JP2007277695A - 強誘電体膜の製造方法及び強誘電体膜の製造装置 - Google Patents

強誘電体膜の製造方法及び強誘電体膜の製造装置 Download PDF

Info

Publication number
JP2007277695A
JP2007277695A JP2006109472A JP2006109472A JP2007277695A JP 2007277695 A JP2007277695 A JP 2007277695A JP 2006109472 A JP2006109472 A JP 2006109472A JP 2006109472 A JP2006109472 A JP 2006109472A JP 2007277695 A JP2007277695 A JP 2007277695A
Authority
JP
Japan
Prior art keywords
ferroelectric
substrate
film
particles
ferroelectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006109472A
Other languages
English (en)
Inventor
Tomoko Miyaura
智子 宮浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2006109472A priority Critical patent/JP2007277695A/ja
Publication of JP2007277695A publication Critical patent/JP2007277695A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

【課題】良好な強誘電体膜を容易に効率よく製造する強誘電体膜の製造方法及び強誘電体膜の製造装置を提供する。
【解決手段】RFマグネトロンスパッタリング法により、カソードに設けた強誘電体を原料とするターゲットを用いて、アノードに設けた基板の上に強誘電体膜を形成する強誘電体膜の製造方法において、前記基板を加熱するための基板加熱工程と、前記強誘電体膜となる、前記基板に飛来し堆積する前記強誘電体の帯電した粒子を中和するための帯電粒子中和工程と、を含む。
【選択図】図1

Description

本発明は、強誘電体膜の製造方法及び強誘電体膜の製造装置に関する。
近年、インクジェット記録ヘッドの液滴吐出用やマイクロマシン用のアクチュエーターを構成する圧電材料として強誘電体であるチタン酸ジルコン酸鉛複合化合物(PZT)が広く使用されている。このPZTの厚みは、アクチュエーターとして駆動力を発生する機能が必要であることから0.5μmから10μm程度の厚膜とすることが必要とされている。
PZTの厚膜を形成する場合、セラミックス研磨法を用いてセラミック板より製造することが出来るが、歩留まりが悪く低コストで製造することが困難であることから、量産には対応し難く実用的でない。また、例えば、高融点材料での成膜が可能で膜厚の均一性が良いと考えられるスパッタリング法を用いて成膜を試みると、PZTは強誘電体であるため、PZTが堆積して形成される膜が帯電する現象が生じる。この成膜中に生じる帯電で、例えば、0.5μm程度以上とする厚い膜を製造しようとすると成膜レートが著しく低下したり、成膜されている基板の近傍で異常放電が生じたりして安定した成膜を行うことが困難となる。このように安定した成膜が出来ない結果、製造された膜は膜厚や充填率が不均一となってしまう。従って、PZTの良好な厚膜を効率良く製造出来ないという問題がある。
上述のような0.5μmから10μm程度の厚みで、強誘電体である圧電体薄膜の製造方法として、以下がある。
基板の上に反応性スパッタリング法でPZT結晶膜を直接成形し、その上に水熱合成法によりPZT系結晶薄膜を形成する方法がある(特許文献1参照)。
また、圧電体膜を構成する金属成分ゾルと高分子化合物とを含んでなるゾル組成物とを基板状に塗布し、乾燥して膜を形成し、仮焼成して多孔質ゲル薄膜を形成し、プレアニールして結晶質の金属酸化物からなる膜を形成し、これを1回以上繰り返して結晶質の金属酸化物の積層膜を形成し、これをアニールすることで膜中のペロブスカイト型の結晶粒を大きく成長させて圧電体膜を形成する方法がある(特許文献2参照)。
特開平11−343200号公報 特開平9−223830号公報(第7−8頁)
しかしながら、特許文献1に記載の製造方法によれば、強誘電体であるPZT膜の形成は、2種類の成膜方法を用いることから、製造工程が煩雑となることや積層界面での密着性や結晶構造及び組成の連続性を保つためには製法の最適化を行う必要があると考える。また、2種類の成膜方法の一つである水熱合成法は、スパッタリング法と比較して大掛かりな装置を必要とする。従って良好な強誘電体膜であるPZT膜を容易に効率よく製造することが困難であることが十分に予測出来る。
特許文献2に記載の製造方法によれば、例えば、1.2μmの厚みの圧電薄膜を形成する場合、ゾルの原料を用いてスピンコート法にて、厚み0.3μm(アニール後、厚み0.2μmとなる。)の膜の塗布を6回行うことが必要で、塗布毎に仮焼成を行い、また塗布3回毎にプレアニールを行い、更に最後にアニールを行うことが必要とされ、工程数が多く煩雑である。
本発明は、上記の課題を鑑みてなされたものであって、その目的とするところは、良好な強誘電体膜を容易に効率よく製造する強誘電体膜の製造方法及び強誘電体膜の製造装置を提供することである。
上記の課題は、以下の構成により解決される。
1. RFマグネトロンスパッタリング法により、カソードに設けた強誘電体を原料とするターゲットを用いて、アノードに設けた基板の上に強誘電体膜を形成する強誘電体膜の製造方法において、
前記基板を加熱するための基板加熱工程と、
前記強誘電体膜となる、前記基板に飛来し堆積する前記強誘電体の帯電した粒子を中和するための帯電粒子中和工程と、を含むことを特徴とする強誘電体膜の製造方法。
2. 前記帯電粒子中和工程で中和される前記強誘電体の帯電した粒子の割合は、60%以上90%未満であることを特徴とする1に記載の強誘電体膜の製造方法。
3. 前記帯電粒子中和工程は、前記ターゲットと前記基板との間に接地又は負の電位としているメッシュ電極を設けて、前記強誘電体の帯電した粒子がメッシュ電極を通過することで電気的に該粒子を中和する工程であることを特徴とする1又は2に記載の強誘電体膜の製造方法。
4. 前記メッシュ電極は、非磁性体ステンレス鋼、Al、Mo、Ta、Ti、W、Ptのいずれか1つ以上からなることを特徴とする3に記載の強誘電体膜の製造方法。
5. 前記帯電粒子中和工程は、前記強誘電体の帯電した粒子に電子を照射することで電気的に該粒子を中和する工程であることを特徴とする1又は2に記載の強誘電体膜の製造方法。
6. RFマグネトロンスパッタリング法により、カソードに設けた強誘電体を原料とするターゲットを用いて、アノードに設けた基板の上に強誘電体膜を形成する強誘電体膜の製造装置において、
前記基板を加熱するための基板加熱手段と、
前記強誘電体膜となる、前記基板に飛来し堆積する前記強誘電体の帯電した粒子を中和するための帯電粒子中和手段と、を含むことを特徴とする強誘電体膜の製造装置。
7. 前記帯電粒子中和手段で中和される前記強誘電体の帯電した粒子の割合は、60%以上90%未満であることを特徴とする6に記載の強誘電体膜の製造装置。
8. 前記帯電粒子中和手段は、前記ターゲットと前記基板との間に接地又は負の電位としているメッシュ電極を設けて、前記強誘電体の帯電した粒子がメッシュ電極を通過することで電気的に該粒子を中和する手段であることを特徴とする6又は7に記載の強誘電体膜の製造装置。
9. 前記メッシュ電極は、非磁性体ステンレス鋼、Al、Mo、Ta、Ti、W、Ptのいずれか1つ以上からなることを特徴とする8に記載の強誘電体膜の製造装置。
10. 前記帯電粒子中和手段は、前記強誘電体の帯電した粒子に電子を照射することで電気的に該粒子を中和する手段であることを特徴とする6又は7に記載の強誘電体膜の製造装置。
本発明によれば、加熱することで密着性が良く結晶性成長を可能とする基板の上に、帯電している強誘電体の粒子を電気的に中和することで基板に飛来し堆積する強誘電体の粒子の量を減ずることなく帯電している強誘電体の粒子の量を低減して強誘電体膜を成膜することができる。よって、中和の度合いを調整することで、成膜が進むにつれて強誘電体が堆積することで基板の帯電が大きくなることを抑えることで基板近傍での異常放電が発生し難くすることができるため成膜レートが低下することなく、また帯電している強誘電体の粒子の量を必要以上に少なくなりすぎないようにすることで緻密で良好な膜を形成することができる。
従って、良好な強誘電体膜を容易に効率よく製造する強誘電体膜の製造方法及び強誘電体膜の製造装置を提供することが出来る。
本発明に係わる実施の形態に関して図を用いながら以下に説明する。第1の実施の形態として、図1に示す強誘電体膜の製造装置であるメッシュ電極を設けたRFマグネトロンスパッタリング成膜装置(以下、成膜装置と称する。)を用いて強誘電体膜であるチタン酸ジルコン酸鉛複合化合物Pb(Zr0.52Ti0.48)O3(以下、PZTと称する。)膜を製造することに関して説明する。
図1に示す成膜装置100において、1はチャンバー、2はマグネトロン・カソード、3は強誘電体膜の原料を有するターゲット、4は基板ホルダー(アノード電極)、5は成膜される基板、6は基板5を加熱するためのヒーター、7はメッシュ電極、8はシャッター、9はマグネトロン・カソード2に印加する高周波(RF)電力を供給するための高周波(RF)電源を示している。また、Aはスパッタリングガスとして、例えば、アルゴン(Ar)と酸素(O2)の混合ガスの導入口を示し、Bはチャンバー1の中のガスを排気するための真空ポンプ(図示しない)に接続される排気口を示している。尚、基板ホルダー4は、円板上の基板5を4枚取り付け可能とする断面の様子を示している。
また、10は、基板5に飛来して堆積する強誘電体のイオン化した粒子量をモニターするために、ターゲット3と基板ホルダー5との中心上で、高さ方向において基板5の近傍に設けられた粒子量を電流(イオン電流)に変換するセンサーであるファラデーカップ、11はファラデーカップ10に接続されイオン電流量を測定するための電流計を示している。ファラデーカップ11を設ける位置は、位置による差を予め測定して換算する等で基板に到達するイオン化した粒子量をモニター可能であれば特に限定されないが、ターゲット面の中心軸上に設置することが換算を不要又は容易とすることができるので好ましい。また、基板ホルダー4は、基板面により均一な膜厚を得る上で、回転導入機構(図示しない)を設けて成膜時に成膜面内で回転できる様にするのが好ましい。
基板5は、基板5との密着性を高めるためや堆積する膜を結晶化させる等で加熱する温度に耐え、積層される強誘電体と反応しない材料であれば、特に限定されることはなく用途に応じて適宜選択すれば良い。また、圧電素子を製造する等を想定して強誘電体膜に電圧を印加するための電極を設ける場合、この電極の材料としては、上記と同様に加熱される温度に耐え、積層される強誘電体と反応しない材料であれば、特に限定されることはなく用途に応じて適宜選択すれば良くて、例えば、Pt、Ti、Zr、Ir、Pt/Ti(積層膜)及びPt/TiOx(x≦2:積層膜)等が挙げられる。
成膜装置100は、公知のRFマグネトロンスパッタリングを可能とする装置に、本発明に係わるマグネトロン・カソード2と基板5の間に接地されているメッシュ電極7を設けてある。この位置にメッシュ電極7を設けることで、マグネトロン・カソード2にセットしたターゲット3からスパッタリングされて飛び出した強誘電体膜を形成する粒子が基板5に到達する間にメッシュ電極7を通過させることが出来る。
上記の成膜装置100において、ターゲット3としてPZTを含む原料をマグネトロン・カソード2にセットし、真空ポンプ(図示しない)を用いてチャンバー1の中の空気を排気した後、スパッタリングガスとして不活性ガスである、例えば、アルゴン(Ar)ガスを導入する。成膜するPZTが酸化物であることから酸素欠乏にならないに酸素濃度を確保し、また発生する酸素プラズマにより、装置、特に加熱部分が劣化する等のダメージを与えないように酸素濃度を必要以上にしないことが好ましい。このため、導入ガスに適量の酸素(O2)を加えるのが好ましく、その割合は、酸素濃度が5体積%から30体積%程度の範囲とするが好ましい。また、アルゴンと酸素の混合雰囲気の圧力は、プラズマを安定させる上で、0.133Paから2.66Pa程度の範囲とするのが好ましい。
ターゲット3とするPZTを含む原料は、本来膜形成されるPZTの化学両論的組成比に比べて鉛(Pb)がモル比で5%から15%多く含まれるようにするのが好ましい。これは、成膜されるPZTの配向を整えるため成膜時の基板5の温度を550℃〜670℃と高温とする必要があり、この高温のため基板5の上に形成された膜の鉛成分が蒸発して失われる分を補うためである。尚、基板5の温度は、成膜される膜に応じて、膜の密着性や結晶化等が適切になるように適宜決めるのが好ましい。
基板5に成膜されるPZTの膜厚は0.5μmから10μm程度の範囲とするのが好ましく、成膜レートは5nm/minから20nm/min程度の範囲とするのが好ましい。これらの膜厚及び成膜レートの範囲は、成膜後の膜応力による剥離が発生せず、また成膜効率がよいことから好ましい。
ターゲット3がスパッタリングされてイオン化(帯電)した強誘電体の粒子が基板5に良好に成膜されるためには、イオン化した強誘電体の粒子が堆積することによる基板5の帯電を抑えることが必要である。基板5にイオン化した強誘電体の粒子が堆積されていくと、基板が接地されていても堆積する強誘電体が絶縁性であるため、基板5の電位が正電位に堆積量に応じて大きくなり、ついには基板5の近傍でスパーク放電等の異常放電が発生したり、飛来するイオン化した強誘電体の粒子が帯電している基板5と電気的に反発することで十分に基板5に堆積するのが困難となることで良好な成膜が出来なくなる。
上述した基板5の帯電を抑えるためには飛来して堆積するイオン化した粒子を低減すれば良く、その手段としてイオン化した強誘電体の粒子を図1に示すメッシュ電極7を用いて中和する方法がある。
マグネトロン・カソード2と基板5との間に金網のようなメッシュ電極7を設け、このメッシュ電極7を接地する。メッシュ電極7を設ける位置は、ターゲット3と基板5との中間位置前後とするのが好ましい。基板5に近づきすぎないようにすることでメッシュのパターンが基板5の成膜に反映し難くなるので好ましく、概ね基板5とメッシュ電極7との距離は、成膜装置にも依るが、30mm程度が好ましい。また、ターゲット3に近づきすぎないようにすることでメッシュ電極7の電位に依る電界の乱れを大きくすることなくプラズマが正常に放電させることができるので好ましい。
ターゲット3より放出され、イオン化した強誘電体の粒子は、メッシュ電極7を通過し基板5に到達することになる。この時、イオン化した強誘電体の粒子の一部が電気的に中和され、イオン化した強誘電体の粒子の量を低減することができる。これは、イオン化した強誘電体の粒子がメッシュ電極7に接触又はメッシュ近傍を通過することで電子が粒子に還元され電気的に中和されるものと考えられる。よって、ターゲット3より放出されイオン化した強誘電体の粒子は、メッシュ電極7により中和されるもの、及び、そのまま通過するものの両者が存在することになり、中和される粒子とイオン化したまま通過する粒子との割合は、メッシュ電極7のメッシュの粗さに依存することになる。尚、メッシュ電極7を通過する前でイオン化していない強誘電体の粒子も存在するが、イオン化している強誘電体の粒子と比較して量が少なく、また、メッシュ電極に捕捉される粒子もメッシュを通過する粒子と比較して量が少なく、この場合考慮する必要はない。
上記のことから、ターゲット3より放出された強誘電体の粒子は、メッシュ電極に捕捉される粒子があるものの、その強誘電体の粒子の量が大きく減ぜられることなく、イオン化した強誘電体の粒子の量が減じられて基板に堆積することができる。このため、成膜レートが大きく低下することなく成膜することができる。
ターゲット3より放出されたイオン化した強誘電体の粒子に対する中和される粒子の割合は、好ましくは60%以上90%未満であり、より好ましくは70%以上80%未満である。60%以上とすることで基板の帯電量をより効果的に抑えることができ、帯電による不規則なスパーク放電等の異常放電が起こり、プラズマが不安定になるといった不具合が生じない。また、90%未満とすることで基板5に到達した後の強誘電体の粒子のエネルギーが小さくなり過ぎることが無く、マイグレーション効果による充填率のよい高品位な膜を得ることができ、更には、厚みを1μm程度以上とする成膜においては膜割れが生じることが無くて良好な膜を得ることができる。
上述の中和されるイオン化した粒子の割合は、メッシュ電極7のメッシュの粗さを調整することで決めることが出来る。中和されるイオン化した粒子の割合を60%以上90%未満とするためには、メッシュの粗さをメッシュの粗い10メッシュからメッシュの細かい50メッシュの範囲から選択することで対応することができる。また、メッシュ電極7は非磁性体ステンレス鋼、Al、Mo、Ta、Ti、W、Ptのいずれか1つ以上のからなる材料とするのが好ましい。メッシュ電極7を非磁性体材料で構成することは、マグネトロン・カソード2から発生する磁場によるの磁気結合がなく、スパッタリングの不安定な動作を生じることがないため好ましい。
具体的にメッシュの粗さを決定する方法は、まずメッシュ電極を設けない状態でPZTの成膜を試み、この時のファラデーカップから得られる電流値IOを求める。次に、メッシュ電極を設け他の条件は上記と同じとして、PZTの成膜を試み、この時のファラデーカップから得られる電流値IMを求める。これら求めた電流値から比率(IM/IO)を求め、これを1より減じて中和された粒子の割合とすることでメッシュの粗さを決めることが出来る。発明者の実験により成膜した膜のSEMによる観察、X線回折パターン及び比誘電率の測定結果より、中和された粒子の割合を60%以上90%未満とするのが好ましく、70%以上80%未満とするのがより好ましいことが分かった。
尚、本実施の形態では、メッシュ電極7を接地としているが、例えば、DC電源を用いて接地に対して負の電圧をメッシュ電極7に印加して、メッシュ電極7に負の電位を与えることで、イオン化した粒子の中和を積極的に行うこともできる。この場合、中和されるイオン化した粒子の割合は、メッシュ電極7のメッシュの粗さの調整に加えて、メッシュ電極7に印加する電圧により調整することを可能とすることができる。
第2の実施の形態として、図3に示す強誘電体膜の製造装置である電子照射装置を設けた成膜装置を用いて強誘電体膜であるPZT膜を製造することに関して説明する。
図3に示すRFスパッタリング装置300において、31はチャンバー、32はマグネトロン・カソード、33は強誘電体膜の原料を有するターゲット、34は基板ホルダー(アノード電極)、35は成膜される基板、36は基板35を加熱するためのヒーター、300Aは電子照射装置、37はシャッター、38はマグネトロン・カソード32に印加する高周波電力を供給するためのRF電源を示している。また、3Aはスパッタリングガスとして、例えば、アルゴン(Ar)と酸素(O2)の混合ガスの導入口を示し、3Bはチャンバー31の中のガスを排気するための真空ポンプ(図示しない)に繋がる排気口を示している。
また、50は基板35に飛来する強誘電体のイオン化した粒子量をモニターするために基板35の近傍に設けられた粒子を電流に変換するセンサーであるファラデーカップ、51はファラデーカップに接続されイオン電流量を測定するための電流計を示している。これら構成は、メッシュ電極7を除いて図1と同じとすることができる。
電子照射装置300Aは、ターゲット33から放出されイオン化している強誘電体の粒子に対して、イオン化した強誘電体の粒子が基板35に到達するまでに電子を照射することでイオン化した強誘電体の粒子を中和する装置である。電子照射装置300Aを用いることで、イオン化している強誘電体の粒子を中和し、イオン化している粒子の量を低減して強誘電体膜を成膜することができることになる。
ターゲット3より放出され、イオン化した強誘電体の粒子は、電子照射装置300Aから照射される電子を浴びながら基板5に到達することになる。この時、イオン化した強誘電体の粒子の一部が電気的に中和され、イオン化した強誘電体の粒子の量を低減することができる。これは、イオン化した強誘電体の粒子が照射される電子が粒子に還元され電気的に中和されるものと考えられる。
電子照射装置300Aは、熱電子発生源42、熱電子発生源42から放出された熱電子を引き出して基板35に対して照射するための熱電子引き出し電極43、熱電子を基板35に照射するために熱電子引き出し電極43と熱電子発生源42との間に電圧を印加するための熱電子引き出し電源40、熱電子を放出させるために熱電子発生源42を加熱するための電圧を印加するための加熱電源41を備えている。尚、加熱電源41が、熱電子発生源42の両端部に接続されていることを符号*aが示している。
熱電子発生源42の材料としては、熱電子を放出するものであれば特に限定されることはなく、例えば、Ta、W、Mo、Re−W(レニウム−タングステン合金)、Th−W(トリウム−タングステン合金)等が挙げられるが、電子ビーム発生機の電子源としてよく利用されている電子放射性が高く、耐久性が良く、また酸化されにくいレニウム−タングステン(Re−W)フィラメントが好ましい。
熱電子引き出し電極43は、第1の実施の形態で示したメッシュ電極7と同じく、導電性を有し非磁性体である材料から構成するのが好ましく、非磁性体ステンレス鋼、Al、Mo、Ta、Ti、W、Ptのいずれかの1つ以上からなる材料とするのが好ましい。熱電子引き出し電極43の形状は、ターゲット33側には熱電子が放出し異常放電等が発生しないようにカバーされた状態とするのが好ましく、また基板35側には発生した熱電子が基板35の全面に向かって照射しやすい様にメッシュ形状に開口したものとするのが好ましい。
熱電子発生源42と熱電子引き出し電極43とで構成される熱電子放出部45の設置する位置は、ターゲット33と基板35との中間程度するのが好ましい。基板35に近づき過ぎないようにすることで基板35への熱電子の照射状態に偏りが生じ難くすることができ、また熱電子発生源42からの輻射熱が基板35の温度に影響を及ぼし難くすることができるので好ましい。また、ターゲット33に近づき過ぎないようにすることで熱電子引き出し電極43の電位による電界の乱れを大きくすることなく異常放電が生じ難くすることができるので好ましい。
中和された粒子の割合を、第1の実施に形態と同じく、好ましくは60%以上90%未満、より好ましくは70%以上80%未満とする調整は、熱電子発生源42に印加する加熱電源41より供給される電圧及び熱電子引き出し電極43と熱電子発生源42との間に印加する熱電子引き出し電源40より供給される電圧を調整することで出来る。
具体的に加熱電源41及び熱電子引き出し電源40が供給する電圧を決定する方法は、以下とすることができる。まず、電圧供給しない状態でPZTの成膜を試みて、この時の電流計51から得られる電流値IOを求める。次に、供給する電圧を調整しながら、PZTの成膜を試みて、この時の電流計51から得られる電流値IMを求める。これより、求めた電流値から比率(IM/IO)を求め、これを1より減じて中和された粒子の割合とすることで供給する電圧を決めることが出来る。尚、加熱電源41供給する電圧、熱電子引き出し電源40が供給する電圧のどちらを調整しても良いが、実際には、例えば、熱電子発生源42を熱電子が放出される温度まで加熱できる電圧を加熱電源41より供給し、その状態を維持して、熱電子引き出し電源40が供給する電圧を調整することで中和された粒子の割合を決めることが好ましい。
熱電子引き出し電源40が供給する電圧の設定値を高すぎないようにすることで、異常放電を生じ難くすることができ、また照射する電子が加速されすぎないようにすることができ、加速された熱電子が基板35に堆積した膜にダメージを与えることが生じないので好ましい。このような熱電子引き出し電源40が供給する電圧の範囲は、熱電子が取り出し可能な数10V以上とし、上限は上記の理由から1kV以下程度の範囲が好ましい。
上述の第1及び第2の実施の形態では、強誘電体の一つであるPZTを例としているが、これに限定されることはなく、RFマグネトロンスパッタリング法を用いて成膜可能な他の強誘電体材料を成膜の原料とすることが出来る。原料としては、例えば、チタン酸バリウム、ジルコン酸鉛、チタン酸鉛、ニオブ酸リチウム、ニオブ酸ジルコニウム、これらを成分とするチタン酸ジルコン酸鉛複合化合物やチタン酸鉛系化合物、PLZT((Pb,La)(Zr,Ti)O3:ランタンをドープしたチタンジルコニウム酸鉛)等の強誘電性セラミック等が挙げられる。
(実施例1)
図1に示すRFマグネトロンスパッタリング成膜装置100を用いて、図2で示すPb(Zr0.52Ti0.48)O3(PZT)膜25を有する膜を製造した。成膜装置100において、マグネトロン・カソード2と基板5の間に非磁性ステンレス鋼製のメッシュ電極7を設け、このメッシュ電極7を接地している。また、図2は、製造した膜の構成を示しており、21はシリコン基板、22は絶縁のためのSiO2、23,24は、膜の密着性を高め、また電極とするためのそれぞれTi(チタン)膜、Pt(プラチナ)膜、25は強誘電体膜であるPZT、26は電極とするAl(アルミニウム)である。尚、27は製造したPZT25の静電容量Cを測定するための静電容量計である。
図1に示す基板5は、予めシリコン基板の上に絶縁膜として厚み1μmの熱酸化SiO2を形成し、その上に公知のRFマグネトロンスパッタ法でTiを0.03μm、Ptを0.3μmそれぞれ積層したものを用いた。
非磁性ステンレス鋼製メッシュの粗さは30メッシュとした。このメッシュの粗さは、予め実験により、基板5に飛来するイオン化したPZT粒子の約85%を中和出来ることが確認されている。
マグネトロン・カソード2にセットされるターゲット3は、チタン酸ジルコン酸鉛複合化合物であるPZT微粉末に酸化鉛微粉末をモル比で15%混合したものをアルコールで練り合わせて石英シャーレに入れて乾燥したものを用いた。尚、酸化鉛微粉末をモル比で15%多く加えるのは、成膜後の鉛成分が再蒸発により減少する量を補うためである。
予め用意したPt膜24まで成膜した基板5を基板ホルダー4にセットし、チャンバー1の中を真空排気した。
次に、基板5の温度を650℃に加熱後、この温度を維持した状態で、チャンバー1の中の雰囲気を酸素(O2)濃度を10体積%とするアルゴン(Ar)との混合雰囲気とし、圧力を0.67Paとした。次に、成膜レートを約10nm/minとして、膜厚5μmのPZTを形成した。この時、成膜に費やした時間は約10時間であった。この間、基板5の近傍でのスパーク放電等の異常放電の発生はなくプラズマは安定していた。また、PZTの成膜中にファラデーカップ10にて到達したイオン電流IMを電流計11で測定し電流密度に換算したところ5mA/cm2であった。
得られたPZT膜に公知のRFマグネトロンスパッタ法で厚み0.3μmのAlを積層し電極とした。尚、X線回折パターンの測定に用いるものはAlを設けていない。図2で示す様に、静電容量計(日置電機(株)製 デジタルHiテスター、型式3233)をPt電極24とAl電極26とに接続して室温にて静電容量Cを測定した。測定した静電容量Cの値を用いて、比誘電率εrを次式(1)より求めた。
εr=C/(εo×電極面積/誘電体の膜厚)・・・・・・(1)
εo:真空の誘電率(8.854×10-12 F/m)
式(1)より求めた比誘電率は、1273となり、PZT膜として十分な値であった。また、X線回折パターンの測定結果を図5に示す。図5より、製造したPb(Zr0.52Ti0.48)O3膜がペロブスカイト構造であることが分かる。更に、製造した膜をSEMにて観察したところピンホール等の欠陥が認められず緻密な膜であることが確認出来た。
(比較例1)
図1においてメッシュ電極を有しないRFマグネトロンスパッタ成膜装置で実施例1と同じ条件で成膜を行った。基板5の近傍でスパーク放電が頻繁に起こり、数分おきにプラズマが消滅して再三プラズマを発生させる操作をしなければならなかった。成膜開始当初、プラズマが安定していている間、イオン電流IOを測定し電流密度に換算したところ35mA/cm2であった。基板5の近傍のスパーク放電の影響で非常に不安定ながらプラズマが発生している時間の合計で約10時間成膜を行い、5μmの膜厚を得た。このPZT膜の比誘電率を測定しようと試みたが、リーク電流が生じていると考えられ、静電容量が測定できず比誘電率を求めることができなかった。
尚、実施例1のイオン電流IMと比較例1のイオン電流IOとの比率より、実施例1において基板5に飛来するPZT粒子が中和される割合は、85.7%であった。
(実施例2)
図3に示すRFマグネトロンスパッタリング成膜装置300を用いて、PZT膜を成膜した。基板35に対して、その周囲下方より基板35に成膜される表面に向かって電子を照射する電子照射装置300Aを設けている。電子照射装置300Aの熱電子放出部45は、図4に示すような直径0.3mmのレニウム−タングステン線42とSUS304製の引き出し電極43とから構成するもので、基板5より30mm下の位置に配置し、基板5に対して熱電子を照射することができるようにした。
レニウム−タングステン線42の一方の端部を接地とし、レニウム−タングステン線42の両端部に加熱電源41を接続して交流で5Aの電流となるように電圧を設定することでレニウム−タングステン線42を赤熱させ、熱電子引き出し電源40によりDC50Vをレニウム−タングステン線42と引き出し電極43との間に印加することでレニウム−タングステン線42より放出される熱電子を引き出し、基板35に向かって熱電子を照射可能とした。この照射する熱電子によって基板35に飛来するイオン化した強誘電体の粒子を中和することが出来るようにした。
基板35の加熱温度を570℃、成膜レートを約20nm/minとして、上述の熱電子の照射を行いながら膜厚10μmのPZTを形成した以外は実施例1と同じとした。
予め実験により、基板5に飛来するイオン化したPZT粒子の約75%を中和出来るように加熱電源41と熱電子引き出し電源40の出力電圧を調整している。
成膜に費やした時間は約10時間であった。この間、基板35の近傍でのスパーク放電等の異常放電の発生はなくプラズマは安定していた。また、PZTの成膜中にファラデーカップにて到達したイオン電流IMを測定し電流密度に換算したところ9mA/cm2であった。
図2で示す様に、静電容量計(日置電機(株)製 デジタルHiテスター、型式3233)をPt電極24とAl電極26とに接続して室温にて静電容量Cを測定した。測定した静電容量Cの値を用いて、比誘電率εrを式(1)より求めた。
式(1)より求めた比誘電率は、1206となり、PZT膜として十分な値であった。また、X線回折パターンの結果を図6に示す。図6より、形成したPZT膜がペロブスカイト構造であることが分かる。更に、製造した膜をSEMにて観察したところピンホール等の欠陥が認められず緻密な膜であることが確認出来た。
(比較例2)
電子照射装置300Aを停止した以外は実施例2と同じ条件の成膜を行った。基板35の近傍でスパーク放電が頻繁に起こり、数分おきにプラズマが消滅して再三プラズマを発生させる操作をしなければならなかった。成膜開始当初、プラズマが安定していている間、イオン電流IOを測定し電流密度に換算したところ35mA/cm2であった。プラズマが発生している時間の合計で約10時間の成膜を行ったが、6μmの膜厚しか得られなかった。このPZT膜の比誘電率を測定しようと試みたが、リーク電流が生じていると考えられ、静電容量が測定できず比誘電率を求めることができなかった。
尚、実施例2のイオン電流IMと比較例2のイオン電流IOとの比率より、実施例2において基板35に飛来するPZT粒子が中和される割合は、74.3%であったことが確認出来た。
(実施例3)
図3に示すRFマグネトロンスパッタリング成膜装置300を用いて、加熱電源41と熱電子引き出し電源40の出力電圧を調整することで基板35に飛来するPZT粒子が中和される割合を30%、40%、50%、60%、70%、80%、90%、95%となるようにした以外は実施例2と同じ設定として、PZT膜を製造した。製造したそれぞれの膜について、SEMによる膜の表面観察及び比誘電率の測定を行った。この結果を各成膜レートと共に表1に示す。
Figure 2007277695
表に示す◎、○、△、×は、それぞれ以下を表している。
SEM観察においては、次の通りとした
○:膜が緻密で表面が滑らかである
×:膜が緻密でなく表面が荒れている
比誘電率においては、次の通りとした
◎:1000以上
○:500以上1000未満
△:測定可能であり500未満
×:測定出来なかった
成膜レートにおいては、実施例2における基板への成膜レート20nm/minを基準(1とする。)として比率を示した。
メッシュ電極を設けたRFスパッタリング成膜装置を模式的に示す図である。 実施例にて製造した強誘電体膜における静電容量を測定する様子を模式的に示す図である。 電子照射装置を設けたRFスパッタリング成膜装置を模式的に示す図である。 電子照射装置の構成を模式的に示す斜視図である。 実施例1において製造したPZT膜のX線回折パターンの1例を示す図である。 実施例2において製造したPZT膜のX線回折パターンの1例を示す図である。
符号の説明
1 チャンバー
2 マグネトロン・カソード
3 ターゲット
4 基板ホルダー
5 基板
6 ヒーター
7 メッシュ電極
8 シャッター
9 RF電源
10 ファラデーカップ
11 電流計
100 メッシュ電極を設けたRFスパッタリング装置
A スパッタリングガス導入口
B 排気口

Claims (10)

  1. RFマグネトロンスパッタリング法により、カソードに設けた強誘電体を原料とするターゲットを用いて、アノードに設けた基板の上に強誘電体膜を形成する強誘電体膜の製造方法において、
    前記基板を加熱するための基板加熱工程と、
    前記強誘電体膜となる、前記基板に飛来し堆積する前記強誘電体の帯電した粒子を中和するための帯電粒子中和工程と、を含むことを特徴とする強誘電体膜の製造方法。
  2. 前記帯電粒子中和工程で中和される前記強誘電体の帯電した粒子の割合は、60%以上90%未満であることを特徴とする請求項1に記載の強誘電体膜の製造方法。
  3. 前記帯電粒子中和工程は、前記ターゲットと前記基板との間に接地又は負の電位としているメッシュ電極を設けて、前記強誘電体の帯電した粒子がメッシュ電極を通過することで電気的に該粒子を中和する工程であることを特徴とする請求項1又は2に記載の強誘電体膜の製造方法。
  4. 前記メッシュ電極は、非磁性体ステンレス鋼、Al、Mo、Ta、Ti、W、Ptのいずれか1つ以上からなることを特徴とする請求項3に記載の強誘電体膜の製造方法。
  5. 前記帯電粒子中和工程は、前記強誘電体の帯電した粒子に電子を照射することで電気的に該粒子を中和する工程であることを特徴とする請求項1又は2に記載の強誘電体膜の製造方法。
  6. RFマグネトロンスパッタリング法により、カソードに設けた強誘電体を原料とするターゲットを用いて、アノードに設けた基板の上に強誘電体膜を形成する強誘電体膜の製造装置において、
    前記基板を加熱するための基板加熱手段と、
    前記強誘電体膜となる、前記基板に飛来し堆積する前記強誘電体の帯電した粒子を中和するための帯電粒子中和手段と、を含むことを特徴とする強誘電体膜の製造装置。
  7. 前記帯電粒子中和手段で中和される前記強誘電体の帯電した粒子の割合は、60%以上90%未満であることを特徴とする請求項6に記載の強誘電体膜の製造装置。
  8. 前記帯電粒子中和手段は、前記ターゲットと前記基板との間に接地又は負の電位としているメッシュ電極を設けて、前記強誘電体の帯電した粒子がメッシュ電極を通過することで電気的に該粒子を中和する手段であることを特徴とする請求項6又は7に記載の強誘電体膜の製造装置。
  9. 前記メッシュ電極は、非磁性体ステンレス鋼、Al、Mo、Ta、Ti、W、Ptのいずれか1つ以上からなることを特徴とする請求項8に記載の強誘電体膜の製造装置。
  10. 前記帯電粒子中和手段は、前記強誘電体の帯電した粒子に電子を照射することで電気的に該粒子を中和する手段であることを特徴とする請求項6又は7に記載の強誘電体膜の製造装置。
JP2006109472A 2006-04-12 2006-04-12 強誘電体膜の製造方法及び強誘電体膜の製造装置 Pending JP2007277695A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006109472A JP2007277695A (ja) 2006-04-12 2006-04-12 強誘電体膜の製造方法及び強誘電体膜の製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006109472A JP2007277695A (ja) 2006-04-12 2006-04-12 強誘電体膜の製造方法及び強誘電体膜の製造装置

Publications (1)

Publication Number Publication Date
JP2007277695A true JP2007277695A (ja) 2007-10-25

Family

ID=38679430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006109472A Pending JP2007277695A (ja) 2006-04-12 2006-04-12 強誘電体膜の製造方法及び強誘電体膜の製造装置

Country Status (1)

Country Link
JP (1) JP2007277695A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128132A1 (ja) * 2008-04-14 2009-10-22 株式会社アルバック 巻取式真空成膜装置
CN111443225A (zh) * 2020-04-15 2020-07-24 西安科技大学 一种铁电阴极测试系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128132A1 (ja) * 2008-04-14 2009-10-22 株式会社アルバック 巻取式真空成膜装置
CN111443225A (zh) * 2020-04-15 2020-07-24 西安科技大学 一种铁电阴极测试系统及方法

Similar Documents

Publication Publication Date Title
US7772747B2 (en) Process for producing a piezoelectric film, film forming apparatus, and piezoelectric film
JP5095412B2 (ja) LiCoO2の堆積
EP2626442B1 (en) Dielectric film formation method
JP4794227B2 (ja) 電子放出素子
JP4662140B2 (ja) 電子放出素子
CN106062239A (zh) 多层膜的制造方法以及多层膜
JP2021534323A (ja) 水平方向に回転する基板ガイドを備えたコーティングシステムにおいて、均一性の高いコーティングを行うための装置及び方法
JP2007277695A (ja) 強誘電体膜の製造方法及び強誘電体膜の製造装置
JP5403501B2 (ja) 強誘電体膜の製造方法
JP3979859B2 (ja) リチウム二次電池用電極の製造方法
JP3490483B2 (ja) Pzt薄膜の作製方法
EP2626892B1 (en) Method for producing dielectric thin film
JP2010031343A (ja) 成膜装置および成膜方法、並びに、液体吐出装置
JP5344864B2 (ja) 成膜装置および成膜方法
JP6007380B2 (ja) プラズマcvd装置及び磁気記録媒体の製造方法
JP2015137405A (ja) 成膜方法及び強誘電体膜
JP5398357B2 (ja) 碍子およびその製造方法、並びに荷電粒子線装置
JP7496133B2 (ja) ナノ構造体、電極及び電池
JP7383049B2 (ja) Pvd処理のためのアノード
JP5264463B2 (ja) 成膜装置、および、圧電膜素子の製造方法
JP2008280578A (ja) 金属酸化物膜の成膜方法
JP2010052980A (ja) 酸素原子発生装置
JP2024034606A (ja) Pzt薄膜積層体の成膜方法およびpzt薄膜積層体
JP6713623B2 (ja) プラズマcvd装置、磁気記録媒体の製造方法及び成膜方法
JP2001118500A (ja) 電界放射型電子源およびその製造方法