JP2007518259A - N−チャネルトランジスタ - Google Patents

N−チャネルトランジスタ Download PDF

Info

Publication number
JP2007518259A
JP2007518259A JP2006548405A JP2006548405A JP2007518259A JP 2007518259 A JP2007518259 A JP 2007518259A JP 2006548405 A JP2006548405 A JP 2006548405A JP 2006548405 A JP2006548405 A JP 2006548405A JP 2007518259 A JP2007518259 A JP 2007518259A
Authority
JP
Japan
Prior art keywords
transistor
organic
insulating material
transistor according
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006548405A
Other languages
English (en)
Other versions
JP5552205B2 (ja
Inventor
チュア レイ−レイ
キアン−ホーン ホ ピーター
ヘンリー フレンド リチャード
Original Assignee
ケンブリッジ エンタープライズ リミティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ケンブリッジ エンタープライズ リミティド filed Critical ケンブリッジ エンタープライズ リミティド
Publication of JP2007518259A publication Critical patent/JP2007518259A/ja
Application granted granted Critical
Publication of JP5552205B2 publication Critical patent/JP5552205B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/30Organic light-emitting transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • H10K71/611Forming conductive regions or layers, e.g. electrodes using printing deposition, e.g. ink jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3121Layers comprising organo-silicon compounds
    • H01L21/3122Layers comprising organo-silicon compounds layers comprising polysiloxane compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/114Poly-phenylenevinylene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Devices (AREA)
  • Amplifiers (AREA)
  • Logic Circuits (AREA)

Abstract

電子親和力がEAsemicondである有機半導体層と、前記半導体層と界面を形成する有機ゲート誘電体層とを備えるn−チャネルまたは両極性の電界効果トランジスタであって、前記ゲート誘電体層中のトラッピング基のバルク濃度が1018cm−3未満であり、この場合、トラッピング基は(i)EAsemicond以上の電子親和力EAおよび/または(ii)(EAsemicond−2eV)以上の反応性電子親和力EArxnを持つ基であることを特徴とする、n−チャネルまたは両極性の電界効果トランジスタである。

Description

本発明は、n−チャネル電界効果伝導が可能な新規のトランジスタ、およびこれを作成するための方法に関する。
電界効果トランジスタ(FETs)は、ソース端子、ドレイン端子、およびゲート端子を備えた3端子装置である。半導体層(「チャネル」)は、ソースとドレイン端子とを橋渡しするが、それ自体は、ゲート誘電体と呼ばれる絶縁層によってゲート端子とは間隔が空けられている。有機トランジスタでは、半導体層は、有機半導体材料から製造される。特に、ポリマートランジスタでは、有機半導体層は、半導体ポリマー、典型的にはn−共役有機ポリマーから製造される。この層は、前駆体を経てまたは直接的に溶液処理によって装置内に堆積され得る。
電圧は、ソース端子およびドレイン端子間に印加される。さらに、電界効果トランジスタでは、電圧がゲート端子に印加される。この電圧が、ゲート誘電体のすぐ隣に存在する半導体層の電流−電圧特性を変える電界を、電荷キャリアの蓄積または空乏をそこに発生させることで生成する。これによって今度は、チャネル抵抗、およびソースからドレイン端子へと電荷が流れる速度(すなわち、ソース−ドレイン電流)が調整されて所定のソース−ドレイン電圧とされる。
原則として、有機電界効果トランジスタ(FETs)は、2つのモードで動作できる。すなわち、n−チャネル装置(この場合、チャネルに蓄積している電荷が電子である)として、またはp−チャネル装置(この場合、チャネルに蓄積している電荷が正孔である)のいずれかである。
Advanced Functional Materials 13(2003年)の199から204ページには、ゲート絶縁体材料の選択によってもたらされるp−チャネル有機電界効果トランジスタの動作に影響する新しい効果が提示されている。この文献は、n−チャネル伝導には関連していない。この文献は、さまざまな誘電体定数および極性を持つ多数のゲート絶縁体を調べている。低k絶縁体(low-k insulator)によってp−チャネル装置性能が改善されることが報告されている。
具体的には、低k絶縁体を使った場合、正孔移動度が改善される一貫した傾向が現れたと記載されている。試験したPTAA誘導体では、6×10−3cm−1−1のFETの正孔移動度が可能と述べられている。観察された効果は、半導体/ゲート誘電体界面におけるエネルギーの不規則性が変化することによるものと仮定される。この点に関して、界面の極性が低いと有利であることが示されていると述べられている。さらに、このことによって、より低いゲート電位でトラップが充填され、その結果、閾値電圧を低くできるとも述べられている。
調べられた絶縁体材料は、二酸化シリコン(silicon dioxide)、ポリ(ビニルフェノール)(poly(vinyl phenol))(PVP)、ポリ(メチルメタクリレート)(poly(methyl methacrylate))(PMMA)、ポリ(ビニルアルコール)(poly(vinyl alcohol))(PVA)、ポリ(ペルフルオロエチレン−コ−ブテニルビニルエーテル)(perfluoroethlene-co-butenyl vinyl ether)、シアノプルラン(cyanopullulane)、ポリイソブチレン(polyisobutylene)、ポリ(4−メチル−1−ペンテン)(poly(4-methyl-1-pentene))、およびポリプロピレン(polypropylene)のコポリマー、すなわちポリ[プロピレン−コ−(1−ブテン)](poly[propylene-co-(1-butene)])にまで及ぶ。
n−およびp−チャネル有機FETの両方を実現できると特に有利である。このことは、無機Si FETの分野で知られているような、待機消費電力が非常に低い相補型回路を製造する可能性を開拓する(P. Horowitz and W. Hill, The art of Electronics, Cambridge University Press, 1989)。相補型回路を作り出す1つの特に単純な方法は、(適切なゲート電圧の極性を単に選択することによって)同じ装置でn−およびp−チャネル伝導の両方を実現することである。かかる装置は、両極性であると言われており、無機アモルファスSiを使って実証されている(H. Pfleiderer, W. Kusian and B. Bullemer, Siemens Forschungs-Und Entwicklungsberichte-Siemens Research and Development Reports 14 (1985) pp. 114)。
しかしながら、今日まで、n−チャネル有機FETは、ペリレンテトラカルボキシレートジイミド/二無水物(perylenetetracarboxylate diimide/dianhydride)、ナフタレンテトラカルボキシレートジイミド/二無水物(naphthalenetetracarboxylate diimide/dianhydride)、または、フタロシアニン単位(phthalocyanine units)を含むもの、または、バンドギャップが非常に小さいもの(1.6eV以下)と言った、バンドギャップが小さいことでまさに非常に大きな電子親和力を持っている、非常に高い電子親和性(EA)半導体という特別な分類に限られるということが一般に受け入れられてきた。
これまで使われてきた小分子n−チャネル半導体材料の具体的な例のいくつかとしては、次のものがある。
−ビス(フタロシアニン)(bis(phthalocyanines))(G. Guillaud, M.A. Sadound and M. Maitrot, Chemical Physics Letters 167 (1990) pg. 503)
−テトラシアノキノジメタン(tetracyanoquinodimethane)(A. R. Brown, D. M. de Leeuw, E. J. Lous and E. E. Havinga, Synthetic Metals 66 (1994) pg. 257)
−ナフタレンテトラカルボン酸(napthalenetetracarboxylic acid)の二無水物およびジイミド(J. G. Laquindanum, H. e. Katz, A. Dodabalapur and A. J. Lovinger, Journal of the Americal Chemical Society 118 (1996)pg. 11331; H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y-Y. Lin and A. Dodabalapur, Nature 404 (2000) pg. 478)
−ペリレンテトラカルボン酸(perylenetetracarboxlic acid)のジイミド(C. D. Dimitrakopoulos and P. R. L. Malenfant, Advanced Materials 14 (2002) pg. 99)
小分子n−チャネル半導体材料の例は、KatzらのNature 404 (2000) pg.478-481からも知られている。この文献は、実際、有機ポリイミド誘電体の可能性について言及している。しかしながら、適切なポリイミドの例は、挙げられておらず、どのようにして適切なポリイミドを選択すればよいかについての情報は、提供されていない。さらに、典型的なポリイミドは、1−5%の残留−COOH基を含んでいる。
無機誘電体とともに使われてきた高い電子親和性オリゴマーn−チャネル半導体材料のいくつかの例としては、次のものがある。
−α,ω−ジペルフルオロヘキシルセキシチオフェン(α,ω-diperfluorohexylsexithiophene)(A. Facchetti, Y. Deng, A. Wang, Y. Koide, H. Sirringhaus, T. Marks and R. H. Friend, Augewangte Chemie International Edition 39 (2000) pg. 4545)
−キノダールテルチオフェン(quinodal terthiophene)(R. J. Chesterfield, C. R. Newman, T. M. pappenfus, P. C. Ewbank, M. H. Haukaas, K. R. Mann, L. L. Miller and C. D. Frisbie, Advanced Materials 15 (2003) pg. 1278)
無機誘電体とともに使われてきた高い電子親和性ポリマーn−チャネル半導体材料の例としては、次のものがある。
−ポリ(ベンゾビスイミダゾベンゾフェナントロリン)(poly(benzobisimidazobenzophenanthroline))(A. Babel and S. A. Jenekhe, Journal of the American Chemical Society 125 (2003) pg. 13656) これは、堅固なポリマー骨格に電子求吸引性イミン窒素を持つ非常に高いEAのポリマーである。
今日まで、上述の「特別な分類」には当てはまらない材料がn−チャネル半導体挙動を示すことは無くまた示すとは期待できないことがやはり一般に受け入れられてきた。その結果、n−チャネル有機FETのための半導体材料の選択は、非常に限られてきた。
非常に高い電子親和性材料(および低バンドギャップ材料)は、それ自身の制限を持つ可能性がある。例えば、これらは、特に永久的な伝導状態にバイアスされて、例えば、H、アンモニウムおよび金属イオンのような外来の不純物によって意図せずにドープされる場合がある。従って、バンドギャップおよび電子親和力がより適度な一般的な分類の材料からn−チャネルおよび両極性のトランジスタを開発可能であることは、有利であると思われる。
Nature Materials 2 (2003) pg. 678に記載されているように、両極性トランジスタの動作を実現する場合の主な難しさの1つは、同じ電極から単一の半導体に正孔および電子を注入するということである。この電極は、正孔が半導体の最高占有分子軌道(HOMO)に注入することができ、電子が最低非占有分子軌道(LUMO)に注入することができるようにする仕事関数を持つ必要がある。その結果、これによってキャリアの1つにつきバンドギャップエネルギーの少なくとも半分の注入障壁になる。
同じ電極から単一の半導体への正孔および電子の注入を実現することの上述の難しさは、当然のことながら、いずれの場合でも有機FETでのn−チャネルの活性は、たとえ適切な電子注入をもってしても実現が難しかったという事実によって著しく強められる。このことは、電子がいくらかはほとんどの有機材料にトラップされる(そしてその結果固定される)であろうという一般的な(誤った)見解を導き、そして(やはり間違って)これらの材料のほとんど大部分からは有用なn−チャネルFETを作成することはできないという見解を導いてきた。
それにもかかわらず、このNature Materials 2 文献は、熱的に成長した無機SiO層をゲート誘電体として用い、p型およびn型半導体の相互に貫通し合うネットワークからなる異種混合物を半導体層として用いた両極性トランジスタを提示している。半導体電子トランスポータとしての非常に高い電子親和力を持つ誘導体化したC60(PCBM)と、半導体正孔トランスポータとしてのOC1C10−PPVポリマーとの混合物が例示されている。OC1C10ポリマーのHOMOレベルは,金電極の仕事関数に合わされている。PCBMのLUMOレベルと金電極の仕事関数との間には、1.4eVの不整合が報告されている。
この文献は、また、広いバンドギャップ半導体において両極性トランジスタが動作しないのは大きな注入障害が存在するためだとも提案している。バンドギャップの小さい半導体を用いて障壁を小さくすることが提案されている。1.55eVのバンドギャップを持つポリ(インデノフルオレン)(poly(indenofluorene))が例示されている。
しかしながら、この文献で実現された電子の電界効果移動度は、10−5cm/Vsドメインではまだ受け入れられないほど低いものである(PIFの場合、電子移動度が5×10−5cm/Vsで正孔移動度が4×10−5cm/Vs;そして、C60−OC1C10−PPVの場合では、電子移動度が3×10−5cm/Vsで正孔移動度が7×10−4cm/Vs)。
明らかに、この教示に従って作成できる両極性トランジスタの範囲は、制限されている。さらに、π−π*ギャップ<1.6eVというバンドギャップの小さな半導体は、比較的安定性を欠く傾向があるが、これは、これらが意図しないドーピング、および起こりやすい光化学反応に対して脆弱なためである。一方、C60ネットワークを持つ電子伝導混合物は、C60アニオンの起こりやすい化学反応、および、急速な酸素トラッピングのせいで不安定であるのみならず、小分子の電子アクセプタおよびトランスポータの再結晶化のせいでパーコレーションパスも全体的に不安定になる。
上述のNature Materials 2 文献以前に、Science 269 (1995) pg 1560は、両極性トランジスタの挙動を実現するために、無機ゲート誘電体および正孔コンダクタと電子コンダクタとのバイレイヤの利用を記載している。電子コンダクタは、C60であり、電子移動度が10−3cm/Vsの範囲で測定されている。この電子コンダクタは、Nature Material 2文献に関して上で述べたのと同じ問題点を抱えている。
上述のことから、n−チャネルFETおよび両極性トランジスタを実現するための努力の主な点は、半導体層、特に半導体層および構成に使われる材料、半導体材料の形態および空間的な順序に集中されてきたことがわかるであろう。典型的には、半導体材料は、無機のSiO界面に対して試験されてきた。この界面は、常に部分的に水和されていることがわかるであろう。さらに、n−チャネル有機FETおよび両極性有機FETにおいては、n−チャネル伝導をさらに改善する必要があることがわかるであろう、なぜなら、現在、非常に限られた範囲の有機材料しかこのような装置に使えないからである。
本発明は、このような必要性に少なくとも部分的に対応することを目的とし、第1の側面において新規のn−チャネルトランジスタを提供することを目的としている。
さらに、第2の側面において本発明は、本発明の第1の側面による新規のトランジスタを作成するための方法を提供することを目的としている。
そしてさらに、第3の側面において本発明は、n−チャネル伝導を行うために本発明の第1の側面による新規のトランジスタの使用法を提供することを目的としている。
従って、本発明の第1の側面では、電子親和力がEAsemicondである有機半導体層と、前記半導体層と界面を形成する有機ゲート誘電体層とを備えるn−チャネルまたは両極性の電界効果トランジスタであって、前記ゲート誘電体層中のトラッピング基のバルク濃度が1018cm−3未満であり、この場合、トラッピング基が(i)EAsemicond以上の電子親和力EAおよび/または(ii)(EAsemicond−2eV)以上の反応性電子親和力(reactive electron affinity)EArxnを持つ基であることを特徴とするn−チャネルまたは両極性の電界効果トランジスタが提供される。
本発明の目的で、EAおよびEArxnは、本願で説明するように定義される。
本発明の第2の側面では、本発明の第1の側面で定義されるようなトランジスタを作成するための方法が提供される。
本発明の第3の側面では、n−チャネル伝導を行うために本発明の第1の側面で定義されるようなトランジスタの使用法が提供される。
本発明の第4の側面では、(i)3eV以上のEAおよび/または(ii)0.5eV以上のEArxnを持つ化学基を全く含まない有機絶縁材料の使用法を提供する。第4の側面によると、好ましくは、有機絶縁材料は、2eV以上のEAを持つ化学基を全く含まない。また好ましくは、有機絶縁材料は、0eV以上のEArxnを持つ化学基を全く含まない。最も好ましくは、有機絶縁材料は、1eV以上のEAを持つ化学基を全く含まない。また最も好ましくは、有機絶縁材料は、−1eV以上のEArxnを持つ化学基を全く含まない。
本発明の第5の側面では、本発明の第1の側面によるトランジスタを備えた装置または部品が提供される。特に、本発明の第1の側面によるトランジスタを備えた回路、相補型回路または論理回路が提供される。
本発明の第6の側面では、本発明の第5の側面で定義されたような装置または部品を作成するための方法が提供される。
今日までにn−チャネルトランジスタに関して発行された研究のほとんどすべては、有機半導体の調製に集中されており、この場合、n−チャネル伝導が(水和した)SiO界面に対して観察できる。理論に束縛されることを望むことなく、本発明は、新規の一般的な設計戦略を提供することで、現在可能と考えられているよりもより広い範囲の有機半導体でn−チャネル伝導(そしてまた両極性電界効果伝導も)を得るものである。
本発明者は、n−チャネル電界効果伝導は、誘電体が電界効果によって半導体チャネルに誘導された負の電荷キャリアをトラップする可能性のある高い濃度の化学部分を誘電体が示さない場合にだけ誘電体/半導体界面で安定的にサポートされることをつきとめた。この2つのうち誘電体界面がより重要であるとはいえ、誘電体バルクもまた好ましくは考慮すべきである、なぜならバルクトラップ状態は、非常にゆっくりではあるがそれでも定着させることができるからである。誘導された電荷キャリアは、界面に沿って移動するため、それらが界面で遭遇するトラップによってもっとも大きく影響される。反対に、電荷キャリアは、そこに閉じ込められるように、バルク内に進まなければならない。にもかかわらず、バルクトラップ状態は、電荷を長時間保持することができ、このことでトランジスタの挙動が損なわれる。
本発明者は、有機ゲート絶縁材料を適切に選択することによって、これまで知られていたよりもずっと広い範囲の有機半導体からn−チャネルFETを得ることが実際に可能であることを発見した。そのようなものとして、本発明は、初めて有機半導体および有機誘電体を使ってn−チャネル伝導の機会を提供するものである。本発明者によって、広い範囲のポリ(p−フェニレンビニレン)(poly(p-phenylenevinylene))およびポリ(フルオレン)(poly(fluorene))誘導体およびコポリマーが良好に試験された。重要な点は、有機ゲート誘電体層が臨界点を越える濃度の(有機半導体の電子輸送レベル付近またはそれ以下のエネルギーにある)トラッピング基を含んではならないことである。本発明の結果、n−チャネル有機FETおよび両極性有機FETを得る範囲が大幅に拡大される。もはや非常に高い電子親和性半導体である有機半導体に制限されることはない。
本発明者は、今や、なぜn−チャネルFETが今日まで非常にわかりにくかったかという理由が、今日まで試験されてきたゲート誘電体(最も顕著なのは、酸化シリコン、ポリ(メチルメタクリレート)(poly(methyl methacrylate))、ポリ(ビニルフェノール)(poly(vinyl phenol))およびポリ(イミド)(poly(imide)))が本発明の仕様を満たさないためであることをつきとめた。
本発明によると、2種類のトラッピング基、すなわち、反応性トラップおよび非反応性トラップを区別できる。
反応性トラップとは、後の化学反応にさらされることにより、電子が、通常は、電子を再放出できない新しい(そして深い)状態にトラップされるもののことである。従って、トラッピングは、可逆ではない。特に、反応性トラップのいたるところに見られる例としては、不可逆的に電子をトラップして水素を追い出すことのできる、−COOHおよびーCROHのような活性(酸性)水素を持つものが挙げられる。
非反応性トラップとは、トラップされた電子を再放出できるもののことである。反応性トラップは、誘導されたキャリアを消費して誘電体界面の静電荷および閾値電圧の大規模なシフトをもたらすが、非反応性トラップは、電荷キャリア移動度の損失をもたらす。これらは、両方ともトランジスタ装置にとって有害である。いくらかの不純物(HOのような)が存在する下での非反応性トラップは、反応性トラップに変わる可能性があるため、2種類のトラップ間の区別は、常にはっきりしているわけではない点に留意すべきである。
当業者であれば、電気化学の一般的な知識に基づいて、特定の化学基が反応性トラップとして、非反応性トラップとして、またはその両方として作用できるかどうかがわかるであろう。
本発明は、反応性トラップおよび非反応性トラップ両方の合計濃度が臨界濃度未満であることを必要とする。本発明によると、基がトラッピング基であるかどうかは、半導体層を形成している有機半導体材料のEAsemicond.を参照することによって決定されねばならないことがわかるであろう。半導体材料を知っておりその結果EAsemicond.がわかれば、当業者なら後で述べるEAおよびEArxnについての分析および定義を使って、検討中の有機ゲート誘電体層に存在するすべての化学基を、まず最初にEAに関して(すなわち、それらの非反応性トラッピング特性に従って)、そして第2にEArxnに関して(すなわち、それらの反応性トラッピング特性に従って)2列に配列することができるであろう。上述のやり方によって、その後当業者であれば、半導体(EAsemicond)の電子親和力を使ってどの基がトラッピング基でなくそのためゲート誘電体層に存在していてもよく、どの他の基がトラッピング基であるためゲート誘電体層において臨界濃度を超えて存在してはならないことを識別するためのカットオフ値を規定できる。
通常のFET動作の下では、誘導された電荷キャリア濃度は、典型的には約1012−1013cm−2であり、そして、トラップは、FET伝導が発生できるようになる前にまず最初に充填されるため、半導体/ゲート誘電体界面(Cinterf)における反応性および非反応性トラップの臨界濃度は、1012cm−2未満、好ましくは1011cm−2およびより好ましくは1010cm−2未満である必要がある。
1012cm−2の界面濃度に対応するバルク濃度(Cbulk)は、式Cinterf=(Cbulk2/3によって1018cm−3である。従って、本発明によると、誘電体層におけるトラッピング基のバルク濃度は、1018cm−3未満でなければならない。界面偏析を考慮すると、バルク濃度は、少なくとも1−2けた低いのが好ましい。従って、好ましいバルク濃度は、1017cm−3未満である。
対象となっているトラッピング基のゲート誘電体層におけるバルク濃度(Cbulk)は、FTIRをはじめとする多数の方法によって測定できる。バルク濃度(Cbulk)を測定するために使用可能な適切な方法のいくつかの例を以下に説明する。これらの例は、対象となっているトラッピング基としてOH基を採用している。
方法(A):片面研磨真性SiウェハのようなIR−透過性基板上に、ドロップキャスティングまたはブレードコーティングによって試験誘電体膜を50−100ミクロンの厚みで形成する。FTIR機器でIRスペクトラムを測定する。ノイズ変動が10−4吸光度単位となるように十分な走査を集める。標準テーブルで基の吸収帯位置を調べる。OHの場合、これは、約3300cm−1であり、また約900cm−1でもある。これらの波数における帯吸収強度を定量化する。帯吸収度の文献値、または、公知の厚みで公知のOH基の濃度の膜における吸収スペクトラを測定することから得られた校正値を用いることによって、有効濃度に変換する。
方法(B):試験中の基に標準的なガスクロマトグラフィー誘導体化方法を使って、例えば、ゲート誘電体材料中のOHを適切なフルオロ無水物(fluoro anhydride)と反応させることによって、適切なフッ素またはシリコンのラベルでラベル付けする。精製する。真性シリコンウェハ上に約0.1−1ミクロンの厚みの膜を形成する。二次イオン質量分析法を行って適切な校正後に膜におけるラベル付けされた基の濃度を測定する。
方法(C):標準的な生化学蛍光プローブラベリング方法を使って、適切な蛍光ラベルで試験中の基にラベル付けする。精製する。適切な校正後に蛍光活性を測定して濃度を得る。
電子親和力(EA)は、材料が真空から電子を受け取るときに放出されるエネルギーである。電子親和力は、材料の極性に直接関係することはなくまた電子親和力と誘電定数との間になんの相互関係もない。
本発明によると、EAsemicond.は、有機半導体の場合ならサイクリックボルタンメトリ実験から、または、その測定したイオン化エネルギーから決定できる。有機半導体のイオン化エネルギー(IE)は、紫外線光電子放出スペクトラにおける価電子帯特性のオンセット(onset)として紫外線光電子分光実験から決定できる。あまり好ましくはないが、この量は、酸化走査において、一対の酸化および還元ピークの中間ポテンシャル(E’)またはオンセット酸化ポテンシャル(Eonset)として、標準的なサイクリックボルタンメトリから見積もってもよい。
このポテンシャルは、標準エネルギーシフトIE=E’(対NHE)+4.8eVまたはEonset(対NHE)+4.8eVを用いて真空エネルギースケールに変換される。
電子親和力(EA)は、以下の式に従ってイオン化エネルギーから算出される。
EA=IE−ΔE−BE
バンドギャップ(ΔE)は、例えば光吸収を用いて測定される。数多くの共役ポリマーの場合、励起子結合エネルギー(BE)は、広く一般に0.4eVに維持される。
あるいは、有機半導体のEAは、逆光電子放出によって、または還元走査において、一対の酸化および還元ピークの中間ポテンシャル(E’)またはオンセット還元ポテンシャル(Eonset)として、標準的なサイクリックボルタンメトリによって、より直接的な方法で測定することができる。このポテンシャルは、標準エネルギーシフト:IE=E’(対NHE)+4.8eVまたはEonset(対NHE)+4.8eVを用いて真空エネルギースケールに変換される。
誘電体材料の場合、これらは、非伝導性であるため、EA値は、直接的に測定することが非常に困難である。しかしながら、EAは、有機材料に存在する化学基または部分の比較的局所的な特性である。反対に、このことは、無機材料には当てはまらない。従って、本発明の目的で、有機ゲート誘電層が特定の半導体のn−チャネル活性と互換性があるか否かは、誘電体(EAおよびEArxn)の構成部分のそれぞれのEAをEAsemicond.と比較することによって部分的には決定される。広い範囲の基の気相EAが文献から得られるので、このことから選別を行う目的で候補となっている誘電体に存在する広い範囲の化学基のEAを決定するための有用な先験的(a priori)手段が得られる。
有機誘電体に存在する(ポリアルキレン(polyalkylene)、ポリスチレン(polystyrene)などの脂肪族鎖およびフェニル(phenyl)/フェニレン(phenylene)単位のような)通常の炭化水素骨格構造の構成要素は、パイ拡張(pi-extend)されておらずそれらの固体状態EAは、しばしば0eV未満である。これは、典型的な半導体材料(EAsemicond)の電子親和力をはるかに下回り、典型的には2−3eVである(例えば、ポリフルオレン(polyfluorene)、ポリフェニレン(polyphenylene)、ポリチオフェン(polythiophene)、およびそれらのコポリマーの場合)。従って、これらの単位が存在することは、本発明で使用する絶縁材料では許容される。
しかしながら、設計により(構造単位として、特に繰り返し単位または末端基として)または不純物(鎖末端、重合欠陥、安定剤、触媒および偶発的な汚染物質など)として、誘電体に存在する他の化学的/構造的な基または部分は、よりずっと大きなEAを持つ場合がある。本発明者は、これらの部分が電子と絶対に競合しないようにするためにはある設計規則を満たさなければならないことをつきとめた。反応性および非反応性トラッピング基に関して別々の設計規則を考えてよい。設計規則により、使用しようとしている有機半導体に対して所望のゲート誘電体材料を選択することができるようになる。この意味において、本発明それ自体は、所望の誘電体材料を定義することに制限されるものではない。反対に、所望の誘電体材料は、使用する有機半導体に従って定義してよい。
非反応性トラッピング基
非反応性トラップの場合、トラッピングは、可逆的であるため、非トラッピングとなる基についての基準は、EAsemicond未満となるべき誘電体材料(EA)中の化学基の固体状態EAについてのものである。例として、一般的な基のいくつかのEA値を以下に示す。本発明によると、これらの値は、気相EAデータから算出される。固体状態EA値は、M. Pope and C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford University Press, 1999) によって与えられているように、ここでは1.8eVとされる固体状態分極エネルギーを加えることによって、気相EAから算出される。
部分X 固体状態EA(eV)
(a)脂肪族カルボニル(-CO-、-COO-、-CONR-)およびCN 1.8-2.0
(b)芳香族カルボニル(-CO-、-COO-、-CONR-) 2.0-2.4
(c)芳香族フルオロカーボン 2.3
(d)キノキサリン 2.5
(e)脂肪族フルオロカーボン 2.8-2.9
(f)キノン 3.4-3.6
aは、適切なモデル化合物の気相EAに分極エネルギー(本発明の目的では1.8eVとされる)を加えることによって得られる。
従って、2−3eVのEAsemicond値の場合、(a)の存在は、いくつかの半導体では誘電体において許容できる。しかしながら、臨界濃度を超える濃度での(b)−(d)の存在は、多くの有機半導体のn−チャネル活性と互換性がない場合がある。さらに、臨界濃度を超える(e)−(f)の存在は、ほとんどの有機半導体と互換性がなくなる。可能な部分がこのように多数存在するため、ここではいくつかだけについて分析を行う。他の基についてのEA値も同じやり方で決定できる。
反応性トラップ
このようなトラップは、デトラッピングを不可能とする結合反応にさらされる。結合反応の一例としては、活性水素を持つ部分からの水素原子の放出が挙げられる。一旦この水素原子が(水素ガスを提供するための何らかの他のラジカル反応または再結合によって)失われると、電子電荷は、何らかの電荷中和事象が生じるまで不可逆的に部分にトラップされる。いずれの場合でも、初期にトラップされた電子が再放出されることはなく、ゲート誘電体の容量性電荷密度は、このような固定の電荷によって充填される。反応性トラップの場合、非トラッピングとなる基の基準は、反応自由エネルギーを考慮することを必要とする。反応性トラップの気相EA値は、得ることができない。従って、本発明の目的では、このような基の反応性電子親和力を考慮しさえすればよい。
一例として、酸性−COOH部分を考慮すると、この部分は、ポリ(メチルメタクリレート)(poly(methyl methacrylate))にサブパーセントレベルの不純物として存在し、ポリイミド(polyimide)には、前駆体材料の不完全な変換のため数パーセントで存在する。反応性トラッピングの最中、考慮される反応は、
Semicond(s)+Diel-COOH(s)→Semicond(s)+Diel-COO(s)+H(s)
であり、これは、初期に半導体(Semicond)に存在していた誘導された電子がH原子を失うことで誘電体(Diel−COO)の−COOにトラッピングされることを表している。
必要とされる正確な運動メカニズムが全体の反応のエネルギー論に影響を与えることはなく、2つの半反応の合計として表現される:
(i) Semicond(s)→Semicond(s)+e(g) EAsemicond
(ii) Diel-COOH(s)+e(g)→Diel-COO(s)+H(s) −(EArxn)
反応(ii)は、水素原子の放出を必要とする。ここで、反応(ii)のエネルギー論は、負の反応性電子親和力(EArxn)として表される。従って、本発明は、反応性トラップのEArxnを定義しており、対応の小分子モデルに対するボルン−ハーバー熱力学サイクルを用いて見積もることができるものであり、その一例は、次の通りである。
(ii)(a) Diel-COOH(s)→Diel-COOH(g) ΔGsub1
(ii)(b) Diel-COOH(g)→Diel-COO(g)+H(g) ΔGdeprot
(ii)(c) H(g)+e(g)→H(g) −ΔGion,H
(ii)(d) Diel-COO(g)→Diel-COO(s) ΔGpolar−ΔGsub1
(ii)(e) H(g)→H(s) −ΔGsub1.H
ここで、Diel−COOHモデルの小分子のために、3つの主なエネルギー用語は、それぞれ、気相脱プロトン化エネルギー(ΔGdeprot)、負の水素原子イオン化エネルギー(−ΔGion,H=−13.6eV)、および媒質分極エネルギー(ΔGpolar、ここでは−1.8eVとされる)である。
反応(ii)の全体のエネルギーは、これらのエネルギーの合計、すなわち−EArxn=ΔGdeprot−ΔGion,H+ΔGpolar−ΔGsubl,H=ΔGdeprot−15.4eVである。昇華エネルギーΔsubl,Hは、十分に小さいため(おそらく0.1eV未満)省略してよい。ΔGdeprotは、データテーブルから得ることができる。従って、活性水素を含む化学基が反応性トラップとして作用するかどうかを決める主な要因は、その脱プロトン化エネルギーである。このやり方で得られる、反応性トラップとして作用する一般的な部分の範囲のEArxn値を以下に一覧表にする。
部分X ΔGdeprot(eV) EArxn(eV)
(a)脂肪族-NHR 16.6 -1.2
(b)脂肪族-OH 15.9 -0.5
(c)芳香族-NHR 15.5 -0.1
(d)脂肪族-SH 15.1 0.3
(e)芳香族-OH 14.8 0.6
(f)脂肪族-COOH 14.8 0.6
(g)芳香族-SH 14.5 0.9
(h)芳香族-COOH 14.5 0.9
実験により、本発明者は、(e)および(f)が一般的には有機半導体の範囲に入るn−チャネルFET伝導とは互換性がないと判断した(この場合、EAsemicond.≒2−2.5eV)。従って、本発明者は、ある部分を非トラッピングとするには、そのEArxnがそのEAsemicondよりも少なくとも2eVだけ小さくすべきである、すなわちEArxn<(EAsemicond−2eV)とすべきであることを提案する。
理論に束縛されることを望むことなく、このことは、トラッピング率(k)が試みた周波数(v)およびトラップ占有確率(K)の積、すなわちk=vKであることを考慮することによってだいたい合理化できる。Kの値は、標準的な化学熱力学によってK=exp(−ΔG/kT)と見積もられる。K<10−7−1(誘導された電荷濃度に類似のトラップ濃度についての特徴的なトラッピング時間>100日に対応する)およびv=1015−1(電子周波数)については、我々は、K<10−22であることを必要とするためΔG>1.5eVである。
従って、分析は、(a)−(c)は、誘電体で許容されるが、(e)−(h)は、もし臨界濃度を超えて存在するとほとんどの有機半導体とは互換性がないことを示している。対象となっている他のいずれの部分についても同様の分析が行える。
(a)−(c)は、反応性EA領域とは互換性があるにもかかわらず、これらの水素結合部分は、親水性となる傾向がありHOを強く保持する。固体膜中に分散したHOは、高いEA(≒3.0eV)を持っているため、これらの部分が存在するとやはりほとんどの有機半導体ではn−チャネル伝導とは互換性がなくなる場合がある。このような理由により、絶縁材料は、0.1重量%より多くの−OH基および他の水素結合基を含まないことが望ましい。非常に小さい濃度の−OH基および他の水素結合基であれば絶縁材料中に許容される。好ましくは、絶縁性ポリマーは、0.01重量%未満の−OH基および他の水素結合基を含んでおり、より好ましくは、0.001重量%未満の−OH基および他の水素結合基を含んでいる。最も好ましくは、絶縁ポリマーは、−OH基および他の水素結合基を実質的に含まない。
一例として、EAsemicondが2.5eVの有機半導体を挙げると、もしあれば以下の(非網羅的な)基は、以前に規定された臨界濃度を超えてはならない、すなわち、キノキサリン(quinoxaline)、脂肪族フルオロカーボン(aliphatic fluorocarbon)、キノン(quinone)、芳香族−OH、脂肪族−COOH、芳香族−SH、芳香族−COOHである。臨界バルク濃度は、上で既に説明している。
これらの基を欠陥、鎖末端、安定剤または汚染物質として含有する有機誘電体は、徹底的に精製してこれらが上述の臨界濃度未満で存在するようにする必要がある。
本発明の第1の側面を参照すると、トランジスタは、n−チャネル電界効果トランジスタまたは両極性電界効果トランジスタである。トランジスタは、トップゲート構造でもボトムゲート構造でもよい。
本発明によるトランジスタでは、ゲート誘電体層は、なんらかの不純物とともに有機ゲート絶縁材料を含むと考えられる。ゲート誘電体層は、トラッピング基を全く含まないのが好ましい。このことにより、トラッピング基の濃度は、確実に臨界濃度未満となる。
より好ましくは、有機ゲート絶縁材料自身は、トラッピング基を含む繰り返し単位を含まない。最も好ましくは、有機ゲート絶縁材料自身は、トラッピング基を全く含まない。
典型的にはEAsemicondは、2eV以上であるが、本発明は、このように限定されるわけではない。やはり典型的には、EAsemicondは、2eVから4eVの範囲であり、より典型的には、2eVから3eVの範囲である。
上述のように、絶縁材料中のトラッピング基は、絶縁材料自身の一部である(すなわち不純物を含まない)か、不純物として存在してよい。トラッピング基は、また、調製中に有機絶縁材料の形成が不完全なことによって、有機絶縁材料中に存在する残留単位の一部として存在してもよい。トラッピング基は、末端基、欠陥、安定剤または不純物としては許容できるものの、絶縁材料中の繰り返し単位としては通常は許容されないであろうことが分かるであろう。なぜなら、繰り返し単位として存在すると、トラッピング基が臨界濃度を超える場合があるためである。トラッピング基は、有機絶縁材料中の残留単位の濃度によっては許容されてもされなくてもよい。
好ましくは、絶縁材料は、(i)電子親和力EAが3eV以上および/または(ii)反応性電子親和力EArxnが0.5eV以上の基を含む繰り返し単位または残留単位を含まない。
従って、好ましくは、絶縁材料は、キノン(quinone)、芳香族−OH、脂肪族−COOH、芳香族−SHまたは芳香族−COOH基を含む繰り返し単位または残留単位は含まない。
いくつかの実施態様では、好ましくは、絶縁材料は、2.5eV以上、より好ましくは2eV以上の電子親和力EAを持つ繰り返し単位または残留単位を含まない。これらの実施態様では、絶縁材料は、好ましくは、脂肪族フルオロカーボン基を含む繰り返し単位および/または残留単位を含まない。より好ましくは、絶縁材料は、芳香族カルボニル(aromatic carbonyl)、キノキサリン(quinoxaline)または芳香族フルオロカーボン(aromatic fluorocarbon)基を含む繰り返し単位および/または残留単位を含まない。
好ましくは、絶縁材料自身は、アルケン(alkene)、アルキレン(alkylene)、シクロアルケン(cycloalkene)、シクロアルキレン(cycloalkylene)、シロキサン(siloxane)、エーテル酸素(ether oxygen)、アルキル(alkyl)、シクロアルキル(cycloalkyl)、フェニル(phenyl)、およびフェニレン(phenylene)基から独立して選択される1つ以上の基を含んでいる。これらの基は、置換されていても置換されていなくてもよい。これらの基は、必要に応じて絶縁材料の繰り返し単位の一部であってよい。
絶縁材料自身は、脂肪族カルボニル(aliphatic carbonyl)、シアノ(cyano)、脂肪族−NHR、、芳香族−NHR、およびから独立して選択される1つ以上の基を含んでいてよい。やはりこれらの基は、必要に応じて絶縁材料の繰り返し単位の一部であってよい。
いくつかの実施態様では、絶縁材料は、絶縁材料の前駆体から作られていてよい。かかる前駆体は、適切な反応によって最終的な絶縁材料へと変換できる。例えば、最終的な絶縁材料が架橋されている場合は、前駆体絶縁材料は、架橋可能な基を含んでいてよく、架橋化絶縁材料は、例えば加熱によって前駆体から形成できる。前駆体絶縁材料に存在するのに望ましい基としては、アルケン(alkene)およびスチレン(styrene)基が挙げられる。
1つの実施態様では、ゲート誘電体層は、好ましくは、有機絶縁ポリマーを含んでいる。適切な精製後に使用可能な絶縁ポリマーの例としては、以下のものが挙げられる。
(i)ポリ(シロキサン)(poly(siloxane))およびそのコポリマー、例えば、ポリ(ジメチルシロキサン)(poly(dimethylsiloxane))、ポリ(ジフェニルシロキサン−コ−ジメチル−シロキサン)(poly(diphenylsiloxane-co-dimethyl-siloxane))、およびそのコポリマー。
(ii)ポリ(アルケン)(poly(alkene))およびそのコポリマー、例えば、アタクチックポリプロピレン(atactic polypropylene)、ポリ(エチレン−コ−プロピレン)(poly(ethylene-co-propylene))、ポリイソブチレン(polyisobutylene)、ポリ(ヘキセン)(poly(hexene))、ポリ(4−メチル−1−ペンテン)(poly(4-methyl-1-pentene))、およびそのコポリマー。
(iii)ポリ(オキシアルキレン)(poly(oxyalkylene))およびそのコポリマー、例えば、ポリ(オキシメチレン)(poly(oxymethylene))、ポリ(オキシエチレン)(poly(oxyethlene))、およびそのコポリマー。
(iv)ポリ(スチレン)(poly(styrene))およびそのコポリマー。
上述のポリマー中、そして実際には本発明で使用できる何れの有機絶縁ポリマー中の繰り返し単位も、最終的な絶縁ポリマーが上述の設計規則に適合するのであれば置換されていても置換されていなくてもよい。置換基は、可溶性といったポリマーの特定の特性を高めるための官能基を含んでいる。
上述のポリマーにおける架橋された誘導体もまた本発明の範囲内である。
好ましくは、絶縁材料は、ポリ(イミド)(poly(imide))ではない。
好ましくは、絶縁ポリマーは、Si(R)−O−Si(R)単位を含んでおり、ここで、それぞれのRは、独立して炭化水素を含んでいる。この点に関して、上述のような好ましいポリ(シロキサン)(poly(siloxane))は、絶縁ポリマーであり、ここで、ポリマーの骨格は、−Si(R)−O−Si(R)−を含む繰り返し単位を含んでおり、ここで、それぞれのRは、独立してメチル(methyl)または置換されているまたは置換されていないフェニル(phenyl)である。かかるポリマーの具体的な例は、一般式:
Figure 2007518259
を持っており、置換されていても置換されていなくてもよい。このポリマーは、一般式:
Figure 2007518259
を持つモノマーおよびその誘導体、例えば、ビス(ベンゾシクロブタン)−ジビニルテトラメチルジシロキサン(bis(benzocyclobutane)-divinyltetramethyldisiloxane)(シクロテン(登録商標)として市販されている)またはその誘導体を架橋することによって作成することができる。
他の実施態様では、絶縁材料は、好ましくは、絶縁オリゴマーまたは絶縁小分子を含んでいる。
上述の設計規則を考慮することに加えて、隣接する半導体層との間に高品質の界面を形成できる誘電体材料を選択することが重要である。界面は、望ましくは、化学的に安定しており、分子的に急峻であり、および分子的に平滑である。
さらに、誘電体層は、好ましくは、高い絶縁破壊強度、および非常に低い電気伝導性を示すべきである。
また、ゲート誘電体ポリマーは、有機(特にポリマー)FETの全体的な指定された処理と親和性がなければならない。例えば、それを形成することで既に形成されている層の完全性を破壊してはならず、それと同時に自身は、その後の溶剤および熱処理(もしあれば)に耐えなければならない。
さらに好ましくは、絶縁材料は、低いバルク電気伝導性および高い絶縁破壊強度を持っている。
また好ましくは、絶縁材料は、ガラス転移温度が120℃よりも高く、最も好ましくは150℃よりも高い。
絶縁材料のバルク抵抗は、好ましくは1014Ωcmより大きく、最も好ましくは1015Ωcm)よりも大きい。
絶縁材料は、望ましくは、高品質で欠陥のない超薄膜に加工可能であるべきである。
絶縁破壊強度は、有利には1MV/cmより大きく、好ましくは3MV/cmよりも大きい。
(a)好ましくは、ゲート誘電体は、150℃まで、より好ましくは300℃まで、熱的および機械的に安定である。このような場合、装置の上棚/作動温度は、半導体ポリマー(および取り付けられている電極)によって基本的に限定される。
化学的および機械的安定性を付与するために、1つの実施態様におけるゲート有機ゲート絶縁材料は、好ましくは架橋されている。
本発明によると、誘電体層は、単一の絶縁材料の単一の層からなるか、または複数の絶縁材料または絶縁材料の混合物の1つより多い層を備え得る。
本発明で使用できる半導体材料としては、小分子、オリゴマー、およびポリマーが挙げられる。
適切な半導体ポリマーのいくつかの例としては、ポリ(フルオレン)ホモポリマー(poly(fluorene) homopolymer)およびコポリマー、ポリ(p−フェニレンビニレン)ホモポリマー(poly(p-phenylenevinylene) homopolymer)およびコポリマー、ポリ(オキサジアゾール)ホモポリマー(poly(oxadiazole) homopolymer)およびコポリマー、ポリ(キノキサリン)ホモポリマー(poly(quinoxaline) homopolymer)およびコポリマー、および、ペリレンテトラカルボキシルジイミド(perylenetetracarboxlic diimide)、ナフタレンテトラカルボキシル二無水物(napthalenetetracarboxylic dianhydride)、キノリン(quinoline)、ベンズイミジアゾール(benzimidiazole)、オキサジアゾール(oxadiazole)、キノキサリン(quinoxaline)、ピリジン(pyridine)、ベンゾチアジアゾール(benzothiadiazole)、アクリジン(acridine)、フェナジン(phenazine)、およびテトラアザアントラセン(tetraazaanthracene)から選択される1つ以上の基を持つホモポリマーおよびコポリマーが挙げられる。
上述のポリマー中、そして実際には本発明で使用できる何れの有機絶縁ポリマー中の繰り返し単位も、最終的な絶縁ポリマーが上述の設計規則に適合するのであれば置換されていても置換されていなくてもよい。置換基は、可溶性といったポリマーの特定の特性を高めるための官能基を含んでいる。
上述のポリマーにおける架橋された誘導体もまた本発明の範囲内である。
上述のポリマーの等価なオリゴマーが本発明で使用することができる。
いくつかの実施態様では、半導体ポリマーは、前駆体ポリマーから作られていてよい。かかる前駆体は、適切な反応によって最終的な半導体へと変換できる。例えば、最終的な半導体ポリマーが架橋されている場合は、前駆体半導体ポリマーは、架橋可能な基を含んでいてよく、架橋化半導体ポリマーは、例えば加熱によって前駆体から形成できる。
適切な半導体小分子のいくつかの例としては、ペンタセン(pentacene)、ペリレンテトラカルボキシル(perylenetetracarboxlic)の二無水物およびジイミド、ナフタレンテトラカルボキシル(napthalenetetracarboxylic)の二無水物およびジイミドが挙げられる。
電荷キャリア移動度は、できるだけ高いのが好ましい。現在のところ、本発明で得られる典型的な値は10−5−10−1cm/Vsの範囲である。
本発明による第2の側面を参照すると、本発明のトランジスタを作成するための適切な方法が当業者にわかるであろう。明らかに、トラッピング基が臨界濃度を超えて誘電体層に存在することがないように処理条件を選択しなければならない。このことは、特に誘電体層を形成する場合に、例えば、最終的な誘電体層が臨界濃度を超えてトラップとして作用する可能性のある残留単位を含まないように、適切な処理条件の選択を要するであろう。
本発明の第2の側面による方法では、誘電体層および/または半導体層は、好ましくは溶液処理によって形成される。
絶縁材料を架橋させる場合、架橋化絶縁材料を作成するための反応材料を含む溶液は、溶液処理によって蒸着させてよい。そして反応材料を硬化させて架橋化絶縁材料を作成する。硬化のための1つの一般的なメカニズムは、反応材料を架橋させる縮合反応である。この縮合反応は、典型的には反応材料からの−OH離脱基の損失をともなう。しかしながら、−OH離脱基が損失しつつ縮合反応を介して硬化が進む場合は、これにより典型的には反応材料に存在していたすべての−OH離脱基が取り除かれるということはない。従って、最終的な架橋化絶縁材料は、残留−OH離脱基を含むことになる。上述のように、このことは、不利であるため、架橋化絶縁材料を作成するための反応材料は、−OH離脱基をまったく含まないのが好ましい。好ましくは、絶縁材料中の架橋基は、離脱基を失うことなく硬化させることができる反応材料中の架橋可能な基に由来するものである。かかる反応の例としては、(ベンゾシクロブテン(benzocyclobutene)とアルケン(alkene)との間の反応によって例示されるような)ジエン(diene)とジエノフィル(dienophile)との間のディールズ・アルダー反応、およびSi−Hとアルケン(alkene)との間のヒドロシリル化反応が挙げられる。
ここで本発明を添付の図面を参照しながらさらに詳細に説明する。
実施例
実施例1:
一般的な原則の例示として、200nmのSiO層を持つp−ドープシリコン基板を、メシチレン(mesitylene)中の4.4w/v%BCB(シクロテン(登録商標、ダウケミカル社))溶液をスピンすることによって厚み50nmのBCB層でコーティングし、次に、290度に設定したホットプレート上で15秒間、窒素下で(pO<5ppm)超高速熱アニールする。次いで、必要とされている有機半導体を、適切な溶媒中の1.3−1.8w/v%溶液から50−80nmの厚みの薄膜として基板全体にスピンキャストする。試験を行った共役ポリマーの範囲は、次の通りである。(i)混合キシレンから得られたポリ(9,9−ジオクチルフルオレン−アルト−ベンゾ−2−チア−1,3−ジアゾール)(poly(9,9-dioctylfluorene-alt-benzo-2-thia-1,3-diazole))(「F8BT」)、(ii)混合キシレンから得られたポリ(9,9−ジオクチルフルオレン−2,7−ジイル)(poly(9,9-dioctylfluorene-2,7-diyl))(「F8」)、(iii)トルエンから得られたポリ(2,5−ジヘキシル−p−フェニレンビニレン−コ−α,α−ジシアノ−2,5−ジヘキシル−p−フェニレンビニレン)(poly(2,5-dihexyl-p-phenylenevinylene-co-α,α’-dicyano-2,5-dihexyl-p-phenylenevinylene))(「CN−PPV」)、(iv)1:3(v/v)THF:トルエンから得られたポリ(2−メトキシ−5−(3,7−ジメチル)オクトキシ−p−フェニレンビニレン)(poly(2-methoxy-5-(3,7-dimethyl)octoxy-p-phenylenevinylene)(「OC1C10−PPV」)、および(v)メタノールから得られた前駆体PPV(「PPV」)である。100nmのカルシウム電極をシャドウマスクを介して蒸着し、この電極を30nmのSiOに封入して、チャンネルの長さが25μmで幅が2.5mmのソース−ドレイントップコンタクト電極を得た。次に、トランジスタをグローブボックス内で試験した。
代表的な結果を図1(a)−(e)に示す。図1(a)および図1(b)はそれぞれ、F8BTの移送(transfer)および出力特性を示している。線形レジーム移動度(linear-regime mobility)(μFET,e)は、5×10−3cm/Vsと推定される。図1(c)は、CN−PPVの移送特性を示している(μFET,e=3×10−5cm/Vs)。図1(d)は、0C1C10−PPVの移送特性を示している(μFET,e=4×10−5cm/Vs)。図1(e)は、PPVの移送特性を示している(μFET,e=5×10−5cm2/Vs)。本願で研究したPPVおよびOC1C10−PPV膜は、比較的高い不純物レベルを持っており、このことにより装置特性の閾値およびドリフトが高くなっている。F8は、μFET,e=1×10−3cm/Vsである(移送特性は、示していない)。
本実施例のようにBCB誘電体でコーティングせずに、SiO表面をヘキサメチルジシラザン(hexamethyldisilazane)でパッシベートした後でさえ、大きなn−チャネル活性は、観察することができない。このような観察は、SiOの表面上の残留シラノール基について予測できる高いEArxnと一致する。
このセットの実施例は、ゲート誘電体を適切に選択することで、適切な注入接触が行われさえすれば広範囲の有機半導体を使ってn−チャネルFETを製造することが可能となる、という原則を示すために提供される。
ポリ(メチルメタクリレート)(poly(methyl methacrylate))を(トップゲートFETにおける)ゲート誘電体として使用する場合、得られるn−チャネルFET移動度は、非常に劣悪であり、ポリ(フルオレン)(poly(fluorene))誘導体におけるμFET,eが典型的には10−6cm/Vs未満である。ポリ(ビニルフェノール)(poly(vinylphenol))をゲート誘電体として使用する場合、n−チャネルFET挙動は、得られない。ヘキサメチルジシラザン(hexamethyldisilazane)で処理したSiOをゲート誘電体として使用する場合も、やはりn−チャネルFET挙動は、得られない。これらの観察はすべて、本発明の設計規則に一致する。
実施例2:
一般原則をさらに例示するものとして、今回は、アルミニウムソース−ドレイン電極を用いる。200nmのSiO層を持つp−ドープシリコン基板を、メシチレン(mesitylene)中の4.4w/v%BCB(シクロテン(登録商標)、ダウケミカル社)溶液をスピンすることによって厚み50nmのBCB層でコーティングし、次に、290度に設定したホットプレート上で15秒間、窒素下で(pO<5ppm)超高速熱アニールする。次いで、必要とされている有機半導体を、適切な溶媒中の1.3−1.8w/v%溶液から50−80nmの厚みの薄膜として基板全体にスピンキャストする。試験を行った2つの共役ポリマーは、次の通りである。(i)混合キシレンから得られたポリ(9,9−ジオクチルフルオレン−アルト−ベンゾ−2−チア−1,3−ジアゾル)(poly(9,9-dioctylfluorene-alt-benzo-2-thia-1,3-diazole))(「F8BT」)、および(ii)トルエンから得られたポリ(2,5−ジヘキシル−p−フェニレンビニレン−コ−α,α−ジシアノ−2,5−ジヘキシル−p−フェニレンビニレン)(poly(2,5-dihexyl-p-phenylenevinylene-co-α,α’-dicyano-2,5-dihexyl-p-phenylenevinylene))(「CN−PPV」)である。100nmのアルミニウム電極をシャドウマスクを介して蒸着する。次に、トランジスタをグローブボックス内で試験した。
代表的な結果を図2(a)−(d)に示す。図2(a)および図2(b)は、それぞれ、F8BTの移送および出力特性を示している。線形レジーム移動度(μFET,e)は、4×10−4cm/Vsと推定される。この値は、Ca電極の場合よりも一桁小さい値である。出力特性もまたあまりにも早く飽和する。これらは、両方とも、アルミニウム電極の接触抵抗が高いことを表している。しかしながらそれにもかかわらず、n−チャネル活性は、やはり得られた。図2(c)および図2(d)は、CN−PPVの移送および出力特性を示している(μFET,e=4×10−5cm/Vs)。これは、Ca装置に匹敵し、Alは、CN−PPV中へ十分に良好に注入できることを表している。
このセットの実施例は、本発明で説明したようにゲート誘電体を適切に選択することで、広範囲の有機半導体から適切な注入接触を持つn−チャネルFETの製造が可能となる原則を再び示すために提供される。
実施例3:
一般原則をさらに例示するものとして、今回は、ガラス基板上にパターン化された金ソース−ドレイン電極およびトップゲートを用いる。ガラス基板を、混合キシレン中の1.7w/v%溶液から得られる50−80nmの厚みのポリ(9,9−ジオクチルフルオレン−アルト−ベンゾ−2−チア−1,3−ジアゾル)(poly(9,9-dioctylfluorene-alt-benzo-2-thia-1,3-diazole))でコーティングする。次に、30−40℃でデカン中の12.7w/v%BCB(ダウケミカル社のシクロテン(登録商標)から抽出)から厚みが200nmのBCB層をスピンすることによってゲート誘電体層を堆積し、そして290℃に設定したホットプレート上で15秒間、窒素下で(pO<5ppm)超高速熱アニールする。次に、表面活性イオン交換ポリ(3,4−エチレンジオキシチオフェン)(poly(3,4-ethylenedioxythiophene))−ポリ(スチレンスルホネート)(poly(styrenesulfonate))錯体(「PEDT:PSSR」)を印刷することによってトップゲート電極を堆積する。この表面活性イオン交換PEDT:PSSR錯体は、バイトロンP(ドイツのHC Starck of Leverkusen社)から作成されるもので、バイトロンPをポリ(スチレンスルホン酸)(poly(styrenesulfonic acid))で富裕化してPEDT:PSS比を10−16とした後、ヘキサデシルトリメチルアンモニウム(hexadecyltrimethylammonium)で透析交換することにより作成される。
電子移動度は、約10−4cm/Vsであり、注入によって制限される。従って、双極性自己組織化単分子膜を使って金電極を適切に機能化してその有効仕事関数を改善することにで、さらなる改善を行うことができる。
本実施例は、本発明で教示する原則が実用的な注入接触を持つトップゲート装置にも適用できることを示すために提供される。
図1aおよび図1bは、それぞれ、実施例1に従ってF8BTを半導体層として使用しているトランジスタの移送および出力特性を示している。図1cは、実施例1に従ってCN−PPVを半導体層として使用しているトランジスタの移送特性を示している。図1dは、実施例1に従ってOC1C10−PPVを半導体層として使用しているトランジスタの移送特性を示している。図1eは、実施例1に従ってPPVを半導体層として使用しているトランジスタの移送特性を示している。 図2aおよび図2bは、それぞれ、実施例2に従ってF8BTを半導体層として使用しているトランジスタの移送および出力特性を示している。図2cおよび図2dは、それぞれ、実施例2に従ってCN−PPVを半導体層として使用しているトランジスタの移送および出力特性を示している。

Claims (21)

  1. 電子親和力がEAsemicondである有機半導体層と、前記半導体層と界面を形成する有機ゲート誘電体層とを備えるn−チャネルまたは両極性の電界効果トランジスタであって、前記ゲート誘電体層中のトラッピング基のバルク濃度が1018cm−3未満であり、この場合、トラッピング基は、(i)EAsemicond以上の電子親和力EAおよび/または(ii)(EAsemicond.−2eV)以上の反応性電子親和力EArxnを持つ基であることを特徴とする、n−チャネルまたは両極性の電界効果トランジスタ。
  2. 前記トランジスタは、両極性電界効果トランジスタであることを特徴とする、請求項1に記載のトランジスタ。
  3. EAsemicondは、2eV以上であることを特徴とする、前記請求項の何れかに記載のトランジスタ。
  4. EAsemicondは、2eVから4eVの範囲であることを特徴とする、請求項3に記載のトランジスタ。
  5. 前記ゲート誘電体層は、有機絶縁材料を備え、前記有機絶縁材料は、トラッピング基を含む繰り返し単位または残留単位を含んでいないことを特徴とする、前記請求項の何れかに記載のトランジスタ。
  6. 前記絶縁材料は、(i)3eV以上の電子親和力EAおよび/または(ii)0.5eV以上の反応性電子親和力EArxnを持つ基を含む繰り返し単位または残留単位は含んでいないことを特徴とする、前記請求項の何れかに記載のトランジスタ。
  7. 前記絶縁材料は、キノン(quinone)、芳香族−OH、脂肪族−COOH、芳香族−SH、または芳香族−COOH基を含む繰り返し単位または残留単位を含んでいないことを特徴とする、請求項6に記載のトランジスタ。
  8. 前記絶縁材料は、アルケン(alkene)、アルキレン(alkylene)、シクロアルケン(cycloalkene)、シクロアルキレン(cycloalkylene)、シロキサン(siloxane)、エーテル酸素(ether oxygen)、アルキル(alkyl)、シクロアルキル(cycloalkyl)、フェニル(phenyl)、およびフェニレン(phenylene)基から選択される1つ以上の基を含んでいることを特徴とする、前記請求項の何れかに記載のトランジスタ。
  9. 前記絶縁材料は、絶縁ポリマーを含んでいることを特徴とする、請求項5ないし8に記載のトランジスタ。
  10. 前記絶縁ポリマーは、置換されたおよび置換されていないポリ(シロキサン)(poly(siloxane))およびそのコポリマー、置換されたおよび置換されていないポリ(アルケン)(poly(alkene))およびそのコポリマー、置換されたおよび置換されていないポリ(スチレン)(poly(styrene))およびそのコポリマー、置換されたおよび置換されていないポリ(オキシアルキレン)(poly(oxyalkylene))およびそのコポリマーから選択されることを特徴とする、請求項9に記載のトランジスタ。
  11. 前記絶縁ポリマーの骨格は、−Si(R)−O−Si(R)−を含む繰り返し単位を含んでおり、ここで、それぞれのRは、独立してメチル(methyl)または置換されているまたは置換されていないフェニル(phenyl)であることを特徴とする、請求項10に記載のトランジスタ。
  12. 前記絶縁ポリマーは、架橋されていることを特徴とする、請求項9ないし11の何れかに記載のトランジスタ。
  13. 前記有機半導体層は、半導体ポリマーを含んでいることを特徴とする、前記請求項の何れかに記載のトランジスタ。
  14. 前記有機半導体層は、半導体オリゴマーを含んでいることを特徴とする、請求項1ないし12の何れかに記載のトランジスタ。
  15. 前記有機半導体層は、半導体小分子を含んでいることを特徴とする、請求項1ないし12の何れかに記載のトランジスタ。
  16. 請求項1ないし15の何れかに定義するトランジスタを作成するための方法。
  17. n−チャネルまたは両極性の電界効果トランジスタでn−チャネル伝導を行うための請求項1ないし15に記載のトランジスタの使用法。
  18. n−チャネル伝導を行うために、(i)3eV以上のEAおよび/または(ii)0.5eV以上のEArxnを持つ何れの化学基も含まない有機ゲート絶縁材料の使用法。
  19. 絶縁材料は、(i)2eV以上のEAおよび/または(ii)0eV以上の(EArxn)を持つ何れの化学基も含まないことを特徴とする、請求項18に記載の使用法。
  20. 請求項1ないし15の何れかに定義されているトランジスタを備える回路、相補型回路、または論理回路。
  21. 請求項20に定義されている回路、相補型回路、または論理回路を作成するための方法。
JP2006548405A 2004-01-16 2005-01-17 N−チャネルトランジスタ Expired - Fee Related JP5552205B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB0400997.3A GB0400997D0 (en) 2004-01-16 2004-01-16 N-channel transistor
GB0400997.3 2004-01-16
PCT/GB2005/000132 WO2005069401A1 (en) 2004-01-16 2005-01-17 N-channel transistor

Publications (2)

Publication Number Publication Date
JP2007518259A true JP2007518259A (ja) 2007-07-05
JP5552205B2 JP5552205B2 (ja) 2014-07-16

Family

ID=31726316

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2006548404A Active JP5216217B2 (ja) 2004-01-16 2005-01-17 両極性発光電界効果トランジスタ
JP2006548405A Expired - Fee Related JP5552205B2 (ja) 2004-01-16 2005-01-17 N−チャネルトランジスタ
JP2011211888A Active JP5329630B2 (ja) 2004-01-16 2011-09-28 両極性発光電界効果トランジスタ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2006548404A Active JP5216217B2 (ja) 2004-01-16 2005-01-17 両極性発光電界効果トランジスタ

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011211888A Active JP5329630B2 (ja) 2004-01-16 2011-09-28 両極性発光電界効果トランジスタ

Country Status (10)

Country Link
US (3) US20070278478A1 (ja)
EP (3) EP1711970B1 (ja)
JP (3) JP5216217B2 (ja)
KR (1) KR101142991B1 (ja)
CN (3) CN101847689B (ja)
AT (1) ATE407457T1 (ja)
DE (1) DE602005009495D1 (ja)
GB (1) GB0400997D0 (ja)
SG (1) SG149855A1 (ja)
WO (2) WO2005069401A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007523446A (ja) * 2004-01-16 2007-08-16 ケンブリッジ エンタープライズ リミティド 両極性発光電界効果トランジスタ

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4575725B2 (ja) * 2004-08-20 2010-11-04 株式会社リコー 電子素子、及びその製造方法
WO2006116584A2 (en) * 2005-04-27 2006-11-02 Dynamic Organic Light, Inc. Light emitting polymer devices using self-assembled monolayer structures
DE102005048774B4 (de) * 2005-10-07 2009-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Substrat, das zumindest bereichsweise an einer Oberfläche mit einer Beschichtung eines Metalls versehen ist, sowie dessen Verwendung
PL1951956T3 (pl) * 2005-11-25 2009-08-31 Sca Hygiene Prod Gmbh Nawilżona płynem kosmetycznym bibułka charakteryzująca się krótkim czasem wchłaniania wody
US7528017B2 (en) * 2005-12-07 2009-05-05 Kovio, Inc. Method of manufacturing complementary diodes
JP2007200829A (ja) * 2005-12-27 2007-08-09 Semiconductor Energy Lab Co Ltd 有機発光トランジスタ
US7528448B2 (en) * 2006-07-17 2009-05-05 E.I. Du Pont De Nemours And Company Thin film transistor comprising novel conductor and dielectric compositions
US7687870B2 (en) 2006-12-29 2010-03-30 Panasonic Corporation Laterally configured electrooptical devices
JP5152493B2 (ja) * 2007-03-26 2013-02-27 国立大学法人大阪大学 有機電界効果トランジスター及びその製造方法
JP5111949B2 (ja) 2007-06-18 2013-01-09 株式会社日立製作所 薄膜トランジスタの製造方法及び薄膜トランジスタ装置
KR20090065254A (ko) * 2007-12-17 2009-06-22 한국전자통신연구원 광반응성 유기고분자 게이트 절연막 조성물 및 이를 이용한유기 박막 트랜지스터
GB2458483B (en) * 2008-03-19 2012-06-20 Cambridge Display Tech Ltd Organic thin film transistor
JP5650108B2 (ja) * 2008-07-02 2015-01-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 交互ドナーアクセプターコポリマー系の高性能で溶液加工可能な半導体ポリマー
GB0821980D0 (en) * 2008-12-02 2009-01-07 Cambridge Entpr Ltd Optoelectronic device
WO2010068619A1 (en) * 2008-12-08 2010-06-17 The Trustees Of The University Of Pennsylvania Organic semiconductors capable of ambipolar transport
US8638830B2 (en) * 2009-01-08 2014-01-28 Quantum Electro Opto Systems Sdn. Bhd. Light emitting and lasing semiconductor devices and methods
US8669552B2 (en) * 2011-03-02 2014-03-11 Applied Materials, Inc. Offset electrode TFT structure
WO2013063399A1 (en) * 2011-10-28 2013-05-02 Georgetown University Method and system for generating a photo-response from mos2 schottky junctions
US8692238B2 (en) 2012-04-25 2014-04-08 Eastman Kodak Company Semiconductor devices and methods of preparation
EP3050079A4 (en) * 2013-09-26 2017-06-28 Intel Corporation Methods of forming low band gap source and drain structures in microelectronic devices
US9147615B2 (en) * 2014-02-14 2015-09-29 International Business Machines Corporation Ambipolar synaptic devices
CN103972390B (zh) * 2014-05-21 2017-02-15 北京交通大学 一种双极型有机发光场效应晶体管
EP3155623B1 (en) 2014-06-11 2019-05-08 Eastman Kodak Company Devices having dielectric layers with thiosulfate-containing polymers
US20170154790A1 (en) * 2015-11-30 2017-06-01 Intel Corporation Sam assisted selective e-less plating on packaging materials
CN107425035B (zh) * 2017-05-11 2019-11-05 京东方科技集团股份有限公司 有机发光晶体管和显示面板

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19543540C1 (de) * 1995-11-22 1996-11-21 Siemens Ag Vertikal integriertes Halbleiterbauelement mit zwei miteinander verbundenen Substraten und Herstellungsverfahren dafür
JPH10209459A (ja) * 1997-01-27 1998-08-07 Matsushita Electric Ind Co Ltd 有機薄膜トランジスタ及びその製造方法並びに液晶素子と有機発光素子
GB9808061D0 (en) * 1998-04-16 1998-06-17 Cambridge Display Tech Ltd Polymer devices
TW410478B (en) * 1998-05-29 2000-11-01 Lucent Technologies Inc Thin-film transistor monolithically integrated with an organic light-emitting diode
US6373186B1 (en) * 1999-01-21 2002-04-16 Tdk Corporation Organic electroluminescent device with high resistance inorganic hole injecting layer
WO2000079617A1 (en) * 1999-06-21 2000-12-28 Cambridge University Technical Services Limited Aligned polymers for an organic tft
US6720572B1 (en) * 1999-06-25 2004-04-13 The Penn State Research Foundation Organic light emitters with improved carrier injection
US6284562B1 (en) * 1999-11-17 2001-09-04 Agere Systems Guardian Corp. Thin film transistors
CA2394881A1 (en) * 1999-12-21 2001-06-28 Plastic Logic Limited Solution processed devices
AU781789B2 (en) 1999-12-21 2005-06-16 Flexenable Limited Solution processing
JP2002026334A (ja) 2000-07-12 2002-01-25 Matsushita Electric Ind Co Ltd 薄膜トランジスタ、液晶表示装置およびエレクトロルミネッセンス表示装置
US6884093B2 (en) * 2000-10-03 2005-04-26 The Trustees Of Princeton University Organic triodes with novel grid structures and method of production
SG138466A1 (en) * 2000-12-28 2008-01-28 Semiconductor Energy Lab Luminescent device
JP2002343578A (ja) * 2001-05-10 2002-11-29 Nec Corp 発光体、発光素子、および発光表示装置
US6870180B2 (en) * 2001-06-08 2005-03-22 Lucent Technologies Inc. Organic polarizable gate transistor apparatus and method
US6433359B1 (en) * 2001-09-06 2002-08-13 3M Innovative Properties Company Surface modifying layers for organic thin film transistors
EP1306910B1 (en) * 2001-10-24 2011-08-17 Imec Ambipolar organic transistors
EP1306909A1 (en) 2001-10-24 2003-05-02 Interuniversitair Micro-Elektronica Centrum Ambipolar organic transistors
US6617609B2 (en) * 2001-11-05 2003-09-09 3M Innovative Properties Company Organic thin film transistor with siloxane polymer interface
JP4269134B2 (ja) * 2001-11-06 2009-05-27 セイコーエプソン株式会社 有機半導体装置
JP2003187983A (ja) * 2001-12-17 2003-07-04 Ricoh Co Ltd 有機elトランジスタ
CA2469912A1 (en) 2001-12-19 2003-06-26 Avecia Limited Organic field effect transistor with an organic dielectric
JP2003282884A (ja) * 2002-03-26 2003-10-03 Kansai Tlo Kk サイドゲート型有機fet及び有機el
US6970490B2 (en) * 2002-05-10 2005-11-29 The Trustees Of Princeton University Organic light emitting devices based on the formation of an electron-hole plasma
GB2388709A (en) 2002-05-17 2003-11-19 Seiko Epson Corp Circuit fabrication method
US7002176B2 (en) * 2002-05-31 2006-02-21 Ricoh Company, Ltd. Vertical organic transistor
GB0215375D0 (en) 2002-07-03 2002-08-14 Univ Cambridge Tech Organic-inorganic hybrid transistors
EP1536484A4 (en) * 2002-07-15 2009-01-07 Pioneer Corp ORGANIC SEMICONDUCTOR AND METHOD FOR MANUFACTURING THE SAME
US7115916B2 (en) * 2002-09-26 2006-10-03 International Business Machines Corporation System and method for molecular optical emission
US6828583B2 (en) * 2003-03-12 2004-12-07 The Regents Of The University Of California Injection lasers fabricated from semiconducting polymers
GB0315477D0 (en) 2003-07-02 2003-08-06 Plastic Logic Ltd Rectifying diodes
GB0318817D0 (en) * 2003-08-11 2003-09-10 Univ Cambridge Tech Method of making a polymer device
US7078937B2 (en) * 2003-12-17 2006-07-18 3M Innovative Properties Company Logic circuitry powered by partially rectified ac waveform
GB0400997D0 (en) * 2004-01-16 2004-02-18 Univ Cambridge Tech N-channel transistor
WO2005079119A1 (ja) * 2004-02-16 2005-08-25 Japan Science And Technology Agency 発光型トランジスタ
JP5137296B2 (ja) * 2004-03-19 2013-02-06 三菱化学株式会社 電界効果トランジスタ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007523446A (ja) * 2004-01-16 2007-08-16 ケンブリッジ エンタープライズ リミティド 両極性発光電界効果トランジスタ

Also Published As

Publication number Publication date
WO2005069400A1 (en) 2005-07-28
EP1711970B1 (en) 2008-09-03
CN1918724A (zh) 2007-02-21
ATE407457T1 (de) 2008-09-15
CN1918722B (zh) 2010-05-12
WO2005069401A1 (en) 2005-07-28
DE602005009495D1 (de) 2008-10-16
EP1990845A1 (en) 2008-11-12
SG149855A1 (en) 2009-02-27
CN101847689B (zh) 2014-01-01
JP2007523446A (ja) 2007-08-16
GB0400997D0 (en) 2004-02-18
KR20070004627A (ko) 2007-01-09
US20150221896A1 (en) 2015-08-06
JP5216217B2 (ja) 2013-06-19
US20070295955A1 (en) 2007-12-27
EP1711970A1 (en) 2006-10-18
EP1704587A1 (en) 2006-09-27
CN1918722A (zh) 2007-02-21
EP1704587B1 (en) 2015-02-11
EP1990845B1 (en) 2012-10-24
JP5329630B2 (ja) 2013-10-30
CN1918724B (zh) 2010-06-23
JP5552205B2 (ja) 2014-07-16
US20070278478A1 (en) 2007-12-06
JP2012054566A (ja) 2012-03-15
CN101847689A (zh) 2010-09-29
US7638793B2 (en) 2009-12-29
KR101142991B1 (ko) 2012-05-24

Similar Documents

Publication Publication Date Title
JP5552205B2 (ja) N−チャネルトランジスタ
Lee et al. Toward environmentally robust organic electronics: approaches and applications
Feng et al. Cyano‐Functionalized n‐Type Polymer with High Electron Mobility for High‐Performance Organic Electrochemical Transistors
Khim et al. Control of Ambipolar and Unipolar Transport in Organic Transistors by Selective Inkjet‐Printed Chemical Doping for High Performance Complementary Circuits
Asadi et al. Manipulation of charge carrier injection into organic field-effect transistors by self-assembled monolayers of alkanethiols
Hamilton et al. High‐performance polymer‐small molecule blend organic transistors
Chen et al. High mobility ambipolar charge transport in polyselenophene conjugated polymers
Chen et al. High‐performance ambipolar diketopyrrolopyrrole‐thieno [3, 2‐b] thiophene copolymer field‐effect transistors with balanced hole and electron mobilities
Zaumseil et al. Electron and ambipolar transport in organic field-effect transistors
JP5657379B2 (ja) 電子装置の製造方法
Chou et al. Nonvolatile transistor memory devices using high dielectric constant polyimide electrets
Lim et al. Doping effect of solution-processed thin-film transistors based on polyfluorene
US20140353647A1 (en) Organic Thin Film Transistors And Method of Making Them
Kim et al. Flexible Low‐Power Operative Organic Source‐Gated Transistors
Sarkar et al. Tuning contact resistance in top‐contact p‐type and n‐type organic field effect transistors by self‐generated interlayers
Tunc et al. Influence of molecular weight on the short‐channel effect in polymer‐based field‐effect transistors
Orgiu et al. Tuning the charge injection of P3HT-based organic thin-film transistors through electrode functionalization with oligophenylene SAMs
Nketia‐Yawson et al. Interfacial Interaction Enables Enhanced Mobility in Hybrid Perovskite‐Conjugated Polymer Transistors with High‐k Fluorinated Polymer Dielectrics
Feng et al. Dual-$ V_ {\rm th} $ Low-Voltage Solution Processed Organic Thin-Film Transistors With a Thick Polymer Dielectric Layer
Shao et al. Pyromellitic diimide‐based copolymers for ambipolar field‐effect transistors: Synthesis, characterization, and device applications
Fu et al. Enabling scalable, ultralow-voltage flexible organic field-effect transistors via blade-coated cross-linked thick polyvinyl alcohol gate dielectric
Sun et al. Synthesis of Novel Conjugated Polyelectrolytes for Organic Field‐Effect Transistors Gate Dielectric Materials
Rong et al. Nitrogenous Interlayers for ITO S/D Electrodes in N‐Type Organic Thin Film Transistors
Alley CHARGE TRAPPING IN POLYMER DIELECTRICS AND POTENTIALS AT ORGANIC DONOR-ACCEPTOR JUNCTIONS—THE ROLE OF INTERFACE AND BULK CONTRIBUTIONS
Arumugam et al. Field‐Effect Mobility, Morphology and Electroluminescence of a Semiconductor Based on a DPP Quaterfluorene Quadrupolar Linear Conjugated System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120214

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131107

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R150 Certificate of patent or registration of utility model

Ref document number: 5552205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees