JP2007248479A - ディジタル流量計 - Google Patents
ディジタル流量計 Download PDFInfo
- Publication number
- JP2007248479A JP2007248479A JP2007176131A JP2007176131A JP2007248479A JP 2007248479 A JP2007248479 A JP 2007248479A JP 2007176131 A JP2007176131 A JP 2007176131A JP 2007176131 A JP2007176131 A JP 2007176131A JP 2007248479 A JP2007248479 A JP 2007248479A
- Authority
- JP
- Japan
- Prior art keywords
- conduit
- sensor
- phase
- frequency
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/8404—Coriolis or gyroscopic mass flowmeters details of flowmeter manufacturing methods
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/8409—Coriolis or gyroscopic mass flowmeters constructional details
- G01F1/8431—Coriolis or gyroscopic mass flowmeters constructional details electronic circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/8409—Coriolis or gyroscopic mass flowmeters constructional details
- G01F1/8436—Coriolis or gyroscopic mass flowmeters constructional details signal processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/845—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
- G01F1/8468—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
- G01F1/8481—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having loop-shaped measuring conduits, e.g. the measuring conduits form a loop with a crossing point
- G01F1/8486—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having loop-shaped measuring conduits, e.g. the measuring conduits form a loop with a crossing point with multiple measuring conduits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F25/00—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
- G01F25/10—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N9/00—Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
- G01N9/002—Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis
- G01N2009/006—Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis vibrating tube, tuning fork
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Manufacturing & Machinery (AREA)
- Measuring Volume Flow (AREA)
Abstract
【課題】従来のアナログの方法に対して、より大なる反応性、精度、順応性を有し、正確且つ精巧な制御アルゴリズムの適用が可能なディジタル質量流量計を提供する。
【解決手段】 ディジタル流量計100は、振動可能な導管と、導管に接続されて導管に運動を与えるように操作可能な駆動回路115と、導管に接続されて導管の運動を検出するように操作可能なセンサ110とを含む。デジタルコントローラ105が、駆動回路とセンサとの間に接続される。デジタルコントローラ105は、回路を含み、この回路は、センサからセンサ信号を受け取り、デジタル信号処理を使用してセンサ信号に基づいた駆動信号を生成し、駆動信号を駆動回路へ出力し、センサからの信号に基づいて導管を流れる材料の特性の測定値を生成する。
【選択図】図1
Description
1の実施例において、図2および図3に図示するように、導管120は、小領域が導管に対して空間を除去したりまたは確保するパイプライン(図示せず)に挿入されるように設計されている。導管120は、パイプラインとの接続用の装着フランジ12と、パイプラインと垂直に向きが定められた2つの平行な平坦ループ18,20を支持する中心マニホールドブロック16とを含む。電磁気駆動回路46とセンサ48とは、ループ18、20の各端部の間に取付けられる。2つの駆動回路46の各々は、図1の駆動回路115に相当するが、2つのセンサ48の各々は、図1のセンサ120に相当する。
ループ18,20の直線領域の運動を、図4、図5、図6の3つのモードに示す。図5に示す駆動モードにおいて、ループは、対応する点Pを中心に180度位相がずれて駆動され、故に、2つのループは、同期をとって、反対に(inthe opposite sense)に回転する。従って、AおよびCなどの、それぞれの端部は、周期的に一緒になり、離れて行く。
ディジタルコントローラ105は、ループの互いに対向する端部に位置するセンサ48(すなわち、運動センサ110)によって生じた信号を処理することによって、質量流量を測定する。各センサによって、生じる信号は、ループがセンサの隣りに位置する駆動回路によって駆動される相対速度に相当する成分と、ループに誘起されるコリオリ力に起因するループの相対速度に相当する成分とを含む。ループは、非対称モードで駆動され、その結果、駆動速度に相当するセンサ信号の成分は、振幅が等しいが、符号が反対になる。その結果生じたコリオリ力は、対称モードにあり、故に、コリオリの速度に相当するセンサ信号の成分は、振幅が等しく、符号も同じである。このように、信号の差を計算すると、コリオリの速度成分を相殺し、駆動速度と比例する差になる。同様に、信号を合計すると、駆動速度成分を相殺し、コリオリ速度と比例する和になる。これは、その結果、コリオリ力と比例する。次に、この和は、質量流量を測定するために使用される。
ディジタル質量流量計100は、従来のアナログ質量流量計に対してかなりの効果を奏する。後の議論のために、図7に、従来の質量流量計のアナログ制御システム400を示す。センサ48の各々は、電圧信号を生成し、信号VA0はセンサ48aにより生成され、信号VBOはセンサ48bにより生成される。VA0、VB0は、センサの位置での相対的なループの速度に相当する。処理の前に、信号VA0、VB0は、対応する入力増幅器405、410で増幅されて、信号VA1、VB1を生成する。増幅器およびセンサでのアンバランスを補正するために、入力増幅器410は、同期復調器415及び積分器420を含むフィードバックループから来るバランス信号によって制御される可変利得を有する。
図8は、ディジタル質量流量計100の一実施例500のブロック図を示す。このディジタル質量流量計は、導管120、駆動回路46、図2および図3のセンサ48を、ディジタルコントローラ505とともに含む。センサ48からのアナログ信号は、アナログ−ディジタル(”A/D”)コンバータ510によってディジタル信号に変換されて、コントローラ505に供給される。A/Dコンバータは、別々のコンバータとして、または、単一のコンバータの別々のチャネルとして構成しても良い。
議論を簡単にするために、2つのセンサからのディジタル化された信号を信号SV1、SV2とし、信号SV1は、センサ48aから出て、信号SVは、センサ48bから出るものとする。新しいデータが絶えず生成されるにもかかわらず、計算は、両方のセンサの1つの全周期に相当するデータに基づいていると仮定する。充分なデータのバッファリングによって、この条件は、データを処理する平均時間がデータの収集に要する時間よりも短い限り、真である。周期のために実行される作業は、周期が完了したことを決める行程と、周期の周波数(または、SV1およびSV2の周波数)を計算する行程と、SV1およびSV2の振幅を計算する行程と、SV1およびSV2の位相差を計算する行程とを含む。複数の実施例において、これらの計算は、次に対するスタートとして前の周期の終点を使用して、周期毎に繰り返される。他の実施例において、周期は、180度だけ、または他の角度(例えば90度)だけ重なり、故に、周期は、それに先行して続く周期内に含まれる。
ディスクリートにサンプリングされた純粋なサインの周波数は、パルス幅の間の遷移を検出し(すなわち、正または負のゼロクロスを検出することによって)、各期間でのサンプル数を数えることによって、計算される。この方法を使用することによって、例えば55kHzで82.2Hzサイン波をサンプリングすると、0.15%の最大誤差で周波数を評価する。より高い精度は、例えば(startoffset SV1)および(start offset SV2)を使用して、ゼロクロスが実際に起きたときのサンプルの一部を評価することによって得られる。ランダムノイズおよびゼロオフセットによって、この方法の精度は減少する。
コリオリ送信機での重要な誤差の源は、各センサ電圧のゼロオフセットである。ゼロオフセットは、前置増幅回路およびアナログ−ディジタルコンバータのドリフトによってセンサ電圧信号にもたらされる。ゼロオフセット効果は、差動回路の使用による正及び負電圧に対する前置増幅利得のわずかな差によって悪化することがある。各誤差源は、送信機の間で変化し、送信機温度とともに、素子の摩耗による時間の経過とともに変化する。
振幅は、様々な可能性のある用途を有する。これらは、フィードバックを介した導管振動の調整と、駆動回路波形を合成するときのセンサ電圧の寄与の釣り合いと、位相測定値に対する和および差の計算と、測定値を補正するための振幅変化率の計算とを含む。
コントローラは、多数の方法を使用して、信号SV1、SV2の間の位相差を計算する。例えば、コントローラは、次式によって、t=0での開始時間に対する各高調波の位相偏差を測定する。
コントローラは、利得を信号SV1、SV2の差に適用することによって、駆動信号を生成する。コントローラは、正の利得(結果として正のフィードバック)または負の利得(結果として負のフィードバック)のいずれかを適用する。
コントローラは、アナログコントローラによって使用される方法と同様な方法で、質量流測定値をディジタル的に生成する。コントローラは、密度等の他の測定値も生成できる。一実施例において、コントローラは、2つのセンサ信号の間の位相差(phasediff)、導管の振動周波数(freq)、プロセス温度(temp)基づいて、質量流を計算する。
多数の積分法が有効であり、様々な技術が、異なるレベルの計算力を必要とし、異なるレベルの精度を提供している。記載した実施例において、シンプソンの方法の変形が使用される。基礎的な技術は、次式の如く表される。
図28は、センサ信号を処理する他のプロシージャ1400を示す。プロシージャ1400は、同期変調に基づいている。これは、例えば、デニス(Denys)等による、「同期性の損失に対するフランス未来防衛計画に対する電圧位相の測定」(電力供給についてのIEEE論文集、7(1)、62−69、1992)、ベゴビック(Begovic)等による「高調波が存在する場合の電力網の周波数追跡」(電力供給についてのIEEE論文集、8(2)、480−486、1993)に記載されている。
図29および図30は、他の技術を使用して駆動回路に供給する信号を生成するコントローラ1505を有する計器1500を示す。アナログ−ディジタルコンバータ1510は、センサ48からの信号をディジタル化して、ディジタル化された信号をコントローラ1505に出力する。コントローラ1505は、ディジタル化された信号を使用して、駆動回路毎の利得を計算する。利得は、導管に所望の振動を生成するために最適である。利得は、正または負のいずれでも良い。次に、コントローラ1505は、利得を、乗算ディジタル−アナログ変換器1515に供給する。他の実施例において、直列に配置した2つ以上の乗算ディジタル−アナログ変換器を、単一のより感度のある乗算ディジタル−アナログ変換器を実行するために使用してもよい。
計器1500は、図31に示すプロシージャ1600に応じて動作する。まず最初に、コントローラは、センサから、ディジタル化されたデータを受け取る(ステップ1605)。その後で、プロシージャ1600は、並行する3つのブランチ、すなわち、測定値ブランチ1610、駆動信号生成ブランチ1615、利得生成ブランチ1620を含む。
PI制御ブロックの目的は、振幅a0を有する純粋なサイン波振動を導管に維持することである。導管の動作は、簡単な質量−バネシステムとして次式に表すようにモデル化される。
上記したように、ゼロオフセットは、前置増幅回路のドリフトによって、さらにアナログ−ディジタルコンバータによって、センサ電圧信号にもたらされる。差動回路の使用による正及び負電圧に対する前置増幅利得の若干の差は、ゼロオフセット効果を悪化させることがある。誤差は、送信機温度および部品の疲労によって、送信機の間で変化する。
電圧オフセットおよび利得不整合を扱う技術は、ディジタル送信機の計算能力を使用して、ゼロフロー条件を必要としない。この技術は、周期毎に一組の計算を使用する。これは、合理的な期間(例えば10,000周期)にわたり平均化されるときに、主たる変化の領域(例えば設定点の変化、空気混和の発生)を排除することで、所望のゼロオフセットおよび利得不整合補償に収束する。
評価式の精度を、例で示す。基礎的な積分の各々に対して、3つの値が、提供される。すなわち、終了時の補正を有するシンプソンの方法を使用した、積分の「真の」値(ロンベルグ(Romberg)積分を使用したマスキャド(Mathcad)内で計算される)、評価方程式を使用している値、シミュレーションモードで作動するディジタル送信機によって計算される値である。
積分に対する1次の推定値は、高調波の振幅、ゼロオフセット、利得不整合に関して、連立非線形方程式を定義する。方程式が非線形であるので、正確な解は、容易に利用できない。しかし、補正の繰り返しによる近似は、限られた演算オーバーヘッドを合理的に収束する。
一般に、コリオリ計器に対する従来の測定値計算は、導管の各側面での振動の周波数および振幅が一定であり、導管の各側面での周波数がいわゆる共振周波数と同じであり等しい、と仮定している。位相は、一般に導管の各側面で別々に測定されず、2つの側面間の位相差は、測定プロセスの間一定であると仮定している。デジタル計器を使用した、半周期ごとの周波数、位相、振幅の正確な測定値は、パラメータ値が約数秒間に平均化されるときに、これらの仮定は単に有効であることを証明する。100Hzまたはより高周波数でみると、これらのパラメータは、かなりの変化を示す。例えば、通常の動作中、SV1の周波数および振幅の値は、対応するSV2の値と負の相関を強く示す。従って、従来の測定値アルゴリズムは、これらのダイナミックな変化に対するノイズの原因にさらされる。ノイズは、測定値計算速度が増加するにつれて、より大きくなる。他のノイズの項が、例えば流管力学、非線形性力学などの物理的な要因(例えば振幅によって変化する流管の剛性)、または絶対位置データより速度データを提供するセンサ電圧の動的な結果によって導かれる。
力学的効果を補正する1つの方法は、センサ信号の振幅をモニタし、振幅の変化に基づいて調整をする。力学的効果を分析するために、位相、周波数、振幅の推定値は、周期毎の各センサ電圧に対して測定される、と仮定する。図49に示すように、計算は、完全であるが重複する周期に基づいている。各周期は、ゼロクロス点で、前の周期の中間点で始まる。正の周期は、最初のゼロクロスの直後に正の電圧で始まり、負の周期は負の電圧で始まる。このように、周期nは正であり、周期(n−1)および(n+1)は負である。ゼロオフセット補正が実行されてゼロオフセットが無視できると仮定する。また、高次の高調波が存在すると仮定する。
コントローラは、図50に示すプロシージャ2600に応じて力学的効果を考慮する。最初に、コントローラは、ゼロクロスを使用して、上記のように、周期の開始および終了間の時間を測定することによって、周波数推定値を生成する(ステップ2605)。周波数が線形に変化すると仮定すれば、この推定値は、この期間における時間の平均周波数と等しい。
上記したように、フィードバックループの力学的側面は、設定値を中心とする振幅の若干の偏位により、位相に、時間変化するシフトを導く。これは、測定された周波数に結果としてなり、これは、導管の固有周波数とは異なるが、ゼロクロスに基づいている。速度センサが使用される場合、位相にさらなるシフトが生じる。この追加のシフトは、導管の位置振幅の変化とも関係している。力学的分析は、これらの影響をモニタして補償する。従って、コントローラは、計算された振幅変化率を使用して、周波数の推定値を補正する(ステップ2625)。
図51乃至図62は、プロシージャ2600の適用が、直径が1インチ(2.54cm)の導管を有する計器からの真のデータに対して、固有周波数の推定値、さらにプロセス密度をどのように改善するかについてを示す。図の各々は、10000のサンプルを示し、これらは1分間に亘り集められたものである。
再び図50を参照すると、コントローラは、次に位相測定値を補正して、上記で行われる位相計算を仮定して、振幅変調を考慮する(ステップ2630)。上記の位相のフーリエ計算は、振動の振幅が、計算が行われているデータの周期の全体にわたって一定であると仮定している。この領域は、データの周期に亘る振幅の線形変化を仮定する補正を記載する。
シミュレーションは、高次高調波および振幅変調のシミュレーションを含み、デジタル送信機を使用して実行された。一実施例は、f=80Hz、A1(t=0)=0.3、A2=0、A3=0、A4=0、λA=1e−5*48kHz(サンプリングレート)=0.47622を使用し、これは、高い振幅変化率に相当するが、高次高調波は無い。理論は、−0.02706度の位相偏差を提案する。1000周期に亘るシミュレーションにおいて、平均オフセットは、−0.02714度であり、標準偏差は2.17e−6である。シミュレーションと理論との差(シミュレーション誤差の約0.3%)は、各周期の振幅の線形変化のモデルの仮定に起因しているが、シミュレーションは、振幅の指数関数的な変化を生成する。
位相測定値計算は、速度効果によって影響を受ける。非常に有効且つ簡単な補正因子(単位、ラジアン)は、次式に示す形式をとる。
上記の位相雑音低減法を組合せると、図73乃至図84に図示するように、様々な流れの条件での瞬間的な位相差測定値がかなり改良された。各グラフは、1インチの導管に作用するデジタルコリオリ送信機によって、リアルタイムで同時に計算された3つの位相差測定値を示す。中間帯域3600は、簡単な時間−差法を使用して計算された位相データを示す。最も外側の帯域3605は、上記のフーリエペースの方法を使用して計算された位相データを示す。
力学モデルは、2つの基礎ステージに取り入れられる。第1ステージにおいて、モデルは、システム識別の方法を使用してつくられる。流管は、刺激されて、その力学を明らかにし、一方、本当の質量流および密度の値は、一定に維持される。流管の反応は、力学モデルを生成する際に、測定されて使用される。第2のステージにおいて、モデルは、標準の流れのデータに適用される。流管力学の効果の予測は、位相および周波数に対して行われる。次に、予測は、観察されたデータから引き算されて、残留位相および周波数を残す。これは、プロセスによる。各ステージを以下に詳細に説明する。
システム識別は、水で満たされ、流れのない流管で始まる。振幅は、通常一定に維持されるが、0.05Vおよび0.3Vの間のランダムな設定値を割り当てることによって変化してもよい。通常は、0.3Vである。結果であるセンサ電圧を図85に示す。図86および図87は、それぞれ、計算された対応する位相および周波数値を示す。これらの値は、周期毎に一回計算される。位相および周波数の両者は、高度の(high degree)「構造」を示す。質量流相当する位相および周波数が一定であるので、この構造は、流管力学に関係する傾向がある。真の位相および周波数が一定であることが分からないときに、この構造を予測する観察可能な変数を、以下に表す。
識別されたモデルの本当のテストは、新しいデータを提供する改良である。初めに、多数の観察に注目することは、有効である。第一に、例えば10秒以上の間で平均化された平均位相は、すでにとても正確である。図示した実施例において、位相値は、82Hzまたはその近傍にプロットされている。報告された標準偏差は、10Hzに平均化されたときに示される値のおよそ1/3であり、1Hzに平均化されるときに示す値の1/9である。基準として、1インチ流管に関しては、1度の位相差は、約1kg/sの流量に相当する。
前の章は、力学的動作(センサおよび流管レベルの両方での流管力学、速度効果、振幅変調によって生じる周波数および位相ノイズ)の異なる状態をモニタし補償するために使用される様々な方法(物理的なモデリング、システム識別、発見的教授法)を記載した。自然な拡張によって、古典的なモデリングおよび識別法と同じように、人工知能、神経網、ファジー論理、遺伝子のアルゴリズムのそれらを含む、制御及び計器の実務家に周知の同様の方法が、計器の力学の性能の状態側面に適用される。特に、これらは、流管レベルでの平均周波数および位相差と同様に、センサレベルでの周波数、振幅、位相変化のモニタリングおよび補償を含む。何となれば、これらの変化は、測定値間隔の間の時間(測定値間隔が重ならない)と同様に、各測定値間隔内に起こるからである。
ディジタル流量計は、導管に空気混和が存在する場合には、改善された性能を提供する。空気混和は、質量流量計によって生成された測定値に相当な負の影響がある導管のエネルギ損失を生成し、結果として導管が失速する。実験によって、ディジタル流量計は、従来のアナログ流量計に対して、空気混和がある場合には性能が実質的に改善されることを示した。この性能改善は、非常に広い利得範囲を提供し、負のフィードバックを使用し、非常に低い振幅レベルで正確に測定値を計算し、振幅の変化率および流管力学などの力学的効果を補償する計器の能力から生じ、更に、正確なデジタル振幅制御アルゴリズムの計器の使用から生じる。
ディジタル流量計は、導管の振動振幅に対する設定値の改善された制御部を提供する。アナログ計器において、フィードバック制御が、導管の振動振幅を、所望のピークセンサ電圧(例えば0.3V)に相当する一定レベルに維持するために使用される。安定した振動振幅は、周波数および位相測定値の変化の減少につながる。
ディジタル流量計は、従来のアナログ流量計に対して著しい性能改良を示した。1つの実験において、1ロットの材料を正確に測定する2つのタイプの計器の能力が調べられた。いずれの場合も、ロットは、適切な流量計を経由してタンクに供給され、タンクにおいて、ロットは計量された。1200および2400ポンド(544.8及び1089.6kg)のロットに対して、アナログ計器は、200ポンド(90.8kg)の再現性で500ポンド(227kg)の平均偏位を呈した。対照的に、デジタル計器は、2ポンド(0.908kg)の再現性で、40ポンド(18.16kg)の平均偏位を呈した。これは、明らかに相当な改善である。
ディジタル流量計は、自己確認センサを含む制御システムにおいて使用される。このために、ディジタル流量計は、自己確認計器として実行される。自己確認計器および他のセンサは、「自己確認センサ」と題された米国特許第5,570,300号に記載されている。
他の実施例も、考慮する。例えば、図121に示すように、上記方法は、1対の配線4605で双方向通信を実行する「2配線(two−wire)」コリオリ流量計4600を操作するために使用される。電力回路4610は、デジタルコントローラ4615を操作するとともに、駆動回路4620に給電して導管4625を振動させる電力を受け取る。例えば、電力回路は、コントローラに動作電力を提供する定出力回路4630と、過剰な電力を使用して充電される駆動コンデンサ4635とを含む。電力回路は、配線4605から、または第2の配線対から電力を受け取る。デジタルコントローラは、一つ以上のセンサ4640から信号を受け取る。
105 制御・測定システム
110、125 センサ
115 駆動回路
120 導管
100 ディジタル流量計
105 制御・測定システム
110、125 センサ
115 駆動回路
120 導管
Claims (2)
- 振動可能な導管と、
前記導管に接続されて前記導管に運動を与えるように操作可能な駆動回路と、
前記導管に接続されて前記導管の前記運動を検出するように操作可能なセンサと、
前記駆動回路および前記センサの間に接続される制御・測定システムとからなり、
前記制御・測定システムは、
前記センサからセンサ信号を受信する回路と、
ディジタル信号処理を用いて前記センサ信号に基づいた駆動信号を生成する回路と、
前記駆動信号を前記駆動回路へ出力する回路と、
前記センサからの前記信号に基づいて前記導管を流れている材料の特性の測定値を生成する回路と、を有し、
前記制御・測定システムは、前記ディジタル信号処理を用いて前記駆動信号の位相を調整し、前記センサと前記駆動回路との間に接続された部品に関係する時間遅延を補償することを特徴とするディジタル流量計。 - 振動可能な導管と、
前記導管に接続されて前記導管に運動を与えるように操作可能な駆動回路と、
前記導管に接続されて前記導管の前記運動を検出するように操作可能なセンサと、
前記駆動回路および前記センサの間に接続される制御・測定システムとからなり、
前記制御・測定システムは、
前記センサからセンサ信号を受信する回路と、
ディジタル信号処理を用いて前記センサ信号に基づいた駆動信号を生成する回路と、
前記駆動信号を前記駆動回路への出力する回路と、
前記センサからの前記信号に基づいて前記導管を流れている材料の特性の測定値を生成する回路と、を有し
前記制御・測定システムは、負の利得を用いて前記導管の運動を低下させることを特徴とするディジタル流量計。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US6655497P | 1997-11-26 | 1997-11-26 | |
US09/111,739 US6311136B1 (en) | 1997-11-26 | 1998-07-08 | Digital flowmeter |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10378592A Division JP2000018995A (ja) | 1997-11-26 | 1998-11-26 | ディジタル流量計 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007248479A true JP2007248479A (ja) | 2007-09-27 |
Family
ID=26746870
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10378592A Withdrawn JP2000018995A (ja) | 1997-11-26 | 1998-11-26 | ディジタル流量計 |
JP2007176131A Pending JP2007248479A (ja) | 1997-11-26 | 2007-07-04 | ディジタル流量計 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10378592A Withdrawn JP2000018995A (ja) | 1997-11-26 | 1998-11-26 | ディジタル流量計 |
Country Status (4)
Country | Link |
---|---|
US (7) | US6311136B1 (ja) |
EP (1) | EP0919793B1 (ja) |
JP (2) | JP2000018995A (ja) |
DE (3) | DE98309694T1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011520106A (ja) * | 2008-05-01 | 2011-07-14 | マイクロ モーション インコーポレイテッド | 混相流体流の1以上の流体流特性を特定する振動流量計 |
CN110346006A (zh) * | 2019-08-13 | 2019-10-18 | 上海一诺仪表有限公司 | 一种质量流量计变送器和质量流量计 |
Families Citing this family (221)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013101369B4 (de) | 2013-02-12 | 2021-02-18 | Endress + Hauser Flowtec Ag | Coriolis-Massendurchfluß-Meßgerät |
US8290721B2 (en) | 1996-03-28 | 2012-10-16 | Rosemount Inc. | Flow measurement diagnostics |
US7254518B2 (en) * | 1996-03-28 | 2007-08-07 | Rosemount Inc. | Pressure transmitter with diagnostics |
US6017143A (en) | 1996-03-28 | 2000-01-25 | Rosemount Inc. | Device in a process system for detecting events |
US6539267B1 (en) | 1996-03-28 | 2003-03-25 | Rosemount Inc. | Device in a process system for determining statistical parameter |
US7949495B2 (en) | 1996-03-28 | 2011-05-24 | Rosemount, Inc. | Process variable transmitter with diagnostics |
US6519546B1 (en) | 1996-11-07 | 2003-02-11 | Rosemount Inc. | Auto correcting temperature transmitter with resistance based sensor |
US6601005B1 (en) * | 1996-11-07 | 2003-07-29 | Rosemount Inc. | Process device diagnostics using process variable sensor signal |
US6754601B1 (en) | 1996-11-07 | 2004-06-22 | Rosemount Inc. | Diagnostics for resistive elements of process devices |
US7404336B2 (en) | 2000-03-23 | 2008-07-29 | Invensys Systems, Inc. | Correcting for two-phase flow in a digital flowmeter |
US7784360B2 (en) | 1999-11-22 | 2010-08-31 | Invensys Systems, Inc. | Correcting for two-phase flow in a digital flowmeter |
US7124646B2 (en) * | 1997-11-26 | 2006-10-24 | Invensys Systems, Inc. | Correcting for two-phase flow in a digital flowmeter |
US6311136B1 (en) * | 1997-11-26 | 2001-10-30 | Invensys Systems, Inc. | Digital flowmeter |
US20030216874A1 (en) * | 2002-03-29 | 2003-11-20 | Henry Manus P. | Drive techniques for a digital flowmeter |
US8447534B2 (en) | 1997-11-26 | 2013-05-21 | Invensys Systems, Inc. | Digital flowmeter |
US8467986B2 (en) * | 1997-11-26 | 2013-06-18 | Invensys Systems, Inc. | Drive techniques for a digital flowmeter |
US6594620B1 (en) * | 1998-08-17 | 2003-07-15 | Aspen Technology, Inc. | Sensor validation apparatus and method |
US6615149B1 (en) | 1998-12-10 | 2003-09-02 | Rosemount Inc. | Spectral diagnostics in a magnetic flow meter |
US6611775B1 (en) | 1998-12-10 | 2003-08-26 | Rosemount Inc. | Electrode leakage diagnostics in a magnetic flow meter |
US7010459B2 (en) * | 1999-06-25 | 2006-03-07 | Rosemount Inc. | Process device diagnostics using process variable sensor signal |
US6505517B1 (en) | 1999-07-23 | 2003-01-14 | Rosemount Inc. | High accuracy signal processing for magnetic flowmeter |
US6701274B1 (en) | 1999-08-27 | 2004-03-02 | Rosemount Inc. | Prediction of error magnitude in a pressure transmitter |
US6543297B1 (en) | 1999-09-13 | 2003-04-08 | Rosemount Inc. | Process flow plate with temperature measurement feature |
US6487507B1 (en) * | 1999-10-15 | 2002-11-26 | Micro Motion, Inc. | Remote signal conditioner for a Coriolis flowmeter |
US6618684B1 (en) * | 2000-01-26 | 2003-09-09 | Elster Electricity, Llc | System and method for digitally compensating frequency and temperature induced errors in amplitude and phase shift in current sensing of electronic energy meters |
JP2003528306A (ja) * | 2000-03-23 | 2003-09-24 | インベンシス システムズ インコーポレイテッド | ディジタル流量計における二相流に対する修正 |
DE10045537A1 (de) * | 2000-09-13 | 2002-03-21 | Flowtec Ag | Mess- und Betriebsschaltung für einen Coriolis-Massedurchflußmesser |
US6993445B2 (en) * | 2001-01-16 | 2006-01-31 | Invensys Systems, Inc. | Vortex flowmeter |
US6629059B2 (en) | 2001-05-14 | 2003-09-30 | Fisher-Rosemount Systems, Inc. | Hand held diagnostic and communication device with automatic bus detection |
ATE451603T1 (de) * | 2001-06-19 | 2009-12-15 | Flowtec Ag | Viskositäts-messgerät |
US6832179B2 (en) * | 2001-06-26 | 2004-12-14 | Invensys Systems, Inc. | Evaluating a vortex flow-meter signal |
US6772036B2 (en) | 2001-08-30 | 2004-08-03 | Fisher-Rosemount Systems, Inc. | Control system using process model |
US20030098069A1 (en) * | 2001-11-26 | 2003-05-29 | Sund Wesley E. | High purity fluid delivery system |
US6606917B2 (en) * | 2001-11-26 | 2003-08-19 | Emerson Electric Co. | High purity coriolis mass flow controller |
JP3753057B2 (ja) * | 2001-12-04 | 2006-03-08 | 株式会社日立製作所 | 気体流量測定装置 |
JP3669580B2 (ja) * | 2002-05-24 | 2005-07-06 | 学校法人慶應義塾 | 超音波流速分布及び流量計 |
DE10223358A1 (de) * | 2002-05-25 | 2003-12-04 | Bosch Gmbh Robert | Verfahren und Anordnung zur Erfassung der Bewegung eines Elements |
GB2391313B (en) * | 2002-07-26 | 2006-01-18 | Abb Ltd | Deriving measurements from periodic data |
US7040179B2 (en) | 2002-12-06 | 2006-05-09 | Endress+ Hauser Flowtec Ag | Process meter |
US7059199B2 (en) * | 2003-02-10 | 2006-06-13 | Invensys Systems, Inc. | Multiphase Coriolis flowmeter |
US7188534B2 (en) * | 2003-02-10 | 2007-03-13 | Invensys Systems, Inc. | Multi-phase coriolis flowmeter |
US6993396B1 (en) * | 2003-03-20 | 2006-01-31 | John Peter Gerry | System for determining the health of process control feedback loops according to performance assessment criteria |
US6997032B2 (en) * | 2003-04-08 | 2006-02-14 | Invensys Systems, Inc. | Flowmeter zeroing techniques |
US7013740B2 (en) * | 2003-05-05 | 2006-03-21 | Invensys Systems, Inc. | Two-phase steam measurement system |
DE10322763A1 (de) * | 2003-05-19 | 2004-12-09 | Helios + Zaschel Gmbh | Verfahren und Vorrichtung zur Messung eines Massestroms |
CA2470217A1 (en) * | 2003-06-06 | 2004-12-06 | Ameriflo, Inc. | Lighted fluid flow indication apparatus |
US7072775B2 (en) * | 2003-06-26 | 2006-07-04 | Invensys Systems, Inc. | Viscosity-corrected flowmeter |
DE10331126B4 (de) | 2003-07-09 | 2005-09-01 | Krohne Ag | Coriolis-Massendurchflußmeßgerät und Verfahren zum Betreiben eines Coriolis-Massendurchflußmeßgeräts |
US7065455B2 (en) * | 2003-08-13 | 2006-06-20 | Invensys Systems, Inc. | Correcting frequency in flowtube measurements |
KR100945852B1 (ko) * | 2003-09-30 | 2010-03-08 | 마이크로 모우션, 인코포레이티드 | 2선 버스 장치 |
US7240567B2 (en) * | 2003-10-30 | 2007-07-10 | Invensys Systems, Inc. | Dynamic response characteristics of flow meters |
US7124037B2 (en) * | 2003-10-31 | 2006-10-17 | Mpi Incorporated | Devices, systems, and methods for monitoring the operation of an injection molding machine |
US7093500B2 (en) * | 2003-12-12 | 2006-08-22 | Rosemount Inc. | Tunable empty pipe function |
US7040181B2 (en) | 2004-03-19 | 2006-05-09 | Endress + Hauser Flowtec Ag | Coriolis mass measuring device |
DE102005024079A1 (de) * | 2004-05-25 | 2006-01-19 | Invensys Systems, Inc., Foxboro | Durchflussmessgerät-Zuteiltechniken |
US7021121B2 (en) * | 2004-05-27 | 2006-04-04 | Asml Holding N.V. | Gas gauge proximity sensor with a modulated gas flow |
US7302356B2 (en) * | 2004-09-15 | 2007-11-27 | Endress + Hauser Flowtec Ag | Coriolis flowmeter |
US7350421B2 (en) * | 2004-12-13 | 2008-04-01 | Endress + Hauser Flowtec Ag | Vibratory measurement transducer |
DE102004060115A1 (de) * | 2004-12-13 | 2006-06-14 | Endress + Hauser Flowtec Ag | Meßaufnehmer vom Vibrationstyp |
WO2006071454A1 (en) * | 2004-12-29 | 2006-07-06 | Micro Motion, Inc. | High speed frequency and phase estimation for flow meters |
DE102005012505B4 (de) * | 2005-02-16 | 2006-12-07 | Krohne Ag | Verfahren zum Betreiben eines Massendurchflußmeßgeräts |
US7064692B1 (en) * | 2005-03-18 | 2006-06-20 | Honeywell International Inc. | Solid-state synchro/resolver converter |
IN266753B (ja) * | 2005-03-29 | 2015-05-29 | Micro Motion Inc | |
US8112565B2 (en) | 2005-06-08 | 2012-02-07 | Fisher-Rosemount Systems, Inc. | Multi-protocol field device interface with automatic bus detection |
US7337084B2 (en) * | 2005-06-21 | 2008-02-26 | Invensys Systems, Inc. | Switch-activated zero checking feature for a Coriolis flowmeter |
US7343253B2 (en) * | 2005-07-11 | 2008-03-11 | Invensys Systems, Inc. | Coriolis mode processing techniques |
EP1925916A3 (en) | 2005-07-11 | 2011-08-03 | Invensys Systems, Inc. | Coriolis mode processing techniques |
DE102005046319A1 (de) | 2005-09-27 | 2007-03-29 | Endress + Hauser Flowtec Ag | Verfahren zum Messen eines in einer Rohrleitung strömenden Mediums sowie Meßsystem dafür |
US20070068225A1 (en) | 2005-09-29 | 2007-03-29 | Brown Gregory C | Leak detector for process valve |
DK1949047T3 (en) * | 2005-10-18 | 2015-04-20 | Micro Motion Inc | Electronic device for measurement and the methods for determining a difference in phase between a first sensor signal and a second sensor signal of a flow meter |
US7505947B2 (en) * | 2005-10-20 | 2009-03-17 | International Business Machines Corporation | Computer controlled method using genetic algorithms to provide non-deterministic solutions to problems involving physical restraints |
US7360453B2 (en) * | 2005-12-27 | 2008-04-22 | Endress + Hauser Flowtec Ag | In-line measuring devices and method for compensation measurement errors in in-line measuring devices |
US7360452B2 (en) * | 2005-12-27 | 2008-04-22 | Endress + Hauser Flowtec Ag | In-line measuring devices and method for compensation measurement errors in in-line measuring devices |
WO2007074055A1 (en) | 2005-12-27 | 2007-07-05 | Endress+Hauser Flowtec Ag | In-line measuring devices and method for compensating measurement errors in in-line measuring devices |
US7532992B2 (en) * | 2006-01-20 | 2009-05-12 | Teledyne Isco, Inc. | Measuring apparatuses and methods of using them |
EP1989517B1 (en) * | 2006-02-13 | 2015-09-02 | Invensys Systems, Inc. | Compensating for frequency change in flowmeters |
KR101128960B1 (ko) * | 2006-04-28 | 2012-03-28 | 마이크로 모우션, 인코포레이티드 | 버스 루프 전력 인터페이스 및 방법 |
DE102006031198B4 (de) * | 2006-07-04 | 2012-01-26 | Krohne Ag | Verfahren zum Betreiben eines Coriolis-Massendurchflußmeßgeräts |
JP2008027263A (ja) * | 2006-07-24 | 2008-02-07 | Oval Corp | 演算システムでの処理方法、流量変換器、及びコリオリ流量計 |
US7617055B2 (en) | 2006-08-28 | 2009-11-10 | Invensys Systems, Inc. | Wet gas measurement |
US7953501B2 (en) | 2006-09-25 | 2011-05-31 | Fisher-Rosemount Systems, Inc. | Industrial process control loop monitor |
CN101517377B (zh) | 2006-09-29 | 2012-05-09 | 罗斯蒙德公司 | 带有校验的磁流量计 |
DE102006058732A1 (de) | 2006-12-13 | 2008-06-26 | Abb Ag | Verfahren zum Betrieb einer Coriolis-Massendurchflussmesseinrichtung |
DE102006062600B4 (de) | 2006-12-29 | 2023-12-21 | Endress + Hauser Flowtec Ag | Verfahren zum Inbetriebnehmen und/oder Überwachen eines In-Line-Meßgeräts |
AT9241U3 (de) * | 2007-02-05 | 2007-12-15 | Avl List Gmbh | Verfahren und vorrichtung zur kontinuierlichen messung eines dynamischen fluidverbrauchs |
WO2008109841A1 (en) | 2007-03-07 | 2008-09-12 | Invensys Systems, Inc. | Coriolis frequency tracking |
DE102007021099A1 (de) | 2007-05-03 | 2008-11-13 | Endress + Hauser (Deutschland) Ag + Co. Kg | Verfahren zum Inbetriebnehmen und/oder Rekonfigurieren eines programmierbaren Feldmeßgeräts |
WO2008147408A1 (en) * | 2007-05-25 | 2008-12-04 | Micro Motion, Inc. | Vibratory flow meter and method for correcting for entrained gas in a flow material |
US8898036B2 (en) | 2007-08-06 | 2014-11-25 | Rosemount Inc. | Process variable transmitter with acceleration sensor |
US7832257B2 (en) | 2007-10-05 | 2010-11-16 | Halliburton Energy Services Inc. | Determining fluid rheological properties |
DE102007058608A1 (de) | 2007-12-04 | 2009-06-10 | Endress + Hauser Flowtec Ag | Elektrisches Gerät |
US7895006B2 (en) * | 2007-12-21 | 2011-02-22 | Agilent Technologies, Inc. | System and method for determining signal-to-noise ratio (SNR), signal-to-noise and distortion ratio (SINAD) and total harmonic distortion (THD) |
DE102008011381A1 (de) * | 2008-02-27 | 2009-09-03 | Endress + Hauser Flowtec Ag | Verfahren zur Erzeugung eines annähernd sinusförmigen elektrischen Spannungsverlaufs und Verfahren zur Erzeugung mindestens einer Schwingung eines mechanisch schwingfähigen Körpers |
DE102008016235A1 (de) | 2008-03-27 | 2009-10-01 | Endress + Hauser Flowtec Ag | Verfahren zum Betreiben eines auf einer rotierenden Karussell-Abfüllmachine angeordneten Meßgeräts |
DE102008022373A1 (de) | 2008-05-06 | 2009-11-12 | Endress + Hauser Flowtec Ag | Meßgerät sowie Verfahren zum Überwachen eines Meßgeräts |
CA2728677C (en) * | 2008-07-01 | 2018-02-20 | Micro Motion, Inc. | A system, method, and computer program product for generating a drive signal in a vibrating measuring device |
DE102008035877A1 (de) | 2008-08-01 | 2010-02-04 | Endress + Hauser Flowtec Ag | Meßwandler vom Vibrationstyp |
DE102008050115A1 (de) | 2008-10-06 | 2010-04-08 | Endress + Hauser Flowtec Ag | In-Line-Meßgerät |
DE102008050113A1 (de) | 2008-10-06 | 2010-04-08 | Endress + Hauser Flowtec Ag | In-Line-Meßgerät |
DE102008050116A1 (de) | 2008-10-06 | 2010-04-08 | Endress + Hauser Flowtec Ag | In-Line-Meßgerät |
DE102008044186A1 (de) | 2008-11-28 | 2010-06-02 | Endress + Hauser Flowtec Ag | Magneteinrichtung sowie Meßaufnehmer vom Vibrationstyp mit einer solchen Magneteinrichtung |
JP4436884B1 (ja) * | 2009-02-06 | 2010-03-24 | 株式会社オーバル | 信号処理方法、信号処理装置、およびコリオリ流量計 |
JP4436882B1 (ja) * | 2009-02-06 | 2010-03-24 | 株式会社オーバル | 信号処理方法、信号処理装置、およびコリオリ流量計 |
JP4436883B1 (ja) * | 2009-02-06 | 2010-03-24 | 株式会社オーバル | 信号処理方法、信号処理装置、およびコリオリ流量計 |
CN102348962B (zh) | 2009-03-11 | 2015-12-02 | 恩德斯+豪斯流量技术股份有限公司 | 振动类型测量换能器以及具有该测量换能器的在线测量装置 |
DE102009027580A1 (de) | 2009-07-09 | 2011-01-13 | Endress + Hauser Flowtec Ag | Meßaufnehmer vom Vibrationstyp sowie In-line-Meßgerät mit einem solchen Meßaufnehmer |
DE102009001472A1 (de) | 2009-03-11 | 2010-09-16 | Endress + Hauser Flowtec Ag | Meßaufnehmer vom Vibrationstyp sowie In-line-Meßgerät mit einem solchen Meßaufnehmer |
DE102009012474A1 (de) | 2009-03-12 | 2010-09-16 | Endress + Hauser Flowtec Ag | Meßsystem mit einem Messwandler vom Vibrationstyp |
US7921734B2 (en) | 2009-05-12 | 2011-04-12 | Rosemount Inc. | System to detect poor process ground connections |
MX2012000243A (es) * | 2009-07-13 | 2012-01-25 | Micro Motion Inc | Electronica de medicion y metodo de cuantificacion de fluidos para un fluido que esta siendo transferido. |
CN101608940B (zh) * | 2009-07-23 | 2011-12-21 | 合肥工业大学 | 科氏质量流量计正负阶跃交替激励启振方法和系统 |
DE102009028006A1 (de) | 2009-07-24 | 2011-01-27 | Endress + Hauser Flowtec Ag | Meßwandler vom Vibrationstyp sowie Meßgerät mit einem solchen Meßwandler |
DE102009028007A1 (de) | 2009-07-24 | 2011-01-27 | Endress + Hauser Flowtec Ag | Meßumwandler vom Vibrationstyp sowie Meßgerät mit einem solchen Meßwandler |
EP2464950B1 (en) * | 2009-08-12 | 2019-12-11 | Micro Motion, Inc. | Method and meter electronics for determining a zero offset in a vibrating flow meter |
BR112012002328B1 (pt) * | 2009-08-12 | 2019-07-16 | Micro Motion, Inc. | Método para operar um sistema de medidor de fluxo vibratório, e, eletrônica de medidor |
DE102009046839A1 (de) | 2009-11-18 | 2011-05-19 | Endress + Hauser Flowtec Ag | Meßsystem mit einer zwei parallel durchströmte Meßrohre aufweisenden Rohranordnung sowie Verfahren zu deren Überwachung |
DE102009055069A1 (de) | 2009-12-21 | 2011-06-22 | Endress + Hauser Flowtec Ag | Meßaufnehmer vom Vibrationstyp |
CN102667421B (zh) | 2009-12-21 | 2015-08-19 | 恩德斯+豪斯流量技术股份有限公司 | 振动式测量换能器和由此形成的测量系统 |
DE102010039627A1 (de) | 2010-08-20 | 2012-02-23 | Endress + Hauser Flowtec Ag | Meßaufnehmer vom Vibrationstyp sowie damit gebildetes Meßsystem |
DE102010000759A1 (de) | 2010-01-11 | 2011-07-14 | Endress + Hauser Flowtec Ag | Meßsystem mit einem Meßwandler vom Vibrationstyp |
DE102010000760B4 (de) | 2010-01-11 | 2021-12-23 | Endress + Hauser Flowtec Ag | Meßsystem mit einem Meßwandler vom Vibrationstyp zum Messen eines statischen Drucks in einem strömenden Medium |
DE102010000761A1 (de) | 2010-01-11 | 2011-07-28 | Endress + Hauser Flowtec Ag | Meßsystem mit einem Meßwandler vom Vibrationstyp |
CA2785755C (en) | 2009-12-31 | 2016-02-02 | Vivek Kumar | Measuring system having a measuring transducer of vibration-type |
CN102686986B (zh) | 2009-12-31 | 2015-01-28 | 恩德斯+豪斯流量技术股份有限公司 | 具有振动型测量变换器的测量系统 |
CN102753946B (zh) | 2009-12-31 | 2016-08-17 | 恩德斯+豪斯流量技术股份有限公司 | 具有振动型测量转换器的测量系统 |
JP4694645B1 (ja) * | 2010-02-19 | 2011-06-08 | 株式会社オーバル | 信号処理方法、信号処理装置、及び振動型密度計 |
CN102859852B (zh) | 2010-04-19 | 2015-11-25 | 恩德斯+豪斯流量技术股份有限公司 | 测量变换器的驱动电路及由该驱动电路形成的测量系统 |
DE202010006553U1 (de) | 2010-05-06 | 2011-10-05 | Endress + Hauser Flowtec Ag | Elektronisches Meßgerät mit einem Optokoppler |
DE102010030924A1 (de) | 2010-06-21 | 2011-12-22 | Endress + Hauser Flowtec Ag | Elektronik-Gehäuse für ein elektronisches Gerät bzw. damit gebildetes Gerät |
DE102010039543A1 (de) | 2010-08-19 | 2012-02-23 | Endress + Hauser Flowtec Ag | Meßsystem mit einem Meßwandler vom Vibrationstyp |
CA2808248C (en) | 2010-09-02 | 2017-01-03 | Endress+Hauser Flowtec Ag | Measuring system having a measuring transducer of vibration-type |
RU2557409C2 (ru) | 2010-09-16 | 2015-07-20 | Эндресс+Хаузер Флоутек Аг | Измерительная система для измерения плотности или весовой пропускной способности протекающей в трубопроводе среды |
DE102010044179A1 (de) | 2010-11-11 | 2012-05-16 | Endress + Hauser Flowtec Ag | Meßsystem mit einem Meßwandler von Vibrationstyp |
CA2758779C (en) | 2010-12-01 | 2016-01-05 | Invensys Systems, Inc. | Determining concentrations of components of a mixture |
US8931346B2 (en) | 2010-12-30 | 2015-01-13 | Endress + Hauser Flowtec Ag | Vibration type measuring transducer and measuring system formed therewith |
US8593273B2 (en) | 2011-02-07 | 2013-11-26 | Infineon Technologies Ag | Systems and methods for localization of tire pressure monitoring system wheel modules |
CN102128656B (zh) * | 2011-02-25 | 2013-09-04 | 合肥工业大学 | 一种微弯型科氏质量流量计数字信号处理方法和系统 |
US9207670B2 (en) | 2011-03-21 | 2015-12-08 | Rosemount Inc. | Degrading sensor detection implemented within a transmitter |
DE102011006997A1 (de) | 2011-04-07 | 2012-10-11 | Endress + Hauser Flowtec Ag | Frequenzabgleichsverfahren für eine Rohranordnung |
DE102011006919A1 (de) | 2011-04-07 | 2012-10-11 | Endress + Hauser Flowtec Ag | Verfahren zum Trimmen eines Rohrs |
DE102011006971A1 (de) | 2011-04-07 | 2012-10-11 | Endress + Hauser Flowtec Ag | Meßwandler vom Vibrationstyp sowie Verfahren zu dessen Herstellung |
JP5836628B2 (ja) * | 2011-04-19 | 2015-12-24 | キヤノン株式会社 | 制御系の評価装置および評価方法、並びに、プログラム |
RU2589506C2 (ru) | 2011-05-02 | 2016-07-10 | Эндресс+Хаузер Флоутек Аг | Измерительный датчик вибрационного типа и измерительная система для измерения плотности и/или процента массового расхода |
GB201108854D0 (en) * | 2011-05-26 | 2011-07-06 | Spp Process Technology Systems Uk Ltd | Mass flow controller monitoring |
DE102011076838A1 (de) | 2011-05-31 | 2012-12-06 | Endress + Hauser Flowtec Ag | Meßgerät-Elektronik für ein Meßgerät-Gerät sowie damit gebildetes Meßgerät-Gerät |
EP2565594A1 (en) | 2011-07-11 | 2013-03-06 | Invensys Systems, Inc. | Coriolis flowmeter with zero checking feature |
US20130080084A1 (en) * | 2011-09-28 | 2013-03-28 | John P. Miller | Pressure transmitter with diagnostics |
US8565967B2 (en) * | 2011-12-21 | 2013-10-22 | Infineon Technologies Ag | Acceleration detection and angular position determination systems and methods in tire pressure monitoring systems |
DE102011089808A1 (de) | 2011-12-23 | 2013-06-27 | Endress + Hauser Flowtec Ag | Verfahren bzw. Meßsystem zum Ermitteln einer Dichte eines Fluids |
DE102012102947B4 (de) | 2012-04-03 | 2023-12-21 | Endress + Hauser Flowtec Ag | Meßwandler vom Vibrationstyp |
CN104204735B (zh) | 2012-04-03 | 2017-12-29 | 恩德斯+豪斯流量技术股份有限公司 | 振动型测量变换器 |
EP2841879B1 (en) * | 2012-04-23 | 2021-06-02 | Rosemount Inc. | Process variable compensation in a process transmitter |
EP2861941B1 (de) * | 2012-06-18 | 2018-03-21 | KROHNE Messtechnik GmbH | Verfahren zum betreiben eines resonanzmesssystems |
US9052240B2 (en) | 2012-06-29 | 2015-06-09 | Rosemount Inc. | Industrial process temperature transmitter with sensor stress diagnostics |
US9602122B2 (en) | 2012-09-28 | 2017-03-21 | Rosemount Inc. | Process variable measurement noise diagnostic |
DE102012109729A1 (de) | 2012-10-12 | 2014-05-15 | Endress + Hauser Flowtec Ag | Meßsystem zum Ermitteln eines Volumendruchflusses und/oder einer Volumendurchflußrate eines in einer Rohrleitung strömenden Mediums |
EP4016013A1 (de) | 2012-10-11 | 2022-06-22 | Endress + Hauser Flowtec AG | Messsystem zum ermitteln eines volumendurchflusses und/oder einer volumendurchflussrate eines in einer rohrleitung strömenden mediums |
US9995666B2 (en) * | 2012-10-22 | 2018-06-12 | Rheonics Gmbh | Resonant sensors for fluid properties measurement |
CN104040301B (zh) * | 2012-10-30 | 2017-12-12 | 西安东风机电股份有限公司 | 一种科里奥利流量计数字驱动方法及系统 |
US9562427B2 (en) * | 2012-11-19 | 2017-02-07 | Invensys Systems, Inc. | Net oil and gas well test system |
DE102013102711A1 (de) | 2013-03-18 | 2014-09-18 | Endress + Hauser Flowtec Ag | Meßwandler vom Vibrationstyp sowie damit gebildetes Meßsystem |
DE102013102708A1 (de) | 2013-03-18 | 2014-09-18 | Endress + Hauser Flowtec Ag | Meßwandler vom Vibrationstyp sowie damit gebildetes Meßsystem |
DE102013106157A1 (de) | 2013-06-13 | 2014-12-18 | Endress + Hauser Flowtec Ag | Meßsystem mit einem Druckgerät sowie Verfahren zur Überwachung und/oder Überprüfung eines solchen Druckgeräts |
DE102013106155A1 (de) | 2013-06-13 | 2014-12-18 | Endress + Hauser Flowtec Ag | Meßsystem mit einem Druckgerät sowie Verfahren zur Überwachung und/oder Überprüfung eines solchen Druckgeräts |
US10900348B2 (en) * | 2013-11-14 | 2021-01-26 | Micro Motion, Inc. | Coriolis direct wellhead measurement devices and methods |
JP2015105929A (ja) * | 2013-12-02 | 2015-06-08 | 株式会社東芝 | 電磁流量計 |
DE102013113689B4 (de) | 2013-12-09 | 2018-02-01 | Endress + Hauser Flowtec Ag | Dichte-Meßgerät |
WO2015090776A1 (de) | 2013-12-20 | 2015-06-25 | Endress+Hauser Flowtec Ag | Spule |
DE102013114731A1 (de) | 2013-12-20 | 2015-06-25 | Endress+Hauser Flowtec Ag | Spule |
DE102013021915A1 (de) | 2013-12-27 | 2015-07-02 | Endress + Hauser Flowtec Ag | Meßaufnehmer vom Vibrationstyp |
DE102014103430A1 (de) | 2014-03-13 | 2015-09-17 | Endress + Hauser Flowtec Ag | Wandlervorrichtung sowie damit gebildetes Meßsystem |
DE102014103427A1 (de) | 2014-03-13 | 2015-09-17 | Endress + Hauser Flowtec Ag | Wandlervorrichtung sowie damit gebildetes Meßsystem |
MX363104B (es) * | 2014-09-04 | 2019-03-08 | Micro Motion Inc | Herramienta para flujometro diferencial. |
DE102015103208A1 (de) | 2014-10-17 | 2016-04-21 | Endress + Hauser Flowtec Ag | Meßsystem zum Messen wenigstens einer Meßgröße eines Fluids sowie Verfahren zum Betreiben eines solchen Meßsystems |
US9689736B2 (en) | 2014-10-31 | 2017-06-27 | Invensys Systems, Inc. | Method to provide a quality measure for meter verification results |
DE102014119212A1 (de) * | 2014-12-19 | 2016-06-23 | Endress + Hauser Flowtec Ag | Messanordnung und Verfahren zum Messen der Dichte von fließfähigen Medien |
WO2016107693A1 (de) | 2014-12-30 | 2016-07-07 | Endress+Hauser Flowtec Ag | Verfahren zum messen einer dichte eines fluids |
DE102014019396A1 (de) | 2014-12-30 | 2016-06-30 | Endress+Hauser Flowtec Ag | Verfahren zum Messen einer Dichte eines Fluids |
JP6036864B2 (ja) * | 2015-02-05 | 2016-11-30 | 横河電機株式会社 | 測定装置の共振回路 |
US9863798B2 (en) | 2015-02-27 | 2018-01-09 | Schneider Electric Systems Usa, Inc. | Systems and methods for multiphase flow metering accounting for dissolved gas |
EP3268703B1 (en) * | 2015-03-13 | 2023-07-12 | Micro Motion, Inc. | Temperature compensation of a signal in a vibratory flowmeter |
US9664548B2 (en) | 2015-03-19 | 2017-05-30 | Invensys Systems, Inc. | Testing system for petroleum wells having a fluidic system including a gas leg, a liquid leg, and bypass conduits in communication with multiple multiphase flow metering systems with valves to control fluid flow through the fluidic system |
CN107850479B (zh) * | 2015-07-27 | 2020-12-08 | 高准公司 | 用于科里奥利流量计的非共振循环 |
US10408647B2 (en) * | 2016-02-15 | 2019-09-10 | Olea Networks, Inc. | Analysis of pipe systems with sensor devices |
US10024707B2 (en) * | 2016-02-17 | 2018-07-17 | Schneider Electric Systems Usa, Inc. | Electromagnetic flowmeter calibration verification |
US10598532B2 (en) * | 2016-02-26 | 2020-03-24 | Micro Motion, Inc. | Meter electronics for two or more meter assemblies |
DE102016112599A1 (de) | 2016-07-08 | 2018-01-11 | Endress + Hauser Flowtec Ag | Meßsystem |
DE102016112600A1 (de) | 2016-07-08 | 2018-01-11 | Endress + Hauser Flowtec Ag | Meßsystem |
DE102016114860A1 (de) | 2016-08-10 | 2018-02-15 | Endress + Hauser Flowtec Ag | Treiberschaltung sowie damit gebildete Umformer-Elektronik bzw. damit gebildetes Meßsystem |
EP3539012A2 (en) | 2016-11-11 | 2019-09-18 | Oxford University Innovation Limited | Method and system for tracking sinusoidal wave parameters from a received signal that includes noise |
DE102017106209A1 (de) | 2016-12-29 | 2018-07-05 | Endress+Hauser Flowtec Ag | Vibronisches Meßsystem zum Messen einer Massendurchflußrate |
EP3563122A1 (de) | 2016-12-29 | 2019-11-06 | Endress+Hauser Flowtec AG | VIBRONISCHES MEßSYSTEM ZUM MESSEN EINER MASSENDURCHFLUßRATE |
CN110114642B (zh) * | 2016-12-29 | 2021-06-08 | 恩德斯+豪斯流量技术股份有限公司 | 用于测量质量流率的电子振动测量系统 |
CN106643955B (zh) * | 2017-02-20 | 2023-04-07 | 重庆机床(集团)有限责任公司 | 流量监视控制器 |
DE102017121157A1 (de) | 2017-08-09 | 2019-02-14 | Endress+Hauser Flowtec Ag | Spule sowie Meßwandler mit einer solchen Spule |
DE102017118109A1 (de) | 2017-08-09 | 2019-02-14 | Endress + Hauser Flowtec Ag | Sensorbaugruppe |
DE102018102831A1 (de) | 2017-10-05 | 2019-04-11 | Endress+Hauser Flowtec Ag | Meßwandler für ein vibronisches Meßsystem sowie damit gebildetes vibronisches Meßsystem |
DE102017125271A1 (de) | 2017-10-27 | 2019-05-02 | Endress + Hauser Flowtec Ag | Massedurchflussmessgerät nach dem Coriolis-Prinzip mit mindestens zwei Messrohrpaaren |
DE102017125273A1 (de) | 2017-10-27 | 2019-05-02 | Endress + Hauser Flowtec Ag | Massedurchflussmessgerät nach dem Coriolis-Prinzip mit mindestens zwei Messrohrpaaren und Verfahren zum Bestimmen des Massedurchflusses |
DE102017131199A1 (de) | 2017-12-22 | 2019-06-27 | Endress + Hauser Flowtec Ag | Coriolis-Massendurchfluß-Meßgerät |
US11237550B2 (en) * | 2018-03-28 | 2022-02-01 | Honeywell International Inc. | Ultrasonic flow meter prognostics with near real-time condition based uncertainty analysis |
US11781673B2 (en) * | 2018-04-30 | 2023-10-10 | Keto A.I., Inc. | Water level control system |
EP3899447B1 (de) | 2018-12-20 | 2023-09-20 | Endress + Hauser Flowtec AG | Coriolis-massendurchfluss-messgerät |
US20220099543A1 (en) | 2018-12-20 | 2022-03-31 | Endress+Hauser Flowtec Ag | Coriolis mass flow meter |
DE102018133117A1 (de) | 2018-12-20 | 2020-06-25 | Endress+Hauser Flowtec Ag | Coriolis-Massendurchfluß-Meßgerät |
EP3899448B1 (de) | 2018-12-21 | 2024-03-27 | Endress + Hauser Flowtec AG | Coriolis-massendurchfluss-messer mit magnetfelddetektor |
US20200209031A1 (en) * | 2018-12-26 | 2020-07-02 | Texas Instruments Incorporated | Dynamic temperature calibration of ultrasonic transducers |
WO2020159950A1 (en) * | 2019-01-28 | 2020-08-06 | The Texas A&M University System | Method and device to measure multiphase flow |
CN110470347B (zh) * | 2019-09-12 | 2021-12-17 | 上海旗浪节能环保科技有限公司 | 一种用于海洋轮船空调系统的管道实时监测装置 |
DE102019124709A1 (de) * | 2019-09-13 | 2021-03-18 | Endress+Hauser Flowtec Ag | Verfahren zum Betreiben eines Messgerätes mit mindestens einem Oszillator und Messgerät zur Durchführung des Verfahrens |
DE102019133610A1 (de) | 2019-12-09 | 2021-06-10 | Endress + Hauser Flowtec Ag | Vibronisches Meßsystem zum Messen eines Massestroms eines fluiden Meßstoff |
DE102019009024A1 (de) | 2019-12-30 | 2021-07-01 | Endress+Hauser Flowtec Ag | Vibronisches Meßsystem |
DE112021003296A5 (de) | 2020-06-18 | 2023-05-11 | Endress+Hauser Flowtec Ag | Vibronisches Meßsystem |
DE102020120054A1 (de) | 2020-07-29 | 2022-02-03 | Endress + Hauser Flowtec Ag | Verfahren zum Ermitteln einer Meßstoff-Temperatur sowie Meßsystem dafür |
DE102020131649A1 (de) | 2020-09-03 | 2022-03-03 | Endress + Hauser Flowtec Ag | Vibronisches Meßsystem |
DE102020127382A1 (de) | 2020-10-16 | 2022-04-21 | Endress+Hauser Flowtec Ag | Verfahren zum Überprüfen eines vibronischen Meßsystems |
DE102021113360A1 (de) | 2021-05-21 | 2022-11-24 | Endress + Hauser Flowtec Ag | Vibronisches Meßsystem |
DE102021123412A1 (de) * | 2021-09-09 | 2023-03-09 | Endress+Hauser Flowtec Ag | Vibronischer Messaufnehmer zur Massedurchfluss- und Dichtemessung |
DE102022112523A1 (de) | 2022-05-18 | 2023-11-23 | Endress+Hauser Flowtec Ag | Vibronisches Meßsystem |
DE102022116111A1 (de) | 2022-06-28 | 2023-12-28 | Endress+Hauser Flowtec Ag | Vibronisches Meßsystem |
DE102022119145A1 (de) | 2022-07-29 | 2024-02-01 | Endress+Hauser Flowtec Ag | Anschlussschaltung für ein Feldgerät und Feldgerät |
Family Cites Families (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US29383A (en) * | 1860-07-31 | Improvement in preserving food | ||
US31450A (en) * | 1861-02-19 | Improvement in tools used in the manufacture of iron | ||
US5732193A (en) * | 1909-01-26 | 1998-03-24 | Aberson; Michael | Method and apparatus for behavioristic-format coding of quantitative resource data/distributed automation protocol |
US4027662A (en) * | 1973-07-11 | 1977-06-07 | Milstein Medical Research Foundation, Inc. | Automatic blood pressure recorder |
USRE29383E (en) | 1974-01-10 | 1977-09-06 | Process Systems, Inc. | Digital fluid flow rate measurement or control system |
US3956682A (en) * | 1974-03-28 | 1976-05-11 | Pennwalt Corporation | Two-wire position-to-D.C. current transducer |
GB1583545A (en) * | 1976-08-04 | 1981-01-28 | Martin Sanchez J | Control systems |
USRE31450E (en) | 1977-07-25 | 1983-11-29 | Micro Motion, Inc. | Method and structure for flow measurement |
US4187721A (en) * | 1977-07-25 | 1980-02-12 | S & F Associates | Method and structure for flow measurement |
GB2085597B (en) * | 1980-10-17 | 1985-01-30 | Redland Automation Ltd | Method and apparatus for detemining the mass flow of a fluid |
US4422338A (en) | 1981-02-17 | 1983-12-27 | Micro Motion, Inc. | Method and apparatus for mass flow measurement |
US4491025A (en) | 1982-11-03 | 1985-01-01 | Micro Motion, Inc. | Parallel path Coriolis mass flow rate meter |
EP0169930B1 (de) | 1984-08-03 | 1987-06-10 | Deutsche ITT Industries GmbH | Videorecorder mit magnetischem bandförmigem Speichermedium |
US4773257A (en) | 1985-06-24 | 1988-09-27 | Chevron Research Company | Method and apparatus for testing the outflow from hydrocarbon wells on site |
US4688418A (en) | 1985-10-17 | 1987-08-25 | Texaco Inc. | Method and apparatus for determining mass flow rate and quality in a steam line |
JPS62157546A (ja) * | 1985-12-31 | 1987-07-13 | Horiba Ltd | 自動車排気ガスのモ−ダルマス解析方法 |
US4879111A (en) | 1986-04-17 | 1989-11-07 | Cetus Corporation | Treatment of infections with lymphokines |
US4823614A (en) * | 1986-04-28 | 1989-04-25 | Dahlin Erik B | Coriolis-type mass flowmeter |
GB8614135D0 (en) | 1986-06-10 | 1986-07-16 | Foxboro Co | Coriolis mass flowmeters |
US4817448A (en) * | 1986-09-03 | 1989-04-04 | Micro Motion, Inc. | Auto zero circuit for flow meter |
DE8712331U1 (de) | 1986-09-26 | 1988-01-28 | Flowtec AG, Reinach, Basel | Corioliskraft-Massendurchflussmesser |
US4852410A (en) | 1986-10-03 | 1989-08-01 | Schlumberger Industries, Inc. | Omega-shaped, coriolis-type mass flow rate meter |
US4911006A (en) | 1986-10-03 | 1990-03-27 | Micro Motion Incorporated | Custody transfer meter |
US4782711A (en) * | 1986-10-14 | 1988-11-08 | K-Flow Division Of Kane Steel Co., Inc. | Method and apparatus for measuring mass flow |
US5271281A (en) | 1986-10-28 | 1993-12-21 | The Foxboro Company | Coriolis-type mass flowmeter |
KR960000099B1 (ko) | 1986-10-28 | 1996-01-03 | 더폭스보로 컴패니 | 코리올리 유형의 질량유량계 |
US5050439A (en) | 1986-10-28 | 1991-09-24 | The Foxboro Company | Coriolis-type mass flowmeter circuitry |
US4911020A (en) | 1986-10-28 | 1990-03-27 | The Foxboro Company | Coriolis-type mass flowmeter circuitry |
US5343764A (en) | 1986-10-28 | 1994-09-06 | The Foxboro Company | Coriolis-type mass flowmeter |
IT1213434B (it) | 1986-12-23 | 1989-12-20 | Nuovo Pignone S P A Ind Meccan | Procedimento perfezionato per la misura di portate ponderali e relativi dispositivi. |
US5027662A (en) | 1987-07-15 | 1991-07-02 | Micro Motion, Inc. | Accuracy mass flow meter with asymmetry and viscous damping compensation |
US5052231A (en) | 1988-05-19 | 1991-10-01 | Rheometron Ag | Mass flow gauge for flowing media with devices for determination of the Coriolis force |
US4852409A (en) * | 1988-06-09 | 1989-08-01 | Fischer & Porter Company | Signal recovery system for mass flowmeter |
US4879911A (en) | 1988-07-08 | 1989-11-14 | Micro Motion, Incorporated | Coriolis mass flow rate meter having four pulse harmonic rejection |
US4852395A (en) * | 1988-12-08 | 1989-08-01 | Atlantic Richfield Company | Three phase fluid flow measuring system |
US5029482A (en) | 1989-02-03 | 1991-07-09 | Chevron Research Company | Gas/liquid flow measurement using coriolis-based flow meters |
US4934196A (en) * | 1989-06-02 | 1990-06-19 | Micro Motion, Inc. | Coriolis mass flow rate meter having a substantially increased noise immunity |
US4996871A (en) | 1989-06-02 | 1991-03-05 | Micro Motion, Inc. | Coriolis densimeter having substantially increased noise immunity |
ATE171270T1 (de) * | 1989-06-09 | 1998-10-15 | Micro Motion Inc | Stabilitätsverbesserung bei einem coriolis- massenflussmesser |
US5054326A (en) | 1990-03-05 | 1991-10-08 | The Foxboro Company | Density compensator for coriolis-type mass flowmeters |
US5259250A (en) | 1990-05-14 | 1993-11-09 | Atlantic Richfield Company | Multi-phase fluid flow mesurement |
US5054313A (en) * | 1990-07-17 | 1991-10-08 | National Metal And Refining Company, Ltd. | Control circuitry for viscosity sensors |
US5497665A (en) | 1991-02-05 | 1996-03-12 | Direct Measurement Corporation | Coriolis mass flow rate meter having adjustable pressure and density sensitivity |
JP2525085B2 (ja) * | 1991-02-19 | 1996-08-14 | 株式会社クラレ | イロンの製造方法 |
WO1992017759A1 (en) * | 1991-03-30 | 1992-10-15 | Kazuhiro Okada | Method of testing performance of device for measuring physical quantity by using change of distance between electrodes and physical quantity measuring device provided with function of executing this method |
US5228327A (en) | 1991-07-11 | 1993-07-20 | Micro Motion, Inc. | Technique for determining a mechanical zero value for a coriolis meter |
BR9206318A (pt) * | 1991-08-01 | 1995-10-24 | Micro Motion Inc | Medidor de fluxo de massa de efeito coriolis |
US5295084A (en) * | 1991-10-08 | 1994-03-15 | Micromotion, Inc. | Vibrating tube densimeter |
US5379649A (en) | 1991-12-23 | 1995-01-10 | Micro Motion, Inc. | Coriolis effect meter using optical fiber sensors |
US5218869A (en) | 1992-01-14 | 1993-06-15 | Diasonics, Inc. | Depth dependent bandpass of ultrasound signals using heterodyne mixing |
GB9208704D0 (en) | 1992-04-22 | 1992-06-10 | Foxboro Ltd | Improvements in and relating to sensor units |
US5347874A (en) | 1993-01-25 | 1994-09-20 | Micro Motion, Incorporated | In-flow coriolis effect mass flowmeter |
US5309342A (en) * | 1993-03-02 | 1994-05-03 | Cooper Industries, Inc. | Recessed lighting fixture |
US5774378A (en) | 1993-04-21 | 1998-06-30 | The Foxboro Company | Self-validating sensors |
WO1995010028A1 (en) | 1993-10-05 | 1995-04-13 | Atlantic Richfield Company | Multiphase flowmeter for measuring flow rates and densities |
JP2651891B2 (ja) * | 1993-11-05 | 1997-09-10 | 株式会社日本開発コンサルタント | 円形型金属性帯板張力付与装置 |
JPH07169833A (ja) * | 1993-12-14 | 1995-07-04 | Nec Corp | 半導体装置及びその製造方法 |
US5429002A (en) | 1994-05-11 | 1995-07-04 | Schlumberger Industries, Inc. | Coriolis-type fluid mass flow rate measurement device and method employing a least-squares algorithm |
JP3219122B2 (ja) | 1994-07-11 | 2001-10-15 | 横河電機株式会社 | コリオリ質量流量計 |
US5497666A (en) | 1994-07-20 | 1996-03-12 | Micro Motion, Inc. | Increased sensitivity coriolis effect flowmeter using nodal-proximate sensors |
US5469748A (en) | 1994-07-20 | 1995-11-28 | Micro Motion, Inc. | Noise reduction filter system for a coriolis flowmeter |
US5594180A (en) | 1994-08-12 | 1997-01-14 | Micro Motion, Inc. | Method and apparatus for fault detection and correction in Coriolis effect mass flowmeters |
EP0698783A1 (de) | 1994-08-16 | 1996-02-28 | Endress + Hauser Flowtec AG | Auswerte-Elektronik eines Coriolis-Massedurchflussaufnehmers |
US5767665A (en) | 1994-09-13 | 1998-06-16 | Fuji Electric Co. Ltd. | Phase difference measuring apparatus and mass flowmeter thereof |
US5555190A (en) | 1995-07-12 | 1996-09-10 | Micro Motion, Inc. | Method and apparatus for adaptive line enhancement in Coriolis mass flow meter measurement |
US5654502A (en) | 1995-12-28 | 1997-08-05 | Micro Motion, Inc. | Automatic well test system and method of operating the same |
US5926096A (en) | 1996-03-11 | 1999-07-20 | The Foxboro Company | Method and apparatus for correcting for performance degrading factors in a coriolis-type mass flowmeter |
US5676461A (en) * | 1996-03-18 | 1997-10-14 | M. A. Hanna Rubber Compounding A Division Of M. A. Hanna Company | Oil injection apparatus and method for polymer processing |
US5877954A (en) * | 1996-05-03 | 1999-03-02 | Aspen Technology, Inc. | Hybrid linear-neural network process control |
US5687100A (en) * | 1996-07-16 | 1997-11-11 | Micro Motion, Inc. | Vibrating tube densimeter |
US5734112A (en) * | 1996-08-14 | 1998-03-31 | Micro Motion, Inc. | Method and apparatus for measuring pressure in a coriolis mass flowmeter |
US5804741A (en) | 1996-11-08 | 1998-09-08 | Schlumberger Industries, Inc. | Digital phase locked loop signal processing for coriolis mass flow meter |
US6073495A (en) | 1997-03-21 | 2000-06-13 | Endress + Hauser Flowtec Ag | Measuring and operating circuit of a coriolis-type mass flow meter |
US6185470B1 (en) | 1997-11-07 | 2001-02-06 | Mcdonnell Douglas Corporation | Neural network predictive control method and system |
US6311136B1 (en) * | 1997-11-26 | 2001-10-30 | Invensys Systems, Inc. | Digital flowmeter |
US6092429A (en) | 1997-12-04 | 2000-07-25 | Micro Motion, Inc. | Driver for oscillating a vibrating conduit |
US5969495A (en) * | 1997-12-31 | 1999-10-19 | Daewood Heavy Industries Ltd. | Accelerator device for electromotive vehicles |
US6102846A (en) | 1998-02-26 | 2000-08-15 | Eastman Kodak Company | System and method of managing a psychological state of an individual using images |
EP1089933B1 (de) * | 1998-06-12 | 2003-10-08 | Maschinenfabrik Rieter Ag | Fadenchangierung |
EP1112532B1 (en) | 1998-08-17 | 2003-04-02 | Aspen Technology, Inc. | Sensor validation apparatus and method |
US6327914B1 (en) * | 1998-09-30 | 2001-12-11 | Micro Motion, Inc. | Correction of coriolis flowmeter measurements due to multiphase flows |
US5969264A (en) * | 1998-11-06 | 1999-10-19 | Technology Commercialization Corp. | Method and apparatus for total and individual flow measurement of a single-or multi-phase medium |
US6301973B1 (en) * | 1999-04-30 | 2001-10-16 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Non-intrusive pressure/multipurpose sensor and method |
US6505131B1 (en) * | 1999-06-28 | 2003-01-07 | Micro Motion, Inc. | Multi-rate digital signal processor for signals from pick-offs on a vibrating conduit |
US6318186B1 (en) * | 1999-06-28 | 2001-11-20 | Micro Motion, Inc. | Type identification and parameter selection for drive control in a coriolis flowmeter |
US6318156B1 (en) * | 1999-10-28 | 2001-11-20 | Micro Motion, Inc. | Multiphase flow measurement system |
US6551251B2 (en) * | 2000-02-14 | 2003-04-22 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Passive fetal heart monitoring system |
JP2003528306A (ja) * | 2000-03-23 | 2003-09-24 | インベンシス システムズ インコーポレイテッド | ディジタル流量計における二相流に対する修正 |
US6378354B1 (en) * | 2000-07-21 | 2002-04-30 | Micro Motion, Inc. | System for calibrating a drive signal in a coriolis flowmeter to cause the driver to vibrate a conduit in a desired mode of vibration |
US6505135B2 (en) * | 2001-03-13 | 2003-01-07 | Micro Motion, Inc. | Initialization algorithm for drive control in a coriolis flowmeter |
-
1998
- 1998-07-08 US US09/111,739 patent/US6311136B1/en not_active Expired - Lifetime
- 1998-11-26 DE DE98309694T patent/DE98309694T1/de active Pending
- 1998-11-26 DE DE69840766T patent/DE69840766D1/de not_active Expired - Lifetime
- 1998-11-26 DE DE69841903T patent/DE69841903D1/de not_active Expired - Lifetime
- 1998-11-26 JP JP10378592A patent/JP2000018995A/ja not_active Withdrawn
- 1998-11-26 EP EP98309694A patent/EP0919793B1/en not_active Expired - Lifetime
-
2001
- 2001-08-17 US US09/931,002 patent/US6507791B2/en not_active Expired - Lifetime
- 2001-08-17 US US09/931,057 patent/US6754594B2/en not_active Expired - Lifetime
-
2003
- 2003-08-11 US US10/637,620 patent/US6917887B2/en not_active Expired - Lifetime
-
2005
- 2005-05-17 US US11/130,233 patent/US7136761B2/en not_active Expired - Lifetime
-
2006
- 2006-10-31 US US11/555,033 patent/US7571062B2/en not_active Expired - Fee Related
-
2007
- 2007-07-04 JP JP2007176131A patent/JP2007248479A/ja active Pending
- 2007-10-31 US US11/930,936 patent/US8000906B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011520106A (ja) * | 2008-05-01 | 2011-07-14 | マイクロ モーション インコーポレイテッド | 混相流体流の1以上の流体流特性を特定する振動流量計 |
JP2011520105A (ja) * | 2008-05-01 | 2011-07-14 | マイクロ モーション インコーポレイテッド | 超低周波振動流量計 |
CN110346006A (zh) * | 2019-08-13 | 2019-10-18 | 上海一诺仪表有限公司 | 一种质量流量计变送器和质量流量计 |
Also Published As
Publication number | Publication date |
---|---|
DE69840766D1 (de) | 2009-06-04 |
EP0919793A3 (en) | 1999-10-06 |
US6507791B2 (en) | 2003-01-14 |
US7136761B2 (en) | 2006-11-14 |
DE69841903D1 (de) | 2010-10-28 |
EP0919793A2 (en) | 1999-06-02 |
EP0919793B1 (en) | 2009-04-22 |
US6917887B2 (en) | 2005-07-12 |
US7571062B2 (en) | 2009-08-04 |
DE98309694T1 (de) | 2004-09-30 |
US20020019710A1 (en) | 2002-02-14 |
US20050209794A1 (en) | 2005-09-22 |
US6311136B1 (en) | 2001-10-30 |
JP2000018995A (ja) | 2000-01-21 |
US20040031328A1 (en) | 2004-02-19 |
US20100107778A1 (en) | 2010-05-06 |
US8000906B2 (en) | 2011-08-16 |
US6754594B2 (en) | 2004-06-22 |
US20020038186A1 (en) | 2002-03-28 |
US20070124090A1 (en) | 2007-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007248479A (ja) | ディジタル流量計 | |
US9080909B2 (en) | Digital flowmeter | |
JP2008102155A (ja) | ディジタル流量計における二相流に対する修正 | |
US7124646B2 (en) | Correcting for two-phase flow in a digital flowmeter | |
US9014997B2 (en) | Drive techniques for a digital flowmeter | |
US9021892B2 (en) | Correcting for two-phase flow in a digital flowmeter | |
US20070119263A1 (en) | Correcting for Two-Phase Flow in a Digital Flowmeter | |
EP1484585B1 (en) | Coriolis flowmeter with digital control system | |
RU2453816C2 (ru) | Измерение влажного газа | |
DE FR | Coriolisdurchflussmesser mit digitalem Regelsystem Débitmètre à effet Coriolis avec système de contrôle numérique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070704 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070911 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20071204 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20071207 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080307 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080624 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20100107 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20100113 |