JP2007305641A - アクティブマトリクス基板および液晶表示パネル - Google Patents

アクティブマトリクス基板および液晶表示パネル Download PDF

Info

Publication number
JP2007305641A
JP2007305641A JP2006129870A JP2006129870A JP2007305641A JP 2007305641 A JP2007305641 A JP 2007305641A JP 2006129870 A JP2006129870 A JP 2006129870A JP 2006129870 A JP2006129870 A JP 2006129870A JP 2007305641 A JP2007305641 A JP 2007305641A
Authority
JP
Japan
Prior art keywords
drain electrode
electrode
parasitic capacitance
gate electrode
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006129870A
Other languages
English (en)
Inventor
Shigeo Ikedo
重雄 池戸
Masanori Takeuchi
正典 武内
Norifumi Enda
憲史 縁田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006129870A priority Critical patent/JP2007305641A/ja
Publication of JP2007305641A publication Critical patent/JP2007305641A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】ゲート電極/ドレイン電極間の寄生容量の変動が小さいAM基板を提供する。
【解決手段】透明基板上にマトリクス状に配置された各絵素電極16にTFT14が接続されたアクティブマトリクス基板1において、ゲート電極14Gとドレイン電極14Dとが重なり合う領域およびその周縁領域とによって寄生容量Cgdが形成される。この半導体層14aの少なくとも一端辺を、前記寄生容量Cgdを形成する領域の端辺から、ゲート電極14G、半導体層14a、ソース電極14Sおよびドレイン電極14Dの相対的な位置ずれの許容誤差Δeの距離よりも離れて、前記寄生容量Cgdを形成する領域の外側に配置する。
【選択図】図3

Description

本発明はアクティブマトリクス基板およびこれを備えた液晶表示パネルに関する。
近年、コンピュータやテレビなどの電気製品の表示画面として、例えば液晶表示パネルのような、フラットパネルディスプレイが広く用いられている。液晶表示パネルは、一般に対をなす透明基板間に液晶を封入したものであり、例えば、薄膜トランジスタ(以下、TFTと称す。)をスイッチング素子として搭載したアクティブマトリクス基板(以下、AM基板と称す。)を有するアクティブマトリクス型の液晶表示パネル等が知られている。
図6(a)は、従来のAM基板101の1絵素電極分の領域を拡大して示した平面図、図6(b)は、そのAM基板101のTFT114部位のX−X線断面図である。
このAM基板101は、透明基板110上に多数の絵素電極116がマトリクス状に配置され、各絵素電極にはスイッチング素子であるTFT114が接続されている。このTFT114は、ドレイン電極114Dとソース電極114Sとが、複数の半導体層114a,114bおよびゲート絶縁膜117を介してゲート電極114Gと部分的に重なり合うように配置されて形成される。このソース電極114Sはソース配線113と、ゲート電極114Gはゲート配線111と一体的に形成されており、ゲート配線111とソース配線113は、ゲート絶縁膜117を介して互いに交差するように設けられている。
そして、図示しないが、このAM基板101と対をなす、透明基板(以下、CF基板と称す。)には、AM基板101の絵素電極116と対向して共通電極(対向電極)、カラーフィルタおよび絵素電極116間の光漏れを遮光するブラックマトリックス等が形成されている。
これらのAM基板101とCF基板とを所定の間隙を介して対向させて貼り合わせ、この間隙に液晶を封入することで液晶表示パネルが構成される。このようにAM基板101とCF基板を対向させると、絵素電極116と共通電極の間で液晶容量CCLが形成される。また、AM基板101上では補助容量配線112と補助用量電極112aとの間で補助容量Csが、ドレイン電極114Dとゲート電極114Gとの間には寄生容量Cgdが形成される。
このように、AM基板101には、絵素電極116、TFT114を構成する複数の半導体層114a,114bやゲート配線111、ソース配線113等のパターンが積層して配置されている。このAM基板101上に各パターンを形成するには、フォトリソグラフィー法が広く適用されている。フォトリソグラフィー法は、透明基板上110に各種配線またはTFT114等を形成する薄膜を生成し、フォトレジストを塗布し、遮光マスクを介してフォトレジストを選択的に露光、現像して、フォトレジストのパターンを形成する。そして、このフォトレジストを介して薄膜を選択的にエッチングする。この一連の処理を各パターン毎に繰り返すことでAM基板101が完成する。
この各パターンの形成において、露光時の仕上り差により、透明基板110上に形成されるパターンの配置がずれてしまうことがある。そうするとドレイン電極114Dとゲート電極114Gとの重なり具合もずれ、ドレイン電極114Dとゲート電極114Gとの間に生じる寄生容量Cgdの大きさも変化する。
そして、寄生容量Cgdが大きいTFT114が接続された絵素電極116と、寄生容量Cgdが小さいTFT114が接続された絵素電極116とが入り交じった状態のAM基板を液晶表示パネルに適用した場合、各絵素毎に表示輝度のばらつきが生じてしまう。
このような不具合を解消するAM基板としては、ドレイン電極とゲート電極の配置が多少ずれても、重なり合う面積が変動しにくいように、ドレイン電極を特殊な形状に形成したものが多く知られている。例えば、特許文献1は、ドレイン電極のゲート電極端を跨ぐ部分の幅を、ドレイン電極幅よりも狭く形成することで、アライメントずれによるゲート電極とドレイン電極との重なり面積の変動を小さくして、寄生容量Cgdの変動を抑えるというものである。
特開2002−14371号公報
しかしながら、寄生容量Cgdは、ゲート電極とドレイン電極との重なり合う面積の大きさだけではなく、その周縁領域に含まれる半導体層の面積や、ドレイン電極の端辺から半導体層の端辺までの距離等の周縁領域の状態にも影響を受けて変動する。
図7(a)〜(c)は、従来のAM基板101の各絵素電極に接続されたTFT114の断面図である。図7(a)は、ゲート電極114Gに対してドレイン電極114Dがずれのない位置に形成された場合、図7(b)、(c)は、ゲート電極114Gに対してドレイン電極114Dが図中左または右方向にずれて形成された場合を示したものである。矢印Cgdは、ゲート電極114G/ドレイン電極114D間の寄生容量Cgdの大きさに影響を与える半導体層114aの範囲を示している。
寄生容量Cgdは、ゲート電極114Gとドレイン電極114Dが重なり合う領域と、その周縁領域から形成される。この周縁領域は、ソース電極114Sとドレイン電極114Dとが隣り合う側では、ソース電極114Sとドレイン電極114Dとの間の隙間の中心からドレイン電極114Dの端部までの領域、ソース電極114Sとドレイン電極114Dとが隣り合わない側ではドレイン電極114Dから所定の距離aまでの領域である。ただし、この所定の距離aよりも、半導体層114aの端辺が近くにある場合は、図7(a)〜(c)に示されるように、半導体層114aの端辺までの領域が、寄生容量Cgdを形成する周縁領域となる。
図7(b)のように、ドレイン電極114Dが半導体層114aの端辺に遠ざかる方向にずれた場合、ドレイン電極114Dの端辺から半導体層114aの端辺までの距離は長くなる。すると寄生容量Cgdを形成する周縁領域の面積も大きくなる。また、図7(c)のように、ドレイン電極114Dが半導体層114aの端部に近づく方向にずれた場合、周縁領域の面積は小さくなる。
このように、ドレイン電極114Dが半導体層の端部に近接して設けられた場合に、ゲート電極114Gの配置がずれると、ゲート電極114Gとドレイン電極114Dとの重なり合う面積が同じでも、ドレイン電極114Dの端辺から半導体層114aの端辺までの距離が変化してしまう。これにより、ゲート電極114G/ドレイン電極114D間の寄生容量Cgdを形成する周縁領域の面積が変化し、それに伴って、寄生容量Cgdの大きさも変動する。
すなわち、寄生容量Cgdは、ゲート電極114Gとドレイン電極114Dとの重なり合う面積だけでなく、ドレイン電極114Dと半導体層114aとの位置関係にも影響を受けて変動するため、ゲート電極114Gとドレイン電極114Dとの重なり合う面積の変動を抑えるだけでは、AM基板101上でのパターンの相対的な配置のずれに起因した寄生容量Cgdの変動を十分に抑えることができない、という問題があった。
また、AM基板101の面内で、ドレイン電極114Dが半導体層114aの端辺に近づく方向にずれて形成されたTFT114と、ドレイン電極114Dが半導体層114aの端辺から遠ざかる方向にずれて形成されたTFT114とが入り交じって形成されると、AM基板101の面内で寄生容量Cgdの大きさにばらつきが生じる。このように、寄生容量Cgdの大きさにばらつきのあるAM基板を液晶表示パネルに適用した場合、各絵素で表示輝度のばらつきが生じてしまうという問題があった。
そこで、本発明が解決しようとする課題は、ゲート電極/ドレイン電極間の寄生容量Cgdのばらつき起こりにくいAM基板を提供することにある。また、他の課題は、表示輝度のばらつきによる表示不良を抑えた液晶表示パネルを提供することにある。
このような課題を解決するために、本発明は、基板上にマトリクス状に配置された多数の絵素電極に、ソース電極およびドレイン電極が絶縁膜と複数の半導体層とを介してゲート電極と部分的に重なり合うように積層されて形成された薄膜トランジスタが接続されてなるアクティブマトリクス基板であって、前記ゲート電極と前記ドレイン電極とが重なり合う領域およびその周縁領域から前記ゲート電極/ドレイン電極間の寄生容量を形成する領域がなり、前記複数の半導体層のうちゲート電極に近い側の層に設けられた半導体層のソース電極と重なり合っていない端辺が、前記ゲート電極/ドレイン電極間の寄生容量を形成する領域の外側に配置されていることを要旨とするものである。
ここで、前記ゲート電極/ドレイン電極間の寄生容量を形成する領域の外側に配置された半導体層の端辺と、この端辺に最も近い前記ゲート電極/ドレイン電極間の寄生容量を形成する領域の端辺とが、前記ゲート電極、前記半導体層および前記ドレイン電極の相対的な位置ずれが許容される範囲の長さ分よりも離れて配置されるようにすると好適である。
さらに、前記ゲート電極/ドレイン電極間の寄生容量を形成する領域の外側に配置された半導体層の端辺が、前記寄生容量を形成する領域の長手方向に延びる端辺であれば好ましい。
また、本発明に係る液晶表示パネルは、前記アクティブマトリクス基板を備えることを要旨とするものである。
本発明に係るアクティブマトリクス基板は、前記半導体層のソース電極と重なり合っていない端辺が、ゲート電極/ドレイン電極間の寄生容量を形成する領域の端辺よりも、ドレイン電極から離れた位置に配置されているので、ゲート電極、半導体層およびドレイン電極等をパターン形成する際に、相対的な配置がずれてしまったとしても、前記ゲート電極と前記ドレイン電極とが重なり合う領域の周縁領域内に半導体層の端辺が配置されない。そのため、アクティブマトリクス基板上の各絵素電極に接続されたTFTのゲート電極/ドレイン電極間の寄生容量にばらつきが生じない。
また、前記半導体層のソース電極と重なり合っていない端辺が、前記ゲート電極/ドレイン電極間の寄生容量を形成する領域の端辺から、前記ゲート電極、前記半導体層および前記ドレイン電極の相互の位置ずれが許容される範囲の長さ分よりも離れて形成されていれば、ゲート電極、半導体層およびドレイン電極の相互の位置関係がずれて形成されてしまった場合でも、そのずれが許容誤差の範囲内であれば、ゲート電極/ドレイン電極間の寄生容量を形成する領域内に半導体層の端辺が配置されない。そのため、アクティブマトリクス基板上の各TFTでゲート電極/ドレイン電極間の寄生容量のばらつきが生じない。
さらに、前記半導体層の、前記寄生容量を形成する領域の長手方向に延びる端辺が、前記ゲート電極/ドレイン電極間の寄生容量を形成する領域の端辺よりも
前記ドレイン電極から離れて配置されるようにすれば、ゲート電極、半導体層およびドレイン電極の相互の位置関係がずれてしまっても、前記半導体層の前記長手方向の端辺が、前記ゲート電極/ドレイン電極間の寄生容量を形成する領域内に入り込んでしまうのを避けることができる。従って、より効果的に前記寄生容量のばらつきを抑えることができる。
また、本発明に係る液晶表示パネルによれば、前記アクティブマトリクス基板を備えているので、液晶表示パネルの前記絵素電極がマトリクス状に配置された表示面内で、前記ゲート電極/ドレイン電極間の寄生容量のばらつきが生じない。そのため、液晶表示パネルの表示面内の、表示輝度のばらつきによる表示不良を防止することができる。
以下、本発明の第1の実施形態について図1〜図4を参照して詳細に説明する。
図1は、本発明の実施形態に係るアクティブマトリクス基板(AM基板)1の一絵素の概略を拡大して示した平面図である。このAM基板1は、透明基板上にマトリクス状に配置された各絵素電極16に、薄膜トランジスタ(TFT)14が接続されてなるものである。このTFT14は、ソース電極14Sおよびドレイン電極14Dが複数の半導体層14a,14bと、ゲート絶縁膜とを介してゲート電極14Gと部分的に重なり合うように配置されている。このゲート電極14Gはゲート配線11と、ソース電極14Sはソース配線13と、一体的に形成されている。ドレイン電極14Dはソース電極14Sと隣り合って同じ層に形成されており、ドレイン配線を介して補助用量電極12aに接続され、さらにコンタクトホール15を介して絵素電極16に接続されている。
図2(a)は、図1の1絵素のTFT14近傍をさらに拡大したものを示した平面図であり、図2(b)は、図2(a)のA−A断面を示す断面図である。なお、これらの図は、各電極および配線等の位置関係を説明するための概略図であるので、これらの寸法や膜厚等は実際の比率とは異なる。また、絵素電極16および層間絶縁膜等は、以下の説明に直接関連しないので、図示していない。
ここで、このようなAM基板1の製造工程について簡単に説明する。ガラス、プラスチック等の絶縁性の透明基板10上に、ゲート電極14Gを備えたゲート配線11が設けられる。このゲート配線11およびゲート電極14Gは、チタン、クロム、アルミニウム、モリブデン、タンタル、タングステン、銅等の金属膜、これらの合金膜、または、これらの積層膜からなる。このような導電性薄膜を、例えばスパッタリング法等により、膜厚100nm〜300nm程度で、透明基板10の面全体に成膜する。この導電性薄膜を必要な形状にパターン形成することで、ゲート電極14Gを有するゲート配線11は形成される。
この導電性薄膜のパターン形成には例えばフォトリソグラフィー法等が適用される。この導電性薄膜の上にフォトレジストを塗布し、透明基板10上に所定の遮光パターンを有するフォトマスクを配置する。ここでは、ゲート電極14Gを備えたゲート配線11および補助容量配線12のパターンが形成されたフォトマスクが適用される。このフォトマスクを介してフォトレジストを選択的に露光、現像して、フォトレジストにフォトマスクの遮光パターンを転写する。そして、この導電性薄膜上に形成されたフォトレジストのパターンを介して導電性薄膜を選択的にエッチングする。このようなゲート配線11をパターン形成するための工程を第1のパターン形成工程と称する。
続いてゲート絶縁膜17となる窒化シリコン膜、TFT14となるアモルファスシリコンやポリシリコン等からなる高抵抗半導体層14a、n+アモルファスシリコン等の低抵抗半導体層14bが、プラズマCVD(化学的気相成長)法等により連続して成膜される。これらの膜の膜厚は、例えば、ゲート絶縁膜17である窒化シリコン膜は300nm〜500nm程度、高抵抗半導体層14aのアモルファスシリコン膜は100nm〜300nm程度、低抵抗半導体層14bのn+アモルファスシリコン膜は40nm〜70nm程度の膜厚が好適である。
これらの高抵抗半導体層14aおよび低抵抗半導体層14bをパターン形成する第2のパターン形成工程の一例について簡単に説明する。この第2のパターン形成工程にも、例えば、フォトリソグラフィー法を適用することができる。ゲート絶縁膜17上に形成された低抵抗半導体層14bの上にフォトレジストを塗布して、フォトマスクを介してフォトレジストを露光し、現像して、低抵抗半導体層14bの上に所定のパターンのフォトレジストを形成する。ここでは、高抵抗半導体層14aのパターンが形成されたフォトマスクが適用される。そして、TFT14を形成する所定の領域にだけ低抵抗半導体層14bと高抵抗半導体層14aが残るように同時にエッチングする。
本実施形態においては、低抵抗半導体層14bおよび高抵抗半導体層14aが、略方形の島状に形成された例を示す。低抵抗半導体層14bおよび高抵抗半導体層14aはゲート電極14Gをほぼ覆うようにパターン形成される。低抵抗半導体層14bおよび高抵抗半導体層14aの長手方向の端辺は、ゲート電極14Gの長手方向の端辺よりもやや張り出した形状に形成される。
さらに、ソース電極14S、ソース配線13およびドレイン電極14Dが、チタン、クロム、アルミニウム、モリブデン、タンタル、タングステン、銅等の金属膜、これらの合金膜、または、これらの積層膜から形成される。これらの導電性薄膜は、例えばスパッタリング法等の方法により100nm〜300nm程度の厚さに成膜される。そして、この導電性薄膜を第3のパターン形成工程により必要な形状にパターン形成して、ソース電極14S、ソース配線13およびドレイン電極14Dが同時に形成される。この第3のパターン形成工程にも、例えばフォトエッチング法等が適用される。
このようにして形成されたソース電極14Sおよびドレイン電極14Dをマスクにして、前記低抵抗半導体層14bを、ドライエッチングによりチャネルエッチングする(第4のパターン形成工程)。このようにしてゲート電極14G、ソース電極14Sおよびドレイン電極14Dと接続されたTFT14が形成される。
このように各パターンを形成するに際して、ソース電極14Sとドレイン電極14Dは、第3のパターン形成工程により同時に形成されるため、これらの相対的な位置関係がずれることはない。また、低抵抗半導体層14bはソース電極14Sとドレイン電極14Dを介してエッチングされてパターン形成されるため、ソース電極14Sおよびドレイン電極14Dとの相対的な位置関係がずれることはない。しかし、ドレイン電極14Dとゲート電極14G、および、ドレイン電極14Dと高抵抗半導体層14aは別々のパターン形成工程において形成されるため、各パターン形成工程での微妙な仕上り差により、相対的な位置関係がずれてしまう場合がある。なお、以下の説明では、ゲート電極14G、高抵抗半導体層14a、ソース電極14Sおよびドレイン電極14Dの相対的な位置ずれが許容される範囲の誤差(許容誤差)をΔeで表す。
ここで、図2(a)の太線の枠に囲まれた領域Cgdは、ゲート電極14G/ドレイン電極14D間の寄生容量Cgdを形成する領域を模式的に示したものである。寄生容量Cgdは、ゲート電極14Gとドレイン電極14Dとの重なり合う領域、および、その周縁領域から形成される。この周縁領域は、ドレイン電極14Dとソース電極14Sが隣り合う部分では、ドレイン電極14Dとソース電極14Sとの隙間の中心から、ドレイン電極14Dの端辺までの領域である。そして、ドレイン電極14Dとソース電極14Sが隣接していない部分では、ドレイン電極14Dの端辺から所定の距離aまでの領域である。
図3は、ドレイン電極14Dの配置ずれによる寄生容量Cgdへの影響を模式的に示す断面図である。図3(a)は、TFT14が、ゲート電極14G、高抵抗半導体層14a、ソース電極14Sおよびドレイン電極14Dの位置関係に相対的なずれが無い状態に形成された場合、図3(b)および図3(c)は、ソース配線13およびドレイン電極14Dを形成するパターンが、ゲート電極14Gに対して、図中左方向または右方向に許容誤差Δeだけ、ずれて形成された場合の例を示したものである。
図3(a)に示されるように、寄生容量Cgdは、ドレイン電極14Dとゲート電極14Gとが重なり合う領域と、その周縁領域とから形成される。周縁領域とは、ドレイン電極14Dの端辺からソース電極14Sとドレイン電極14Dとの中心までと、ドレイン電極14Dの端辺から所定の距離aまでの領域である。本発明の実施形態に係るAM基板1では、高抵抗半導体層14aの端辺が、ドレイン電極14Dの端辺から距離aよりも離れた位置に配置されている。
図3(b)は、ドレイン電極14Dおよびソース電極14Sが、図中左方向に許容誤差Δeだけずれて形成された場合を示す断面図である。ここでも、ドレイン電極14Dから所定の距離aまでの領域全体に高抵抗半導体層14aが設けられている。
また図3(c)は、ドレイン電極14Dおよびソース電極14Sが、図中右方向に許容誤差Δeだけずれて形成された場合を示す断面図である。この場合も、ドレイン電極14Dから所定の距離aまでの領域全体に高抵抗半導体層14aが設けられている。
このように、図3(a)〜(c)のいずれの場合も、ドレイン電極14Dと同じ形状の低抵抗半導体層14bと、寄生容量Cgdを形成する領域全体にわたって設けられた高抵抗半導体層14aとゲート絶縁膜17とが、ドレイン電極14Dとゲート電極14Gとの間の寄生容量Cgdを形成する領域に配置されている。従って、ドレイン電極14Dの位置が許容誤差Δe内でずれても、寄生容量Cgdの大きさは変動しない。
なお、ソース電極14Sとドレイン電極14Dは同一のパターン形成工程で形成されるので、ソース電極14Sとドレイン電極14Dの中心までの距離は変動することはない。また、ソース電極14Sとドレイン電極14Dの間に高抵抗半導体層14aが配置されていなければ、TFT14が正常に動作しないため、そのような場合は考慮する必要がない。
従って、このように高抵抗半導体層14aが、少なくともドレイン電極14Dとゲート電極14Gとの配置の許容誤差Δeの分だけ、寄生容量Cgdを形成する周縁領域よりも張り出して形成されていれば、ドレイン電極14Dとゲート電極14Gとの配置がずれても寄生容量Cgdの大きさが変化しない。
また、特に高抵抗半導体層14bの端辺のうち、ゲート電極14Gとドレイン電極14Dとが重なり合う領域の長手方向に延びる端辺がドレイン電極14Dから距離aより離れて配置されていれば、寄生容量Cgdを形成する周縁領域の面積の変動を効果的に防ぐことができる。従って、寄生容量Cgdの変動を防ぐのに効果的である。
次に、本発明の第2の実施形態に係る液晶表示パネル2について図4および図5を用いて説明する。AM基板1をカラーフィルタ基板3(以下、CF基板と称す。)と所定の間隔で離間させた状態で対向させて貼り合わせ、その間に液晶を封入することで液晶表示パネル2が製造される。
図4は、AM基板1を用いた液晶表示パネル2の断面を模式的に示した図である。CF基板3は、透明基板31上に絵素間の光漏れを遮光するブラックマトリクス32と、各絵素に対応する着色層33R、33G、33B(例えば、赤、緑、青等のカラーフィルタ)と、絵素電極16と対向して液晶を駆動する共通電極34(対向電極)とが形成されている。このCF基板3としては、従来用いられているものがそのまま適用できるので、構造、製法等の詳細な説明は省略する。
このCF基板3とAM基板1とを所定の間隔を介して貼り合わせ、その間に液晶4を封入して、液晶表示パネル2は形成される。CF基板3とAM基板1を貼り合わせるには、従来一般に用いられている方法が適用できる。例えば、AM基板1側の周縁部にシール樹脂を塗布し、CF基板3側に液晶4を滴下して、AM基板1とCF基板3とを貼り合わせる方法等が適用できる。
このようにして製造された液晶表示パネル2は、AM基板1の絵素電極16とCF基板3の共通電極34の間で液晶容量CLCが形成される。絵素電極16の電圧VLCと共通電極34の電圧Vcomとの差によって生じる電界によって、液晶4が駆動される。これらの電圧VLC,Vcomを制御することで、各絵素の光の透過率を制御することができる。
この液晶表示パネル2の1絵素分の等価回路を、図5(a)に示す。図5(b)は、この絵素の駆動時における各電圧の変化の概略を示す図である。ソース配線13、ゲート配線11に接続されたTFT14のドレイン電極14Dに、液晶容量CLCおよび補助容量Csが並列に接続されている。
ゲート電圧Vgのパルスが所定のタイミングでゲート配線11を介してTFT14のゲート電極14Gに印加される。するとTFT14がオン状態となり、ソース電極14Sに印加されているソース電圧Vsが、ドレイン電極14Dに接続されている液晶容量CLCおよび蓄積容量Csに印加される。このとき、絵素電極16の電圧VLCは、ゲート電圧Vgのパルスとともに立ち上がり、液晶容量CLCおよび蓄積容量Csに電荷が蓄積されて、ゲート電圧Vgがオフになった時の電圧VLCが維持される。
しかし、ドレイン電極14Dとゲート電極14Gとの間には寄生容量Cgdが形成されているため、液晶容量CLCおよび蓄積容量Csに蓄積された電荷がわずかに寄生容量Cgdに奪われて、絵素電極16の電圧VLCはΔVだけ低下してしまう。この低下する電圧ΔVは、寄生容量Cgdの大きさによって変化する。
本発明に係るAM基板1を用いた液晶表示パネルであれば、ゲート電極14G、半導体層14aソース電極14Sおよびドレイン電極14Dの相対的な位置関係によらずゲート電極14G/ドレイン電極14D間の寄生容量Cgdが均一なので、液晶表示パネル2内の各絵素で生じる電圧降下ΔVも均一になる。従って、AM基板1上にマトリクス状に配置された各絵素電極16に接続されたTFT14のゲート電極14G、高抵抗半導体層14a、ソース電極14Sおよびドレイン電極14Dの相対的な位置ずれにばらつきがあっても、液晶表示パネル2の各絵素での寄生容量Cgdの不均一による表示輝度のばらつきが生じない。
以上、本発明の実施形態について説明したが、本発明はこうした実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲において、種々なる態様で実施できる。例えば、1つの絵素を複数の副絵素に分割し、これらの副絵素で異なる輝度を表示するマルチ絵素駆動のAM基板にも適用できることはもちろんである。
本発明に係るAM基板または液晶表示パネルによれば、絵素間の輝度のばらつき等の表示不良を低減することができるので、高品位の表示性能が要求される表示装置などに好適である。
図1は本発明の第1の実施形態に係るAM基板の一絵素分を示す平面図である。 図2(a)は図1に示した絵素のTFT近傍を拡大して示した平面図であり、図2(b)はそのA−A断面図である。 図3は、図2(b)のドレイン電極の配置ずれによる寄生容量Cgdへの影響を模式的に示す断面図であり、図3(a)は、ソース配線およびドレイン電極がずれ無く形成された場合、図3(b)は、ドレイン電極が図中右方向に許容誤差Δeだけずれて形成された場合、図3(c)は、ドレイン電極が図中右方向に許容誤差Δeだけずれて形成された場合の例を示したものである。 図4は本発明の第2の実施形態に係る液晶表示パネルの概略を示す断面図である。 図5(a)は、図4の液晶表示パネルの1絵素分の等価回路を示す図であり、図5(b)は、この絵素を駆動するときの各電圧の変化を示す概略図である。 図6(a)は、一般的な液晶表示パネルの1絵素分を示す平面図であり、図6(b)はこの絵素のTFT近傍のB−B断面を示す図である。 図7は、図6(b)のドレイン電極の配置ずれによる寄生容量Cgdへの影響を模式的に示す断面図であり、図3(a)は、ソース配線およびドレイン電極がずれ無く形成された場合、図3(b)は、ドレイン電極が図中右方向にずれて形成された場合、図3(c)は、ドレイン電極が図中右方向にずれて形成された場合の例を示したものである。
符号の説明
1 AM基板
2 液晶表示パネル
3 CF基板
4 液晶
10 透明基板
11 ゲート配線
13 ソース配線
14 TFT
14a 高抵抗半導体層
14b 低抵抗半導体層
14D ドレイン電極
14G ゲート電極
14S ソース電極
16 絵素電極

Claims (4)

  1. 基板上にマトリクス状に配置された多数の絵素電極に、ソース電極およびドレイン電極が絶縁膜と複数の半導体層とを介してゲート電極と部分的に重なり合うように積層されて形成された薄膜トランジスタが接続されてなるアクティブマトリクス基板であって、
    前記ゲート電極と前記ドレイン電極とが重なり合う領域およびその周縁領域から前記ゲート電極/ドレイン電極間の寄生容量を形成する領域がなり、
    前記複数の半導体層のうちゲート電極に近い側の層に設けられた半導体層のソース電極と重なり合っていない端辺が、前記ゲート電極/ドレイン電極間の寄生容量を形成する領域の外側に配置されていることを特徴とするアクティブマトリクス基板。
  2. 前記ゲート電極/ドレイン電極間の寄生容量を形成する領域の外側に配置された半導体層の端辺と、この端辺に最も近い前記ゲート電極/ドレイン電極間の寄生容量を形成する領域の端辺とが、前記ゲート電極、前記半導体層および前記ドレイン電極の相対的な位置ずれが許容される範囲の長さ分よりも離れて配置されていることを特徴とする請求項1に記載のアクティブマトリクス基板。
  3. 前記ゲート電極/ドレイン電極間の寄生容量を形成する領域の外側に配置された半導体層の端辺が、前記寄生容量を形成する領域の長手方向に延びる端辺であることを特徴とする請求項1または請求項2に記載のアクティブマトリクス基板。
  4. 請求項1から3のいずれかに記載のアクティブマトリクス基板を備えることを特徴とする液晶表示パネル。
JP2006129870A 2006-05-09 2006-05-09 アクティブマトリクス基板および液晶表示パネル Pending JP2007305641A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006129870A JP2007305641A (ja) 2006-05-09 2006-05-09 アクティブマトリクス基板および液晶表示パネル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006129870A JP2007305641A (ja) 2006-05-09 2006-05-09 アクティブマトリクス基板および液晶表示パネル

Publications (1)

Publication Number Publication Date
JP2007305641A true JP2007305641A (ja) 2007-11-22

Family

ID=38839355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006129870A Pending JP2007305641A (ja) 2006-05-09 2006-05-09 アクティブマトリクス基板および液晶表示パネル

Country Status (1)

Country Link
JP (1) JP2007305641A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544110A (zh) * 2012-03-19 2012-07-04 深圳市华星光电技术有限公司 具有寄生电容补正结构的薄膜晶体管及用该薄膜晶体管的液晶显示器
WO2015000273A1 (zh) * 2013-07-01 2015-01-08 京东方科技集团股份有限公司 一种阵列基板、显示面板和显示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544110A (zh) * 2012-03-19 2012-07-04 深圳市华星光电技术有限公司 具有寄生电容补正结构的薄膜晶体管及用该薄膜晶体管的液晶显示器
CN102544110B (zh) * 2012-03-19 2014-08-13 深圳市华星光电技术有限公司 具有寄生电容补正结构的薄膜晶体管及用该薄膜晶体管的液晶显示器
WO2015000273A1 (zh) * 2013-07-01 2015-01-08 京东方科技集团股份有限公司 一种阵列基板、显示面板和显示装置
US9613574B2 (en) 2013-07-01 2017-04-04 Boe Technology Group Co., Ltd. Switch circuit to control the flow of charges in the parasitic capacitance of a TFT in the pixel of a display

Similar Documents

Publication Publication Date Title
JP4385993B2 (ja) 液晶表示装置及びその製造方法
US9188799B2 (en) Liquid crystal display device having minimized bezel
JP5628302B2 (ja) 半導体装置、アクティブマトリクス基板、及び表示装置
US7710527B2 (en) Thin film transistors substrate and liquid crystal display having the same
US8274464B2 (en) Active matrix substrate and liquid crystal display device
TWI342460B (en) Thin film transistor and liquid crystal display device
US20060157705A1 (en) Thin film transistor array panel
JP4115649B2 (ja) アクティブマトリクス型液晶表示装置
JP4703258B2 (ja) 薄膜トランジスタ基板及び液晶表示パネル
JP4881475B2 (ja) アクティブマトリクス基板及び液晶表示装置
JP4065645B2 (ja) アクティブマトリクス型液晶表示装置
US10598993B2 (en) Liquid crystal display device
US8773341B2 (en) Liquid crystal display device
JP6605146B2 (ja) タッチパネル付き表示装置
JP4837942B2 (ja) 液晶表示装置
JP2007305641A (ja) アクティブマトリクス基板および液晶表示パネル
JP2005250228A (ja) トランジスタアレイ基板
JP2009277733A (ja) 薄膜トランジスタ及び薄膜トランジスタの製造方法
JP6501879B2 (ja) アクティブマトリクス基板、液晶パネル、および、アクティブマトリクス基板の製造方法
JP4763004B2 (ja) アクティブマトリクス型液晶表示装置
JP6978243B2 (ja) アレイ基板と当該アレイ基板を有する液晶表示装置
WO2012117956A1 (ja) 表示素子、表示装置、及びテレビ受信装置
JP2007206133A (ja) 液晶表示装置
JP2008123005A5 (ja)
JP2007212513A (ja) アクティブマトリクス基板及びそれを備えた表示装置