JP2007242096A - 光ピックアップの制御装置および制御方法、光ディスク装置、光ピックアップ制御プログラム、並びに該プログラムを記録した記録媒体 - Google Patents

光ピックアップの制御装置および制御方法、光ディスク装置、光ピックアップ制御プログラム、並びに該プログラムを記録した記録媒体 Download PDF

Info

Publication number
JP2007242096A
JP2007242096A JP2006060053A JP2006060053A JP2007242096A JP 2007242096 A JP2007242096 A JP 2007242096A JP 2006060053 A JP2006060053 A JP 2006060053A JP 2006060053 A JP2006060053 A JP 2006060053A JP 2007242096 A JP2007242096 A JP 2007242096A
Authority
JP
Japan
Prior art keywords
optical
aberration
signal
optical pickup
error signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006060053A
Other languages
English (en)
Inventor
Yutaka Ishimaru
裕 石丸
Shigeru Uchida
繁 内田
Minoru Yamada
実 山田
Hiroshi Omura
洋 尾村
Sachinori Kajiwara
祥則 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006060053A priority Critical patent/JP2007242096A/ja
Publication of JP2007242096A publication Critical patent/JP2007242096A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】光ディスクの欠陥等や、何らかの突発的な異常などによる球面収差の補正への影響を抑える。
【解決手段】光ピックアップ7は、半導体レーザ4から照射された光ビームを光ディスク1に集光させ、光ディスク1からの反射光を光検出器6にて検出すると共に、ステッピングモータ33がコリメートレンズ26を光軸方向に移動させることにより球面収差を補正する。光ピックアップ7を制御するサーボ用DSP16は、光検出器6が検出した反射光の信号に基づいて収差エラー信号を生成するエラー信号生成回路41と、収差エラー信号に基づいてステッピングモータ33を制御する収差サーボ各種補償回路44とを備える。収差サーボ各種補償回路44は、エラー信号生成回路41から低域通過フィルタ700を介して収差エラー信号を取得する。
【選択図】図5

Description

本発明は、光学系に生じる球面収差を補正する収差補正手段を備える光ピックアップを制御する光ピックアップの制御装置および制御方法、光ディスク装置、光ピックアップ制御プログラム、並びに該プログラムを記録した記録媒体に関するものである。
近年、光ディスク装置において記録および/または再生される光ディスクには大容量化が求められている。そこで、大容量化を達成するための光ディスクとして、複数の記録層を有する多層ディスクが広く使われている。また、大容量化を達成するための光ディスク装置として、波長が短く、開口数の大きい対物レンズを使用した光ピックアップを備えた光ディスク装置の開発も進められている。
ここで、複数の記録層を有する多層ディスクにおいて、基板厚が異なる場合に発生する球面収差は、開口数の4乗に比例する。このため、開口数の大きい対物レンズを使用する光ディスク記録再生装置において、基板厚が異なる複数の記録層を有する多層ディスクに対応するためには、球面収差の補正が必須となる。
そこで、例えば、特許文献1に記載の情報再生装置では、液晶素子やコリメートレンズやエキスパンダレンズを利用して、サーボ機構により球面収差を補正する方法が開示されている。同文献には、基板厚さ誤差により発生する球面収差について、コリメートレンズの位置を変えて補正を行うことが記載されている。また、同文献には、上記球面収差を電気信号として検出する方法として、光ディスクからの反射光に関して、中心部分の焦点位置ずれ信号と外周部分の焦点位置ずれ信号とを検出し、その差分信号を球面収差信号として検出する方法が記載されている。この球面収差信号を、液晶の球面収差補正素子にフィードバックすることにより、球面収差をリアルタイムに検出し、補正することができる。
特開2004−171635号公報(2004年6月17日公開)
実際の光ディスクには、記録層にピット面の欠陥やキズがあったり、ディスク成形時に黒点(ブラックドット)が発生したり、表面に指紋等の汚れやゴミが付着したりしている。以下、これらを「欠陥等」と称する。このような光ディスクに対し、特許文献1に記載の情報再生装置が光ピックアップから光ビームを照射した場合、上記欠陥等において乱反射、吸収、屈折などが発生し、光ディスクからの反射光が乱れ、その結果、上記球面収差信号が乱れることになる。このため、球面収差の補正が最適な補正から逸脱することになり、最悪の場合には、球面収差を補正する光学要素が破損する虞がある。また、再び最適な補正に戻るまでに時間を費やすことになる。
本発明は、上記の問題点に鑑みてなされたものであり、その目的は、光ディスクの欠陥等や、何らかの突発的な異常などによる球面収差の補正への影響を抑えることができる光ピックアップの制御装置などを提供することにある。
本発明に係る光ピックアップの制御装置は、光源と、該光源から照射される光ビームを光ディスクに集光させる光学系と、前記光ディスクからの反射光を検出する検出手段と、前記光学系における光学要素を変化させることにより、前記光学系による球面収差を補正する収差補正手段とを備える光ピックアップを制御する光ピックアップの制御装置であって、上記課題を解決するため、前記検出手段が検出した反射光の信号に基づいて収差エラー信号を生成する信号生成手段と、前記収差エラー信号に基づいて前記光学要素を変化させるように前記収差補正手段を制御する収差補正制御手段とを備えており、前記収差補正制御手段は、前記信号生成手段から低域通過フィルタを介して前記収差エラー信号を取得することを特徴としている。
ここで、球面収差を補正するために利用される光学要素としては、光源からの光ビームが照射される領域の中心部と周辺部とで光ビームの位相を変化させる液晶素子や、光軸方向に移動させることにより光ビームを平行光から発散光または集束光に変化させるビームエキスパンダやコリメートレンズなどのレンズ要素、などが挙げられる。
上記の構成によれば、収差補正制御手段は、収差エラー信号を、低域通過フィルタを介して取得している。したがって、光ディスクの欠陥等の異常や、何らかの突発的な異常などにより、収差エラー信号が急激に変化しても、収差補正制御手段は、急激な変化の抑えられた収差エラー信号を取得することになるので、球面収差の補正への影響を抑えることができる。
なお、前記低域通過フィルタは、収差エラー信号において、異常時に発生する周波数成分を遮断するものであることが好ましい。
例えば、光ディスクの欠陥等による異常は、ディスクが1周するたびに発生することが考えられる。そこで、前記低域通過フィルタは、前記光ディスクの回転数よりも高い周波数の信号を遮断してもよい。この場合、光ディスクの欠陥等による異常に対して、球面収差の補正への影響を抑えることができる。
また、例えば、次世代光ディスク技術の一規格であるBlu−ray Discでは、20μsに相当する光ディスクの欠陥等が許容されている。そこで、前記低域通過フィルタは、50kHzよりも高い周波数の信号を遮断してもよい。この場合、許容されない光ディスク上の欠陥等による異常に対して、球面収差の補正への影響を抑えることができる。
また、前記収差補正制御手段が、光学要素を段階的に変化させるように収差補正手段を制御する場合には、前記低域通過フィルタは、1秒間に変化可能な段階数よりも高い周波数の信号を遮断してもよい。例えば、1ステップ移動させるのに1ms必要であるステッピングモータを利用している場合、1kHzよりも高い周波数の信号を遮断すればよい。
通常、収差補正制御手段は、収差補正手段を制御して、球面収差を補正可能な変化率(1秒間に変化可能な段階数)で光学要素を変化させるように設定されている。すなわち、収差エラー信号において上記変化率よりも高い周波数成分は、上記収差補正制御手段にとって球面収差の補正と無関係の成分であるといえる。したがって、上記低域通過フィルタが上記変化率よりも高い周波数の信号を遮断しても、球面収差の補正に影響を与えることが少ない。
本発明に係る光ピックアップの制御装置は、光源と、該光源から照射される光ビームを光ディスクに集光させる光学系と、前記光ディスクからの反射光を検出する検出手段と、前記光学系における光学要素を変化させることにより、前記光学系による球面収差を補正する収差補正手段とを備える光ピックアップを制御する光ピックアップの制御装置であって、上記課題を解決するため、前記検出手段が検出した反射光の信号に基づいて収差エラー信号を生成する信号生成手段と、前記収差エラー信号に基づいて前記光学要素を変化させるように前記収差補正手段を制御する収差補正制御手段と、前記収差エラー信号の異常を検知する異常検知手段とを備えており、該異常検知手段が異常を検知すると、前記収差補正制御手段は、前記球面収差の補正を停止するように前記収差補正手段を制御することを特徴としている。
ここで、収差エラー信号の異常を検知する例としては、予め設定された閾値を越える収差エラー信号を検出する場合や、短時間に急激に変動する収差エラー信号を検出する場合などが挙げられる。また、球面収差の補正を停止するには、収差補正制御手段は、収差補正手段への制御を停止または保留すればよいし、異常を検知する前の収差エラー信号を保持すればよい。
上記の構成によれば、異常検知手段が収差エラー信号の異常を検知すると、収差補正制御手段は、球面収差の補正を停止するように収差補正手段を制御する。これにより、何らかの異常により収差エラー信号が急激に変化しても、球面収差の補正が停止されるので、球面収差の補正への影響を抑えることができる。なお、球面収差の補正の再開は、異常検知手段が異常を検知しなくなったときでもよいし、上記停止時から所定期間後でもよい。
なお、光ディスクに対し光ビームを照射して情報の記録および/または再生を行う光ピックアップと、該光ピックアップを制御する光ピックアップの制御装置とを備える光ディスク装置であって、前記光ピックアップは、光源と、該光源から照射される光ビームを、光ディスクに集光させる光学系と、前記光ディスクからの反射光を検出する検出手段と、前記光学系における光学要素を変化させることにより、前記光学系による球面収差を補正する収差補正手段とを備えており、前記光ピックアップの制御装置は、上記構成の光ピックアップの制御装置であれば、上述と同様の作用効果を奏することができる。
本発明に係る光ピックアップの制御方法は、光源と、該光源から照射される光ビームを光ディスクに集光させる光学系と、前記光ディスクからの反射光を検出する検出手段と、前記光学系における光学要素を変化させることにより、前記光学系による球面収差を補正する収差補正手段とを備える光ピックアップを制御する光ピックアップの制御方法であって、上記課題を解決するため、前記検出手段が検出した反射光の信号に基づいて収差エラー信号を生成する信号生成ステップと、前記収差エラー信号のうち低域の周波数成分を通過させる低域通過ステップと、通過した収差エラー信号に基づいて前記光学要素を変化させるように前記収差補正手段を制御する収差補正制御ステップとを含むことを特徴としている。
上記の方法によれば、高域の周波数成分が遮断された収差エラー信号に基づいて収差補正手段が制御される。したがって、光ディスクの欠陥等の異常や、何らかの突発的な異常などにより、収差エラー信号が急激に変化しても、急激な変化の抑えられた収差エラー信号に基づいて収差補正手段が制御されることになるので、球面収差の補正への影響を抑えることができる。
本発明に係る光ピックアップの制御方法は、光源と、該光源から照射される光ビームを光ディスクに集光させる光学系と、前記光ディスクからの反射光を検出する検出手段と、前記光学系における光学要素を変化させることにより、前記光学系による球面収差を補正する収差補正手段とを備える光ピックアップを制御する光ピックアップの制御方法であって、上記課題を解決するため、前記検出手段が検出した反射光の信号に基づいて収差エラー信号を生成する信号生成ステップと、前記収差エラー信号の異常を検知する異常検知ステップと、前記収差エラー信号に基づいて前記光学要素を変化させるように前記収差補正手段を制御する収差補正制御ステップであって、前記異常を検知すると前記球面収差の補正を停止するように前記収差補正手段を制御する収差補正制御ステップとを含むことを特徴としている。
上記の方法によれば、異常検知手段が収差エラー信号の異常を検知すると、収差補正制御ステップにて球面収差の補正を停止するように収差補正手段を制御する。これにより、何らかの異常により収差エラー信号が急激に変化しても、球面収差の補正が停止されるので、球面収差の補正への影響を抑えることができる。
なお、上記光ピックアップの制御装置における各手段を光ピックアップ制御プログラムによりコンピュータ上で実行させることができる。さらに、上記光ピックアップ制御プログラムをコンピュータ読取り可能な記録媒体に記憶させることにより、任意のコンピュータ上で上記光ピックアップ制御プログラム、を実行させることができる。
以上のように、本発明に係る光ピックアップの制御装置は、光ディスクの欠陥等の異常や、何らかの突発的な異常などにより、収差エラー信号が急激に変化しても、急激な変化の抑えられた収差エラー信号に基づいて球面収差を補正したり、球面収差の補正を停止したりするので、球面収差の補正への影響を抑えることができるという効果を奏する。
本発明の実施形態について説明する前に、各実施形態に共通する光ディスク記録再生装置の構成について、図1〜図4を参照しつつ説明する。
図1は、本実施形態の光ディスク記録再生装置の要部構成を示している。また、図2は、光ディスク記録再生装置30における光ピックアップ7の要部構造を示している。光ディスク記録再生装置30は、光ディスク1に対して情報の記録および再生を行う装置である。
なお、光ディスク1は光学ディスクであればよく、例えば光磁気ディスクなど、その種類は限定されるものではない。また、本願発明は、光ディスク1に対して情報の再生のみを行う光ディスク再生装置にも適用できるし、光ディスク1に対して情報の記録のみを行う光ディスク記録装置にも適用できる。
図1に示されるように、光ディスク記録再生装置30は、光ピックアップ7、各種のモータ8・11・22、各種のドライバ10・12・13・14・23・25、RF(高周波)処理回路9、各種の制御回路15・16・18、信号処理回路17、および各種の外部I/F(インターフェース)19を備えている。光ディスク記録再生装置30は、ホストインターフェース19を介してホストコンピュータ20と接続している。また、光ディスク記録再生装置30は、表示装置21と接続している。
まず、光ディスク記録再生装置30の駆動部分について説明する。スピンドルモータ11は、光ディスク1を回転駆動するものである。スピンドルモータ11には、モータの回転に伴ってパルス信号を発生する回路が内蔵されており、このパルス信号がサーボ用DSP(Digital Signal Processor)16に送信される。
光ピックアップ7は、光ディスク1に光ビームを照射して光ディスク1に対して情報の記録・再生を行うものである。スレッドモータ8は、光ピックアップ7を光ディスク1に対してラジアル方向に駆動させるものである。また、チルトモータ22は、光ディスク1に対する光ピックアップ7の傾きを調整するものである。
光ピックアップ7は、図1および図2に示されるように、対物レンズ2、アクチュエータ3、半導体レーザ(LD)4、光検出器(PD)5・6、チルトセンサ24、コリメートレンズ26、コリメートレンズ駆動機構27、ビームスプリッタ28、およびミラー32を備えている。
半導体レーザ4は、光ディスク1に光ビームを照射するための光源であり、光ビームを出射する。なお、半導体レーザ4から出射される光ビームの波長は、DVD(Digital Versatile Disk)などの規格によって規定される。
ビームスプリッタ28は、半導体レーザ4から出射された光ビームの一部を反射して光検出器5に導くと共に、残りの大部分を透過するものである。また、ビームスプリッタ28は、光ディスク1からの反射光を反射して、光検出器6に導くものである。なお、ビームスプリッタの代わりにホログラムを利用することもできる。
光検出器5・6は、受光素子を有し、受光素子に入射した光を電気信号に変換するものである。光検出器5は、半導体レーザ4からの直接光を検出するためのものであり、検出した信号を自動出力制御回路15に送信する。一方、光検出器6は、光ディスク1からの反射光を検出するためのものであり、検出したサーボエラー信号、RF信号、ウォブル信号などの各種信号をRF処理回路9に送信する。
ここで、RF信号およびウォブル信号は、光ディスク1に記録されている信号(再生信号)である。RF信号は光ディスク1に記録されたデータを示すものであり、ウォブル信号は光ディスク1上のアドレスを示すものである。なお、通常、光検出器5は1個の受光素子を有し、光検出器6は複数個の受光素子を有する。
コリメートレンズ26は、半導体レーザ4から出射され、ビームスプリッタ28を通過した光ビームを、集光して略平行光に変換するものである。本実施形態では、コリメートレンズ26は、光ディスク1に照射される光ビームの球面収差を補正するため、コリメートレンズ駆動機構27によって光軸方向に移動可能となっている。
コリメートレンズ駆動機構27は、図2に示されるように、回転力を発生するステッピングモータ33と、ステッピングモータ33の回転軸から歯車などを介して回転力が伝達される送りネジ34と、送りネジ34に螺合すると共にコリメートレンズ26を保持するホルダ35とを備えている。
ステッピングモータ33は、所定のパルス電流が流れることにより回転軸を所定の角度回転させるモータである。送りネジ34は、その軸方向がコリメートレンズ26の光軸方向と平行となるように設けられている。これにより、送りネジ34における回転運動が、ホルダ35にてコリメートレンズ26の光軸方向への直線運動に変換され、その結果、コリメートレンズ26を光軸方向に移動させることができる。
ミラー32は、図2に示されるように、コリメートレンズ26と対物レンズ2との間に配置されており、コリメートレンズ26からの光ビームを屈曲させて対物レンズ2に導くと共に、対物レンズ2からの光ビームを屈曲させてコリメートレンズ26に導くためのものである。
対物レンズ2は、半導体レーザ4からの光ビームを光ディスク1に集光し、光ディスク1からの反射光を光検出器6へ導くためのものである。この対物レンズ2は、アクチュエータ3によって駆動される。
アクチュエータ3は、対物レンズ2を駆動するものである。アクチュエータ3は、アクチュエータドライバ13によって駆動制御される。
具体的には、アクチュエータ3は、対物レンズ2の光軸方向であるフォーカス方向と、光ディスク1の径方向であるラジアル方向とに対物レンズ2を駆動するものである。アクチュエータ3は、対物レンズ2の駆動機構として、対物レンズ2をフォーカス方向に駆動するボイスコイルであるフォーカスコイル52(図3参照)と、対物レンズ2をラジアル方向に駆動するボイスコイルであるトラッキングコイル56(図4参照)とを備えている。なお、アクチュエータ3の駆動機構としては、ボイスコイル以外にも公知の駆動機構を利用できる。
チルトセンサ24は、光ピックアップ7と光ディスク1との間のチルト角を検出するためのセンサである。ここで、チルト角とは、光ディスク1の記録面の法線方向と、対物レンズ2の光軸方向とがなす角度をいう。チルト角が大きいと記録および/または再生の品質が低下することになる。そこで、チルトセンサ24にてチルト角(チルトエラー)を検出し、チルト角に基づいてチルトモータ22が光ピックアップ7の傾きを調整している。これにより、最適な記録および/または再生の品質を維持することができる。
次に、光ディスク記録再生装置30の回路部分について説明する。スレッドドライバ10、スピンドルモータドライバ12、アクチュエータドライバ13、チルトドライバ23、およびコリメートレンズ駆動モータドライバ25は、それぞれ、スレッドモータ8、スピンドルモータ11、アクチュエータ3、チルトモータ22、およびステッピングモータ33を駆動制御するものである。
また、レーザドライバ14は、半導体レーザ4を駆動制御するものである。また、自動出力制御回路(APC)15は、光検出器5が検出したレーザ光の検出レベルと、基準となる基準レベルとを比較し、比較結果に基づいてレーザドライバ14を制御して、レーザ光の出力が一定となるようにする。具体的には、APC回路15は、検出レベルが基準レベルよりも大きいときにレーザ光の出力を下げ、検出レベルが基準レベルよりも小さいときにレーザ光の出力を上げるようにレーザドライバ14を制御する。
また、レーザドライバ14は、光ディスク1にデータを記録する場合、信号処理回路17から受信した記録用信号に基づいて半導体レーザ4を駆動制御する。この記録時の半導体レーザ4は、パルス発光しているが、記録のためのパワーで発光しているため、再生時に比べると光検出器6で検出される光ディスク1からの反射信号のレベルが大きくなってしまう。このため、光検出器6は、再生時と記録時とでゲイン切替えを行う機能を有している。これにより、記録時にRF処理回路9に送られるサーボエラー信号のレベルが増大することを防止している。なお、記録時には、APC回路15は、記録に適したパワーで半導体レーザ4が発光するようにAPC動作がなされる。
また、レーザドライバ14は、光ディスク1にデータを記録する場合、ライトストラテジ処理を行う。ライトストラテジ処理とは、記録用信号を実際に光ディスク1に記録するとき、光ディスク1の微妙な違いに合わせて記録方法を変更する処理をいう。ライトストラテジ処理は、光ディスク1への記録が熱記録であることを利用している。ライトストラテジ処理により、記録性能を向上させることができる。
RF処理回路9は、光検出器6から送られる信号に対し、電流信号から電圧信号へのIV変換を行うものである。RF処理回路9は、変換した電圧信号を、信号処理回路17へ出力し、A/D変換器(図3および図4を参照)を介してサーボ用DSP16へ出力する。
より詳細には、RF処理回路9は、光検出器6からの上記再生信号に対し、IV変換を行い、波形の整形処理を行った後、信号処理回路17に送信する。また、RF処理回路9は、光検出器6からの信号に基づいて、対物レンズに対するフォーカスサーボ、トラッキングサーボ等の各種サーボ用のエラー信号を生成する。RF処理回路9は、生成した各種サーボ用のエラー信号をサーボ用DSP16に送信する。
サーボ用DSP16は、光検出器6からRF処理回路9を介して受信したエラー信号に基づき各種の演算処理を行い、演算結果に基づいて、アクチュエータ3を駆動するための駆動指示信号を生成し、アクチュエータドライバ13に送信する。アクチュエータドライバ13は、上記駆動指示信号に基づいて、アクチュエータ3を駆動制御する。これにより、アクチュエータ3に対するサーボ制御が行われる。なお、アクチュエータ3に対するサーボ制御には、対物レンズ2の光軸方向へのサーボ制御であるフォーカスサーボと、光ディスク1の径方向への対物レンズ2のサーボ制御であるトラッキングサーボとがあるが、フォーカスサーボおよびトラッキングサーボの詳細については後述する。
また、サーボ用DSP16は、光ディスク1の或るトラックにジャンプするよう指示するジャンプ指示信号をシステムコントローラ18から受信すると、受信したジャンプ指示信号に基づいて、スレッドモータ8を駆動するためのスレッド駆動指示信号を生成し、スレッドドライバ10に送信する。スレッドドライバ10は、受信したスレッド駆動指示信号に基づいて、スレッドモータ8を駆動制御する。なお、サーボ用DSP16は、トラッキングサーボのエラー信号に基づいて、スレッドモータ8を駆動するためのスレッド駆動指示信号を生成し、スレッドドライバ10に送信してもよい。この場合、光ピックアップ7に対するトラッキングサーボが行われる。
また、サーボ用DSP16は、スピンドルモータ11から受信したパルス信号に基づいて、スピンドルモータ11を適当な回転速度で駆動するための駆動指示信号を生成してスピンドルモータドライバ12に送信する。スピンドルモータドライバ12は、受信した駆動指示信号に基づいて、スピンドルモータ11を駆動制御する。
また、サーボ用DSP16は、チルトセンサ14からRF処理回路9を介して受信したチルトエラー信号に基づいて、光ピックアップ7を適当な傾きに駆動するためのチルト駆動指示信号を生成してチルトドライバ23に送信する。チルトドライバ23は、受信したチルト駆動指示信号に基づいて、チルトモータ22を駆動制御する。
また、サーボ用DSP16は、光検出器6からRF処理回路9を介して受信した球面収差のエラー信号に基づき、コリメートレンズ26を駆動するための駆動指示信号を生成し、コリメートレンズ駆動モータドライバ25に送信する。コリメートレンズ駆動モータドライバ25は、上記駆動指示信号に基づいて、コリメートレンズ駆動機構27(ステッピングモータ33)を駆動制御する。これにより、コリメートレンズ26に対するサーボ制御、すなわち球面収差サーボが行われる。なお、球面収差サーボの詳細については後述する。
一方、信号処理回路17は、再生信号の中のRF信号に対し、復調、波形整形などの処理を行い、さらにエラー訂正処理を行って、元のデータを再生する。再生したデータは、信号処理回路17からホストインターフェース19を介してホストコンピュータ20に送信される。
同様に、信号処理回路17は、再生信号の中のウォブル信号に対し、復調、波形整形、エラー訂正などの処理を行って、アドレス信号を再生する。再生したアドレス信号は、信号処理回路17からシステムコントローラ18に送信され、システムコントローラ18にてアドレス情報として利用される。
また、信号処理回路17は、RF信号およびウォブル信号のそれぞれからクロック信号を生成する。このクロック信号から同期信号が生成される。例えば、上記クロック信号は、サーボ用DSP16に送信され、RF信号に同期してスピンドルモータ11の回転を制御するために利用される。
また、信号処理回路17は、光ディスク1にデータを記録する場合、ホストコンピュータ20からのデータを、ホストインターフェース19を介して受信する。信号処理回路17は、受信したデータに対し、エラー訂正のためのフラグを追加し、さらに変調処理を行った後、レーザドライバ14に記録用信号として送信する。
システムコントローラ18は、光ディスク記録再生装置30における各種構成を統括制御するためのものである。システムコントローラ18の機能は、例えばRAMやフラッシュメモリなどの記憶装置に記憶されたプログラムをCPUが実行することによって実現される。
次に、フォーカスサーボ、トラッキングサーボ、および球面収差サーボの詳細について図3および図4を参照しつつ説明する。図3は、光ディスク記録再生装置30におけるフォーカスサーボおよび球面収差サーボに関する構成を示している。図4は、光ディスク記録再生装置30におけるトラッキングサーボに関する構成を示している。
図3および図4に示されるように、サーボ用DSP16は、サーボコントローラ40、エラー信号生成回路41、フォーカスサーボ各種補償回路42、ランプ回路43、収差サーボ各種補償回路44、ジャンプ制御回路45、ステッピングモータ制御回路46、トラッキングサーボ各種補償回路47、トラックジャンプ制御回路48、および各種スイッチSW1〜SW6を備える構成である。
サーボコントローラ40は、サーボ用DSP16における各種構成を統括制御するものである。具体的には、サーボコントローラ40は、システムコントローラ18からの指示信号や、エラー信号生成回路41からの各種のエラー信号に基づいて、フォーカスサーボ各種補償回路42およびトラッキングサーボ各種補償回路47を制御したり、スイッチSW1〜SW6の入切または切替を制御したりするものである。なお、サーボコントローラ40の詳細については後述する。
エラー信号生成回路41は、光検出器6からRF処理回路9(図1参照)およびA/D変換器36を介して受信したエラー信号に基づき各種の演算処理を行い、演算結果に基づいて、フォーカスエラー信号、トラッキングエラー信号、および収差エラー信号を生成するものである。エラー信号生成回路41は、フォーカスエラー信号をフォーカスサーボ各種補償回路42に、トラッキングエラー信号をトラッキングサーボ各種補償回路47に、収差エラー信号を収差サーボ各種補償回路44にそれぞれ送信する。また、エラー信号生成回路41は、生成したフォーカスエラー信号、トラッキングエラー信号、および収差エラー信号をサーボコントローラ40に送信する。
フォーカスサーボ各種補償回路42は、フォーカスエラー信号に基づいて、アクチュエータ3のフォーカスコイル52を駆動するための駆動指示信号を生成する。このとき、フォーカスサーボ各種補償回路42は、フォーカスコイル52を最適に駆動するために各種の補償を行う。この補償の例としては、制御系の位相が180度を越えて正帰還することにより発振してしまうことを防ぐための位相補償などが挙げられる。
ランプ回路43は、動作前の基準位置からフォーカスサーボを行う位置に対物レンズ2を移動させるための駆動指示信号を生成するものである。
スイッチSW2は、フォーカスサーボ各種補償回路42からの駆動指示信号と、ランプ回路43からの駆動指示信号とを、サーボコントローラ40からの指示に基づき切り替えるものである。また、スイッチSW1は、フォーカスサーボ各種補償回路42またはランプ回路43からの駆動指示信号をアクチュエータドライバ13に送信するか否かを、サーボコントローラ40からの指示に基づき選択するものである。スイッチSW1によりフォーカスサーボのオン/オフが行われる。
フォーカスサーボ各種補償回路42またはランプ回路43から、スイッチSW2およびスイッチSW1を介しての駆動指示信号は、D/A変換器50にてアナログ信号に変換された後、アクチュエータドライバ13のフォーカス用ドライバ51に入力される。フォーカス用ドライバ51は、上記駆動指示信号を適当な信号レベルに変換して、フォーカスコイル52に入力することにより、フォーカスコイル52を駆動制御する。これにより、対物レンズ2を光軸方向の所望位置に移動できる。
一方、収差サーボ各種補償回路44は、収差エラー信号に基づく位置にコリメートレンズ26を移動するための移動指示信号を生成する。このとき、収差サーボ各種補償回路44は、コリメートレンズ駆動モータ33を最適に駆動するために各種の補償を行う。この補償の例としては、制御系の位相が180度を越えて正帰還することにより発振してしまうことを防ぐための位相補償などが挙げられる。
ジャンプ制御回路45は、動作前の基準位置から収差サーボを行う位置にコリメートレンズ26を移動させるための移動指示信号を生成するものである。
スイッチSW4は、収差サーボ各種補償回路44からの移動指示信号と、ジャンプ制御回路45からの移動指示信号とを、サーボコントローラ40からの指示に基づき切り替えるものである。また、スイッチSW3は、収差サーボ各種補償回路44またはジャンプ制御回路45からの移動指示信号をステッピングモータ制御回路46に送信するか否かを、サーボコントローラ40からの指示に基づき選択するものである。スイッチSW3により収差サーボのオン/オフが行われる。
ステッピングモータ制御回路46は、収差サーボ各種補償回路44またはジャンプ制御回路45からの移動指示信号に基づき、ステッピングモータであるコリメートレンズ駆動モータ33を駆動するための駆動指示信号を生成する。この駆動指示信号は、パルス電圧であり、コリメートレンズ駆動モータドライバ25にて所定のパルス電流に変換されて、ステッピングモータ33に出力され、ステッピングモータ33の回転軸が或る向きに所定角度回転する。これにより、コリメートレンズ26が光軸方向の或る向きに所定量移動する。また、パルス電圧が負である場合、ステッピングモータ33の回転軸が反対向きに所定角度回転し、コリメートレンズ26が光軸方向の反対向きに所定量移動する。
そこで、ステッピングモータ制御回路46は、駆動指示信号として、例えば正のパルス電圧を出力した場合に+1とカウントし、負のパルス電圧を出力した場合に−1とカウントする位置パルスカウンタ(図示せず)を備える。これにより、コリメートレンズ26の基準位置から現在位置までの距離(変化量)を検知できる。なお、ステッピングモータ制御回路46は、位置パルスカウンタのカウント値の情報をサーボコントローラ40に送信する。
ステッピングモータ制御回路46が生成した駆動指示信号は、D/A変換器53にてアナログ信号に変換された後、コリメートレンズ駆動モータドライバ25に入力される。コリメートレンズ駆動モータドライバ25は、上記駆動指示信号を適当な信号レベルに変換して、コリメートレンズ駆動モータ33に入力することにより、コリメートレンズ駆動モータ33を駆動制御する。これにより、コリメートレンズ26が光軸方向に移動する。
コリメートレンズ26が光軸方向に移動可能である場合、半導体レーザ4からコリメートレンズ26を透過した光ビームを、平行な光ビームからやや発散した光ビームとしたり、平行な光ビームからやや集束した光ビームとしたりすることができる。これにより、光ディスク1に集光する光ビームの球面収差を補正することができる。
一方、図4に示されるように、トラッキングサーボ各種補償回路47は、トラッキングエラー信号に基づいて、アクチュエータ3のトラッキングコイル56を駆動するための駆動指示信号を生成する。このとき、トラッキングサーボ各種補償回路47は、トラッキングコイル56を最適に駆動するために各種の補償を行う。この補償の例としては、制御系の位相が180度を越えて正帰還することにより発振してしまうことを防ぐための位相補償などが挙げられる。
トラックジャンプ制御回路48は、動作前の基準位置からトラッキングサーボを行う位置に対物レンズ2を移動させるための駆動指示信号を生成するものである。
スイッチSW6は、トラッキングサーボ各種補償回路47からの駆動指示信号と、トラックジャンプ制御回路48からの駆動指示信号とを、サーボコントローラ40からの指示に基づき切り替えるものである。また、スイッチSW5は、トラッキングサーボ各種補償回路47またはトラックジャンプ制御回路48からの駆動指示信号をアクチュエータドライバ13に送信するか否かを、サーボコントローラ40からの指示に基づき選択するものである。スイッチSW5によりトラッキングサーボのオン/オフが行われる。
トラッキングサーボ各種補償回路47またはトラックジャンプ制御回路48から、スイッチSW6およびスイッチSW5を介しての駆動指示信号は、D/A変換器54にてアナログ信号に変換された後、アクチュエータドライバ13のトラッキング用ドライバ55に入力される。トラッキング用ドライバ55は、上記駆動指示信号を適当な信号レベルに変換して、トラッキングコイル56に入力することにより、トラッキングコイル56を駆動制御する。これにより、対物レンズ2をラジアル方向の所望位置に移動できる。
〔実施の形態1〕
次に、本発明の一実施形態について、図5〜図7を参照して説明する。図5は、本実施形態の光ディスク記録再生装置30におけるフォーカスサーボおよび球面収差サーボに関する構成を示しており、図3に対応するものである。図5に示される本実施形態の光ディスク記録再生装置30は、図3に示される構成に比べて、エラー信号生成回路41と収差サーボ各種補償回路44との間に、LPF(低域通過フィルタ、low-pass filter)700が挿入されている点が異なり、その他の構成は同様である。
図6は、図5に示される光ディスク記録再生装置30において、光ディスク1のブラックドットBDを光ビームが通過したときの各種信号の時間変化を示している。また、図7は、図6の比較例であり、図3に示される光ディスク記録再生装置において、光ディスク1のブラックドットBDを光ビームが通過したときの各種信号の時間変化を示している。
図6および図7に示されるグラフに関して、信号は上から順番にトータル信号、収差エラー信号、およびRF信号である。また、横軸は時間を示す軸であり、縦軸は電圧を示す軸である。横軸の1目盛は200μsであり、縦軸の1目盛は信号に依存する。さらに、時間軸(横軸)は、右側から左側へ時間が経過している。すなわち、右側が古く、左側が新しい。また、一点鎖線で囲まれた期間は、光ビームがブラックドットBDを通過している期間である。
図7を参照すると、従来の光ディスク記録再生装置では、光ビームがブラックドットBDを通過すると、トータル信号、収差エラー信号、およびRF信号の全てが乱高下することが理解できる。特に、収差エラー信号が乱高下することにより、球面収差の適切な補正位置から外れることになる。また、その後に適切な補正位置に戻るまでに時間を費やすことになる。
一方、図6を参照すると、本実施形態の光ディスク記録再生装置30では、光ビームがブラックドットBDを通過しても、収差エラー信号の乱高下が発生しないことが理解できる。これにより、コリメートレンズ26が球面収差の適切な補正位置から外れることを防止でき、その後に適切な補正位置に戻るまでに時間を費やすことを回避できる。
なお、LPF700は、収差エラー信号において、異常時に発生する周波数成分を遮断するものであることが好ましい。
例えば、光ディスク1の欠陥等による異常は、光ディスク1が1周するたびに発生することが考えられる。そこで、LPF700は、光ディスク1の回転数よりも高い周波数の信号を遮断してもよい。この場合、光ディスクの欠陥等による異常に対して、球面収差の補正への影響を抑えることができる。
また、例えば、次世代光ディスク技術の一規格であるBlu−ray Discでは、20μsに相当する光ディスク1の欠陥等が許容されている。そこで、LPF700は、50kHzよりも高い周波数の信号を遮断してもよい。この場合、許容されない光ディスク1上の欠陥等による異常に対して、球面収差の補正への影響を抑えることができる。
また、コリメートレンズ26を段階的に変化させるステッピングモータ33を利用する場合、LPF700は、ステッピングモータ制御回路46がステッピングモータ33に1秒間に入力可能なパルス数よりも高い周波数の信号を遮断してもよい。例えば、1ステップ移動させるのに1ms必要であるステッピングモータ33を利用している場合、1kHzよりも高い周波数の信号を遮断すればよい。
通常、ステッピングモータ制御回路46は、ステッピングモータ33を制御して、球面収差を補正可能な変化率(1秒間に変化可能なパルス数)でコリメートレンズ26を変化させるように設定されている。すなわち、収差エラー信号において上記変化率よりも高い周波数成分は、ステッピングモータ制御回路46にとって球面収差の補正と無関係の成分であるといえる。したがって、LPF700が上記変化率よりも高い周波数の信号を遮断しても、球面収差の補正に影響を与えることが少ない。
〔実施の形態2〕
次に、本発明の別の実施形態について、図8を参照して説明する。図8は、本実施形態の光ディスク記録再生装置30のサーボ用DSP16におけるサーボコントローラ40の概略構成を示している。図示のように、サーボコントローラ40は、収差エラー信号取得部710、異常検知部711、および収差補正制御部712を備える構成である。
収差エラー信号取得部710は、エラー信号生成回路41から収差エラー信号を取得するものである。収差エラー信号取得部710は、取得した収差エラー信号を異常検知部711に送信する。
異常検知部711は、収差エラー信号取得部710からの収差エラー信号に基づいて、信号が異常であるか否かを検知するものである。信号の異常は、例えば、予め設定した閾値を越える収差エラー信号を検出したり、短時間に急激に変動する収差エラー信号を検出したりすることによって検知可能である。異常検知部711は、異常を検知すると、その旨を収差補正制御部712に通知する。
収差補正制御部712は、収差サーボ各種補償回路44、ジャンプ制御回路45、ステッピングモータ制御回路46、スイッチSW3、およびスイッチSW4に指示して、球面収差の補正を制御するものである。本実施形態では、収差補正制御部712は、異常を検知した旨を異常検知部711から通知されると、スイッチSW3をオフにする。これにより、ステッピングモータ33の駆動が停止されるので、上述と同様に、コリメートレンズ26が球面収差の適切な補正位置から外れることを防止できる。
なお、収差補正制御部712は、スイッチSW3をオフにする代わりに、ステッピングモータ制御回路46への指示を停止するように収差サーボ各種補償回路44に指示してもよいし、ステッピングモータ33へのパルス入力を停止するようにステッピングモータ制御回路46に指示してもよい。
なお、上記実施形態では、球面収差の補正は、コリメートレンズ26を光軸方向に駆動することにより行っているが、ビームエキスパンダを追加し、該ビームエキスパンダを光軸方向に駆動することにより行っても良い。また、液晶素子を追加し、該液晶素子に電圧を印加することにより行っても良い。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
最後に、サーボ用DSP16の各ブロックは、ハードウェアロジックによって構成してもよいし、次のようにCPUを用いてソフトウェアによって実現してもよい。
すなわち、サーボ用DSP16は、各機能を実現する制御プログラムの命令を実行するCPU(central processing unit)、上記プログラムを格納したROM(read only memory)、上記プログラムを展開するRAM(random access memory)、上記プログラムおよび各種データを格納するメモリ等の記憶装置(記録媒体)などを備えている。そして、本発明の目的は、上述した機能を実現するソフトウェアであるサーボ用DSP16の制御プログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体を、上記サーボ用DSP16に供給し、そのコンピュータ(またはCPUやMPU)が記録媒体に記録されているプログラムコードを読み出し実行することによっても、達成可能である。
上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ系、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスクやCD−ROM/MO/MD/DVD/CD−R等の光ディスクを含む光ディスク系、ICカード(メモリカードを含む)/光カード等のカード系、あるいはマスクROM/EPROM/EEPROM/フラッシュROM等の半導体メモリ系などを用いることができる。
また、サーボ用DSP16を通信ネットワークと接続可能に構成し、上記プログラムコードを通信ネットワークを介して供給してもよい。この通信ネットワークとしては、特に限定されず、例えば、インターネット、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網(virtual private network)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、通信ネットワークを構成する伝送媒体としては、特に限定されず、例えば、IEEE1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL回線等の有線でも、IrDAやリモコンのような赤外線、Bluetooth(登録商標)、802.11無線、HDR、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。なお、本発明は、上記プログラムコードが電子的な伝送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現され得る。
本発明に係る光ピックアップの制御装置は、光ディスク以外にも、例えば光磁気ディスクなど、任意の記録媒体に対して光ビームを照射して情報の読出しおよび/または書込みを行う光ピックアップを制御する制御装置に適用することができる。
本発明の実施形態に共通する光ディスク記録再生装置の要部構成を示すブロック図である。 上記光ディスク記録再生装置における光ピックアップの要部構造を示す斜視図である。 上記光ディスク記録再生装置におけるフォーカスサーボおよび球面収差サーボに関する概略構成を示すブロック図である。 上記光ディスク記録再生装置におけるトラッキングサーボに関する概略構成を示すブロック図である。 本発明の一実施形態である光ディスク記録再生装置におけるフォーカスサーボおよび球面収差サーボに関する概略構成を示すブロック図である。 上記光ディスク記録再生装置において、光ディスクのブラックドットを光ビームが通過したときの各種信号の時間変化を示すグラフである。 図6の比較例であり、図3に示される光ディスク記録再生装置において、光ディスクのブラックドットを光ビームが通過したときの各種信号の時間変化を示すグラフである。 本発明の他の実施形態である光ディスク記録再生装置のサーボ用DSPにおけるサーボコントローラの概略構成を示している。
符号の説明
1 光ディスク
4 半導体レーザ(光源)
6 光検出器(検出手段)
7 光ピックアップ
26 コリメートレンズ(光学要素)
27 コリメートレンズ駆動機構(収差補正手段)
30 光ディスク記録再生装置(光ディスク装置)
33 ステッピングモータ(収差補正手段)
16 サーボ用DSP(光ピックアップの制御装置)
40 サーボコントローラ(収差補正制御手段)
41 エラー信号生成回路(信号生成手段)
44 収差サーボ各種補償回路(収差補正制御手段)
46 ステッピングモータ制御回路(収差補正制御手段)
700 LPF(低域通過フィルタ)
711 異常検知部(異常検知手段)
712 収差補正制御部(収差補正制御手段)
SW3 スイッチ(収差補正制御手段)

Claims (11)

  1. 光源と、該光源から照射される光ビームを光ディスクに集光させる光学系と、前記光ディスクからの反射光を検出する検出手段と、前記光学系における光学要素を変化させることにより、前記光学系による球面収差を補正する収差補正手段とを備える光ピックアップを制御する光ピックアップの制御装置であって、
    前記検出手段が検出した反射光の信号に基づいて収差エラー信号を生成する信号生成手段と、
    前記収差エラー信号に基づいて前記光学要素を変化させるように前記収差補正手段を制御する収差補正制御手段とを備えており、
    前記収差補正制御手段は、前記信号生成手段から低域通過フィルタを介して前記収差エラー信号を取得することを特徴とする光ピックアップの制御装置。
  2. 前記低域通過フィルタは、収差エラー信号において、異常時に発生する周波数成分を遮断するものであることを特徴とする請求項1に記載の光ピックアップの制御装置。
  3. 前記低域通過フィルタは、前記光ディスクの回転数よりも高い周波数の信号を遮断するものであることを特徴とする請求項1に記載の光ピックアップの制御装置。
  4. 前記低域通過フィルタは、約50kHzよりも高い周波数の信号を遮断するものであることを特徴とする請求項1に記載の光ピックアップの制御装置。
  5. 前記収差補正制御手段は、光学要素を段階的に変化させるように、収差補正手段を制御しており、
    前記低域通過フィルタは、1秒間に変化可能な段階数よりも高い周波数の信号を遮断するものであることを特徴とする請求項1に記載の光ピックアップの制御装置。
  6. 光源と、該光源から照射される光ビームを光ディスクに集光させる光学系と、前記光ディスクからの反射光を検出する検出手段と、前記光学系における光学要素を変化させることにより、前記光学系による球面収差を補正する収差補正手段とを備える光ピックアップを制御する光ピックアップの制御装置であって、
    前記検出手段が検出した反射光の信号に基づいて収差エラー信号を生成する信号生成手段と、
    前記収差エラー信号に基づいて前記光学要素を変化させるように前記収差補正手段を制御する収差補正制御手段と、
    前記収差エラー信号の異常を検知する異常検知手段とを備えており、
    該異常検知手段が異常を検知すると、前記収差補正制御手段は、前記球面収差の補正を停止するように前記収差補正手段を制御することを特徴とする光ピックアップの制御装置。
  7. 光ディスクに対し光ビームを照射して情報の記録および/または再生を行う光ピックアップと、該光ピックアップを制御する光ピックアップの制御装置とを備える光ディスク装置であって、
    前記光ピックアップは、光源と、該光源から照射される光ビームを、光ディスクに集光させる光学系と、前記光ディスクからの反射光を検出する検出手段と、前記光学系における光学要素を変化させることにより、前記光学系による球面収差を補正する収差補正手段とを備えており、
    前記光ピックアップの制御装置は、請求項1ないし6の何れか1項に記載の光ピックアップの制御装置であることを特徴とする光ディスク装置。
  8. 光源と、該光源から照射される光ビームを光ディスクに集光させる光学系と、前記光ディスクからの反射光を検出する検出手段と、前記光学系における光学要素を変化させることにより、前記光学系による球面収差を補正する収差補正手段とを備える光ピックアップを制御する光ピックアップの制御方法であって、
    前記検出手段が検出した反射光の信号に基づいて収差エラー信号を生成する信号生成ステップと、
    前記収差エラー信号のうち低域の周波数成分を通過させる低域通過ステップと、
    通過した収差エラー信号に基づいて前記光学要素を変化させるように前記収差補正手段を制御する収差補正制御ステップとを含むことを特徴とする光ピックアップの制御方法。
  9. 光源と、該光源から照射される光ビームを光ディスクに集光させる光学系と、前記光ディスクからの反射光を検出する検出手段と、前記光学系における光学要素を変化させることにより、前記光学系による球面収差を補正する収差補正手段とを備える光ピックアップを制御する光ピックアップの制御方法であって、
    前記検出手段が検出した反射光の信号に基づいて収差エラー信号を生成する信号生成ステップと、
    前記収差エラー信号の異常を検知する異常検知ステップと、
    前記収差エラー信号に基づいて前記光学要素を変化させるように前記収差補正手段を制御する収差補正制御ステップであって、前記異常を検知すると前記球面収差の補正を停止するように前記収差補正手段を制御する収差補正制御ステップとを含むことを特徴とする光ピックアップの制御方法。
  10. 請求項1ないし6の何れか1項に記載の光ピックアップの制御装置における各手段をコンピュータに実行させることを特徴とする光ピックアップ制御プログラム。
  11. 請求項10に記載の光ピックアップ制御プログラムを記録したことを特徴とするコンピュータ読取り可能な記録媒体。
JP2006060053A 2006-03-06 2006-03-06 光ピックアップの制御装置および制御方法、光ディスク装置、光ピックアップ制御プログラム、並びに該プログラムを記録した記録媒体 Pending JP2007242096A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006060053A JP2007242096A (ja) 2006-03-06 2006-03-06 光ピックアップの制御装置および制御方法、光ディスク装置、光ピックアップ制御プログラム、並びに該プログラムを記録した記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006060053A JP2007242096A (ja) 2006-03-06 2006-03-06 光ピックアップの制御装置および制御方法、光ディスク装置、光ピックアップ制御プログラム、並びに該プログラムを記録した記録媒体

Publications (1)

Publication Number Publication Date
JP2007242096A true JP2007242096A (ja) 2007-09-20

Family

ID=38587492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006060053A Pending JP2007242096A (ja) 2006-03-06 2006-03-06 光ピックアップの制御装置および制御方法、光ディスク装置、光ピックアップ制御プログラム、並びに該プログラムを記録した記録媒体

Country Status (1)

Country Link
JP (1) JP2007242096A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009223946A (ja) * 2008-03-17 2009-10-01 Sanyo Electric Co Ltd 光ピックアップ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009223946A (ja) * 2008-03-17 2009-10-01 Sanyo Electric Co Ltd 光ピックアップ装置

Similar Documents

Publication Publication Date Title
JP4825579B2 (ja) 光ディスク装置
JP4527657B2 (ja) 情報再生装置
JP4437799B2 (ja) 光ピックアップの制御装置、そのプログラムおよび記録媒体、光ディスク装置ならびに光ピックアップの制御方法
JP4437791B2 (ja) 光ピックアップの制御装置、そのプログラムおよび記録媒体、光ディスク装置ならびに光ピックアップの制御方法
JP2007242096A (ja) 光ピックアップの制御装置および制御方法、光ディスク装置、光ピックアップ制御プログラム、並びに該プログラムを記録した記録媒体
JP4584172B2 (ja) 光ピックアップの制御装置および制御方法、光ディスク装置、光ピックアップ制御プログラム、並びに該プログラムを記録した記録媒体
JP2009015894A (ja) 光ディスク装置、光ディスク装置のコントローラ、および光ディスク装置の制御方法
JP2006120275A (ja) 光ディスク装置及びサーボ系調整方法
JP4472653B2 (ja) 光ピックアップの制御装置、光ディスク装置、制御プログラムおよびコンピュータ読み取り可能な記録媒体
JP2005259259A (ja) 光ディスク装置及びそのフォーカス制御方法
JP4463781B2 (ja) 光ピックアップの制御装置、光ディスク装置、制御プログラムおよびコンピュータ読み取り可能な記録媒体
JP2009116937A (ja) ピックアップ装置等
US20120307611A1 (en) Optical disc apparatus
JP2007234084A (ja) 光ピックアップの制御装置および光ディスク装置
JP4252011B2 (ja) 情報記録再生装置、情報記録再生方法、プログラム及び記憶媒体
US7983119B2 (en) Optical disc apparatus
JP4760389B2 (ja) ディスク装置、光ピックアップ装置及び非点収差の補正方法
JP5397395B2 (ja) 光ディスク装置
JP5153569B2 (ja) 光ディスク装置
JP4497192B2 (ja) 光ディスク装置
US8077574B2 (en) Drive device and method for controlling the same
JP2014035780A (ja) 光ディスク装置
JP2007287230A (ja) 光ピックアップの制御装置および制御方法、光ディスク装置、光ピックアップ制御プログラム、並びに該プログラムを記録した記録媒体
JP2008152822A (ja) 情報記録/再生装置とその試し書き方法
JP2011154758A (ja) 光ディスク装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817