの半導体デバイスに少なくとも1つの電気試験を実施するステップと、以降形成する半導体デバイスに少なくとも1つのゲート絶縁層を形成するために実施する少なくとも1つのプロセス操作の少なくとも1つのパラメータを、電気試験から得られた電気データに基づいて決定するステップと、決定されたパラメータを含む少なくとも1つのプロセス操作を実施して、ゲート絶縁層を形成するステップと、を有する。一部の実施形態では、半導体デバイスは、フラッシュメモリ製品などのメモリデバイスである。別の実施形態では、半導体デバイスはトランジスタである。ゲート絶縁層は、熱成長プロセスまたは堆積プロセスなどの各種プロセスによって形成されうる。
上記に記載した特定の実施形態は例に過ぎず、本発明は、本開示の教示の利益を得る当業者にとって自明の、異なるが均等の別法によって変更および実施されてもよい。例えば、上記のプロセス工程を記載した順序とは異なる順序で実行してもよい。更に、ここに記載した構成または設計の詳細が、添付の特許請求の範囲以外によって限定されることない。このため、上記に記載した特定の実施形態を変形または変更することが可能であり、このような変形例は全て本発明の範囲ならびに趣旨に含まれることが意図されることが明らかである。したがって、ここに保護を請求する対象は、添付の特許請求の範囲に記載したとおりである。
従来技術による例示的なメモリセルの一部分の断面図である。 従来技術によるトランジスタの一部分の断面図である。 ここに記載した様々な発明の方法の一つ以上を実施するために使用できるシステムの例示的な一実施形態の略図である。

Claims (10)

  1. 少なくとも1つの半導体デバイスに少なくとも1つの電気試験を実施するステップと、
    以降形成する半導体デバイスに少なくとも1つのゲート絶縁層(16)を形成するために実施する少なくとも1つのプロセス操作の少なくとも1つのパラメータを、前記少なくとも1つの電気試験から得られた電気データ(46)に基づいて決定するステップと、
    決定された前記少なくとも1つのパラメータを含む前記少なくとも1つのプロセス操作を実施して、前記以降形成する半導体デバイスに前記少なくとも1つのゲート絶縁層(16)を形成するステップとを有する方法。
  2. 前記半導体デバイスは、フラッシュメモリデバイス、特定用途向け集積回路およびマイクロプロセッサの少なくとも1つである請求項1に記載の方法。
  3. 前記少なくとも1つの半導体デバイスに前記少なくとも1つの電気試験を実施するステップは、降伏電圧、スレッショルド電圧、静電荷、界面電荷、トラップ電荷、表面電荷、書込みサイクルタイムおよび消去サイクルタイムの少なくとも1つを決定するために、前記少なくとも1つの半導体デバイスに前記少なくとも1つの電気試験を実施するステップを有する請求項1に記載の方法。
  4. 前記半導体デバイスは、ゲート絶縁層(16)と、前記ゲート絶縁層(16)の上部に配置されたゲート電極(33)とを有するトランジスタ(32)を少なくとも1つ有する請求項1に記載の方法。
  5. 前記半導体デバイスは、ゲート絶縁層(16)、前記ゲート絶縁層(16)の上部に配置されたフローティングゲート層(18)、前記フローティングゲート層(18)の上部に配置された中間絶縁層(20)、および前記中間絶縁層(20)の上部に配置された制御ゲート層(22)を有するメモリデバイス(10)を有する請求項1に記載の方法。
  6. 前記少なくとも1つのプロセス操作は、堆積プロセスおよび熱成長プロセスの少なくとも1つを含む請求項1に記載の方法。
  7. 前記少なくとも1つのパラメータは、温度、圧力、時間、プロセスガス流量、プロセスガス組成、液体流量、液体組成、およびパワーレベル設定の少なくとも1つを含む請求項1に記載の方法。
  8. 前記ゲート絶縁層(16)は二酸化シリコンおよび窒化シリコンの少なくとも一方を含む請求項1に記載の方法。
  9. 少なくとも1つのメモリデバイス(10)に少なくとも1つの電気試験を実施して、前記メモリデバイス(10に)実行する書込みサイクルの時間を決定するステップと、
    以後形成するメモリデバイス(10)に少なくとも1つのゲート絶縁層(16)を形成するために実施する少なくとも1つのプロセス操作の少なくとも1つのパラメータを、決定された前記書込みサイクルの時間に基づいて決定するステップと、
    決定された前記少なくとも1つのパラメータを含む前記少なくとも1つのプロセス操作を実施して、前記以降形成するメモリデバイスに前記少なくとも1つのゲート絶縁層(16)を形成するステップとを有する方法。
  10. 少なくとも1つのメモリデバイス(10)に少なくとも1つの電気試験を実施して、前記メモリデバイス(10)に実行する消去サイクルの時間を決定するステップと、
    以後形成するメモリデバイス(10)に少なくとも1つのゲート絶縁層(16)を形成するために実施する少なくとも1つのプロセス操作の少なくとも1つのパラメータを、決定された前記消去サイクルの時間に基づいて決定するステップと、
    決定された前記少なくとも1つのパラメータを含む前記少なくとも1つのプロセス操作を実施して、前記以降形成するメモリデバイス(10)に前記少なくとも1つのゲート絶縁層(16)を形成するステップとを有する方法。
JP2006518625A 2003-07-07 2004-06-02 電気試験データに基づいてゲート絶縁層の特性および特徴を制御するための方法 Expired - Fee Related JP4960088B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/614,354 US7160740B2 (en) 2003-07-07 2003-07-07 Methods of controlling properties and characteristics of a gate insulation layer based upon electrical test data, and system for performing same
US10/614,354 2003-07-07
PCT/US2004/017091 WO2005010977A1 (en) 2003-07-07 2004-06-02 Methods of controlling properties and characteristics of a gate insulation layer based upon electrical test data, and system for performing same

Publications (3)

Publication Number Publication Date
JP2007527610A true JP2007527610A (ja) 2007-09-27
JP2007527610A5 JP2007527610A5 (ja) 2009-05-21
JP4960088B2 JP4960088B2 (ja) 2012-06-27

Family

ID=33564361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006518625A Expired - Fee Related JP4960088B2 (ja) 2003-07-07 2004-06-02 電気試験データに基づいてゲート絶縁層の特性および特徴を制御するための方法

Country Status (8)

Country Link
US (1) US7160740B2 (ja)
JP (1) JP4960088B2 (ja)
KR (1) KR101034902B1 (ja)
CN (1) CN1820363B (ja)
DE (1) DE112004001250B4 (ja)
GB (1) GB2420014B (ja)
TW (1) TWI368960B (ja)
WO (1) WO2005010977A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7858481B2 (en) 2005-06-15 2010-12-28 Intel Corporation Method for fabricating transistor with thinned channel
JP4920401B2 (ja) 2006-12-27 2012-04-18 昭和電工株式会社 導電性回路基板の製造方法
ITTV20070013A1 (it) * 2007-02-05 2008-08-06 Nice Spa Sistema a bus e relativo protocollo di trasmissione
US8669170B2 (en) 2012-01-16 2014-03-11 Globalfoundries Inc. Methods of reducing gate leakage
US9093335B2 (en) * 2012-11-29 2015-07-28 Taiwan Semiconductor Manufacturing Company, Ltd. Calculating carrier concentrations in semiconductor Fins using probed resistance
US10276458B2 (en) * 2016-12-15 2019-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Method for testing bridging in adjacent semiconductor devices and test structure
DE102017127641A1 (de) 2016-12-15 2018-06-21 Taiwan Semiconductor Manufacturing Co., Ltd. Verfahren zum Überbrückungstesten in benachbarten Halbleitervorrichtungen und Testaufbau

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03250748A (ja) * 1990-02-28 1991-11-08 Sony Corp 半導体装置
JPH07245351A (ja) * 1994-03-08 1995-09-19 Hitachi Ltd 不揮発性半導体記憶装置の製造方法
JPH08129894A (ja) * 1994-10-28 1996-05-21 Nec Corp 不揮発性半導体記憶装置
JPH09213820A (ja) * 1996-02-01 1997-08-15 Hitachi Ltd 不揮発性半導体記憶装置の製造方法
JPH10189775A (ja) * 1996-12-25 1998-07-21 Hitachi Ltd 不揮発性半導体記憶装置の製造方法
JPH11204787A (ja) * 1998-01-14 1999-07-30 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2001308155A (ja) * 2000-04-26 2001-11-02 Mitsubishi Electric Corp 膜厚測定方法並びに半導体装置の製造方法および膜厚測定システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798649A (en) * 1991-12-26 1998-08-25 Texas Instruments Incorporated Method for detecting defects in semiconductor insulators
EP0594920B1 (en) * 1992-10-29 1999-07-28 STMicroelectronics S.r.l. Method of evaluating the gate oxide of non-volatile EPROM, EEPROM and flash-EEPROM memories
US5821766A (en) * 1996-02-20 1998-10-13 Hyundai Electronics Industries Co., Ltd. Method and apparatus for measuring the metallurgical channel length of a semiconductor device
US6228663B1 (en) * 1997-12-19 2001-05-08 Advanced Micro Devices, Inc. Method of forming semiconductor devices using gate insulator thickness and channel length for controlling drive current strength
US6133746A (en) * 1998-09-30 2000-10-17 Advanced Micro Devices, Inc. Method for determining a reliable oxide thickness
US6289291B1 (en) * 1998-12-17 2001-09-11 United Microelectronics Corp. Statistical method of monitoring gate oxide layer yield
US6282123B1 (en) * 1998-12-21 2001-08-28 Lattice Semiconductor Corporation Method of fabricating, programming, and erasing a dual pocket two sided program/erase non-volatile memory cell
US6232631B1 (en) * 1998-12-21 2001-05-15 Vantis Corporation Floating gate memory cell structure with programming mechanism outside the read path
US6472233B1 (en) * 1999-08-02 2002-10-29 Advanced Micro Devices, Inc. MOSFET test structure for capacitance-voltage measurements
US6258681B1 (en) * 1999-10-25 2001-07-10 Advanced Micro Devices, Inc. Use of a rapid thermal anneal process to control drive current
US6384448B1 (en) * 2000-02-28 2002-05-07 Micron Technology, Inc. P-channel dynamic flash memory cells with ultrathin tunnel oxides
US6537831B1 (en) 2000-07-31 2003-03-25 Eaglestone Partners I, Llc Method for selecting components for a matched set using a multi wafer interposer
DE10043350C2 (de) * 2000-08-22 2003-01-02 Infineon Technologies Ag Verfahren zur Untersuchung von Strukturen auf einem Wafer
JP4914536B2 (ja) * 2001-02-28 2012-04-11 東京エレクトロン株式会社 酸化膜形成方法
US6882567B1 (en) * 2002-12-06 2005-04-19 Multi Level Memory Technology Parallel programming of multiple-bit-per-cell memory cells on a continuous word line

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03250748A (ja) * 1990-02-28 1991-11-08 Sony Corp 半導体装置
JPH07245351A (ja) * 1994-03-08 1995-09-19 Hitachi Ltd 不揮発性半導体記憶装置の製造方法
JPH08129894A (ja) * 1994-10-28 1996-05-21 Nec Corp 不揮発性半導体記憶装置
JPH09213820A (ja) * 1996-02-01 1997-08-15 Hitachi Ltd 不揮発性半導体記憶装置の製造方法
JPH10189775A (ja) * 1996-12-25 1998-07-21 Hitachi Ltd 不揮発性半導体記憶装置の製造方法
JPH11204787A (ja) * 1998-01-14 1999-07-30 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2001308155A (ja) * 2000-04-26 2001-11-02 Mitsubishi Electric Corp 膜厚測定方法並びに半導体装置の製造方法および膜厚測定システム

Also Published As

Publication number Publication date
US7160740B2 (en) 2007-01-09
CN1820363A (zh) 2006-08-16
DE112004001250B4 (de) 2010-12-09
JP4960088B2 (ja) 2012-06-27
TWI368960B (en) 2012-07-21
WO2005010977A1 (en) 2005-02-03
GB0601408D0 (en) 2006-03-08
GB2420014A (en) 2006-05-10
GB2420014B (en) 2006-10-11
KR20060034689A (ko) 2006-04-24
CN1820363B (zh) 2010-06-16
DE112004001250T5 (de) 2006-06-22
US20050009217A1 (en) 2005-01-13
TW200504911A (en) 2005-02-01
KR101034902B1 (ko) 2011-05-17

Similar Documents

Publication Publication Date Title
US6812517B2 (en) Dielectric storage memory cell having high permittivity top dielectric and method therefor
JP2005354074A (ja) 不揮発性メモリ素子及びその駆動方法
US7135370B2 (en) Dielectric storage memory cell having high permittivity top dielectric and method therefor
JP2005353159A (ja) 不揮発性半導体記憶装置およびその書き込み方法
JP2004214365A (ja) 不揮発性半導体メモリ装置およびその動作方法
US6867119B2 (en) Nitrogen oxidation to reduce encroachment
US6174772B1 (en) Optimal process flow of fabricating nitride spacer without inter-poly oxide damage in split gate flash
JP4960088B2 (ja) 電気試験データに基づいてゲート絶縁層の特性および特徴を制御するための方法
US7449743B2 (en) Control gate profile for flash technology
US7177185B2 (en) Non-volatile flash memory device having dual-bit floating gate
KR20110068769A (ko) 플래시 메모리 소자 및 플래시 메모리 소자의 제조 방법
US7135737B2 (en) Non-volatile flash memory device
US10586705B2 (en) Fluorine doped non-volatile memory cells and methods for forming the same
US7244652B2 (en) Method of forming a split programming virtual ground SONOS memory
KR20050069142A (ko) 비휘발성 메모리 소자
KR100800902B1 (ko) 플래시 메모리 소자 제조 방법
US7026170B1 (en) Methods of controlling optical properties of a capping insulating layer on memory devices, and system for performing same
US7106629B2 (en) Split-gate P-channel flash memory cell with programming by band-to-band hot electron method
Lee et al. Mobile ion-induced data retention failure in NOR flash memory cell
KR100859485B1 (ko) 플래시 메모리 소자의 제조 방법
Lai et al. Novel self-aligned nitride one time programming with 2-bit/cell based on pure 90-nm complementary metal–oxide–semiconductor logic technology
KR100859488B1 (ko) 비휘발성 반도체 메모리 소자 및 그 제조방법
TW202345154A (zh) 改善nor型快閃記憶體耐受力的方法
KR19990060817A (ko) 플래쉬 메모리 셀 제조 방법
US20080286923A1 (en) Method for fabricating flash memory

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100421

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110427

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110727

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees