JP2007241198A - 発色構造体の製造方法 - Google Patents

発色構造体の製造方法 Download PDF

Info

Publication number
JP2007241198A
JP2007241198A JP2006071809A JP2006071809A JP2007241198A JP 2007241198 A JP2007241198 A JP 2007241198A JP 2006071809 A JP2006071809 A JP 2006071809A JP 2006071809 A JP2006071809 A JP 2006071809A JP 2007241198 A JP2007241198 A JP 2007241198A
Authority
JP
Japan
Prior art keywords
color
spherical particles
particles
softening point
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006071809A
Other languages
English (en)
Other versions
JP4751221B2 (ja
Inventor
Mari Kurihara
真理 栗原
Seiichi Onoe
誠一 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Kaken Co Ltd
Original Assignee
SK Kaken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Kaken Co Ltd filed Critical SK Kaken Co Ltd
Priority to JP2006071809A priority Critical patent/JP4751221B2/ja
Publication of JP2007241198A publication Critical patent/JP2007241198A/ja
Application granted granted Critical
Publication of JP4751221B2 publication Critical patent/JP4751221B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

【課題】本発明は、球状粒子が規則正しく配列した、光干渉性を有する発色構造体を簡便に得ることができる製造方法を提供する。
【解決手段】本発明の製造方法は、熱塑性を有する発色構造体形成樹脂中に、平均粒子径5nm〜800nm、粒子径分布の標準偏差が20%以下で、軟化点が該発色構造体形成樹脂よりも高い球状粒子が分散してなる固形状物を、該発色構造体形成樹脂の軟化点よりも高く、該球状粒子の軟化点よりも低い温度で圧延することを特徴とする。
【選択図】図1

Description

本発明は、光干渉性を有する発色構造体の製造方法に関するものである。
自然界に存在する色は、大きく色素色と構造色に分けることができる。
色素色とは、物質そのものが色素を有しているものであるのに対し、構造色とは、物質そのものは色素を持たず、可視領域の光の波長あるいは、それ以下の微細構造を持つことで生じる光学現象(光の干渉、回折、散乱)によって発色する色のことである。構造色の代表的なものには、モルフォ蝶の羽、ルリイロスズメダイの表皮、孔雀の羽、玉虫の甲殻、オパールの遊色等を挙げることができる。
例えば、オパールの構造色は、自然で生成した粒子径の揃ったシリカ粒子が配列して、発するものである。即ち、シリカ粒子が自己集合化し、最密充填の結晶構造を形成し、このときの粒子間距離がちょうど波長(可視光)と同じオーダーであるため、周期構造により光が回折され色を呈する。
近年では、構造色を人工的につくる試みがなされており、例えば、球状粒子を規則的に配列させ、構造色を得る試みがなされている。
このような方法としては、例えば、球状粒子を自然沈降、堆積させる方法、引き上げによりコロイド結晶薄膜を作製する方法、電気泳動法、毛管法等が挙げられる。
しかし、これらの方法では、球状粒子を重力により安定化しているだけであり、外部刺激により、球状粒子の配列(コロイド結晶構造)が簡単に破壊されてしまう。このような問題に対し、球状粒子を固定化させ、球状粒子の配列(コロイド結晶構造)を長期にわたり維持する方法が種々提案されている。
例えば、非特許文献1では、球状粒子の表面に、高分子モノマーを結合させ、その後、重合することで、球状粒子を配列させ、かつ、固定化する方法が記載されている。しかし、このような方法では、重合過程が必要となり、長時間の合成時間が必要となる。
さらに、高分子モノマー等の液状物を出発物質とし、該液状物をゲル化させて、球状粒子を固定化させているため、その固定化の過程で、少なくとも揮発成分の揮発に伴う体積変化が起こっている。このような揮発成分の揮発に伴う微妙な体積変化により、球状粒子の配列が崩れる恐れがあり、発色構造体が製造できないおそれがあった。また製造できたとしても、再現性が得られ難いといった問題もあった。
また、非特許文献2では、予め球状粒子を基板表面に堆積(配列)させ、その後、バインダーを粒子間隙に流し込み固定化する方法が記載されている。この方法では、予め基板に球状粒子を配列させるために、基板への球状粒子の塗布、溶媒の蒸発、バインダー成分の流し込み、バインダー成分の硬化と多段階の工程が必要となる。
また、液状物であるバインダー成分を流し込んで硬化させるため、バインダー成分を流し込む際や、硬化させる際に、球状粒子の配列が乱れ、コロイド結晶状態が崩れる恐れがあり、発色構造体が得られない場合があった。
さらに、基板に球状粒子を精密に配列させる必要があるため、長時間を必要とし、量産性にも問題があった。
吉永 耕二、小林 恒定、辛川 弘行、高分子論文集(Koubunshi Ronbunsyu)、Vol.57、No.4(2000)、第244頁〜第250頁 Hiroshi Fudouzi、Younan Xia、Advance Materials(2003)、Vol.15、No.11、June 5、第892頁〜第896頁
本発明は上記課題を解決するために、鋭意検討をした結果、熱塑性を有する発色構造体形成樹脂中に、平均粒子径5nm〜800nm、粒子径分布の標準偏差が20%以下で、軟化点が発色構造体形成樹脂よりも高い球状粒子が分散してなる固形状物を出発物質とし、この固形状物を特定の温度で圧延することにより、球状粒子が規則的に配列した、光干渉性を有する発色構造体が得られることを見出し、本発明の完成に至った。
すなわち、本発明は以下の特徴を有するものである。
1.熱塑性を有する発色構造体形成樹脂中に、平均粒子径5nm〜800nm、粒子径分布の標準偏差が20%以下で、軟化点が該発色構造体形成樹脂よりも高い球状粒子が分散してなる固形状物を、該発色構造体形成樹脂の軟化点よりも高く、該球状粒子の軟化点よりも低い温度で圧延することを特徴とする光干渉性を有する発色構造体の製造方法。
2.球状粒子が、無機粒子であることを特徴とする1.に記載の光干渉性を有する発色構造体の製造方法。
3.発色構造体形成樹脂と球状粒子の比率が、重量比で1:0.01〜1:10であることを特徴とする1.または2.に記載の光干渉性を有する発色構造体の製造方法。
4.固形状物が、発色構造体形成樹脂と、平均粒子径5nm〜800nmの球状粒子と、溶媒からなる混合溶液から、溶媒を除去することにより得られるものであることを特徴とする1.から3.のいずれかに記載の光干渉性を有する発色構造体の製造方法。
5.熱塑性を有する発色構造体形成樹脂中に、
平均粒子径5nm〜800nm、粒子径分布の標準偏差が20%以下で、軟化点が該発色構造体形成樹脂よりも高い球状粒子、及び平均粒子径600nm以下で、軟化点が該発色構造体形成樹脂よりも高い非球状粒子が分散してなり、該発色構造体形成樹脂と該球状粒子の比率が重量比で1:0.01〜1:10、該発色構造体形成樹脂と該非球状粒子との比率が重量比で1:0.0001〜1:0.01である固形状物を、
該発色構造体形成樹脂の軟化点よりも高く、該球状粒子の軟化点及び該非球状粒子の軟化点よりも低い温度で圧延することを特徴とする光干渉性を有する発色構造体の製造方法。
本発明では、熱塑性を有する発色構造体形成樹脂中に、平均粒子径5nm〜800nm、粒子径分布の標準偏差が20%以下で、軟化点が該発色構造体形成樹脂よりも高い球状粒子が分散してなる固形状物を出発物質とし、該固形状物を特定の温度で圧延することにより、球状粒子が規則正しく配列した、光干渉性を有する発色構造体を簡便に製造することができる。本発明によれば、このような発色構造体の製造安定性、再現性、量産性等においても有利な効果が得られる。
以下、本発明を実施するための最良の形態について説明する。
本発明の発色構造体は、熱塑性を有する発色構造体形成樹脂中に、平均粒子径5nm〜800nm、粒子径分布の標準偏差が20%以下で、軟化点が該発色構造体形成樹脂よりも高い球状粒子が分散してなる固形状物を、該発色構造体形成樹脂の軟化点よりも高く、粒子の軟化点よりも低い温度で圧延して得られるものである。
本発明では、圧延時に、固形状物を出発物質とし、該固形状物を該発色構造体形成樹脂の軟化点よりも高く、球状粒子の軟化点よりも低い温度で圧延して得ることを特徴とするものである。よって、圧延時には、発色構造体形成樹脂が軟化状態(液体状態に近い状態)となり、該球状粒子の自由度がある程度緩和された状態となる。このような状態で圧延することにより、球状粒子が最密充填されやすくなり、それに伴い規則正しく配列され、発色構造体を得ることができる。
該発色構造体形成樹脂の軟化点よりも低い温度で圧延する場合は、球状粒子の自由度が拘束され、規則正しく配列されない。また球状粒子の軟化点よりも高い温度で圧延する場合、球状粒子が軟化してしまい、形状が崩れ発色されない。
また、本発明では、固形状物を出発物質とするため、取扱いが簡便であり、かつ圧延により簡便に製造することができる。特に、圧延時には、揮発する物質がほとんどなく、圧延前後における体積変化がほとんど生じないため、体積変化による球状粒子の乱れを抑えることができる。
したがって、球状粒子が均一に配列された構造体、つまり優れた光干渉性を有する構造色を呈する構造体を簡便に得ることができる。
本発明で用いる発色構造体形成樹脂は、熱塑性を有するものであり、圧延時に軟化するものであれば特に限定されず各種樹脂を用いることができる。
発色構造体形成樹脂としては、アクリル樹脂、ポリエステル樹脂、ポリエーテル樹脂、ビニル樹脂、ポリアミド樹脂、フェノール樹脂、ウレタン樹脂、フッ素樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、アクリル−スチレン樹脂、酢酸ビニル−バーサチック酸ビニルエステル樹脂、ポリビニルピロリドン樹脂、ポリビニルカプロラクタム樹脂、ポリビニルアルコール樹脂、セルロース樹脂、エポキシ樹脂、アクリル−シリコン樹脂、シリコーン樹脂、アルキッド樹脂、メラミン樹脂等が挙げられ、このような樹脂の無溶剤型、溶剤可溶型、NAD型、水可溶型、水分散型等を使用することができる。
また、発色構造体形成樹脂としては、熱塑性を有し、圧延時に軟化するものであれば、架橋ネットワークを形成するものが含まれていることが好ましい。架橋ネットワークが形成されることにより、球状粒子の配列のみだれを防ぎ、構造発色をより長期に亘って維持するとともに、耐久性、耐水性等の物性も向上させることができる。
このような架橋ネットワークを形成する樹脂としては、次に示す反応性官能基の反応性を有するもの等が挙げられる。反応性官能基の組み合わせとしては、例えば、カルボキシル基と金属イオン、カルボキシル基とカルボジイミド基、カルボキシル基とエポキシ基、カルボキシル基とアジリジン基、カルボキシル基とオキサゾリン基、水酸基とイソシアネート基、カルボニル基とヒドラジド基、エポキシ基とヒドラジド基、エポキシ基とアミノ基、加水分解性シリル基どうしの組み合わせ等が挙げられる。
このような反応性官能基の架橋は、上述した樹脂中に存在する反応性官能基同士の反応でもよいし、新たに、反応性官能基を有する架橋剤を添加してもよい。
このような反応性官能基量としては、該樹脂を形成する反応性官能基を有する単量体が、発色構造体を形成する樹脂全量に対し、50重量%以下、さらには0.5重量%以上40重量%以下、さらには1重量%以上30重量%以下含まれることが好ましい。50重量%より多い場合は、圧延時に軟化し難く、球状粒子が均一に配列された構造体が得られ難い。
本発明における発色構造体形成樹脂の軟化点は、50℃〜300℃(好ましくは80℃〜200℃)程度であることが好ましい。発色構造体形成樹脂の軟化点が50℃より低い場合、圧延により、構造発色を呈することはできるが、常温において軟化してしまい、球状粒子の配列が乱れ、構造発色を呈さなくなる可能性がある。
なお、発色構造体形成樹脂の軟化点は、示差走査熱量計(DSC)を用いて、昇温速度10℃/minで測定し、算出した値である。
本発明で用いる球状粒子は、最終的に構造色を呈するものであれば特に限定されないが、構造色を呈するためには、球状粒子の平均粒子径が5nm〜800nm(好ましくは、10nm〜500nm)であることが好ましい。
本発明では、さらに球状粒子の大きさが揃っていることにより構造色を呈することができ、具体的には、球状粒子の粒子径分布の標準偏差が20%以下(さらには10%以下、さらには5%以下)であることにより、球状粒子が規則正しく配列し、優れた構造色を呈することができる。
なお、本発明における平均粒子径は電子顕微鏡での観察による数平均値である。粒子径分布は遠心沈降法等による測定から得られるものである。
また、球状粒子のアスペクト比は、1.0以上1.2未満(さらには1.0以上1.15以下、さらには1.0以上1.1以下)であることが好ましい。このような範囲であれば、球状粒子が規則正しく配列し、より優れた構造色を呈することができる。ここに言うアスペクト比とは、粒子の長手方向の長さbと、それに対する短手方向の長さaとの比のb/aで表される値である。
球状粒子としては、例えば、シリカ、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化ジルコニウム、五酸化タンタル、酸化ガドリニウム、酸化イットリウム、酸化バリウム、酸化鉄、酸化コバルト、酸化クロム、酸化バナジウム、酸化ハフニウム、酸化マグネシウム、酸化ストロンチウム、炭酸カルシウム、炭酸水酸化亜鉛、チタン酸カリウム、水酸化酸化鉄、硫酸バリウム、炭酸バリウム、カーボンブラック等の無機粒子、ポリスチレンビーズ、アクリルビーズ、ポリオレフィンビーズ等の有機粒子等が挙げられ、これらのうち単独および2種以上を複合して用いることができる。本発明では、特に、無機粒子が好ましく、無機粒子のなかでも、特にシリカ、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化ジルコニウム、五酸化タンタル、酸化ガドリニウム、酸化イットリウム等が好ましい。
このような球状粒子の軟化点は、前記熱塑性を有する発色構造体形成樹脂の軟化点よりも高いもの使用する。例えば、球状粒子の軟化点は、前記熱塑性を有する発色構造体形成樹脂の軟化点よりも20℃以上、さらには50℃以上高いことが好ましい。
具体的に球状粒子の軟化点は、80℃以上(さらに好ましくは、100℃以上)であればよい。なお球状粒子の軟化点の上限は特に限定されないが、1500℃以下(さらには、1000℃以下)であることが好ましい。
なお、無機粒子の軟化点は、示差熱分析装置(TG-DTA)を用いて、昇温速度10℃/minで測定し、算出した値である。
また、有機粒子の軟化点は、示差走査熱量計(DSC)を用いて、昇温速度10℃/minで測定し、算出した値である。
本発明では、球状粒子として、特に無機粒子を用いることが好ましい。無機粒子は、耐久性等に優れるため、得られた発色構造体の耐久性を向上させるとともに、優れた色彩を長期にわたり維持することができる。また無機粒子は、発色構造体形成樹脂に比べて軟化点が非常に高い。よって、圧延時の加熱温度の制限が緩和され、また使用できる発色構造体形成樹脂の制限が緩和され、好ましい。
発色構造体形成樹脂と球状粒子の混合比率は、重量比で1:0.01〜1:10(さらには1:0.05〜1:8、さらには1:0.1〜1:5)であることが好ましい。このような比率であることにより、可視光領域の光の回折が効率よく行われ、人間の視覚には色として認識することができ、簡便に構造色を呈することができる。
球状粒子が少なすぎる場合は、配列された球状粒子の粒子間距離が長くなりすぎ、可視光の波長以上となってしまい、人間の視覚には色が認識されなくなってしまうため、発色構造体が得られにくい。また球状粒子が多すぎる場合は、球状粒子同士の凝集が生じやすく、また、球状粒子の固定化が困難となり、コロイド結晶に自立性がなくなってしまう。
本発明の発色構造体における発色構造体形成樹脂、球状粒子の屈折率は、特に限定されないが、発色構造体形成樹脂の屈折率は通常0.8〜1.8程度、球状粒子の屈折率は0.8〜4.5程度であればよい。また、発色構造体形成樹脂と球状粒子の屈折率の差が、0.01〜2.7、さらには0.02〜1.8程度であることが好ましく、このような範囲であれば、優れた色彩を発現することができる。
本発明の発色構造体の色彩は、球状粒子の粒子径、球状粒子の形態、球状粒子の粒子間距離、規則配列、球状粒子と発色構造体形成樹脂との屈折率の差などを適宜設定することにより、自由に設定することができる。
例えば、球状粒子の配列が160nm〜170nm程度の間隔であれば紫系、180nm〜190nm程度の間隔であれば青系、200nm〜230nm程度の間隔であれば緑系、240nm〜260nm程度の間隔であれば黄系、270nm〜290nm程度の間隔であれば赤系、などに設定することができる。
本発明では、固形状物を構成する成分として、上記球状粒子以外に、平均粒子径600nm以下で、軟化点が発色構造体形成樹脂よりも高い非球状粒子を添加することが好ましい。このような非球状粒子を添加することで、最終的に得られる発色構造体の発色がより鮮明となる。ここでの発色性向上効果は、目視にて確認することができるが、紫外−可視吸収スペクトルまたは絶対反射率の測定により確認することもできる。
このような発色性向上効果が得られる作用機構は明確ではないが、非球状粒子が球状粒子の間隙に一定間隔で入りこむことによって、圧延時における球状粒子の配列の乱れが抑制されることが寄与しているものと考えられる。
このような非球状粒子としては、その平均粒子径が600nm以下であるものを使用するが、平均粒子径50〜600nmであるものがより好適である。平均粒子径が600nmより大きい場合は、発色構造体の透明性や光沢性等が損われるおそれがある。
さらに、非球状粒子としては、アスペクト比が1.2以上600以下(好ましくは1.5以上500以下)の針状あるいは鱗片状の粒子が好適である。ここに言うアスペクト比とは、粒子の長手方向の長さbと、それに対する短手方向の長さaとの比のb/aで表される値である。
非球状粒子としては、その軟化点が前記発色構造体形成樹脂の軟化点よりも高く、特に前記発色構造体形成樹脂の軟化点よりも20℃以上、さらには50℃以上高いものが好ましい。具体的に非球状粒子の軟化点は、80℃以上(さらに好ましくは、100℃以上)であればよい。非球状粒子の軟化点の上限は特に限定されないが、通常は1500℃以下(好ましくは1000℃以下)である。
本発明における非球状粒子としては、無機粒子が好適である。非球状粒子が無機粒子であれば、発色構造体の耐久性等が高まり、初期の発色性能を長期にわたり維持することができる。さらに、無機粒子は発色構造体形成樹脂に比べて軟化点が非常に高いため、圧延時の加熱温度の制限が緩和され、また適用可能な発色構造体形成樹脂の範囲が広がる。
このような非球状粒子としては、球状粒子と同様の材質のものも使用できるが、本発明では、例えば、鱗片状シリカ、針状酸化チタン、針状酸化亜鉛、針状酸化鉄、水酸化酸化鉄、炭酸水酸化亜鉛、酸化チタン、酸化鉄、酸化アルミニウム、酸化ジルコニウム、五酸化タンタル、酸化ガドリニウム、酸化イットリウム、酸化バリウム、酸化コバルト、酸化クロム、酸化バナジウム、酸化ハフニウム、酸化マグネシウム、酸化ストロンチウム、炭酸カルシウム、チタン酸カリウム、硫酸バリウム、炭酸バリウム、クレー、カオリン、陶土、チャイナクレー、タルク、カーボンブラック、ホワイトカーボン、珪藻土、ベントナイト、ハイドロタルサイト等の無機粒子等が挙げられ、これらのうち単独および2種以上を複合して用いることができる。
発色構造体形成樹脂と非球状粒子の混合比率は、重量比で通常1:0.0001〜1:0.01、好ましくは1:0.0001〜1:0.005である。非球状粒子の添加量がこのような範囲内であれば、十分な発色性向上効果を得ることができる。
本発明では、上述した球状粒子、非球状粒子以外に、本発明の効果を阻害しない程度に、その他の粒子(例えば、粒子径分布の標準偏差が20%超の粒子や、平均粒子径が600nm超、50nm未満の粒子等)が含まれていてもよい。
その他の粒子としても、その軟化点が前記発色構造体形成樹脂の軟化点よりも高く、特に前記発色構造体形成樹脂の軟化点よりも20℃以上、さらには50℃以上高いものが好ましい。具体的にその他の粒子の軟化点は、80℃以上(さらに好ましくは、100℃以上)であればよい。その他の粒子の軟化点の上限は特に限定されないが、通常は1500℃以下(好ましくは1000℃以下)である。
本発明では、特に、拡散反射率が60%以下(好ましくは30%以下、さらに好ましくは10%以下)である粒子(球状粒子、非球状粒子、その他の粒子)を含むことが好ましい。このような粒子を含むことによって、発色構造体の透過光が抑制され、発色構造体の反射光がより鮮明に認められるため、好ましい。
本発明では特に、拡散反射率が60%以下である粒子は、全粒子のうち、0.01重量%以上80重量%以下(好ましくは0.01重量%以上50重量%以下、さらに好ましくは0.02重量%以上10重量%以下)であることが好ましい。
さらに、本発明では、非球状粒子が、拡散反射率が60%以下である粒子であることが好ましい。非球状粒子として、拡散反射率が60%以下である粒子を使用することにより、発色構造体の反射光がより鮮明になるとともに、球状粒子による優れた構造発色を呈することができる。
なお、拡散反射率は、自己分光光度計を用いて、各粉体の可視光領域(本発明では、波長:550nm)の拡散反射スペクトルを計測することによって得られる値である。
本発明では、また、蓄光性を有する粒子(球状粒子、非球状粒子、その他の粒子)を含むことが好ましい。蓄光性を有する粒子を含むことによって、該粒子から発光される光が、構造発色体を通過し、構造発色の色相とあいまって、優れた美観性を得ることができる。また、蓄光性を有する粒子の含有量を調節することで、昼間は構造発色の呈する色が明確に確認することができるとともに、夜間は蓄光性を有する粒子に由来する色彩を呈することができる。
蓄光性を有する粒子としては、例えば、CaS:Bi、CaSr:Bi、ZnS:Cu、ZnCdS:Cu等の硫化物や、MAl(M=Ca、Sr、Ba)で表示される化合物で、賦活剤としてEuを添加し、共賦活剤として、Ce、Pr、Nd、Sm、Tb、Dy、Ho、Er、Tm、Yb、Luを添加してなる物等が挙げられる。
蓄光性を有する粒子の平均粒子径は、5μm〜100μm、さらには10μm〜80μmであることが好ましい。このような範囲であることにより、上記効果をより明確に得ることができる。平均粒子径が大きすぎる場合は、構造発色性を阻害するおそれがある。平均粒子径が小さすぎる場合は、蓄光性が低下してしまい、夜間の蓄光性による効果が得られにくい。
蓄光性を有する粒子は、全粒子のうち、0.5重量%以上50重量%以下(好ましくは0.5重量%以上30重量%以下、さらに好ましくは1.0重量%以上20重量%以下)であることが好ましい。50重量%より多い場合は、球状粒子の配列を乱し、構造発色による色彩が損なわれるおそれがある。0.5重量%より少ない場合は、蓄光性が低下してしまい、夜間の蓄光性による効果が得られにくい。
また、蛍光性を有する粒子を含むことによって、蛍光性を有する粒子から発光される光が、構造発色体を通過し、構造発色の色相とあいまって、優れた美観性を得ることもできる。
本発明における固形状物を製造する方法は、特に限定されない。
本発明では、後述する圧延により、球状粒子を規則正しく配列するものであり、固形状物製造時に、必ずしも球状粒子を規則正しく配列する必要がない。そのため、簡便に固形状物を製造することができる。
例えば、固形状物を得る方法としては、球状粒子を、発色構造体形成樹脂と溶媒とからなる樹脂溶液に混合し、球状粒子が分散した混合溶液を作製し、該混合溶液から、溶媒を除去することにより、固形状物を得ることができる。溶媒の除去は、通常、30〜200℃で、5分〜24時間程度で行えばよい。球状粒子に加え非球状粒子を併せて使用する場合は、上記混合溶液にさらに非球状粒子を添加したものを作製した後、溶媒を除去すればよい。
このような方法では、球状粒子が均一、かつ高分散した固形状物を得やすく、このような固形状物を圧延することで、球状粒子が均一に配列しやすく、構造色を呈する構造体を簡便に得ることができる。
また、このような方法の製造では、発色構造体形成樹脂として、溶媒に可溶な溶媒可溶型の熱塑性を有する樹脂、特に水可溶型の熱塑性を有する樹脂を用いることが好ましい。
このような樹脂を用いた場合、発色構造体形成樹脂と溶媒とからなる樹脂溶液中に球状粒子が均一に高分散しやすく、かつ得られる固形状物において発色構造体形成樹脂や球状粒子の偏りが抑えられるため好ましい。さらに、透明性に優れる固形状物が得られやすく、良好な構造発色性を示すことができる。特に、発色構造体形成樹脂と溶媒の相溶性に優れるものを選択することによって、よりいっそう優れた構造発色性を示すことができる。
ここで用いられる溶媒としては、水、メタノール、エタノール、プロパノール、イソプロピルアルコール、n−ブチルアルコール、s−ブチルアルコール、t−ブチルアルコール、ベンジルアルコール、ダイアセトンアルコール等のアルコール類、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリメチロールエタン、グリセリン等の多価アルコール類、セロソルブ、ブチルセロソルブ、イソブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールt−ブチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン等のケトン類、n−ブタン、n−ヘキサン、シクロヘキサン、n−ペンタン、n−オクタン、n−ノナン、n−デカン、n−ウンデカン、n−ドデカン等の脂肪族炭化水素類、トルエン、キシレン、ソルベントナフサ等の芳香族炭化水素類、酢酸エチル、酢酸n−プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート等のエステル類等が挙げられる。
本発明では、溶媒として特に水を含むものが好ましく、よって、発色構造体形成樹脂として、水に可溶な水可溶型の熱塑性を有する樹脂を用いることが好ましい。
このような方法では、溶媒に可溶な溶媒可溶型の熱塑性を有する樹脂自体が、球状粒子の分散剤としての効果を発揮するものが好ましい。
例えば、球状粒子表面が負の電荷をもつものであれば、ノニオン性および/またはアニオン性の熱塑性を有する樹脂、また、球状粒子表面が正の電荷をもつものであれば、ノニオン性および/またはカチオン性の熱塑性を有する樹脂を選択することが好ましい。また、立体障害効果を有するものや、相互作用(疎水親水相互作用を含む)を有するもの、球状粒子と溶媒との界面を活性させる効果を有するものでもよい。
例えば、球状粒子として、無機粒子を用いる場合、無機粒子の表面は負の電荷を帯びるものが多く、熱塑性を有する樹脂としてはノニオン性および/またはアニオン性の熱塑性を有する樹脂を用いることが好ましい。
本発明における固形状物を形成する成分としては、上述の成分の他に、本発明の効果を阻害しない程度に、分散剤、可塑剤、消泡剤、レベリング剤、増粘剤、造膜助剤、紫外線吸収剤、顔料等の添加剤が混合されていてもよい。
本発明では、このようにして得られた固形状物を、発色構造体形成樹脂の軟化点よりも高く、球状粒子の軟化点よりも低い温度で圧延することを特徴とする。
このような温度領域で圧延することにより、発色構造体形成樹脂が液体に近い状態になり、球状粒子が動きやすくなり、その結果、球状粒子を最密に充填させることができ、規則正しく配列させることが可能となり、簡便に光干渉性を有する発色構造体を得ることができる。
圧延温度が発色構造体形成樹脂の軟化点よりも低い場合、圧延できず、構造発色性が得られ難くなってしまう。また、球状粒子の軟化点よりも高い温度の場合、球状粒子が溶融してしまい、発色構造体が得られなくなってしまう。
固形状物において球状粒子と非球状粒子を併用する場合は、発色構造体形成樹脂の軟化点よりも高く、球状粒子の軟化点及び非球状粒子の軟化点よりも低い温度領域で圧延を行えばよい。
また、本発明では、特に、固形状物を出発物質とするため、揮発成分がほとんどなく、圧延前後における体積変化がほとんどない。したがって、体積変化にともなう、球状粒子の乱れを抑えることができ、球状粒子が均一に配列された光干渉性を有する発色構造体を簡便に得ることができる。
液状物やゲル状物を出発物質とする場合、揮発成分が蒸発してしまい、製造前後で体積変化が起こってしまう。よって、体積変化に伴う、球状粒子の乱れが生じ、優れた光干渉性を有する発色構造体を得ることが難しい。また、揮発成分の蒸発を抑制するために液状物やゲル状物を封止して製造する場合もあるが、製造過程が複雑になり、簡便な方法とはいえない。
また、加熱圧延時の圧力は、特に限定されないが、固形状物の面積が約2倍以上に引き伸ばされることが好ましく、1MPa〜100MPa(さらには10MPa〜50MPa)の加圧であることが好ましい。それ以下である場合、樹脂が引き伸ばされ難く、球状粒子が規則正しく配列しにくく、構造発色性が生じ難くなるため好ましくない。また、逆に、加圧が高い場合は、得られる発色構造体が薄くなり、光の回折よりも光の透過率の方が高くなり、構造発色性が認められにくくなるため好ましくない。
本発明の固形状物は、圧延により、面方向に対し、垂直および平行方向に圧力を加えることで、球状粒子の配列が規則正しくなり、構造発色性が生じるものである。ここで、面方向に対し、垂直および平行方向に圧力を加える具体的な方法としては、2本のロールを用いて、固形状物を湾曲させ、ロール側ともう一つのロール側の移動距離に差を生じさせることにより、面方向に対し、平行方向に圧力が加えられる。また、この時に、2本のロールで固形状物を挟み込むことで、面方向に対し垂直方向に圧力を加えることで発色構造体を得ることができる。また、1本のロールを用いて行うことも可能であり、固形状物に圧力を加え、ロールを軸に180°方向転換させて、せん断応力を加えることにより、発色構造体を得ることもできる。その際、固形状物を、発色構造体形成樹脂の軟化点よりも、軟化点が高い柔軟なフィルムで挟み込むことで球状粒子が配列し易くなる。
(実施例1)
表1に示す原料を用い、表2に示す混合比率で、温度23℃、相対湿度50%(以下、「標準状態」ともいう。)で、樹脂Aを溶媒Aに混合した樹脂溶液を作製し、該樹脂溶液に粒子Aを混合して混合溶液を作製した。
該混合溶液を、アルミニウム製の容器(φ1000mm)に50g入れ、120℃、3時間で、溶媒Aを揮発させ、固形状物を得た。得られた固形状物は、透明であり、粒子が均一に分散していた。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、湾曲させた。圧延後の物体は、光による干渉を示し、青系の優れた構造発色を示した。さらに、得られた発色構造体を、標準状態で1週間静置しておいたところ、1週間後も優れた構造発色を示した。
Figure 2007241198
Figure 2007241198
(実施例2)
表1に示す原料を用い、表2に示す混合比率で、実施例1と同様の方法で、固形状物を得た。得られた固形状物は、透明であり、粒子が均一に分散していた。
得られた固形状物を、PENフィルムに挟み込み、加熱圧延ローラーを用いて、170℃、30MPaで圧延、繰り返し湾曲させた。圧延後の物体は、光による干渉を示し、紫系の優れた構造発色を示した。さらに、得られた発色構造体を、標準状態で1週間静置しておいたところ、1週間後も優れた構造発色を示した。
(実施例3)
表1に示す原料を用い、表2に示す混合比率で、実施例1と同様の方法で、固形状物を得た。得られた固形状物は、透明であり、粒子が均一に分散していた。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、繰り返し湾曲させた。圧延後の物体は、光による干渉を示し、赤系の優れた構造発色を示した。さらに、得られた発色構造体を、標準状態で1週間静置しておいたところ、1週間後も優れた構造発色を示した。
(実施例4)
表1に示す原料を用い、表2に示す混合比率で、実施例1と同様の方法で、固形状物を得た。得られた固形状物は、透明であり、粒子が均一に分散していた。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、80℃、30MPaで圧延、繰り返し湾曲させた。圧延後の物体は、光による干渉を示し、赤系の優れた構造発色を示した。さらに、得られた発色構造体を、標準状態で1週間静置しておいたところ、1週間後も優れた構造発色を示した。
(実施例5)
表1に示す原料を用い、表2に示す混合比率で、実施例1と同様の方法で、固形状物を得た。得られた固形状物は、透明であり、粒子が均一に分散していた。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、湾曲させた。圧延後の物体は、光による干渉を示し、紫系の構造発色を示した。さらに、得られた発色構造体を、標準状態で1週間静置しておいたところ、1週間後も優れた構造発色を示した。
(実施例6)
表1に示す原料を用い、表2に示す混合比率で、実施例1と同様の方法で、固形状物を得た。得られた固形状物は、透明であり、粒子が均一に分散していた。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、湾曲させた。圧延後の物体は、光による干渉を示し、紫系の構造発色を示した。
(実施例7)
実施例1で得られた固形状物を、PETフィルムに挟み込み、加熱プレス器を用いて、130℃、30MPaでプレス後すぐに、非加熱の圧延ローラーを用いて、湾曲させた。圧延後の物体は、光による干渉を示し、紫系の優れた構造発色を示した。さらに、得られた発色構造体を、標準状態で1週間静置しておいたところ、1週間後も優れた構造発色を示した。
(実施例8)
表1に示す原料を用い、表2に示す混合比率で、実施例1と同様の方法で、固形状物を得た。得られた固形状物は、透明であり、粒子が均一に分散していた。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、湾曲させた。圧延後の物体は、光による干渉を示し、赤系の優れた構造発色を示した。
(実施例9)
表1に示す原料を用い、表2に示す混合比率で、実施例1と同様の方法で、固形状物を得た。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、湾曲させた。圧延後の物体は、光による干渉を示し、紫系の優れた構造発色を示した。
(実施例10)
表1に示す原料を用い、表2に示す混合比率で、実施例1と同様の方法で、固形状物を得た。得られた固形状物は、透明であり、粒子が均一に分散していた。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、繰り返し湾曲させた。圧延後の物体は、光による干渉を示し、青緑系の優れた構造発色を示した。さらに、得られた発色構造体を、標準状態で1週間静置しておいたところ、1週間後も優れた構造発色を示した。
(実施例11)
表1に示す原料を用い、表2に示す混合比率で、実施例1と同様の方法で、固形状物を得た。得られた固形状物は、赤色透明であり、粒子が均一に分散していた。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、繰り返し湾曲させた。圧延後の物体は、光による干渉を示し、黄色系の強い構造発色を示した。また、圧延前後の紫外可視吸収スペクトルから算出した差スペクトル(以下単に「差スペクトル」という)が実施例10に比べ鋭くなることが確認できた(図2)。さらに、得られた発色構造体を、標準状態で1週間静置しておいたところ、1週間後も優れた構造発色を示した。
(実施例12)
表1に示す原料を用い、表2に示す混合比率で、実施例1と同様の方法で、固形状物を得た。得られた固形状物は、無色透明であり、粒子が均一に分散していた。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、繰り返し湾曲させた。圧延後の物体は、光による干渉を示し、黄色系の強い構造発色を示した。また、実施例10に比べ差スペクトルが鋭くなることが確認できた(図3)。さらに、得られた発色構造体を、標準状態で1週間静置しておいたところ、1週間後も優れた構造発色を示した。
(実施例13)
表1に示す原料を用い、表2に示す混合比率で、実施例1と同様の方法で、固形状物を得た。得られた固形状物は、無色透明であり、粒子が均一に分散していた。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、繰り返し湾曲させた。圧延後の物体は、光による干渉を示し、青色系の強い構造発色を示した。さらに、得られた発色構造体を、標準状態で1週間静置しておいたところ、1週間後も優れた構造発色を示した。また、得られた発色構造体を、水中静置しておいたところ、24時間後も優れた構造発色を示した。
(実施例14)
表1に示す原料を用い、表2に示す混合比率で、標準状態で、樹脂Dを溶媒Aに混合した樹脂溶液を作製し、該樹脂溶液に粒子Aを混合して混合溶液を作製した。
次に、該混合溶液と架橋剤Aを混合し、アルミニウム製の容器(φ1000mm)に50g入れ、120℃、3時間で、溶媒Aを揮発させ、固形状物を得た。得られた固形状物は、無色透明であり、粒子が均一に分散していた。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、繰り返し湾曲させた。圧延後の物体は、光による干渉を示し、緑色系の強い構造発色を示した。さらに、得られた発色構造体を、標準状態で1週間静置しておいたところ、1週間後も優れた構造発色を示した。また、得られた発色構造体を、水中静置しておいたところ、24時間後も優れた構造発色を示した。
(実施例15)
表1に示す原料を用い、表2に示す混合比率で、実施例1と同様の方法で、固形状物を得た。得られた固形状物は、黒色透明であり、粒子が均一に分散していた。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、繰り返し湾曲させた。圧延後の物体は、光による干渉を示し、鮮明な青系の優れた構造発色を示した。さらに、得られた発色構造体を、標準状態で1週間静置しておいたところ、1週間後も優れた構造発色を示した。
(実施例16)
表1に示す原料を用い、表2に示す混合比率で、実施例1と同様の方法で、固形状物を得た。得られた固形状物は、黄色透明であり、粒子が均一に分散していた。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、繰り返し湾曲させた。圧延後の物体は、光による干渉を示し、青系の優れた構造発色を示した。また、フィルムの背面への可視光透過性も抑制されることが確認できた。さらに、得られた構造発色体を、標準状態で1週間静置しておいたところ、1週間後も優れた構造発色を示した。また、蛍光灯下で20分放置し、暗所で蓄光性を確認したところ、目視で2時間の蓄光性が確認された。
(実施例17)
表1に示す原料を用い、表2に示す混合比率で、実施例1と同様の方法で、固形状物を得た。得られた固形状物は、黒色透明であり、粒子が均一に分散していた。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、繰り返し湾曲させた。圧延後の物体は、光による干渉を示し、鮮明な青系の優れた構造発色を示した。さらに、得られた発色構造体を、標準状態で1週間静置しておいたところ、1週間後も優れた構造発色を示した。
(実施例18)
表1に示す原料を用い、表2に示す混合比率で、実施例1と同様の方法で、固形状物を得た。得られた固形状物は、黒色透明であり、粒子が均一に分散していた。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、繰り返し湾曲させた。圧延後の物体は、光による干渉を示し、青系の優れた構造発色を示した。また、フィルムの背面への可視光透過性も抑制されることが確認できた。さらに、得られた構造発色体を、標準状態で1週間静置しておいたところ、1週間後も優れた構造発色を示した。また、蛍光灯下で20分放置し、暗所で蓄光性を確認したところ、目視で2時間の蓄光性が確認された。
(実施例19)
表1に示す原料を用い、表2に示す混合比率で、標準状態で、樹脂Dを溶媒Aに混合した樹脂溶液を作製し、該樹脂溶液に粒子A、粒子G、粒子Jを混合して混合溶液を作製した。
次に、該混合溶液と架橋剤Aを混合し、アルミニウム製の容器(φ1000mm)に50g入れ、120℃、3時間で、溶媒Aを揮発させ、固形状物を得た。得られた固形状物は、橙色透明であり、粒子が均一に分散していた。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、繰り返し湾曲させた。圧延後の物体は、光による干渉を示し、緑色系の強い構造発色を示した。さらに、得られた発色構造体を、標準状態で1週間静置しておいたところ、1週間後も優れた構造発色を示した。また、得られた発色構造体を、水中静置しておいたところ、24時間後も優れた構造発色を示した。また、蛍光灯下で20分放置し、暗所で蓄光性を確認したところ、目視で2時間の蓄光性が確認された。
(実施例20)
表1に示す原料を用い、表2に示す混合比率で、実施例1と同様の方法で、固形状物を得た。得られた固形状物は、黒色透明であり、粒子が均一に分散していた。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、繰り返し湾曲させた。圧延後の物体は、光による干渉を示し、赤系の優れた構造発色を示した。さらに、得られた発色構造体を、標準状態で1週間静置しておいたところ、1週間後も優れた構造発色を示した。また、蛍光灯下で20分放置し、暗所で蓄光性を確認したところ、目視で2時間の蓄光性が確認された。
Figure 2007241198
(比較例1)
表1に示す原料を用い、表2に示す混合比率で、粒子Aを粒子Dに替えた以外は、実施例1と同様の方法で、固形状物を得た。得られた固形状物は、白色であり、粒子が均一に分散していた。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、湾曲させた。圧延後の物体は、構造発色性を示さず、白色のフィルムになった。
(比較例2)
表1に示す原料を用い、表2に示す混合比率で、粒子Aを粒子Eに替えた以外は、実施例1と同様の方法で、固形状物を得た。得られた固形状物は、透明であり、粒子が均一に分散していた。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、湾曲させた。圧延後の物体は、光による干渉を示さず、得られたフィルムは白色であった。
(比較例3)
表1に示す原料を用い、表2に示す混合比率で、樹脂Aを樹脂Bに、溶媒Aを溶媒Bに、粒子Aを粒子Cに替えた以外は、実施例1と同様の方法で、固形状物を得た。得られた固形状物は、透明であり、粒子が均一に分散していた。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、湾曲させたが、圧延することが不可能であり、構造発色性が認められなかった。
(比較例4)
実施例1で得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、40℃、30MPaで圧延、湾曲させたが、圧延することが不可能であり、構造発色性が認められなかった。
(比較例5)
実施例4で得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、湾曲させた。圧延後の物体は、光による干渉を示さず、得られたフィルムは白色であった。
(比較例6)
表1に示す原料を用い、表2に示す混合比率で、標準状態で、溶媒Aと粒子Aを混合し、ディップコート法で、アルミニウム基板へ塗布し、構造発色性を有するフィルムを作製した。得られたフィルムは、光による干渉を示したが、自立性がなく、指で擦ると粒子が剥離した。
(比較例7)
表1に示す原料を用い、表2に示す混合比率で、粒子Aを粒子Fに替えた以外は、実施例1と同様の方法で、固形状物を得た。
得られた固形状物を、PETフィルムに挟み込み、加熱圧延ローラーを用いて、130℃、30MPaで圧延、湾曲させた。圧延後の物体は、光による干渉を示さなかった。
実施例10で得られた発色構造体の差スペクトルを示す図である。 実施例11で得られた発色構造体の差スペクトルを示す図である。 実施例12で得られた発色構造体の差スペクトルを示す図である。

Claims (5)

  1. 熱塑性を有する発色構造体形成樹脂中に、平均粒子径5nm〜800nm、粒子径分布の標準偏差が20%以下で、軟化点が該発色構造体形成樹脂よりも高い球状粒子が分散してなる固形状物を、該発色構造体形成樹脂の軟化点よりも高く、該球状粒子の軟化点よりも低い温度で圧延することを特徴とする光干渉性を有する発色構造体の製造方法。
  2. 球状粒子が、無機粒子であることを特徴とする請求項1に記載の光干渉性を有する発色構造体の製造方法。
  3. 発色構造体形成樹脂と球状粒子の比率が、重量比で1:0.01〜1:10であることを特徴とする請求項1または請求項2に記載の光干渉性を有する発色構造体の製造方法。
  4. 固形状物が、発色構造体形成樹脂と、平均粒子径5nm〜800nmの球状粒子と、溶媒からなる混合溶液から、溶媒を除去することにより得られるものであることを特徴とする請求項1から請求項3のいずれかに記載の光干渉性を有する発色構造体の製造方法。
  5. 熱塑性を有する発色構造体形成樹脂中に、
    平均粒子径5nm〜800nm、粒子径分布の標準偏差が20%以下で、軟化点が該発色構造体形成樹脂よりも高い球状粒子、及び平均粒子径600nm以下で、軟化点が該発色構造体形成樹脂よりも高い非球状粒子が分散してなり、該発色構造体形成樹脂と該球状粒子の比率が重量比で1:0.01〜1:10、該発色構造体形成樹脂と該非球状粒子との比率が重量比で1:0.0001〜1:0.01である固形状物を、
    該発色構造体形成樹脂の軟化点よりも高く、該球状粒子の軟化点及び該非球状粒子の軟化点よりも低い温度で圧延することを特徴とする光干渉性を有する発色構造体の製造方法。










JP2006071809A 2005-03-31 2006-03-15 発色構造体の製造方法 Expired - Fee Related JP4751221B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006071809A JP4751221B2 (ja) 2005-03-31 2006-03-15 発色構造体の製造方法

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP2005104590 2005-03-31
JP2005104590 2005-03-31
JP2005195527 2005-07-04
JP2005195527 2005-07-04
JP2005229763 2005-08-08
JP2005229763 2005-08-08
JP2005368869 2005-12-21
JP2005368869 2005-12-21
JP2006035838 2006-02-13
JP2006035838 2006-02-13
JP2006071809A JP4751221B2 (ja) 2005-03-31 2006-03-15 発色構造体の製造方法

Publications (2)

Publication Number Publication Date
JP2007241198A true JP2007241198A (ja) 2007-09-20
JP4751221B2 JP4751221B2 (ja) 2011-08-17

Family

ID=38586763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006071809A Expired - Fee Related JP4751221B2 (ja) 2005-03-31 2006-03-15 発色構造体の製造方法

Country Status (1)

Country Link
JP (1) JP4751221B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012837A (ja) * 2006-07-07 2008-01-24 Sk Kaken Co Ltd 積層体
JP2010020130A (ja) * 2008-07-11 2010-01-28 Konica Minolta Business Technologies Inc 表示部材およびその製造方法
JP2021182153A (ja) * 2015-04-14 2021-11-25 フェイス インターナショナル コーポレーション 電磁エネルギーの散乱性選択波長を生成するためのシステム及び方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211322A (ja) * 1995-02-08 1996-08-20 Nissan Motor Co Ltd 発色構造体
JP2001142099A (ja) * 1999-11-12 2001-05-25 Canon Inc 発色素子およびその発色方法
JP2003075643A (ja) * 2001-06-22 2003-03-12 Daicel Chem Ind Ltd 偏光素子並びにそれを用いた面光源装置及び液晶表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211322A (ja) * 1995-02-08 1996-08-20 Nissan Motor Co Ltd 発色構造体
JP2001142099A (ja) * 1999-11-12 2001-05-25 Canon Inc 発色素子およびその発色方法
JP2003075643A (ja) * 2001-06-22 2003-03-12 Daicel Chem Ind Ltd 偏光素子並びにそれを用いた面光源装置及び液晶表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012837A (ja) * 2006-07-07 2008-01-24 Sk Kaken Co Ltd 積層体
JP2010020130A (ja) * 2008-07-11 2010-01-28 Konica Minolta Business Technologies Inc 表示部材およびその製造方法
JP2021182153A (ja) * 2015-04-14 2021-11-25 フェイス インターナショナル コーポレーション 電磁エネルギーの散乱性選択波長を生成するためのシステム及び方法
JP7296648B2 (ja) 2015-04-14 2023-06-23 フェイス インターナショナル コーポレーション 電磁エネルギーの散乱性選択波長を生成するためのシステム及び方法

Also Published As

Publication number Publication date
JP4751221B2 (ja) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4937827B2 (ja) 発色構造体の製造方法
Gallei Functional Polymer Opals and Porous Materials by Shear‐Induced Assembly of Tailor‐Made Particles
JP4895747B2 (ja) 積層体
CN105949384B (zh) 一种温敏变色光学材料的制备方法及应用
CN112965268B (zh) 具有多角度光致变色效果的柔性光子晶体及其制备方法
EP2371908A2 (en) Pigment consisting of photonic crystals for a paint composition, and method for producing same
CN109021481B (zh) 一种具有亮丽珠光色泽的彩色反蛋白石结构光子晶体塑料薄膜、其制备方法及应用
JP5026855B2 (ja) 発色構造体の製造方法
WO2005080475A2 (de) Verwendung von kern-mantel-partikeln zur herstellung invers-opaler strukturen
DE112011101024T5 (de) Beschichtungen mit hohem Brechungsindex und ihre Verwendung beim Schutz von Oberflächenreliefstrukturen
JP2017062271A (ja) コア−シェル粒子を含む膜及び物品
JP2007154198A (ja) フォトクロミックナノ粒子の製法及び該製法により調製されるフォトクロミックナノ粒子
KR20060113645A (ko) 유동성 콜로이드 결정체 및 이를 이용하여 삼차원 정합체를제조하는 방법
CN109897204A (zh) 一种大面积水写显色的无色透明光子晶体膜及其制备方法
Ge et al. Niche applications of magnetically responsive photonic structures
Clough et al. Photonic Paints: Structural Pigments Combined with Water‐Based Polymeric Film‐Formers for Structurally Colored Coatings
JP4751221B2 (ja) 発色構造体の製造方法
JP2004517968A (ja) 筆記手段としての固体マーキング組成物、筆記用具、光学的に可変なマーキング層および複数の光学的に可変な顔料の使用
EP1966342A2 (de) Photochromer kunststoffgegenstand
JP4675262B2 (ja) 積層体
JP5190978B2 (ja) 積層体の製造方法
JP4751215B2 (ja) 積層体
KR102175097B1 (ko) 광결정 구조체의 제조방법 및 이에 의해 제조되는 광결정 구조체
Xiang et al. Three-layer structured soft particles to construct photonic paper exhibiting responsive spatio-temporal color patterns
WO2017065641A2 (ru) Способ цветной интерференционной струйной печати

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees