JP2007251461A - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
JP2007251461A
JP2007251461A JP2006070252A JP2006070252A JP2007251461A JP 2007251461 A JP2007251461 A JP 2007251461A JP 2006070252 A JP2006070252 A JP 2006070252A JP 2006070252 A JP2006070252 A JP 2006070252A JP 2007251461 A JP2007251461 A JP 2007251461A
Authority
JP
Japan
Prior art keywords
pixels
gate electrode
ring
shaped gate
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006070252A
Other languages
English (en)
Other versions
JP4618170B2 (ja
Inventor
Masanori Funaki
正紀 舟木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2006070252A priority Critical patent/JP4618170B2/ja
Publication of JP2007251461A publication Critical patent/JP2007251461A/ja
Application granted granted Critical
Publication of JP4618170B2 publication Critical patent/JP4618170B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】グローバルシャッタ機能を有し、しかも開口率を上げる構造の増幅型固体撮像装置は従来知られていない。
【解決手段】水平方向に隣接する2つの画素の転送ゲート電極51は、1つのコンタクトVIA59bを介して転送ゲート電極配線55に接続されており、2つの画素10の転送ゲート電極51が同時に駆動できるようになっている。水平方向に隣接する2つの画素のリング状ゲー卜電極45も、1つのコンタクトVIA59aを介してリング状ゲート電極配線53に接続されており、2つの画素10のリング状ゲート電極45が同時に駆動できるようになっている。つまり、リング状ゲート電極45と転送ゲート電極51とは、各々1つのコンタクトVIA59a、59bを2画素で共有している。1つの画素10の平均コンタクトVIA数は3個であり、従来の4個に比べて開口率を上げることができる。
【選択図】図1

Description

本発明は固体撮像装置に係り、特にリング状ゲート電極を用いた固体撮像装置に関する。
固体撮像装置は、光を電荷などの電気的な光信号に変換する光電変換手段と、その電荷を光信号として画素外に伝える出力手段とから成り立っている。光電変換手段としては、半導体のダイオード部分を使うフォトダイオードがある。出力手段としてはCCD(Charge Coupled Device:電荷結合素子)のように電荷を転送し、あるいは画素毎に増幅装置(主にMOS型電界効果トランジスタ(以下、MOSFETと記す))を内蔵し、光信号を増幅して出力する増幅型固体撮像装置がある。増幅装置には、上記のMOSFET以外にも、接合型FET(JFET)、バイポーラトランジスタを使ったものがある。また、上記の増幅装置を構成するFETのゲート電極の形状が特殊なものとしては、平面形状がリング状のものがある。
従来からリング状ゲート電極を用いた固体撮像装置において、1画素あたりのコンタクト数を少なくする試みが従来から行われている(例えば、特許文献1、2参照)。すなわち、特許文献1では、ゲート電極を材料であるポリシリコンで横方向につないだポリシリコンの配線とし、ゲート電極へのコンタクトをなくした構造の固体撮像装置が開示されている。また、特許文献2ではコンタクトバッファ層を介して、リング状ゲー卜電極を2画素単位で接続した構造の固体撮像装置が開示されている。このように、1画素あたりのコンタクト数を減らすと、開口率を上げることが可能になる。
なお、これらの増幅型固体撮像装置はローリングシャッタ型と呼ばれる、画素毎に露光している時間情報が異なっているタイプである。
特開平1−270263号公報 特開平6−268188号公報
上記の特許文献1、2記載の従来の固体撮像装置では、リング状ゲート電極を持つ増幅型固体撮像装置に関して、1画素あたりのコンタクト数を減らして開口率を上げる方法について記載されている。しかし、特許文献1、2記載の従来の固体撮像装置はローリングシャッタ型であるため、全画素での時間情報がずれており、その結果画像が歪むという問題がある。それを解決するためには、全画素で時間情報が揃っているグローバルシャッタ機能を有する必要があるが、グローバルシャッタ機能を有して開口率を上げる構造については従来知られていない。
本発明は上記の点に鑑みなされたもので、リング状ゲート電極を持つ増幅型固体撮像装置において、グローバルシャッタ機能を有し、かつ、開口率を大きくできる固体撮像装置を提供することを目的とする。
上記の目的を達成するため、本発明は、入射する光を光電変換して電荷として蓄積する光電変換領域と、入力された電荷を光信号に変換し、かつ、増幅して出力する増幅出力用トランジスタと、光電変換領域で蓄積した電荷を増幅出力用トランジスタへ転送する電荷転送手段とからなる画素が、全部でN個(Nは2以上の自然数)規則的に配列されており、N個の全画素の光電変換領域に同時に露光して光電変換して蓄積された電荷を、全画素の電荷転送手段により一斉に全画素の増幅出力用トランジスタに転送した後、各画素の増幅出力用トランジスタから光信号を撮像信号として出力する駆動手段を備えた固体撮像装置であって、隣接するM1個(M1はN以下の自然数)の画素内の増幅出力用トランジスタの所定の電極同士が第1の信号配線を介して第1の接続手段を共有して接続されると共に、隣接するM2個(M2はN以下の自然数)の画素内の電荷転送手段が第2の信号配線を介して第2の接続手段を共有して接続されており、駆動手段は、M1個の画素内の増幅出力用トランジスタを同時に駆動すると共に、M2個の画素内の電荷転送手段を同時に駆動することを特徴とする。
この発明では、M1個の画素内の増幅出力用トランジスタの所定の電極同士を、第1の信号配線を介して第1の接続手段を共有して接続すると共に、隣接するM2個の画素内の電荷転送手段を、第2の信号配線を介して第2の接続手段を共有して接続するようにしたため、従来に比べて1つの画素の接続手段の数を減らすことができる。また、この発明では、全画素の光電変換領域に同時に露光して光電変換して蓄積された電荷を、全画素の電荷転送手段により一斉に全画素の増幅出力用トランジスタに転送した後、各画素の増幅出力用トランジスタから光信号を撮像信号として出力するようにしたため、グローバルシャッタを実現することができる。
また、上記の目的を達成するため、本発明は、上記の発明の増幅出力用トランジスタが、基板上のリング状ゲート電極と、リング状ゲート電極の中心開口部に対応する基板の位置に設けられたソース電極拡散領域と、ソース電極拡散領域を取り囲み、かつ、リング状ゲート電極の外周に達しないように基板に設けられたソース近傍領域とからなる、入力された電荷の量をしきい値の変化として出力するトランジスタとし、電荷転送手段を、光電変換領域に蓄積された電荷をソース近傍領域へ転送する手段とし、第1の接続手段が、M1個の画素内の増幅出力用トランジスタのリング状ゲート電極同士を第1の信号配線に接続するために、M1個の画素に共有して設けられた第1のコンタクトであることを特徴とする。
この発明では、M1個の画素内の増幅出力用トランジスタのリング状ゲート電極同士を、第1の信号配線を介して第1のコンタクトを共有して接続するようにしたため、従来に比べて1つの画素の接続手段の数を減らすことができる。
また、上記の目的を達成するため、本発明は、上記のM1及びM2はそれぞれ2であり、第1の接続手段と第2の接続手段とは、1画素おきに設けられている第1のコンタクトと第2のコンタクトであるようにしてもよい。また、本発明は、隣接するM3個(M3はN以下の自然数)の画素内の増幅出力用トランジスタのドレイン電極同士が第3の信号配線を介して第3の接続手段を共有して接続されているようにしてもよい。
本発明によれば、グローバルシャッタ機能を有する固体撮像装置において、M1個の画素内の増幅出力用トランジスタの所定の電極同士を、第1の信号配線を介して第1の接続手段を共有して接続すると共に、隣接するM2個の画素内の電荷転送手段を、第2の信号配線を介して第2の接続手段を共有して接続することにより、従来に比べて1つの画素の接続手段の数を減らすようにしたため、従来に比べて開口率を上げることができ、これにより感度を従来に比べて向上することができる。
次に、本発明の一実施の形態について図面と共に説明する。図1は本発明になる固体撮像装置の一実施の形態の平面図を示す。同図に示すように、画素10が2次元マトリクス状に規則正しく並んでいる。この図1では多数配列された画素10のうち、2行4列のみが示されている。
画素10は光電変換領域(フォトダイオード)50と転送ゲート電極51とリング状ゲート電極45とからなっており、リング状ゲート電極45の外周部がドレイン電極拡散領域48、リング状ゲート電極45の中央開口部がソース電極拡散領域46である。それぞれの電極には転送ゲート電極配線55、リング状ゲート電極配線53、ドレイン電極配線52、ソース電極配線54がコンタクトVIA59a〜59cのいずれかを通して接続されている。ソース電極拡散領域46の近傍にはソース近傍領域47がある。
水平方向(行方向)に隣接する2つの画素の転送ゲート電極51は、1つのコンタクトVIA59bを介して転送ゲート電極配線55に接続されており、2つの画素10の転送ゲート電極51が同時に駆動できるようになっている。また、水平方向に隣接する2つの画素のリング状ゲー卜電極45も、1つのコンタクトVIA59aを介してリング状ゲート電極配線53に接続されており、2つの画素10のリング状ゲート電極45が同時に駆動できるようになっている。つまり、リング状ゲート電極45と転送ゲート電極51とは、各々1つのコンタクトVIA59a、59bを2画素で共有している。
ここで、図1に示すように、1つのコンタクト59aに共通に接続された2つのリング状ゲート電極45を有する水平方向に隣接する2つの画素の組と、1つのコンタクト59bに共通に接続された2つの転送ゲート電極51を有する水平方向に隣接する2つの画素の組とは、1画素水平方向にずれている。また、各画素10のリング状ゲート電極45の中心開口部に設けられたソース電極拡散領域が、コンタクトVIA59dを介してソース電極配線54に接続されている。従って、1つの画素10の平均コンタクトVIA数は3個であり、1つの画素10内の電極の数4つに対して1つ減っているので、その分開口率を上げることができる。
なお、光電変換領域(フォトダイオード)50の上方以外の部分は遮光膜で覆われているが、図1ではこれを省略してある。断面図の図2、図3でそれを示す。図2は図1のX−X’線に沿う断面図で、リング状ゲート電極45の接続の様子を示す。図2及び図3中、図1と同一構成部分に同一符号を付してある。図2において、p+基板上41にp-型エピタキシャル層42を成長させてある。p-型エピタキシャル層内にnウェル43があり、nウェル43上にはゲート酸化膜44を挟んで、平面形状がリング状のリング状ゲート電極45が形成されている。
リング状ゲート電極45の中央開口部のnウェル43表面にはn+型のソース電極拡散領域46があり、ソース電極拡散領域46を取り囲むようにp型のソース近傍領域47がある。ソース近傍領域47はリング状ゲート電極45の外周部に達していない。リング状ゲート電極45はコンタクトVIA59aを介してリング状ゲート電極配線53に接続されている。転送ゲート電極51はコンタクトVIA59bを介して転送ゲート電極配線55に接続されている。また、ソース電極拡散領域46はコンタクトVIA59dを介してソース電極配線54に接続されている。上記の各素子は絶縁膜56で覆われ、その絶縁膜56上に遮光膜57が形成されている。この遮光膜57は金属、あるいは有機膜等で形成される。
リング状ゲート電極配線53はコンタクトVIA59aを通してリング状ゲート電極45を駆動する。リング状ゲート電極45はポリシリコンでできており、行方向で全ての画素のリング状ゲート電極が繋がっているので、コンタクトVIA59aが複数画素に1個でよく、その割合は自由に設定できる。最大で、ある行に1個のコンタクトVIA59aがあればよい。しかし、リング状ゲート電極45を構成するポリシリコンの抵抗は高いので、駆動周波数との兼ね合いで最適な割合を決定する。なお、実施の形態では2画素にコンタクトVIA59aが1個の割合でコンタクトをとるように描いてある。
また、本実施の形態では、各画素のリング状ゲート電極45は、2次元マトリクス状に配列された画素のうち、同じ行の全画素のリング状ゲート電極45が繋がっているものとしているが、実際には、同じ行の全画素がいくつかのグループに分離されていてもよい。その場合は、そのグループに対して最低1個のコンタクトVIA59aを形成する。
また、図2において、転送ゲート電極51もポリシリコンでできており、リング状ゲート電極45の後に形成する第2ポリシリコンである。転送ゲート電極配線55にコンタクトVIA59bを介して接続された転送ゲート電極51は、複数の画素を駆動している。この実施の形態では、図1と共に説明したように、1つのコンタクトVIA59bにより2つの画素の転送ゲート電極51を同時に駆動している。このように、リング状ゲート電極45と転送ゲート電極55をそれぞれ複数に1個のコンタクトVIA形成で接続することで、開口率を上げることができる。
図3は図1のY−Y’線に沿う断面図を示す。図3中、図1及び図2と同一構成部分には同一符号を付し、その説明を省略する。図3に示すように、ソース電極拡散領域46及びソース近傍領域47と離れたnウェル43の表面にはn+型のドレイン電極拡散領域48がある。ドレイン電極拡散領域48はコンタクトVIA59cを介してドレイン電極配線52に接続されている。リング状ゲート電極45の外側のnウェル43中には埋め込みのp-型領域49が形成され、nウェル43と共に図1に示した光電変換領域(フォトダイオード)50を形成している。
埋め込みのp-型領域49(フォトダイオード50)とリング状ゲート電極45との間には、転送ゲート電極51がある。また、遮光膜57の埋め込みのp-型領域49(フォトダイオード50)に対応した位置には、開口部58が穿設されている。光は、開口部58を通してフォトダイオード50に達して光電変換される。
次に、本発明の固体撮像装置の一実施の形態の画素構造と撮像装置全体の構造について、電気回路で表現した図4と共に説明する。同図において、まず、画素はm行n列に画素敷き詰め領域61に配置されている。図4ではこれらm行n列の画素のうち、s行t列の一画素62を代表として等価回路で表現している。この画素62は、リング状ゲートMOSFET63と、フォトダイオード64と、転送ゲートMOSFET65とからなり、リング状ゲートMOSFET63のドレインがフォトダイオード64のn側端子とドレイン電極配線66(図1、図3の52に相当)に接続され、転送ゲートMOSFET65のソースがフォトダイオード64のp側端子に接続され、ドレインがリング状ゲートMOSFET63のバックゲートに接続されている。
なお、上記のリング状ゲートMOSFET63は、図3ではリング状ゲート電極45直下のソース近傍領域47をゲート領域とし、n+型のソース電極拡散領域46及びn+型のドレイン電極拡散領域48を有するnチャネルMOSFETで、入力された電荷を光信号に変換し、かつ、増幅して出力する増幅出力用トランジスタである。また、上記の転送ゲートMOSFET65は、図3では転送ゲート電極51直下のnウェル43をゲート領域、フォトダイオード50の埋め込みのp-型領域49をソース電極拡散領域、ソース近傍領域47をドレイン電極拡散領域とするpチャネルMOSFETである。
図4において、m行n列の各画素から1フレーム分の信号を読み出すために、まず読み出しを始める合図を出すフレームスタート信号を発生させる回路67がある。このフレームスタート信号は撮像装置の外から与えられてもよい。このフレームスタート信号は垂直シフトレジスタ68に供給される。垂直シフトレジスタ68は、m行n列の各画素のうちの何行目の画素を読み出すかの信号を出力する。
各行の画素はリング状ゲート電極、転送ゲート電極、ドレイン電極の電位を制御する制御回路に接続されており、これらの制御回路は垂直レジスタ68の出力信号が供給される。例えば、s行目の各画素のリング状ゲート電極は、リング状ゲート電極配線69(図1、図2の53に相当)を介してリング状ゲート電位制御回路70に接続され、各画素の転送ゲート電極は、転送ゲート電極配線71(図1、図2の55に相当)を介して転送ゲート電位制御回路72に接続され、各画素のドレイン電極は、ドレイン電極配線66(図1、図3の52に相当)を介してドレイン電位制御回路73に接続されている。上記の各制御回路70、72、73には垂直シフトレジスタ68の出力信号が供給される。
なお、リング状ゲート電極は、行毎に制御するので横方向に配線するが、転送ゲート電極は全画素で一斉に制御するので、配線方向は問わず、縦方向でもよい。ここでは横方向に配線するものとして表現する。ドレイン電位制御回路73は、全画素一斉に制御するが、行毎に制御する可能性もあるので、フレームスタート信号と垂直レジスタ68の両方と接続して表現している。
画素62のリング状ゲートMOSFET63のソース電極は、ソース電極配線74(図1、図3の54に相当)を介して2分岐され、一方はスイッチSW1を介してソース電極電位を制御するソース電位制御回路75に接続され、他方はスイッチSW2を介して信号読み出し回路76に接続されている。信号を読み出すときにはスイッチSW1をオフ、スイッチSW2をオンにし、ソース電位を制御する時にはスイッチSW1をオン、スイッチSW2をオフにする。信号は縦方向に出すので、ソース電極の配線方向は縦にする。
信号読み出し回路76は次のように構成されている。画素62の出力はリング状ゲートMOSFET63のソースから行われ、出力線74には負荷、例えば電流源77が繋がっている。従って、ソースフォロア回路となっている。電流源77にはキャパシタC1とキャパシタC2の各一端がスイッチsc1とスイッチsc2を介して繋がっている。他端が接地されているキャパシタC1、C2の各一端は、また差動アンプ78の反転入力端子と非反転入力端子に繋がっており、両キャパシタC1及びC2の電位差を差動アンプ78から出力するようになっている。
このような信号読み出し回路76はCDS回路(相関二重サンプリング回路)と呼ばれ、ここに描かれた方式以外にも種々の回路が提案されており、この回路に限るわけではない。信号読み出し回路76から出力された信号は、出力スイッチswtを介して出力される。同じ列にある出力スイッチswtは、水平シフトレジスタ79から出力される信号によりスイッチング制御される。
次に、図4に示す固体撮像装置の駆動方法について、図5のタイミングチャートと共に説明する。まず、図5(1)に示す期間では、埋め込みのフォトダイオード(図1の50、図4の64等)に光が入射し、光電変換効果により電子・ホール対が発生し、フォトダイオードの埋め込みp型領域49にホールが蓄積される。このとき転送ゲート電極51の電位はドレイン電位Vddと同じになっており、転送ゲートMOSFET65はオフ状態である。これらの蓄積は、前フレームの読み出し操作が行われている時に同時に実行されている。
続く図5(2)に示す期間では、前フレームの読み出しが終了すると、同図(A)に示すように新しいフレームスタート信号が発信されて、次のフレームの読み出しが始まる。最初に行うのは全画素一斉にフォトダイオード(図1の50、図4の64等)からリング状ゲート電極(図1〜図3の45)のソース近傍領域(図2、図3の47)にホールを転送することである。そのため、図5(B)に示すように転送ゲート電位制御回路72から出力される転送ゲート制御信号がVddからLow2に下がり、転送ゲート電極(図1〜図3の51)の電位がLow2となり、転送ゲートMOSFET65がオン状態になる。
このとき、リング状ゲート電位制御回路70により制御されるリング状ゲート電極配線69の電位は、図5(C)に示すように、LowからLow1になるが、Low2の方がLow1よりも大きい。Low1はLowと同じでもよい。最も簡便にはLow1=Low=0(V)に設定する。
一方、ソース電位制御回路75からスイッチSW1を介してソース電極配線74からリング状ゲートMOSFET63のソースに供給されるソース電位をはじめとする、全画素のソース電位は図5(D)に示すように電位S1に設定される。S1>Low1であり、これにより、リング状ゲートMOSFET63がオフのままであり、電流が流れないようにする。この結果、全画素のフォトダイオードに蓄積された電荷(ホール)が、対応する画素のリング状ゲート電極の下に一斉に転送される。
図3に示すリング状ゲート電極45の下の領域で、ソース近傍領域47が最もポテンシャルが低いので、フォトダイオードに蓄積されていたホールはソース近傍領域47に達し、そこに蓄積される。ホールが蓄積される結果、ソース近傍領域47の電位が上昇する。
続いて、図5(3)に示す期間では、同図(B)に示すように転送ゲート電極が再びVddになり、転送ゲートMOSFET65がオフになる。これにより、フォトダイオード(図1の50、図4の64等)では再び光電変換効果により電子・ホール対が発生し、フォトダイオードの埋め込みp型領域49にホールが蓄積され始める。この蓄積動作は次の電荷転送時まで続けられる。
一方、読み出し操作は行単位で順番に行われるので、1行目〜(s−1)行目を読み出す期間(3)では、リング状ゲート電極の電位は図5(C)に示すようにLowの状態で、ソース近傍領域47にホールを蓄積したまま待機状態となる。ソース電位は他の行からの信号読み出しが行われている間、その画素からの信号の値により、様々な値をとり得る。また、リング状ゲート電極電位は行毎に様々な値をとり得るが、s行目ではLowに設定され、リング状ゲートMOSFET63がオフ状態である。
続く図5(4)〜(6)に示す期間では、画素の信号読み出しが行われる。s行目t列目の画素62について代表してこの信号読み出し動作について説明するに、まず、ソース近傍領域47にホールを蓄積した状態で、図5(E)に示す垂直シフトレジスタ68の出力信号が、同図(H)に示すようにローレベルである期間(4)において、リング状ゲート電位制御回路70からリング状ゲート電極配線69に出力される制御信号により、リング状ゲート電極45の電位を図5(K)に示すように、LowからVg1に上げる。
ここで、上記の電位Vg1は、前述した各電位Low、Low1、Vddとの間に
Low≦Low1≦Vg1≦Vdd (ただし、Low<Vdd)
なる不等式が成立する電位である。また、上記の期間(4)ではスイッチSW1が図5(I)に示すようにオフ、スイッチSW2が同図(J)に示すようにオン、スイッチsc1が同図(M)に示すようにオン、スイッチsc2が同図(N)に示すようにオフとされる。この結果、リング状ゲートMOSFET63のソースに接続されたソースフォロア回路が働き、リング状ゲートMOSFET63のソース電位は、図5(L)に示すように期間(4)ではS2(=Vg1−Vth1)となる。ここで、Vth1とはバックゲート(ソース近傍領域47)にホールがある状態での、リング状ゲートMOSFET63のしきい値電圧である。このソース電位S2がオンとされているスイッチsc1を通してキャパシタC1に記憶される。
続く図5(5)に示す期間では、リング状ゲート電位制御回路70からリング状ゲート電極配線69に出力される制御信号により、リング状ゲート電極45の電位を図5(K)に示すようにHigh1に上げると同時に、同図(I)、(J)に示すようにスイッチSW1をオン、スイッチSW2をオフとすると共に、ソース電位制御回路75から出力されるソース電位を同図(L)に示すようにHighsに上げる。ここで、High1、Highs>Low1である。
上記の電位High1及びHighsの値は同じであっても異なっていてもよいが、設計の簡単のためにはHigh1、Highs≦Vddが望ましい。簡便な設定では、High1=Highs=Vddとする。また、リング状ゲートMOSFET63がオンして電流が流れないような電位設定にすることが望ましい。この結果、ソース近傍領域47のポテンシャルが上昇し、nウェル43のバリアを越えてホールがエピタキシャル層42に排出される(リセット)。
続く図5(6)に示す期間では、再び前記期間(4)と同じ信号読み出し状態にする。ただし、期間(4)とは異なり、図5(M)、(N)に示すように、スイッチsc1はオフ、スイッチsc2はオンとする。リング状ゲート電極は図5(K)に示すように期間(4)と同じVg1とする。しかし、この期間(6)では直前の期間(5)でホールが基板に排出されていて、ソース近傍領域47にはホールが存在しないので、リング状ゲートMOSFET63のソース電位は、図5(L)に示すように期間(6)ではS0(=Vg1−Vth0)となる。ここでVth0は、バックゲート(ソース近傍領域47)にホールがない状態でのリング状ゲートMOSFET63のしきい値電圧である。
このソース電位S0はオンとされたスイッチsc2を介してキャパシタC2に記憶される。差動アンプ78はキャパシタC1とC2の電位差を出力する。すなわち、差動アンプ78は(Vth0−Vth1)を出力する。この出力値(Vth0−Vth1)は、ホール電荷によるしきい値変化分である。その後、水平シフトレジスタ79から出力される図5(F)に示すパルスのうち、同図(O)に示すt列目の出力パルスに基づき、図4の出力スイッチswtがオンとされ、このswtのオン期間に図5(P)にハッチングにより模式的に示すように、差動アンプ78からのホール電荷によるしきい値変化分が画素62の出力信号Voutとしてセンサ外へ出力される。
続いて、図5に(7)で示す期間では、再びリング状ゲート電極45の電位を図5(B)に示すようにLowにし、ソース近傍p型領域47にはホールがない状態で、全ての行の信号処理が終了するまで(s+1行〜n行の画素の読み出しが終了するまで)待機する。これらの読み出し期間中、フォトダイオード64では光電変換効果によるホールの蓄積が進行している。その後、前記期間(1)に戻って、ホールの転送から繰り返す。これにより、各画素から図5(G)に示す出力信号が読み出される。
上記の図1〜図3に示す構成の固体撮像素子は、リング状のゲート電極45を持つリング状ゲートMOSFET63が増幅用MOSFETであり、図4に示したように各画素内に増幅用MOSFETを持つという意味で、CMOSセンサの一種である。そして、このCMOSセンサは、フォトダイオードに蓄積された電荷(ホール)が、対応する画素のリング状ゲート電極の下のソース近傍領域47に一斉に転送されるようにすることで、グローバルシャッタを実現している。
なお、図5の期間(5)のリセット時のソース電極配線74の電位供給は、ソース電位制御回路75から供給する以外の次の方法もある。すなわち、上記期間(5)でスイッチSW1、SW2をともにオフとして、ソース電極配線74をフローティングにする。ここでリング状ゲート電極配線69の電位をHigh1とすると、リング状ゲートMOSFET63がオン状態となり、ソース電極にドレインから電流が供給され、ソース電極電位が上昇する。この結果、ソース近傍領域47のポテンシャルが持ち上げられ、nウェル43のバリアを越えて、ホールがp型エピタキシャル層42に排出される(リセット)。ホールが完全に排出されたときのソース電極電位は、High1−Vth0になる。この方法では、ソース電位制御回路75のうち、Highsを供給するトランジスタを削減することができ、その結果、チップ面積を減らすことができる。
次に、本発明の他の実施の形態について説明する。図6は本発明になる固体撮像装置の他の実施の形態の上面図を示す。同図中、図1と同一構成部分には同一符号を付し、その説明を省略する。図1〜図3に示した実施の形態では、リング状ゲート電極45と転送ゲート電極51へのコンタクトVIA59a、59bを複数画素に1個の割合にして開口率を上げている。
これに対し、図6に示す実施の形態では、更にドレイン電極配線52と画素内のドレイン電極拡散領域とを接続するコンタクトVIAを、59eで示すように、複数画素に1個の割合とした点に特徴がある。これにより、本実施の形態では、上記の実施の形態に比べて更に開口率を上げ、感度をより向上するようにしている。
本発明の固体撮像装置の一実施の形態の平面図である。 図1のX−X’線に沿う断面図である。 図1のY−Y’線に沿う断面図である。 本発明の固体撮像装置の一実施の形態の画素構造と撮像装置全体の構造について、電気回路で表現した図である。 図4の動作説明用タイミングチャートである。 本発明の固体撮像装置の他の実施の形態の平面図である。
符号の説明
10 1画素
43 nウェル
44 ゲート酸化膜
45 リング状ゲート電極
46 ソース電極拡散領域
47 ソース近傍領域
48 ドレイン電極拡散領域
49 埋め込みのp-型領域
50、64 フォトダイオード
51 転送ゲート電極
52、66 ドレイン電極配線
53、69 リング状ゲート電極配線
54、74 ソース電極配線
55、71 転送ゲート電極配線
59a〜59e コンタクトVIA(接続点)
61 画素敷き詰め領域
62 画素(s行t列)
63 リング状ゲートMOSFET
65 転送ゲートMOSFET
67 フレームスタート信号発生回路
68 垂直シフトレジスタ
70 リング状ゲート電位制御回路
72 転送ゲート電位制御回路
73 ドレイン電位制御回路
75 ソース電位制御回路
76 信号読み出し回路
77 電流源(負荷)
78 差動アンプ
79 水平シフトレジスタ

Claims (4)

  1. 入射する光を光電変換して電荷として蓄積する光電変換領域と、入力された電荷を光信号に変換し、かつ、増幅して出力する増幅出力用トランジスタと、前記光電変換領域で蓄積した電荷を前記増幅出力用トランジスタへ転送する電荷転送手段とからなる画素が、全部でN個(Nは2以上の自然数)規則的に配列されており、前記N個の全画素の光電変換領域に同時に露光して光電変換して蓄積された電荷を、全画素の前記電荷転送手段により一斉に全画素の増幅出力用トランジスタに転送した後、各画素の前記増幅出力用トランジスタから前記光信号を撮像信号として出力する駆動手段を備えた固体撮像装置であって、
    隣接するM1個(M1はN以下の自然数)の画素内の前記増幅出力用トランジスタの所定の電極同士が第1の信号配線を介して第1の接続手段を共有して接続されると共に、隣接するM2個(M2はN以下の自然数)の画素内の前記電荷転送手段が第2の信号配線を介して第2の接続手段を共有して接続されており、前記駆動手段は、前記M1個の画素内の前記増幅出力用トランジスタを同時に駆動すると共に、前記M2個の画素内の前記電荷転送手段を同時に駆動することを特徴とする固体撮像装置。
  2. 前記増幅出力用トランジスタは、基板上のリング状ゲート電極と、前記リング状ゲート電極の中心開口部に対応する前記基板の位置に設けられたソース電極拡散領域と、前記ソース電極拡散領域を取り囲み、かつ、前記リング状ゲート電極の外周に達しないように前記基板に設けられたソース近傍領域とからなる、入力された電荷の量をしきい値の変化として出力するトランジスタであり、前記電荷転送手段は、前記光電変換領域に蓄積された前記電荷を前記ソース近傍領域へ転送する手段であり、
    前記第1の接続手段は、前記M1個の画素内の前記増幅出力用トランジスタのリング状ゲート電極同士を前記第1の信号配線に接続するために、前記M1個の画素に共有して設けられた第1のコンタクトであることを特徴とする請求項1記載の固体撮像装置。
  3. 前記M1及びM2はそれぞれ2であり、前記第1の接続手段と前記第2の接続手段とは、1画素おきに設けられている第1のコンタクトと第2のコンタクトであることを特徴とする請求項1又は2記載の固体撮像装置。
  4. 前記増幅出力用トランジスタは、隣接するM3個(M3はN以下の自然数)の画素内の前記増幅出力用トランジスタのドレイン電極同士が第3の信号配線を介して第3の接続手段を共有して接続されていることを特徴とする請求項1乃至3のうちいずれか一項記載の固体撮像装置。

JP2006070252A 2006-03-15 2006-03-15 固体撮像装置 Active JP4618170B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070252A JP4618170B2 (ja) 2006-03-15 2006-03-15 固体撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070252A JP4618170B2 (ja) 2006-03-15 2006-03-15 固体撮像装置

Publications (2)

Publication Number Publication Date
JP2007251461A true JP2007251461A (ja) 2007-09-27
JP4618170B2 JP4618170B2 (ja) 2011-01-26

Family

ID=38595313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070252A Active JP4618170B2 (ja) 2006-03-15 2006-03-15 固体撮像装置

Country Status (1)

Country Link
JP (1) JP4618170B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9179083B2 (en) 2013-10-24 2015-11-03 Ricoh Company, Limited Photoelectric conversion element, image reading device, image forming apparatus, image reading method, and image forming method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005130104A (ja) * 2003-10-22 2005-05-19 Seiko Epson Corp 固体撮像装置及びその駆動方法
US20050167707A1 (en) * 2004-01-29 2005-08-04 Victor Company Of Japan, Limited Solid state image sensing device and manufacturing and driving methods thereof
JP2006049746A (ja) * 2004-08-09 2006-02-16 Seiko Epson Corp 固体撮像装置及びその駆動方法
JP2006100761A (ja) * 2004-01-29 2006-04-13 Victor Co Of Japan Ltd 固体撮像素子及びその製造方法並びに固体撮像素子の駆動方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005130104A (ja) * 2003-10-22 2005-05-19 Seiko Epson Corp 固体撮像装置及びその駆動方法
US20050167707A1 (en) * 2004-01-29 2005-08-04 Victor Company Of Japan, Limited Solid state image sensing device and manufacturing and driving methods thereof
JP2006100761A (ja) * 2004-01-29 2006-04-13 Victor Co Of Japan Ltd 固体撮像素子及びその製造方法並びに固体撮像素子の駆動方法
JP2006049746A (ja) * 2004-08-09 2006-02-16 Seiko Epson Corp 固体撮像装置及びその駆動方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9179083B2 (en) 2013-10-24 2015-11-03 Ricoh Company, Limited Photoelectric conversion element, image reading device, image forming apparatus, image reading method, and image forming method

Also Published As

Publication number Publication date
JP4618170B2 (ja) 2011-01-26

Similar Documents

Publication Publication Date Title
US9602750B2 (en) Image sensor pixels having built-in variable gain feedback amplifier circuitry
KR100657863B1 (ko) 핑거드 타입 소스 폴로워 트랜지스터를 이용한 상보성금속 산화막 반도체 액티브 픽셀 센서
JP5154908B2 (ja) Cmosイメージセンサのための、小サイズ、高利得及び低ノイズのピクセル
US9570486B2 (en) Solid-state imaging device and switching circuit
US7541571B2 (en) Image sensor having first and second charge transmitters
JP4655898B2 (ja) 固体撮像装置
JP5538876B2 (ja) 固体撮像装置
US8174601B2 (en) Image sensor with controllable transfer gate off state voltage levels
WO2015194390A1 (ja) 固体撮像装置および電子機器
US20120314109A1 (en) Solid-state imaging device and camera
JP5489681B2 (ja) 固体撮像装置
US8436288B2 (en) Image sensors with photo-current mode and solar cell operation
JP2013175785A (ja) 固体撮像素子
JP2006120679A (ja) 固体撮像装置
JP6711005B2 (ja) 画素ユニット、及び撮像素子
US7012645B1 (en) Image sensor with p-type circuitry and n-type photosensor
JP4618170B2 (ja) 固体撮像装置
JP4720402B2 (ja) 固体撮像装置
KR20070050576A (ko) 이미지 센서
JP2004104116A (ja) 撮像装置
JP5135772B2 (ja) 固体撮像装置
JP4678270B2 (ja) 固体撮像素子
JP7198675B2 (ja) 固体撮像素子、その駆動回路および撮像装置
JP4561651B2 (ja) 固体撮像素子
JP2007208364A (ja) 固体撮像装置の駆動方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4618170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250