JP2007256872A - プラズマディスプレイ装置 - Google Patents

プラズマディスプレイ装置 Download PDF

Info

Publication number
JP2007256872A
JP2007256872A JP2006084460A JP2006084460A JP2007256872A JP 2007256872 A JP2007256872 A JP 2007256872A JP 2006084460 A JP2006084460 A JP 2006084460A JP 2006084460 A JP2006084460 A JP 2006084460A JP 2007256872 A JP2007256872 A JP 2007256872A
Authority
JP
Japan
Prior art keywords
sustain
power supply
plasma display
discharge
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006084460A
Other languages
English (en)
Inventor
Yukio Akiyama
幸男 秋山
Seiji Watanuki
清司 綿貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Advanced PDP Development Center Corp
Original Assignee
Hitachi Ltd
Advanced PDP Development Center Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Advanced PDP Development Center Corp filed Critical Hitachi Ltd
Priority to JP2006084460A priority Critical patent/JP2007256872A/ja
Publication of JP2007256872A publication Critical patent/JP2007256872A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】
プラズマディスプレイ装置では、パネル発光放電によりパネルに瞬時大電流が流れるため、電流経路のインピーダンス成分により大きな電圧降下が発生する。これによりパネル駆動電圧の変動による動作マージンの劣化や、インダクタンス成分にパルス電流が流れることによる不要輻射の発生等は、製品開発および性能上の大きな問題点となっている。
【解決手段】
上記課題を解決するために本発明では、第1の手段として、サステイン電源コンデンサをサステイン出力−パネル間に実装配置する。第2の手段として、サステイン出力−パネル間のパネル電流経路とサステイン電源コンデンサ−サステイン出力間の電源電流経路を、互いに逆方向電流が流れるように並行且つ近傍に配置する。
【選択図】 図1

Description

本発明は、プラズマディスプレイパネルの動作マージンの向上および不要輻射低減を図るプラズマディスプレイ装置に関する。
AC駆動型プラズマディスプレイパネル(以下、「PDP」と省略する)は、画面長辺方向に沿って延在する略平行な一対の維持放電電極(サステイン電極ともいう)を複数備えている。そのため、周知の如く、維持放電電極には意図しない浮遊インダクタンス(寄生インダクタンスともいう)が形成されている。また、浮遊インダクタンスは、PDPを駆動する一対の維持放電駆動回路(サステイン駆動回路ともいう)や、維持放電駆動回路とPDPとの間を接続する配線(例えばフレキシケーブル)にも存在する。
このため、維持放電(サステイン放電ともいう)時に、大電流(例えば42インチのPDPではピーク値が100A程度で幅が約1μs程度のパルス電流)の維持放電電流が維持放電電流経路中の前記浮遊インダクタンスに流れると、電圧降下が生じ、PDPの維持放電電極に印加される駆動電圧の変動による動作マージンの劣化を招く。また、浮遊インダクタンスに流れるパルス電流による不要輻射妨害も生じる。
そこで、維持放電電流経路の浮遊インダクタンスを低減する技術が例えば特許文献1で開示されている。
特開2006−3862号公報
特許文献1は、PDPと戻り電流経路をなすシャーシとを並行近接配置し、これらに流れる電流が逆方向であることを利用して、シャーシの浮遊インダクタンスとPDPの浮遊インダクタンスとを磁気的に結合させて相互インダクタンスを生じさせ、これらの浮遊インダクタンスを低減するプラズマディスプレイ装置を開示する。シャーシの浮遊インダクタンスとPDPの浮遊インダクタンスとの磁気的結合を蜜にすることにより、浮遊インダクタンスを大幅(例えば数十分の一)に低減することが可能である。
また、特許文献1は、維持放電駆動回路(サステイン駆動回路)を搭載した維持放電駆動基板(サステイン駆動基板ともいう)に近接して渦電流板を配置し、該渦電流板に生じる渦電流により維持放電駆動基板の浮遊インダクタンスを低減する。
しかし、特許文献1は、維持放電駆動基板(サステイン駆動基板)のサステイン出力とPDPとを接続する配線(例えば基板パターンやフレキシブルケーブル)に形成された浮遊インダクタンスの低減技術については、言及していない。
本発明は、上記した事情に鑑みてなされたもので、その目的は、維持放電駆動基板(サステイン駆動基板)のサステイン出力とPDPとを接続する配線の浮遊インダクタンスを低減できるプラズマディスプレイ装置を提供することにある。
上記課題を解決する手段として、本発明の概要を以下に述べる。
第1に、サステイン用電源コンデンサをサステイン出力−パネル間に実装配置する。第2に、サステイン出力−パネル間のパネル電流経路(吐出し、吸込みの両方向共に)とサステイン電源コンデンサ−サステイン出力間の電源電流経路(+、−側共に)を、互いに逆方向電流が流れるように並行且つ近接して配置する。上記の第1および第2の手段を適用することにより、パネル電流経路である基板パターンおよびフレキシブルケーブルの各々において、浮遊インダクタンス間に相互インダクタンスを発生させることが可能となり、浮遊インダクタンスを大幅に低減することが出来る。
本発明によれば、維持放電駆動基板(サステイン駆動基板)のサステイン出力とPDPとを接続する配線に寄生する浮遊インダクタンスを低減するAC駆動型プラズマディスプレイ装置を提供できる。これにともない、維持放電電流による電圧降下発生も低減され、PDPの動作マージンを改善できる。また、浮遊インダクタンスに流れるパルス電流による不要輻射妨害を低減できる。
以下、図面を参照して本発明の最良の形態について説明する。なお、各図において、共通な機能を有する要素には同一な符号を付して示し、一度述べたものについては、煩雑さを避けるためにその重複する説明を省略する。
図1は、本一実施形態を説明するプラズマディスプレイ装置のサステイン(維持)放電電流経路における概略構成図である。
図1において、1はPDP、2,2'はPDP1を交互に駆動する一対のサステイン駆動回路(維持放電駆動回路)のサステイン出力素子(吐出し側)、3,3'は各サステイン駆動回路のサステイン出力素子(吸込み側)、4,4'は各サステイン駆動回路のサステイン出力用電源コンデンサ、5,5x,5',5x'はサステイン出力ラインの浮遊インダクタンス、6,6'は電源ラインの浮遊インダクタンス、7,7'は電源GNDラインの浮遊インダクタンス、8,8'は電源GNDとシャーシGND接続部24,24'間の浮遊インダクタンス、9はシャーシGND接続部24と24'間の戻り電流経路をなすシャーシにおける浮遊インダクタンス、10はPDP1の浮遊インダクタンスである。
なお、5x,5x'はサステイン出力ラインの浮遊インダクタンスの一部であり、電源GND−シャーシGND接続部24,24'間の浮遊インダクタンス8,8'と磁気的に結合するために並行近接配置されたサステイン出力ラインの浮遊インダクタンスを示す。
また、A及びBは、一対のサステイン駆動回路(ここでは、その出力段であるサステイン出力素子2,3および2',3'のみが図示されている)によりPDPが交互にサステイン駆動されて流れるサステイン放電電流経路(維持放電電流経路ともいい、以下「放電電流経路」と省略する)を指し、放電電流経路の向きを矢印で示す。放電電流経路A,Bは、その向きが逆である。
また、図中の符号Mは、対象となる浮遊インダクタンス間の磁気的結合を意味し、その対象を弧状の点線の矢印で示す。
図1に示すように、本一実施形態では、サステイン出力用電源コンデンサ4(4')をサステイン駆動回路のサステイン出力とPDP1の間に実装配置する。そして、サステイン出力用電源コンデンサ4(4')の+および−側からサステイン出力素子2(2')および3(3')までの基板パターンによる配線W1(W1') ,W2(W2')と、サステイン出力素子2(2')と3(3')のそれぞれの中点SO(SO')からサステイン出力用電源コンデンサ4(4')が配置されている近傍までのサステイン出力ラインの基板パターンによる配線W3(W3')とを、互いに逆方向電流が流れる向きに各々並行近接配置している。
これにより、サステイン出力用電源コンデンサ4(4')の+および−側からサステイン出力素子2(2')および3(3')までの基板パターン配線W1(W1'),W2(W2')に発生する浮遊インダクタンス6(6')および7(7')と、サステイン出力ラインの基板パターン配線W3(W3')の浮遊インダクタンス5(5')が各々磁気的に結合し、相互インダクタンスMを発生させ、双方の浮遊インダクタンスを低減させている。
また同様に、サステイン出力用電源コンデンサ4(4')の−側とシャーシGND接続部24間の基板パターンによる配線W4(W4')と、サステイン出力ラインのサステイン出力用電源コンデンサ4(4')配置近傍からPDPに至る基板パターンによる配線W5(W5')とを、互いに逆方向電流が流れる向きに並行近接配置している。
これにより、各々の基板パターン配線W4(W4')の浮遊インダクタンス8(8')と、基板パターン配線W5(W5')の浮遊インダクタンス5x(5x')とを、磁気的に結合させて相互インダクタンスMを発生させ、双方の浮遊インダクタンスを低減させている。
なお、PDP1の浮遊インダクタンス10と戻り電流経路をなすシャーシの浮遊インダクタンス9とは、特許文献1と同様に、磁気的に結合され、そのインダクタンスが低減されている。
以上述べたように、本実施形態によれば、サステイン駆動基板のサステイン出力とPDPとを接続する配線に寄生する浮遊インダクタンスを低減することができる。従って、サステイン放電電流による電圧降下発生を低減でき、PDPの動作マージンを向上させることができる。
また、浮遊インダクタンスに流れるパルス電流による不要輻射妨害を低減できる。また、本来不要な浮遊インダクタンスによる電圧降下分をその分電源電圧を上げて補う必要が無いため、適正な必要最低限の電源電圧に設定出来ることから、電源回路の省電力化の効果も得られる。
以下、上記した一実施形態を、サステイン駆動回路の出力をPDP1に導く接続配線に適用した実施例について具体的に説明する。
ところで、PDPは、サステイン放電(維持放電)用の複数の対をなす図示しないサステイン電極(維持放電電極)を備えている。このうち、一方のサステイン電極は、アドレス放電時の走査電極にも用いられ、Y電極とも呼ばれ、他方のサステイン電極は、X電極とも呼ばれる。これらのサステイン電極(Y電極,X電極)が左右から一対のサステイン駆動回路によりプッシュプルに駆動される。サステイン放電時におけるサステイン駆動回路の構成はほぼ同じである。そこで、実施例における説明を簡単にするため、便宜上、走査側(スキャン側)の放電電流経路を用いて説明する。
図2は、第1の実施例を示すプラズマディスプレイ装置のサステイン出力周辺概略ブロック図である。
図2に示すように、走査側(スキャン側)の放電電流経路に配置される要素は、サステイン駆動回路を搭載したサステイン駆動基板21と、中継基板22と、フレキシブルケーブル23と、シャーシGND接続部24と、サステイン駆動基板21と中継基板22とを接続する中継基板コネクタ25と、中継基板22とフレキシブルケーブル23とを接続するフレキシブルケーブルコネクタ26と、およびPDP1によって構成される。
サステイン駆動基板21は、サステイン駆動回路を実装した基板である。ここでは、図示を簡単とするため、サステイン駆動回路の複数の出力段の内の一組のみが図示されている。その一組の出力段は、周知のごとく、吐出し側のサステイン出力素子2と吸込み側のサステイン出力素子3で構成され、スイッチ作用を有する。
中継基板22は、サステイン駆動時にはスルーモードとなる図示しないスキャン回路を搭載した基板である。ここでは、回路構成をスルーモード時の等価回路で示している。
フレキシブルケーブル23は、中継基板22からのサステイン出力をPDP1に接続するケーブルであり、ここでは2層の配線層を有しているものとする。本実施例では、フレキシブルケーブル23にサステイン出力用電源コンデンサ4が配置されている。
図2において、図1で述べたサステイン出力用電源コンデンサ4の+側からサステイン出力素子2までの電源ラインの配線W1に発生する浮遊インダクタンス6は、サステイン駆動基板21内の浮遊インダクタンス6aと、中継基板22内の浮遊インダクタンス6bと、フレキシブルケーブル23内の浮遊インダクタンス6cとからなる。
また、サステイン出力用電源コンデンサ4の−側からサステイン出力素子3までの電源GNDラインの配線W2に発生する浮遊インダクタンス7は、サステイン駆動基板21内の浮遊インダクタンス7aと、中継基板22内の浮遊インダクタンス7bと、フレキシブルケーブル23内の浮遊インダクタンス7cとからなる。また、図1で述べたサステイン出力ラインの配線W5の浮遊インダクタンス5xは、ここではフレキシブルケーブル23内の浮遊インダクタンス5c2で示される。
なお、サステイン出力用電源コンデンサ4には、図示しない電源基板のサステイン用電源がコネクタ(図示せず)を介して接続されているが、コネクタのリード線(図示せず)等を含む該経路のインダクタンスは、上記した配線W1の電源ライン,配線W2の電源GNDラインや配線W3のサステイン出力ライン等の浮遊インダクタンスに対し非常に大きな値となるため、パルス状のサステイン放電電流は該経路に流れ得ない。このため、サステイン出力用電源コンデンサ4が等価的に擬似電源と見なされる。
PDP1では、サステイン放電電流は、放電電流経路AおよびBの向きに、交互に流れる。放電電流経路Aは、サステイン出力用電源コンデンサ4を擬似電源と見なした場合の放電電流経路であり、放電電流経路Bは、PDPのもう一方の電極側(図示せず)のサステイン駆動基板(図示せず)から供給される放電電流経路である。
放電電流経路Aは、サステイン出力素子2が導通状態(スイッチオンの状態)の場合には、サステイン出力用電源コンデンサ4の+側から順に、フレキシブルケーブル23の電源ラインの浮遊インダクタンス6c、フレキシブルケーブルコネクタ26、中継基板22の電源ラインの浮遊インダクタンス6b、中継基板コネクタ25、サステイン駆動基板内の電源ラインの浮遊インダクタンス6a、サステイン出力素子2を経由し、サステイン出力ラインの浮遊インダクタンス5a、中継基板コネクタ25、中継基板22のサステイン出力ラインの浮遊インダクタンス5b、フレキシブルケーブルコネクタ26、フレキシブルケーブル23のサステイン出力ラインの浮遊インダクタンス5c(5c1,5c2)を経て、PDP1に流れ込む。
その後、PDP1のもう一方の電極側のサステイン駆動基板を経由して図示しないシャーシに流れ込み、シャーシよりシャーシGND接続部24、電源GND−シャーシGND接続部24間浮遊インダクタンス8を経由して、サステイン出力用電源コンデンサ4の−側に戻る。
同様に、放電電流経路Bは、サステイン出力素子3が導通状態の場合には、PDP、各浮遊インダクタンス5c2,5c1,5b,5a、サステイン出力素子3を経由し、各浮遊インダクタンス7a,7b,7cおよび8を介して、シャーシGND接続部24より図示しないシャーシの流れ込み、PDPのもう一方の電極側のサステイン駆動基板(図示せず)に戻る。
本実施例は、サステイン出力用電源コンデンサ4をフレキシケーブル23に実装配置することに第1の特徴を有する。また、サステイン出力−PDP間の放電電流経路(配線W3+W5に沿う経路)とサステイン出力用電源コンデンサ4−サステイン出力間の電源電流経路(配線W1に沿う経路または配線W2+W4に沿う経路)を、互いに逆方向電流が流れるように並行且つ近接して配置することに第2の特徴を有している。
これにより、配線W1に沿う経路に発生する浮遊インダクタンス6a,6b,6cと、配線W3に沿う経路の浮遊インダクタンス5a,5b,5c1とが各々磁気的に結合し、相互インダクタンスMを発生させ、双方の浮遊インダクタンスを低減させている。同様に、配線W2+W4に沿う経路に発生する浮遊インダクタンス7a,7b,7c,8と、配線W3+W5に沿う経路の浮遊インダクタンス5a,5b,5c1,5c2とが各々磁気的に結合し、相互インダクタンスMを発生させ、双方の浮遊インダクタンスを低減させている。
すなわち、本実施例によれば、サステイン駆動基板のサステイン出力とPDPとを接続する配線に寄生する浮遊インダクタンスを低減することができる。従って、サステイン放電電流による電圧降下発生を低減でき、PDPの動作マージンを向上させることができる。
また、浮遊インダクタンスに流れるパルス電流による不要輻射妨害を低減できる。
また、本来不要な浮遊インダクタンスによる電圧降下分をその分電源電圧を上げて補う必要が無いため、適正な必要最低限の電源電圧に設定出来ることから、電源回路の省電力化の効果も得られる。
なお、本実施例の効果を高めるには、サステイン出力用電源コンデンサ4の配置位置を極力PDP側に近づけることが望ましい。
以下、上記した実施例1の適用例に関して、図7を用いて説明する。ここでは、フレキシブルケーブル23への適用詳細を図7により述べるが、これに限定されるものではなく、サステイン駆動基板や中継基板にも適用できることはいうまでもない。
図7は、本実施例に係わるフレキシブルケーブルにおける実装配線図である。同図は、フレキシブルケーブルが銅箔2層からなる場合の一例を示す。
同図において、フレキシブルケーブル23は2層の銅箔層を有する。そのP1層は、便宜上、サステイン出力用電源コンデンサ4が実装される銅箔層とし、他方の銅箔層をP2層とする。
サステイン出力用電源コンデンサ4は、複数(図示では2個)の電源コンデンサ4および4に分割され、P1層に実装されている。P1層の電源コンデンサ+側の銅箔パターンPは、電源コンデンサ+側のビアホールVを介してP2層に接続され、P2層で複数の銅箔パターンPH1,PH2,PH3に分岐されている。同様に、P1層の電源コンデンサ−側の銅箔パターンPは、一方は、電源コンデンサ−側のビアホールVを介してP2層に接続され、P2層で複数の銅箔パターンPL1,PL2,PL3に分岐されている。また、他方の銅箔パターンPは、シャーシGND接続部24にネジSで接続される。
サステイン駆動基21からの複数(ここでは3本で図示)のサステイン出力ラインの銅箔パターンPO1,PO2,PO3は、P2層に形成されている。そして、それぞれの銅箔パターンPOi(任意の銅箔パターンを添え字iで示す)の一方のサイドには銅箔パターンPHiが配置され、他方サイドには銅箔パターンPLiが配置されている。
なお、PVSは図示しない電源基板から供給されたサステイン出力用電源の銅箔パターンである。
サステイン出力用の電源コンデンサ4および4は、フレキシブルケーブル23上にチップ型高耐圧大容量コンデンサ(例えばJIS CODE 5750で10μFのチップコンデンサ等)を2個以上取付けた状態を簡略化して示すものであるが、実装可能であれば特にコンデンサ形状・種類および個数を特定するものではない。
パネルサイズにもよるが、通常はサステイン出力用電源コンデンサは数百μF以上の容量としているが、フレキシブルケーブル23は略パネル短辺側と同一幅となり、チップコンデンサのような小型コンデンサを複数取付けることが出来るため、前述の容量とすることは可能である。
次に、図7における本実施例の第2の特徴の適用について説明する。図2の放電電流経路Aに相当する経路は、図7において、サステイン出力用の電源コンデンサ4および4の+側から、電源コンデンサ+側の銅箔パターンP、ビアホールVを経由して、P2層の電源コンデンサ+側の銅箔パターンPH1,PH2,PH3に接続され、サステイン出力回路のサステイン出力素子(図示せず)を経由し、サステイン出力ラインの銅箔パターンPO1,PO2,PO3を塗り潰し矢印の向きに放電電流が流れ、PDP(図示せず)側へ流れる。
PDPのもう一方のサステイン基板(図示せず)を経由しシャーシ流れ込んだ電流は、シャーシGND接続部24とネジSによりフレキシブルケーブル23のP1層の電源コンデンサ−側の銅箔パターンPLに接続され、電源コンデンサ−側に戻る。
上記において、図2の電源ラインの浮遊インダクタンス6cおよびサステイン出力ラインの浮遊インダクタンス5c1は、各々図7の電源コンデンサ+側の銅箔パターンP,PH1,PH2,PH3およびサステイン出力ラインの銅箔パターンPO1,PO2,PO3に発生する。一方、図7に示すように、両方の銅箔パターンは、該銅箔パターンを流れる放電電流の向きが逆で、P1−P2層間または同一層の隣接するパターン間の略1mm以下の距離を隔てて並行配置されている。従って、浮遊インダクタンス6cと浮遊インダクタンス5c1との間に磁気的結合が生じ、その浮遊インダクタンスを低減することが可能となる。
またシャーシGND接続部24を経由した電源コンデンサ−側の銅箔パターンPLとサステイン出力ラインの銅箔パターンPO1,PO2,PO3に発生する浮遊インダクタンス8と5c2についても同様である。
以上は、本実施例の第2の特徴であるサステイン出力−PDP間の放電電流経路とサステイン出力用電源コンデンサ−サステイン出力間の電源電流経路を、互いに逆方向電流が流れるように並行且つ近接して配置することの一例を示すものである。
以上述べたように、第1の特徴である電源コンデンサの配置により、第2の特徴である各電流経路の配置を構成することが可能となり、結果としてサステイン出力用電源コンデンサ+側の銅箔パターンP,PH1,PH2,PH3およびサステイン出力ラインの銅箔パターンPO1,PO2,PO3間、およびサステイン出力用電源コンデンサ−側の銅箔パターンPL,PL1,PL2,PL3とサステイン出力ラインの銅箔パターンPO1,PO2,PO3間共に、磁気的に結合し、該相互インダクタンスMにより両者の浮遊インダクタンス成分は共に低減することが可能となる。
なおこの場合、両者のパターンが非常に近接しており大幅な低減効果を得ることが出来る。
また、図2の放電電流経路Bに相当する経路についても、放電電流経路および向きが異なるのみで放電電流経路Aと同様な低減効果を得ることが出来る。
図8は、本実施例に係わるフレキシブルケーブルにおける別の適用例を示す実装配線図である。
本適用例では、図2のフレキシブルケーブル23は、3層の銅箔層を有するものとする。そして、そのP1層は、便宜上、サステイン出力用電源コンデンサ4が実装される銅箔層とし、以下順に、中間の銅箔層をP2層、最下層の銅箔層をP3層とする。
図8において、サステイン出力ラインの銅箔パターンPO1,PO2,PO3をP2層に、電源コンデンサ+側の銅箔パターンPと電源コンデンサ−側の銅箔パターンPLを各々P1、P3層に配置することにより、図7と同様に、サステイン出力ラインと電源ライン,電源GNDラインを共に並行近接配置し、且つ各々に流れるパネル電流向きを互いに逆方向とすることが出来る。このため、図7と同様に各ラインの浮遊インダクタンスを大幅に低減することが可能である。
図9は、本実施例に係わるフレキシブルケーブルにおける別の適用例を示す実装配線図である。
本適用例では、図2のフレキシブルケーブル23は、4層の銅箔層を有するものとする。そして、その銅箔層のP1層は、便宜上、サステイン出力用電源コンデンサ4が実装される銅箔層とし、以下順に、P2層、P3層、P4層とする。
本適用例では、図9に示すように、サステイン出力素子からPDP方向への放電電流の出力ライン(以下、吐出し側出力ライン)と、PDPからサステイン出力素子方向への放電電流の出力ライン(以下、吸込み側出力ライン)と、を別々の銅箔パターンで構成する。そして、吐出し側出力ラインの銅箔パターンPO1A,PO2A,PO3AをP1層に、P2層に電源コンデンサ+側の銅箔パターンPを、同様に前記吸込み側出力ラインの銅箔パターンPO1B,PO2B,PO3BをP4層に、P3層に電源コンデンサ−側の銅箔パターンPLを配置する。
この配置構成により、図7と同様に、サステイン出力ラインと電源ライン,電源GNDラインを共に並行近接配置し、且つ各々に流れるパネル電流向きを互いに逆方向とすることが出来る。このため、図7と同様に各ラインの浮遊インダクタンスを大幅に低減することが可能である。
なお、図9では、フレキシブルケーブルを銅箔4層としたが、4層以上の場合も同様な構成が可能であり、同様な効果を得ることが出来る。
また、図2のフレキシブルケーブル23について、該フレキシブルケーブルが銅箔2層、3層、4層(またはそれ以上の層数)の場合について、本実施例の適用について述べたが、これらは、当然ながらサステイン駆動基板および中継基板に関しても同様に適用出来、同様な効果を得ることが可能である。
図3は、第2の実施例を示すプラズマディスプレイ装置のサステイン出力周辺概略ブロック図である。
本実施例と第1の実施例との相違点は、サステイン出力用電源コンデンサ4が中継基板22上に実装配置されることである。このため、フレキシブルケーブル23の浮遊インダクタンス5cは低減されないが、サステイン出力用電源コンデンサ4やシャーシGND接続部24の部品および接続は、通常の部品と接続方法が使用出来るため、実装上の信頼性面で有利となる。
図4は、第3の実施例を示すプラズマディスプレイ装置のサステイン出力周辺概略ブロック図である。
本実施例と第1の実施例との相違点は、サステイン出力用電源コンデンサ4がサステイン駆動基板21上に実装配置されることである。このため、中継基板22およびフレキシブルケーブル23の各々の浮遊インダクタンス5b、5cは低減されない。
しかしながら本実施例では、サステイン出力用電源コンデンサ4とシャーシGND接続端子24が従来と同一基板内となるため、実装が小変更で可能な点で有利である。
図5は、第4の実施例を示すプラズマディスプレイ装置のサステイン出力周辺概略ブロック図である。
本実施例は、実施例3と同様な構成であるが、シャーシGND接続端子24を中継基板22側に配置することにより、電源−シャーシGND接続部間の浮遊インダクタンス8と中継基板の浮遊インダクタンス5bを結合させて、両者の低減が可能な構成としたものである。
図6は、第5の実施例を示すプラズマディスプレイ装置のサステイン出力周辺概略ブロック図である。
本実施例は、実施例3において中継基板22を使用せず、フレキシブルケーブル23をサステイン駆動基板21に直接接続する構成としたものである。本構成により、浮遊インダクタンス5a2の削減および原価低減が可能となる。
実施形態を説明するプラズマディスプレイ装置のサステイン放電電流経路における概略構成図 第1の実施例を示すプラズマディスプレイ装置のサステイン出力周辺概略ブロック図 第2の実施例を示すプラズマディスプレイ装置のサステイン出力周辺概略ブロック図 第3の実施例を示すプラズマディスプレイ装置のサステイン出力周辺概略ブロック図 第4の実施例を示すプラズマディスプレイ装置のサステイン出力周辺概略ブロック図 第5の実施例を示すプラズマディスプレイ装置のサステイン出力周辺概略ブロック図 実施例1に係わるフレキシブルケーブルにおける第1の実装配線図 実施例1に係わるフレキシブルケーブルにおける第2の実装配線図 実施例1に係わるフレキシブルケーブルにおける第3の実装配線図
符号の説明
1…プラズマディスプレイパネル、2,2'…サステイン出力素子(吐出し側)、3,3'…サステイン出力素子(吸込み側)、4,4',4,4…サステイン出力用電源コンデンサ、
5,5',5a,5b,5c…浮遊インダクタンス(出力ライン)、6,6',6a,6b,6c…浮遊インダクタンス(電源ライン)、7,7',7a,7b,7c…浮遊インダクタンス(電源GNDライン)、8…浮遊インダクタンス(電源GND−シャーシ間)、9…浮遊インダクタンス(シャーシの戻り電流経路)、10…浮遊インダクタンス(PDP)、21…サステイン駆動基板、22…中継基板、23…フレキシブルケーブル、24…シャーシGND接続部、25…中継基板コネクタ、26…フレキシブルケーブルコネクタ、A…放電電流経路、B…放電電流経路、M…相互インダクタンス、P1,P2,P3,P4…基板またはフレキシブルケーブルの各銅箔層、P,PH1,PH2,PH3…電源コンデンサ+側の銅箔パターン、PL,PL1,PL2,PL3…電源コンデンサ−側の銅箔パターン、PO1,PO2,PO3,PO1A,PO2A,PO3A,PO1B,PO2B,PO3B…サステイン出力ラインの銅箔パターン、V…電源コンデンサ+側のビアホール、VL…電源コンデンサ−側のビアホール、S…ネジ

Claims (4)

  1. ガラス基材の前面板および背面板からなり、該前面板に互いに略平行なストライブ状の複数の維持・走査放電用のY電極と維持放電用のX電極、および前記Y、X電極上に配置される誘電体層とを主表面に備え、
    該背面板にストライブ状の複数のアドレス放電用のアドレス電極および前記アドレス電極上に配置される蛍光体層を主表面に備え、
    前記Y、X電極と前記アドレス電極が略直交するように該前面板と背面板の主表面同士を所定の間隔を隔てて対向配置し、各電極の給電用引出し部を設け、且つ前記間隙に封入された放電用ガスとを備えたプラズマディスプレイ装置であって、
    プラズマディスプレイパネルを駆動するサステイン駆動回路において、サステイン用電源コンデンサをサステイン出力素子とプラズマディスプレイパネルとの間に配置することを特徴とするプラズマディスプレイ装置。
  2. 請求項1記載のプラズマディスプレイ装置において、
    前記サステイン駆動回路において、サステイン出力素子とプラズマディスプレイパネルとの間の電流経路とサステイン用電源コンデンサ−サステイン出力素子間の電流経路とを、互いに逆方向電流が流れるように並行且つ近傍に配置することことを特徴とするプラズマディスプレイ装置。
  3. ガラス基材の前面板および背面板と、
    該前面板にストライブ状に配置されるX電極とY電極と、
    該X電力と該Y電極上に配置される誘電体層と、
    該背面板にストライブ状に配置されるアドレス放電用のアドレス電極と、
    該アドレス電極上に配置される蛍光体層と、
    該該所定の間隙に封入された放電用ガスと、
    プラズマディスプレイパネルを駆動するサステイン駆動部とを備え、
    該X電極及びY電極と、該アドレス電極と、が所定の間隔で略直交するように対向配置され、サステイン用の電源コンデンサをサステイン出力素子とプラズマディスプレイパネルとの間に配置することを特徴とするプラズマディスプレイ装置。
  4. プラズマディスプレイパネルを有するプラズマディスプレイ装置において、
    サステイン出力素子と該プラズマディスプレイパネルと間にサステイン用の電源コンデンサを配置し、サステイン出力素子と該プラズマディスプレイパネルとの間のパネル電流経路とサステイン電源コンデンサとサステイン出力素子との間の電源電流経路とを、互いに逆方向電流が流れるように並行且つ近接して配置することを特徴とするプラズマディスプレイ装置。
JP2006084460A 2006-03-27 2006-03-27 プラズマディスプレイ装置 Pending JP2007256872A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006084460A JP2007256872A (ja) 2006-03-27 2006-03-27 プラズマディスプレイ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006084460A JP2007256872A (ja) 2006-03-27 2006-03-27 プラズマディスプレイ装置

Publications (1)

Publication Number Publication Date
JP2007256872A true JP2007256872A (ja) 2007-10-04

Family

ID=38631141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006084460A Pending JP2007256872A (ja) 2006-03-27 2006-03-27 プラズマディスプレイ装置

Country Status (1)

Country Link
JP (1) JP2007256872A (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101903930A (zh) * 2007-12-21 2010-12-01 苹果公司 用于提供高速、低emi开关电路的方法与装置
US8724120B2 (en) 2010-04-21 2014-05-13 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker
US9041914B2 (en) 2013-03-15 2015-05-26 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9151830B2 (en) 2011-04-15 2015-10-06 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote structured-light scanner
US9164173B2 (en) 2011-04-15 2015-10-20 Faro Technologies, Inc. Laser tracker that uses a fiber-optic coupler and an achromatic launch to align and collimate two wavelengths of light
US9377885B2 (en) 2010-04-21 2016-06-28 Faro Technologies, Inc. Method and apparatus for locking onto a retroreflector with a laser tracker
US9395174B2 (en) 2014-06-27 2016-07-19 Faro Technologies, Inc. Determining retroreflector orientation by optimizing spatial fit
US9400170B2 (en) 2010-04-21 2016-07-26 Faro Technologies, Inc. Automatic measurement of dimensional data within an acceptance region by a laser tracker
US9453913B2 (en) 2008-11-17 2016-09-27 Faro Technologies, Inc. Target apparatus for three-dimensional measurement system
US9482755B2 (en) 2008-11-17 2016-11-01 Faro Technologies, Inc. Measurement system having air temperature compensation between a target and a laser tracker
US9482529B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9638507B2 (en) 2012-01-27 2017-05-02 Faro Technologies, Inc. Measurement machine utilizing a barcode to identify an inspection plan for an object
US9686532B2 (en) 2011-04-15 2017-06-20 Faro Technologies, Inc. System and method of acquiring three-dimensional coordinates using multiple coordinate measurement devices
US9772394B2 (en) 2010-04-21 2017-09-26 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508902A (ja) * 2007-12-21 2011-03-17 アップル インコーポレイテッド 高速低emiスイッチング回路を形成する方法及び装置
KR101354267B1 (ko) * 2007-12-21 2014-01-22 애플 인크. 고속의, 낮은 emi의 스위칭 회로를 제공하기 위한 방법 및 장치
CN101903930A (zh) * 2007-12-21 2010-12-01 苹果公司 用于提供高速、低emi开关电路的方法与装置
US9482755B2 (en) 2008-11-17 2016-11-01 Faro Technologies, Inc. Measurement system having air temperature compensation between a target and a laser tracker
US9453913B2 (en) 2008-11-17 2016-09-27 Faro Technologies, Inc. Target apparatus for three-dimensional measurement system
US8724120B2 (en) 2010-04-21 2014-05-13 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker
US9146094B2 (en) 2010-04-21 2015-09-29 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker
US10209059B2 (en) 2010-04-21 2019-02-19 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US9772394B2 (en) 2010-04-21 2017-09-26 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US10480929B2 (en) 2010-04-21 2019-11-19 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US9007601B2 (en) 2010-04-21 2015-04-14 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker
US9377885B2 (en) 2010-04-21 2016-06-28 Faro Technologies, Inc. Method and apparatus for locking onto a retroreflector with a laser tracker
US9400170B2 (en) 2010-04-21 2016-07-26 Faro Technologies, Inc. Automatic measurement of dimensional data within an acceptance region by a laser tracker
US9448059B2 (en) 2011-04-15 2016-09-20 Faro Technologies, Inc. Three-dimensional scanner with external tactical probe and illuminated guidance
US9151830B2 (en) 2011-04-15 2015-10-06 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote structured-light scanner
US9453717B2 (en) 2011-04-15 2016-09-27 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners using projection patterns
US9207309B2 (en) 2011-04-15 2015-12-08 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote line scanner
US9482746B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote sensor
US9164173B2 (en) 2011-04-15 2015-10-20 Faro Technologies, Inc. Laser tracker that uses a fiber-optic coupler and an achromatic launch to align and collimate two wavelengths of light
US9482529B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US10578423B2 (en) 2011-04-15 2020-03-03 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners using projection patterns
US9494412B2 (en) 2011-04-15 2016-11-15 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners using automated repositioning
US10302413B2 (en) 2011-04-15 2019-05-28 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote sensor
US9686532B2 (en) 2011-04-15 2017-06-20 Faro Technologies, Inc. System and method of acquiring three-dimensional coordinates using multiple coordinate measurement devices
US9157987B2 (en) 2011-04-15 2015-10-13 Faro Technologies, Inc. Absolute distance meter based on an undersampling method
US10119805B2 (en) 2011-04-15 2018-11-06 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US10267619B2 (en) 2011-04-15 2019-04-23 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9638507B2 (en) 2012-01-27 2017-05-02 Faro Technologies, Inc. Measurement machine utilizing a barcode to identify an inspection plan for an object
US9041914B2 (en) 2013-03-15 2015-05-26 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9482514B2 (en) 2013-03-15 2016-11-01 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners by directed probing
US9395174B2 (en) 2014-06-27 2016-07-19 Faro Technologies, Inc. Determining retroreflector orientation by optimizing spatial fit

Similar Documents

Publication Publication Date Title
JP2007256872A (ja) プラズマディスプレイ装置
KR20120137474A (ko) 화상표시장치
US20090057808A1 (en) Semiconductor device, semiconductor element, and substrate
WO2009119562A1 (ja) 多層プリント配線基板
JP2006301317A (ja) プラズマディスプレイモジュール
KR100814810B1 (ko) 플라즈마 디스플레이 장치
WO2004097780A1 (ja) プラズマディスプレイ装置
JP4881576B2 (ja) プラズマディスプレイ装置
WO2010038294A1 (ja) プラズマディスプレイ装置
JP5168872B2 (ja) 半導体集積回路
JP2003045338A (ja) プラズマディスプレイ装置
JP2005266460A (ja) 駆動基板及び当該駆動基板に搭載される半導体パワーモジュール
JP4480348B2 (ja) プラズマディスプレイ装置
JP5067374B2 (ja) プラズマディスプレイ装置およびプラズマディスプレイパネルの駆動方法
KR100889533B1 (ko) 플라즈마 디스플레이 장치
JP2006319004A (ja) コンデンサ実装構造及び多層回路基板
JP4488293B2 (ja) プラズマディスプレイパネル駆動装置
JP4785357B2 (ja) プラズマディスプレイパネル用駆動回路
JP3686568B2 (ja) 回路基板及びそれを備えたディスプレイ装置
JP2010256398A (ja) プラズマディスプレイ装置
JP2005221797A (ja) プラズマディスプレイ装置
KR100749470B1 (ko) 플라즈마 디스플레이 장치
JP2001358412A (ja) 回路基板およびそれを用いたプラズマディスプレイ
KR20080035816A (ko) 플라즈마 디스플레이 장치
JP2023141302A (ja) 電源装置