WO2014067059A1 - 一种科里奥利流量计数字驱动方法及系统 - Google Patents
一种科里奥利流量计数字驱动方法及系统 Download PDFInfo
- Publication number
- WO2014067059A1 WO2014067059A1 PCT/CN2012/083724 CN2012083724W WO2014067059A1 WO 2014067059 A1 WO2014067059 A1 WO 2014067059A1 CN 2012083724 W CN2012083724 W CN 2012083724W WO 2014067059 A1 WO2014067059 A1 WO 2014067059A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency
- signal
- driving
- unit
- feedback
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000012545 processing Methods 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 14
- 230000002159 abnormal effect Effects 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 238000003786 synthesis reaction Methods 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 7
- 230000003750 conditioning effect Effects 0.000 claims description 7
- 230000010355 oscillation Effects 0.000 claims description 4
- 230000003321 amplification Effects 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims 3
- 230000026676 system process Effects 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 4
- 230000010363 phase shift Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000005514 two-phase flow Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/845—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
- G01F1/8468—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
Definitions
- the invention relates to a Coriolis flowmeter digital driving method and a system thereof.
- the driving device of the conventional Coriolis mass flow meter is as shown in FIG. 1 , and includes a vibration system composed of a vibrating tube, a driving coil, a detecting coil, and a power amplifying unit. Since the driving force of the driving coil is derived from current, power amplification The unit is voltage and current conversion. When there is no liquid flow in the vibrating tube, the total transfer function of the vibrating system is:
- the driving process is that the frequency tracking is the fastest and stable when the flow rate is uniform, but it also has the following problems:
- the necessary condition for vibration of the vibration system is that the phase condition of 360° must be met. Since the phase shift occurs in the signal conditioning unit, the signal amplifying unit, and the liquid flow in the tube, the vibration system must oscillate away from the resonance point for phase conditions, which leads to several consequences:
- the drive circuit consumes a large amount of power
- the drive signal is limited by the feedback signal and cannot provide the drive signal of the required frequency for the flow tube vibration. For example, the measurement of the internal liquid stiffness and viscosity, as well as the initialization of the flow tube.
- the present invention provides a Coriolis capable of ensuring that the vibrating tube is always in a resonant state, capable of maintaining a stable vibration frequency, effectively monitoring the vibration state of the flow tube, and improving the starting speed.
- Flowmeter digital driving method and system thereof is a Coriolis capable of ensuring that the vibrating tube is always in a resonant state, capable of maintaining a stable vibration frequency, effectively monitoring the vibration state of the flow tube, and improving the starting speed.
- the technical solution of the present invention is:
- the present invention provides a Coriolis flowmeter digital driving method, which is special in that: the Coriolis flowmeter digital driving method comprises the following steps:
- step 4 judging whether the frequency of the driving signal needs to be updated according to the real-time initial frequency; if yes, proceeding to step 4); if not, directly using the real-time initial frequency as the frequency of the driving signal;
- step 1) The specific implementation of the above step 1) is:
- the vibrating tube is in free oscillation state and the feedback signal frequency is calculated.
- the calculated feedback signal frequency is sent to the waveform synthesis module as the initial frequency.
- step 2) is:
- the waveform synthesis module monitors the feedback signals of the two feedback coils after receiving the initial frequency, and determines whether the feedback signals of the two feedback coils are incremented by zero crossings; if so, the driving signals and the two feedback signals are the same Phase, the simultaneous transmission frequency is the real-time initial frequency, and the real-time initial frequency is a sine wave with a constant amplitude; if not, it continues to wait for the feedback signal and judges the feedback signal.
- step 4 The specific implementation of step 4) above is:
- step 5 Determine if the vibrating tube is in resonance. If yes, proceed to step 5); if not, adjust the frequency of the driving signal according to the phase difference to make the vibrating tube in resonance.
- step 5 The specific implementation of the above step 5) is:
- step 5.2 Keep the current drive frequency constant and integrate the phase difference obtained in step 4.2) to determine the extent to which the drive frequency deviates from the resonant frequency. Use the integral value to compensate the flow and clear the integral value.
- a Coriolis flowmeter digital drive system is characterized in that: the drive system comprises a vibration system, an A/D converter, a D/A converter, and a signal acquisition and processing unit; the vibration system passes through A The /D converter is connected to the signal acquisition and processing unit; the signal acquisition and processing unit is connected to the vibration system through the D/A converter.
- the vibration system includes a vibrating tube, a driving coil, a detecting coil and a power amplifying circuit; the detecting coil is respectively connected to the A/D converter through two channels; the D/A converter is connected to the driving coil through the power amplifying circuit; The drive coil triggers vibration of the vibration tube; the drive coil is connected to the detection coil and detects a coil feedback signal.
- the signal acquisition and processing unit includes a phase difference detecting unit, a signal conditioning and amplitude calculating unit, a frequency updating unit, a sinusoidal signal generating unit, a switch, an automatic gain control unit, an amplitude setting input end, and a multiplication operation unit;
- the A/D converter is connected to the phase difference detecting unit; the phase difference detecting unit is respectively connected to the frequency updating unit and the sinusoidal signal generating unit; the sinusoidal signal generating unit is connected to the multiplication unit through the switch; the A/D The converter is connected to the automatic gain control unit through a signal conditioning and amplitude calculation unit; the A/D converter is connected to the multiplication by a switch An arithmetic unit; the amplitude setting input terminal is connected to the automatic gain control unit; and the automatic gain control unit is connected to the D/A converter through the multiplication unit.
- the above signal acquisition and processing unit is implemented by computer software.
- the invention provides a digital driving method for a Coriolis flowmeter, which obtains a real-time initial frequency of two feedback coils through a system initialization process, and determines whether the frequency of the driving signal needs to be updated according to the real-time initial frequency, and the frequency of the driving signal.
- the updating and the step of compensating the flow according to the updated driving signal frequency solve the technical problems of poor controllability of the driving system in the prior art, driving signals capable of providing the required frequency for the vibration of the flow tube, and low sensor precision.
- the first advantage of the present invention is that the vibrating tube can always be in a resonant state; even if the fluid flow rate is not uniform, the vibration frequency can be kept stable; according to step 4), the driving frequency is updated so that the vibrating tube is always in a resonant state.
- the second advantage is that it can effectively monitor the vibration state of the flow tube. Different driving strategies can be adopted according to different states.
- the driving method is switched according to step 3. (1) The normal state is switched to the abnormal state, that is, the direct driving method is driven to the waveform synthesis. Switching between methods; (2) The abnormal state is switched to normal. The third can effectively control the startup process, increase the startup speed, and prevent long-term overload.
- the state of the vibrating tube is judged in time, the frequency is updated in time, and the driving mode is changed.
- it can provide various required driving waveforms, which lays a foundation for the measurement of parameters such as stiffness, viscosity, etc. It can be driven by artificial frequency, according to the driving power analysis.
- FIG. 1 is a schematic block diagram of a prior art Coriolis flowmeter driving device
- FIG. 3 is a schematic block diagram of a Coriolis flowmeter digital drive system provided by the present invention.
- the present invention provides a Coriolis flowmeter digital driving method, the Coriolis flow counting word driving method comprising the following steps:
- the vibrating tube is in free oscillation state and the feedback signal frequency is calculated.
- the calculated feedback signal frequency is sent to the waveform synthesis module as the initial frequency.
- the waveform synthesis module After receiving the initial frequency, the waveform synthesis module monitors the feedback signals of the two feedback coils to determine whether the feedback signals of the two feedback coils increase by zero crossing point; if so, the driving signal and the two feedback signals are in phase, and the transmission frequency is the real-time initial frequency,
- the real-time initial frequency is a sine wave of constant amplitude; if not, it continues to wait for the feedback signal and judges the feedback signal.
- step 4 judging whether the frequency of the driving signal needs to be updated according to the real-time initial frequency; if yes, proceeding to step 4); if not, directly using the real-time initial frequency as the frequency of the driving signal;
- step 5 Determine if the vibrating tube is in resonance. If yes, proceed to step 5); if not, adjust the frequency of the driving signal according to the phase difference to make the vibrating tube in resonance.
- step 5.2 Keep the current drive frequency constant and integrate the phase difference obtained in step 4.2) to determine the extent to which the drive frequency deviates from the resonant frequency. Use the integral value to compensate the flow and clear the integral value.
- the present invention provides a driving method and a Coriolis flowmeter digital driving system derived based on the method, the driving system including a vibration system, an A/D converter, and D/A conversion. And signal acquisition and processing unit; vibration system access signal acquisition through A/D converter And processing unit; the signal acquisition and processing unit is connected to the vibration system through the D/A converter.
- the vibration system includes a vibrating tube, a driving coil, a detecting coil and a power amplifying circuit; the detecting coil is respectively connected to the A/D converter through two channels; the D/A converter is connected to the driving coil through the power amplifying circuit; the driving coil triggers the vibration of the vibrating tube
- the drive coil is connected to the detection coil and feeds back the signal to the detection coil.
- the signal acquisition and processing unit comprises a phase difference detecting unit, a signal conditioning and amplitude calculating unit, a frequency updating unit, a sinusoidal signal generating unit, a switch, an automatic gain control unit, an amplitude setting input end, and a multiplication unit;
- A/D The converter is connected to the phase difference detecting unit; the phase difference detecting unit is respectively connected to the frequency updating unit and the sinusoidal signal generating unit; the sinusoidal signal generating unit is connected to the multiplication unit through the switch; the A/D converter passes signal conditioning and amplitude calculation The unit is connected to the automatic gain control unit; the A/D converter is connected to the multiplication unit through the switch; the amplitude setting input is connected to the automatic gain control unit; and the automatic gain control unit is connected to the D/A converter through the multiplication unit .
- Signal acquisition refers to the sampling of analog signals that are perceived by nature through analog-to-digital converters (A/D) and digital processing using correlation algorithms.
- A/D analog-to-digital converters
- the signal acquisition and processing unit is implemented by computer software.
- Step 1 After the power-on delay Is, the switch is closed to 1, and the traditional mode is started. When the feedback amplitude reaches half of the given amplitude or the preset amplitude, the switch 1 and 2 are turned off to make the vibrating tube. In the free oscillation state, calculate the frequency of the feedback signal.
- Step 2 After the frequency calculation is completed, the switch 2 is closed, and the frequency value is sent to the waveform synthesis module, and the phase calculation module monitors the feedback signal. When the feedback signal crosses the zero point, the waveform synthesis module is enabled to make the drive signal and the feedback signal the same. Phase, simultaneously transmitting a sine wave with a constant amplitude and a constant amplitude.
- Step 3 The phase detection module adds the feedback signals of the eight and the B signals to eliminate the phase shift caused by the Coriolis force, and calculates the phase difference between the waveforms of the two signals and the driving signal, and the phase difference. Defined as ⁇ .
- Step 4 The frequency calculation module determines whether the vibration tube is in a resonance state according to the phase difference, if For non-resonant, the frequency of the drive signal is adjusted according to the phase difference, so that the vibrating tube is in a resonant state.
- Step 5 Determine whether the vibration is in an abnormal state, such as a two-phase flow, according to the amplitude of the fluctuation of the phase difference or the magnitude of the driving signal.
- Step 6 When the vibrating tube is in two-phase flow, keep the driving frequency constant, integrate the phase difference, and judge the degree to which the driving frequency deviates from the resonant frequency according to the phase difference integral sum, and perform flow compensation according to the magnitude of this value.
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Abstract
一种科里奥利流量计数字驱动方法,其包括以下步骤:1)系统初始化流程;2)获取两路反馈线圈的实时初始频率;3)根据实时初始频率判断驱动信号的频率是否需要更新;若是,则进行步骤4);若否,则直接采用实时初始频率作为驱动信号的频率;4)对驱动信号频率更新;5)根据更新后的驱动信号频率对流量进行补偿。还提供了一种科里奥利流量计数字驱动系统。该科里奥利流量计数字驱动方法及其系统能够确保振动管始终处于谐振状态和保持稳定的振动频率,可有效监控流量管振动状态,并可提高启动速度。
Description
一种科里奥利流量计数字驱动方法及系统 技术领域
本发明涉及一种科里奥利流量计数字驱动方法及其系统。
背景技术
传统的科里奥利质量流量计的驱动装置如图 1所示,包括由振动管、驱动 线圈、 检测线圈、 功率放大单元构成的振动系统, 由于驱动线圈的驱动力来 源于电流, 因此功率放大单元为电压电流转换。 振动管内无液体流动时, 振 动系统总的传递函数为:
E(s) = kallS
U (s) " S 2 + 2ξωη8 + ωη 2 式中: Ε (s) 为检测线圈输出电压, U (s) 为功率放大器的输入电压, ξ为 U 形管阻尼率, 0¾为1;形管的无阻尼固有频率, kall为放大系数。 当]^^ 1; ξ=0扁 5;
ωη = 2* pi * 85 rad I s = 534.0708 rad I s系统的波特图如图 2所示:
由波特图可知, 当振动系统处于谐振状态时, 功放的输入电压 ί/^, 与检 测线圈输出电压 ?W相移为零, 而且在谐振点附近相移对频率的变化非常敏 感。
该驱动过程是当流速均匀时对频率的跟踪最快, 也较稳定, 但是它也存 在以下问题:
1、 振动系统的振动的必要条件是必须满足 360°的相位条件。 由于信号调 理单元、 信号放大单元、 以及管内液体流动都会出现相移, 因此, 振动系统 为了相位条件必须偏离谐振点振荡, 这就会导致一下几种后果:
1.1) 驱动电路功耗大;
1.2) 振动系统零点大;
1.3) 无法检测振动系统的固有频率;
1.4) 流体流速不均匀导致反馈线圈相位波动, 从而使振动频率波动, 频 率的稳定是流量计解算精度的重要保证, 这样势必会影响流量计的精度。
2、 当振动管处于异常状态时, 例如气液两相流或者瞬间强冲击时, 测量 管的固有频率不是一个恒定值, 拾振线圈反馈信号频率变的很不稳定, 从而 降低传感器精度。
3、 驱动信号受限于反馈信号, 无法为流量管振动提供所需频率的驱动信 号。 例如对内部液体刚度和粘度的测量, 以及流量管的初始化。
4、 驱动系统的可控性差。
发明内容
为了解决背景技术中存在的上述技术问题, 本发明提供了一种能够确保 振动管始终处于谐振状态、 能够保持稳定的振动频率、 可有效监控流量管振 动状态以及可提高启动速度的科里奥利流量计数字驱动方法及其系统。
本发明的技术解决方案是: 本发明提供了一种科里奥利流量计数字驱动 方法, 其特殊之处在于: 所述科里奥利流量计数字驱动方法包括以下步骤:
1 ) 系统初始化流程;
2 ) 获取两路反馈线圈的实时初始频率;
3 ) 根据实时初始频率判断驱动信号的频率是否需要更新; 若是, 则进行 步骤 4); 若否, 则直接采用实时初始频率作为驱动信号的频率;
4) 对驱动信号频率的更新;
5 ) 根据更新后的驱动信号频率对流量进行补偿。
上述步骤 1 ) 的具体实现方式是:
1.1 ) 系统进行上电;
1.2) 上电延时 Is后, 得到两路反馈线圈的幅值;
1.3 ) 判断两路反馈线圈幅值是否达到给定值的一半或设定值; 若是, 则 进行步骤 1.4); 若否, 则重复步骤 1.2 ) 至步骤 1.3 );
1.4) 使振动管处于自由振荡状态并计算反馈信号频率, 将计算得到的反 馈信号频率作为初始频率发送至波形合成模块。
上述步骤 2) 的具体实现方式是:
波形合成模块接收初始频率后监测两路反馈线圈的反馈信号, 判断两路 反馈线圈的反馈信号是否递增过零点; 若是, 使驱动信号和两路反馈信号同
相位, 同时发送频率为实时初始频率, 所述实时初始频率是幅值恒定的正弦 波; 若否, 则继续等待反馈信号并进行反馈信号的判断。
上述步骤 4) 的具体实现方式是:
4.1 ) 将两路反馈信号相加, 得到两路反馈信号的相加后的波形;
4.2) 将两路反馈信号的相加后的波形和驱动信号进行相位差计算, 所述 相位差定义为
4.3 ) 判断振动管是否处于谐振状态, 若是, 则进行步骤 5 ); 若否, 根据 相位差的大小调整驱动信号的频率, 使振动管处于谐振状态。
上述步骤 5 ) 的具体实现方式是:
5.1 ) 根据谐振状态时相位差的波动幅值或驱动信号的幅值大小来判断振 动是否处于非正常状态; 若处于非正常状态, 则进行步骤 5.2 ); 若处于正常状 态, 则进行不进行流量补偿;
5.2)保持当前驱动频率不变,并将步骤 4.2)所得到的相位差 进行积分, 判断驱动频率偏离谐振频率的程度, 使用积分值补偿流量, 清空积分值。
一种科里奥利流量计数字驱动系统, 其特殊之处在于: 所述驱动系统包 括振动系统、 A/D转换器、 D/A转换器以及信号采集及处理单元; 所述振动系 统通过 A/D转换器接入信号采集及处理单元; 所述信号采集及处理单元通过 D/A转换器接入振动系统。
上述振动系统包括振动管、 驱动线圈、 检测线圈以及功率放大电路; 所 述检测线圈分别通过两路接入 A/D转换器; 所述 D/A转换器通过功率放大电路 接入驱动线圈; 所述驱动线圈触发振动管振动; 所述驱动线圈与检测线圈相 连并检测线圈反馈信号。
上述信号采集及处理单元包括相位差检测单元、 信号调理和幅值计算单 元、 频率更新单元、 正弦信号生成单元、 切换开关、 自动增益控制单元、 幅 值设定输入端以及乘法运算单元; 所述 A/D转换器接入相位差检测单元; 所述 相位差检测单元分别接入频率更新单元以及正弦信号生成单元; 所述正弦信 号生成单元通过切换开关接入乘法运算单元;所述 A/D转换器通过信号调理和 幅值计算单元接入自动增益控制单元;所述 A/D转换器通过切换开关接入乘法
运算单元; 所述幅值设定输入端接入自动增益控制单元; 所述自动增益控制 单元通过乘法运算单元接入 D/A转换器。
上述信号采集及处理单元是由计算机软件实现其功能的。
本发明的优点是:
本发明提供了一种科里奥利流量计数字驱动方法, 该方法通过系统初始 化流程、 获取两路反馈线圈的实时初始频率、 根据实时初始频率判断驱动信 号的频率是否需要更新、 对驱动信号频率的更新以及根据更新后的驱动信号 频率对流量进行补偿等步骤解决了现有技术中驱动系统的可控性差、 无法为 流量管振动提供所需频率的驱动信号以及传感器精度低等技术问题。
本发明的第一个好处是可以使振动管始终处于谐振状态; 即使流体流速 不均匀, 也能够保持振动频率稳定; 依据步骤 4) 对驱动频率进行更新, 使振 动管始终处于谐振状态。 第二个好处是能有效监控流量管振动状态, 根据不 同的状态可以采取不同的驱动策略; 依据步骤 3进行驱动方法的切换 (1 ) 正 常状态向异常状态切换, 即直接驱动方法向波形合成驱动方法之间的切换; (2) 异常状态向正常切换。 第三可以有效控制启动过程, 提高启动速度, 防止长时间过载。 通过两路检测线圈的幅值, 及时判断振动管状态, 及时更 新频率, 改变驱动方式。 第四, 可以提供各种所需的驱动波形, 为刚度, 粘 度, 等参数的测量奠定了基础, 可以人为设定频率驱动, 根据驱动功率分析 附图说明
图 1是现有技术中科里奥利流量计驱动装置的原理示意框图;
图 2是基于现有技术中科里奥利流量计驱动装置的波特图;
图 3是本发明所提供的科里奥利流量计数字驱动系统的原理框图。
具体实施方式
本发明提供了一种科里奥利流量计数字驱动方法, 该科里奥利流量计数 字驱动方法包括以下步骤:
1 ) 系统初始化流程:
1.1 ) 系统进行上电;
1.2) 上电延时 Is后, 得到两路反馈线圈的幅值;
1.3 ) 判断两路反馈线圈幅值是否达到给定值的一半或设定值; 若是, 则 进行步骤 1.4); 若否, 则重复步骤 1.2 ) 至步骤 1.3 ); 反馈线圈就是检测线圈, 给定值是根据所采用的算法决定的;
1.4) 使振动管处于自由振荡状态并计算反馈信号频率, 将计算得到的反 馈信号频率作为初始频率发送至波形合成模块。
2) 获取两路反馈线圈的实时初始频率:
波形合成模块接收初始频率后监测两路反馈线圈的反馈信号, 判断两路 反馈线圈的反馈信号是否递增过零点; 若是, 使驱动信号和两路反馈信号同 相位, 同时发送频率为实时初始频率, 所述实时初始频率是幅值恒定的正弦 波; 若否, 则继续等待反馈信号并进行反馈信号的判断。
3 ) 根据实时初始频率判断驱动信号的频率是否需要更新; 若是, 则进行 步骤 4); 若否, 则直接采用实时初始频率作为驱动信号的频率;
4) 对驱动信号频率的更新:
4.1 ) 将两路反馈信号相加, 得到两路反馈信号的相加后的波形;
4.2 ) 将两路反馈信号的相加后的波形和驱动信号进行相位差计算, 所述 相位差定义为
4.3 ) 判断振动管是否处于谐振状态, 若是, 则进行步骤 5 ); 若否, 根据 相位差的大小调整驱动信号的频率, 使振动管处于谐振状态。
5 ) 根据更新后的驱动信号频率对流量进行补偿:
5.1 ) 根据谐振状态时相位差的波动幅值或驱动信号的幅值大小来判断振 动是否处于非正常状态; 若处于非正常状态, 则进行步骤 5.2 ); 若处于正常状 态, 则进行不进行流量补偿;
5.2)保持当前驱动频率不变,并将步骤 4.2)所得到的相位差 进行积分, 判断驱动频率偏离谐振频率的程度, 使用积分值补偿流量, 清空积分值。
参见图 3, 本发明在提供驱动方法的同时还提供了一种基于该方法所衍生 的科里奥利流量计数字驱动系统, 该驱动系统包括振动系统、 A/D转换器、 D/A转换器以及信号采集及处理单元; 振动系统通过 A/D转换器接入信号采集
及处理单元; 信号采集及处理单元通过 D/A转换器接入振动系统。 振动系统包括振动管、 驱动线圈、 检测线圈以及功率放大电路; 检测线 圈分别通过两路接入 A/D转换器; D/A转换器通过功率放大电路接入驱动线 圈; 驱动线圈触发振动管振动; 驱动线圈与检测线圈相连并给检测线圈反馈 信号。
信号采集及处理单元包括相位差检测单元、 信号调理和幅值计算单元、 频率更新单元、 正弦信号生成单元、 切换开关、 自动增益控制单元、 幅值设 定输入端以及乘法运算单元; A/D转换器接入相位差检测单元; 相位差检测单 元分别接入频率更新单元以及正弦信号生成单元; 正弦信号生成单元通过切 换开关接入乘法运算单元; A/D转换器通过信号调理和幅值计算单元接入自动 增益控制单元; A/D转换器通过切换开关接入乘法运算单元; 幅值设定输入端 接入自动增益控制单元; 自动增益控制单元通过乘法运算单元接入 D/A转换 器。
信号采集指的是对自然界感知的模拟信号通过模数转换器(A/D)进行采 样, 并采用相关算法进行数字处理。
信号采集及处理单元是由计算机软件实现其功能的。
结合图 3, 对于本发明所提供的驱动方法进行详细阐述:
步骤 1 : 上电延时 Is后, 切换开关闭合为 1, 与传统方式启动, 当反馈幅值 达到给定幅值的一半或预设幅值时, 断开切换开关 1, 2, 使振动管处于自由 振荡状态, 计算反馈信号的频率。
步骤 2: 频率计算完成后, 闭合切换开关 2, 将频率值发送给波形合成模 块, 同时相位计算模块监测反馈信号, 当反馈信号过零点时, 使能波形合成 模块, 使驱动信号和反馈信号同相位, 同时发送频率为初始频率, 幅值恒定 的正弦波。
步骤 3 : 相位检测模块将八、 B两路反馈信号相加, 消除由于科里奥利力带 来的相移, 将两路信号的相加后的波形和驱动信号进行相位差计算, 相位差 定义为 Δ^。
步骤 4: 频率计算模块根据相位差来判断振动管是否处于谐振状态, 如果
非谐振, 就根据相位差的大小, 调整驱动信号频率, 使振动管处于谐振状态。 步骤 5 : 根据相位差的波动幅值或驱动信号的幅值大小来判断振动是否处 于非正常状态, 例如两相流。
步骤 6: 当振动管处于两相流时, 保持驱动频率不变, 将相位差^^积分, 根据相位差积分和来判断驱动频率偏离谐振频率的程度, 根据这个值的大小 来进行流量补偿。
Claims
1、一种科里奥利流量计数字驱动方法, 其特征在于: 所述科里奥利流量 计数字驱动方法包括以下步骤:
1 ) 系统初始化流程;
2) 获取两路反馈线圈的实时初始频率;
3 )根据实时初始频率判断驱动信号的频率是否需要更新; 若是, 则进行 步骤 4); 若否, 则直接采用实时初始频率作为驱动信号的频率;
4) 对驱动信号频率的更新;
5 ) 根据更新后的驱动信号频率对流量进行补偿。
2、 根据权利要求 1所述的科里奥利流量计数字驱动方法, 其特征在于: 所述步骤 1 ) 的具体实现方式是:
1.1 ) 系统进行上电;
1.2) 上电延时 Is后, 得到两路反馈线圈的幅值;
1.3 )判断两路反馈线圈幅值是否达到给定值的一半或设定值; 若是, 则 进行步骤 1.4); 若否, 则重复步骤 1.2) 至步骤 1.3 );
1.4)使振动管处于自由振荡状态并计算反馈信号频率, 将计算得到的反 馈信号频率作为初始频率发送至波形合成模块。
3、 根据权利要求 2所述的科里奥利流量计数字驱动方法, 其特征在于: 所述步骤 2) 的具体实现方式是:
波形合成模块接收初始频率后监测两路反馈线圈的反馈信号, 判断两路 反馈线圈的反馈信号是否递增过零点; 若是, 使驱动信号和两路反馈信号同 相位, 同时发送频率为实时更新频率, 所述实时更新频率是幅值恒定的正弦 波; 若否, 则继续等待反馈信号并进行反馈信号的判断。
4、 根据权利要求 3所述的科里奥利流量计数字驱动方法, 其特征在于: 所述步骤 4) 的具体实现方式是:
4.1 ) 将两路反馈信号相加, 得到两路反馈信号的相加后的波形;
4.2)将两路反馈信号的相加后的波形和驱动信号进行相位差计算, 所述 相位差定义为
4.3 )判断振动管是否处于谐振状态, 若是, 则进行步骤 5 ); 若否, 根据 相位差的大小调整驱动信号的频率, 使振动管处于谐振状态。
5、 根据权利要求 4所述的科里奥利流量计数字驱动方法, 其特征在于: 所述步骤 5 ) 的具体实现方式是:
5.1 )根据谐振状态时相位差的波动幅值或驱动信号的幅值大小来判断振 动是否处于非正常状态; 若处于非正常状态, 则进行步骤 5.2); 若处于正常 状态, 则进行不进行流量补偿;
5.2) 保持当前驱动频率不变, 并将步骤 4.2 ) 所得到的相位差 进行积 分, 判断驱动频率偏离谐振频率的程度, 使用积分值补偿流量, 清空积分值。
6、 一种用于实现权利要求 1-5任一权利要求所述的科里奥利流量计数字 驱动方法的驱动系统, 其特征在于: 所述驱动系统包括振动系统、 A/D转换 器、 D/A转换器以及信号采集及处理单元;所述振动系统通过 A/D转换器接入 信号采集及处理单元; 所述信号采集及处理单元通过 D/A转换器接入振动系 统。
7、 根据权利要求 6所述的驱动系统, 其特征在于: 所述振动系统包括振 动管、 驱动线圈、 检测线圈以及功率放大电路; 所述检测线圈分别通过两路 接入 A/D转换器;所述 D/A转换器通过功率放大电路接入驱动线圈;所述驱动 线圈触发振动管振动; 所述驱动线圈与检测线圈相连并检测线圈反馈信号。
8、根据权利要求 6或 7所述的驱动系统, 其特征在于: 所述信号采集及处 理单元包括相位差检测单元、 信号调理和幅值计算单元、 频率更新单元、 正 弦信号生成单元、 切换开关、 自动增益控制单元、 幅值设定输入端以及乘法 运算单元; 所述 A/D转换器接入相位差检测单元; 所述相位差检测单元分别 接入频率更新单元以及正弦信号生成单元; 所述正弦信号生成单元通过切换 开关接入乘法运算单元; 所述 A/D转换器通过信号调理和幅值计算单元接入 自动增益控制单元; 所述 A/D转换器通过切换开关接入乘法运算单元; 所述 幅值设定输入端接入自动增益控制单元; 所述自动增益控制单元通过乘法运 算单元接入 D/A转换器。
9、 根据权利要求 8所述的驱动系统, 其特征在于: 所述信号采集及处理
10
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280032813.8A CN104040301B (zh) | 2012-10-30 | 2012-10-30 | 一种科里奥利流量计数字驱动方法及系统 |
PCT/CN2012/083724 WO2014067059A1 (zh) | 2012-10-30 | 2012-10-30 | 一种科里奥利流量计数字驱动方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/083724 WO2014067059A1 (zh) | 2012-10-30 | 2012-10-30 | 一种科里奥利流量计数字驱动方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014067059A1 true WO2014067059A1 (zh) | 2014-05-08 |
Family
ID=50626297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/083724 WO2014067059A1 (zh) | 2012-10-30 | 2012-10-30 | 一种科里奥利流量计数字驱动方法及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104040301B (zh) |
WO (1) | WO2014067059A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117990170B (zh) * | 2024-04-07 | 2024-07-19 | 沃森测控技术(河北)有限公司 | 用于质量流量计的振动传感器驱动控制方法、系统及设备 |
CN118243188B (zh) * | 2024-05-24 | 2024-07-23 | 山东石油化工学院 | 一种科氏流量计起振方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5295084A (en) * | 1991-10-08 | 1994-03-15 | Micromotion, Inc. | Vibrating tube densimeter |
US6311136B1 (en) * | 1997-11-26 | 2001-10-30 | Invensys Systems, Inc. | Digital flowmeter |
US6505135B2 (en) * | 2001-03-13 | 2003-01-07 | Micro Motion, Inc. | Initialization algorithm for drive control in a coriolis flowmeter |
CN101608940A (zh) * | 2009-07-23 | 2009-12-23 | 合肥工业大学 | 科氏质量流量计正负阶跃交替激励启振方法和系统 |
CN101706299A (zh) * | 2009-11-20 | 2010-05-12 | 合肥工业大学 | 一种基于dsp的科氏质量流量变送器 |
TW201120420A (en) * | 2009-12-11 | 2011-06-16 | Oval Corp | Coriolis flowmeter. |
CN102506951A (zh) * | 2011-10-28 | 2012-06-20 | 合肥工业大学 | 一种科氏质量流量计的数字驱动跟踪方法和系统 |
CN102639973A (zh) * | 2010-02-19 | 2012-08-15 | 株式会社奥巴尔 | 信号处理方法、信号处理装置以及科里奥利流量计 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1858561A (zh) * | 2006-06-06 | 2006-11-08 | 北京航空航天大学 | 处理科里奥利质量流量计非线性输出信号的测量单元 |
CN101834473B (zh) * | 2010-05-21 | 2012-05-09 | 西安电子科技大学 | 谐振跟踪式非接触供电装置及供电方法 |
-
2012
- 2012-10-30 CN CN201280032813.8A patent/CN104040301B/zh active Active
- 2012-10-30 WO PCT/CN2012/083724 patent/WO2014067059A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5295084A (en) * | 1991-10-08 | 1994-03-15 | Micromotion, Inc. | Vibrating tube densimeter |
US6311136B1 (en) * | 1997-11-26 | 2001-10-30 | Invensys Systems, Inc. | Digital flowmeter |
US6505135B2 (en) * | 2001-03-13 | 2003-01-07 | Micro Motion, Inc. | Initialization algorithm for drive control in a coriolis flowmeter |
CN101608940A (zh) * | 2009-07-23 | 2009-12-23 | 合肥工业大学 | 科氏质量流量计正负阶跃交替激励启振方法和系统 |
CN101706299A (zh) * | 2009-11-20 | 2010-05-12 | 合肥工业大学 | 一种基于dsp的科氏质量流量变送器 |
TW201120420A (en) * | 2009-12-11 | 2011-06-16 | Oval Corp | Coriolis flowmeter. |
CN102639973A (zh) * | 2010-02-19 | 2012-08-15 | 株式会社奥巴尔 | 信号处理方法、信号处理装置以及科里奥利流量计 |
CN102506951A (zh) * | 2011-10-28 | 2012-06-20 | 合肥工业大学 | 一种科氏质量流量计的数字驱动跟踪方法和系统 |
Non-Patent Citations (2)
Title |
---|
LI, ZHIYONG ET AL.: "Realization of driving technology for Coriolis mass flow meter based on FPGA.", MEASUREMENT & CONTROL TECHNOLOGY., vol. 29, no. 3, 2010, pages 4 - 7 * |
XU, WENFU.: "Study of signal processing and driving methods of Coriolis mass flow meter.", CHINESE DOCTORAL DISSERTATIONS & MASTER'S THESES FULL-TEXT DATABASE (MASTER), ENGINEERING SCIENCE AND TECHNOLOGY, vol. II, no. 3, 2004, pages 73 - 80 * |
Also Published As
Publication number | Publication date |
---|---|
CN104040301A (zh) | 2014-09-10 |
CN104040301B (zh) | 2017-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101132771B1 (ko) | 진동 유량계에 대한 구동 신호를 생성하기 위한 방법 및 계측 전자장치 | |
JP3132628B2 (ja) | コリオリ式質量流量計 | |
US20030212509A1 (en) | Startup and operational techniques for a digital flowmeter | |
CN101625259A (zh) | 振动类型的测量装置 | |
CN103874908A (zh) | 超声流量计 | |
US8442781B2 (en) | Coriolis flowmeter | |
CN102506951A (zh) | 一种科氏质量流量计的数字驱动跟踪方法和系统 | |
US20110203388A1 (en) | Signal processing method, signal processing apparatus, and coriolis flowmeter | |
CN104259081A (zh) | 一种压电换能器频率跟踪方法及系统 | |
CN102116757A (zh) | 一种液体电导率测量系统及测量方法 | |
CN102393661B (zh) | 一种科氏质量流量计数字闭环控制系统 | |
WO2014067059A1 (zh) | 一种科里奥利流量计数字驱动方法及系统 | |
EP2410300B1 (en) | Coriolis mass flowmeter | |
CN104729606B (zh) | 用于运行科里奥利质量流量测量仪的方法 | |
JP2003014515A (ja) | 超音波流量計 | |
TWI410611B (zh) | Coriolis flowmeter | |
TW201324499A (zh) | 頻率偵測振盪裝置、超音波收發系統及其頻率偵測方法 | |
Peng et al. | Digital Drive Method of Coriolis Mass Flowmeter Based on Tracking Vibration Attenuation | |
CN110095165B (zh) | 一种用于测量多相流的科里奥利质量流量计振动控制方法 | |
JPH1151727A (ja) | ガスメータ | |
Hu et al. | Experimental study and implementation of a novel digital closed-loop control system for coriolis mass flowmeter | |
JP3651110B2 (ja) | 超音波流速計 | |
JP2005241545A (ja) | ドップラー式超音波流量計、その受信電圧レベル制御装置/方法、プログラム | |
JP2005077197A (ja) | 流量計測装置 | |
CN113962109A (zh) | 应用于粘性阻塞流的蒸汽源的可显示蒸汽质量流量计 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12887569 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12887569 Country of ref document: EP Kind code of ref document: A1 |