JP2007233822A - 自動運転装置及び自動運転装置が有する可動部の移動方法 - Google Patents

自動運転装置及び自動運転装置が有する可動部の移動方法 Download PDF

Info

Publication number
JP2007233822A
JP2007233822A JP2006056126A JP2006056126A JP2007233822A JP 2007233822 A JP2007233822 A JP 2007233822A JP 2006056126 A JP2006056126 A JP 2006056126A JP 2006056126 A JP2006056126 A JP 2006056126A JP 2007233822 A JP2007233822 A JP 2007233822A
Authority
JP
Japan
Prior art keywords
movable part
unit
movable
operation step
automatic driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006056126A
Other languages
English (en)
Other versions
JP4844172B2 (ja
Inventor
Takashi Murozaki
隆 室崎
Isao Nagata
功 永田
Masumi Uejima
益美 上島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006056126A priority Critical patent/JP4844172B2/ja
Publication of JP2007233822A publication Critical patent/JP2007233822A/ja
Application granted granted Critical
Publication of JP4844172B2 publication Critical patent/JP4844172B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Numerical Control (AREA)

Abstract

【課題】1回の動作を複数の動作ステップに分割し、その複数の動作ステップを予め定められた順序にしたがって移動する少なくとも一つの可動部を有する自動運転装置であって、停止中の可動部を煩雑な操作を要することなく所定の位置へ移動できる自動運転装置、及び可動部の移動方法を提供する。
【解決手段】自動運転装置(100)は、可動部(10、20)を撮影した画像データを取得する撮像部(30)と、各動作ステップにおける移動経路情報及び動作ステップの順序に基づいて可動部を移動させる制御部(40)とを有し、制御部(40)は、画像データに基づいて可動部の位置を検出する位置検出手段(42)と、可動部の位置及び移動経路情報に基づいて可動部が停止している動作ステップを推定する動作ステップ推定手段(44)とを有し、可動部をその推定された動作ステップから上記順序又はその逆順にしたがって所定の位置へ移動させる。
【選択図】図1

Description

本発明は、自動運転装置及び自動運転装置が有する可動部の移動方法に関するものであり、より詳しくは、1回の動作を複数の動作ステップに分割して移動する可動部を有する自動運転装置において、その可動部を撮影した画像に基づいて可動部の位置を検出し、その検出結果に基づい可動部を所定の位置へ移動させる可動部の移動方法に関する。
近年、様々な機械、装置の製造工程や検査工程において、自動化が益々進展し、様々な自動組み立て装置や自動検査装置といった自動運転装置が使用されるに至っている。例えば自動組み立て装置では、搬送されてくる部品を捕捉し、捕捉した部品を所定の組み立て位置へ搬送し、そして組み立て位置へ搬送された部品に、別の部品を組み込み、出来上がったものを排出するといった動作を行う。このようなそれぞれの動作を行うために、搬送ユニット、組み立てユニットといった複数の可動部が存在し、これらの可動部は、自動運転装置の一回の動作において、複数の動作ステップを予め定められた順序にしたがって移動する。
しかし、何等かの理由により、このような自動運転装置が異常停止する場合もある。そのような場合、管理者は、自動運転装置の異常発生原因を取り除き、自動運転装置を自動運転状態に復帰させる作業を行う。そのような作業として、各可動部を手作業で操作し、所定の位置まで移動させなければならないことがしばしば発生する。通常このような操作は、直接又はモニタに写し出された可動部を目視で確認しながら、操作盤に設けられた、操作対象となる可動部の並進動作・回転動作等を規定した操作スイッチをON/OFFする、ジョグ送りと呼ばれる方法によって行う。
しかし、操作スイッチを使用して可動部を操作しようとすると、実際の可動部の動作と、操作スイッチの前進・後進等の対応をつけ難く、操作を行う管理者に熟練が求められた。例えば、前進動作といっても、回転動作も可能な可動部では、全く回転していない状態と、180度回転している状態とでは、動く方向が正反対であり、必ずしも管理者の実感と実際の動作とが対応しない場合もあるためである。
特に、可動部が複数となり、対応する操作スイッチの数が増えると、操作スイッチと可動部の対応付けが尚更困難となり、設備に所望の動作をさせるために相当の時間を要し、或いは誤った操作によって故障を誘発してしまうといった問題があった。
一方、ロボットのアームをジョグ送りする方法として、ロボットのグラフィック画像をモニタ上に表示し、モニタ上に表示された画像におけるロボットのアームの先端部を直接触れて動作方向を指示することにより、アームの操作を簡便化する方法が開示されている(特許文献1参照)。また、塗装用ロボットについて、画面上で経路指示することでアームの動作を指示する装置が開示されている(特許文献2参照)。さらに、電子部品実装装置において、基板等のワークに付された位置特定用の認識マークを、特定座標に移動させるため、そのワークを撮影した画像上で、認識マークの座標と移動目的地の座標を指示し、その指示に従って、撮像手段をワークに対して相対的に移動させる方法が開示されている(特許文献3参照)。
しかしながら、上記で開示された各装置又は方法では、個々の可動部毎に操作することが必要であり、可動部を複数有する自動運転装置では、全ての可動部を所定の位置に移動させる場合、やはり煩雑な操作を必要とした。また、不用意に可動部を移動させると、他の可動部と衝突させてしまう場合があり、装置を破壊するおそれがあった。そこで、簡便な操作で安全に可動部を所定の位置へ移動させることが可能な自動運転装置及び自動運転装置が有する可動部の移動方法の開発が望まれている。
WO98/03314号公報 特開平7−308878号公報 特開2000−213915号公報
上記の問題点に鑑み、本発明は、煩雑な操作を要することなく可動部を所定の位置へ移動させることが可能な自動運転装置、及び可動部の移動方法を提供することを目的とする。
また本発明は、可動部の位置調整作業を要することなく、容易に自動運転を開始することが可能な自動運転装置を提供することを目的とする。
本発明の請求項1に記載の形態によれば、本発明に係る自動運転装置(100)は、1回の動作を複数の動作ステップに分割して移動する少なくとも一つの可動部(10、20)を有し、制御部(40)が、可動部(10、20)を撮影した画像データに基づいて可動部(10、20)の位置を検出する位置検出手段(42)と、可動部(10、20)が停止している場合において、可動部(10、20)の検出された位置及び移動経路情報に基づいて、可動部(10、20)が停止している動作ステップを推定する動作ステップ推定手段(44)とを有し、可動部(10、20)を、停止していると推定された動作ステップから動作ステップの予め定められた順序又はその逆順にしたがって所定の位置へ移動させることを特徴とする。
係る構成により、煩雑な操作を行うことなく、可動部を所定の位置へ移動させることができる。さらに、動作ステップの順序又はその逆順にしたがって可動部を移動させることにより、可動部は予め通ることを想定された経路に沿って移動するため、安全に所定位置まで移動することができる。特に自動運転装置が複数の可動部を有する場合、それら可動部同士が移動中に衝突して自動運転装置が故障することを防止できる。
また請求項2に記載のように、所定の位置は、複数の動作ステップのうちの所定の動作ステップにおける可動部(10、20)の移動開始位置であることが好ましい。
さらに、請求項3に記載のように、可動部(10、20)が所定の動作ステップにおける移動開始位置へ移動した後、自動運転を開始することにより、各可動部の位置調整作業を行わなくても自動運転を開始することができる。そのため、自動運転装置が自動運転を開始する際に要する時間や労力を大幅に軽減することができる。
さらに、請求項4に記載のように、動作ステップ推定手段(44)が、可動部(10、20)が停止している動作ステップを推定できなかった場合、制御部(40)は、可動部(10、20)を予め定めた方向に移動させ、撮像部(30)は移動させられた可動部(10、20)を撮像した第2の画像データを取得し、位置検出手段(42)は第2の画像データに基づいて移動させられた可動部(10、20)の第2の位置を検出し、動作ステップ推定手段(44)は、その第2の位置に基づいて、移動させられた可動部(10、20)が停止している動作ステップを推定することにより、例えばメンテナンス作業によって可動部が各動作ステップにおける移動経路から外れた位置に存在する場合でも、可動部を何れかの動作ステップの移動経路上に復帰させることができ、適切に可動部が停止している動作ステップを推定することができる。
さらに、請求項5に記載のように、複数の可動部(10、20)が存在する場合に、動作ステップ推定手段(44)は、各動作ステップ毎に、複数の可動部(10、20)のそれぞれについて、可動部(10、20)の位置が移動経路情報に含まれる所定の基準点から所定の範囲内にある可動部(10、20)の数を計数し、可動部(10、20)の数が最も多い動作ステップを可動部(10、20)が停止している動作ステップと推定することにより、高い精度で可動部が停止している動作ステップを推定することができる。
さらに、請求項6に記載のように、所定の基準点は、各動作ステップにおける可動部(10、20)の移動経路上の任意の点であることが好ましい。なお、移動経路上の任意の点は、例えば、動作ステップの開始時における可動部の移動開始位置、移動終了位置(移動目的地)である。
また、本発明の請求項7に記載の形態によれば、本発明に係る自動運転装置(100)が有する少なくとも一つの可動部(10、20)を所定の位置へ移動させる方法は、画像データに基づいて検出された可動部(10、20)の位置と、可動部(10、20)の各動作ステップにおける移動経路情報に基づいて、可動部が停止している動作ステップを推定し(S215)、動作ステップの順序又は逆順にしたがって可動部を停止していると推定された動作ステップから所定の位置へ移動させる(S217)ことを特徴とする。係る手順により、煩雑な操作を行うことなく、可動部を所定の位置へ移動させることができる。さらに、動作ステップの順序又はその逆順にしたがって可動部を移動させることにより、可動部は予め通ることを想定された経路に沿って移動するため、安全に所定位置まで移動することができる。特に自動運転装置が複数の可動部を有する場合、それら可動部同士が移動中に衝突して自動運転装置が故障することを防止できる。
なお、上記各手段に付した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
以下、図面を参照しつつ本発明に係る自動運転装置について詳細に説明する。
本発明の自動運転装置を適用した自動組み立て装置100は、搬送ユニット、上下ユニットなど複数の可動部を有する。そして自動組み立て装置100は、1回の動作中に複数の動作ステップを有し、各動作ステップにおいて、所定の可動部がその動作ステップで定められた移動経路情報にしたがって移動目的地へ移動する。自動組み立て装置100は、可動部を撮影した画像データに基づいて可動部に付されたマーカを検出することにより、可動部の位置を検出し、可動部が移動目的地へ移動したか否かを判断する。そして、可動部が移動目的地へ到達したと判断した場合、動作ステップを終了する。ある動作ステップが終了すると、自動組み立て装置100は予め定められた順序にしたがって次の動作ステップに移行する。このように所定の順序にしたがって各動作ステップの動作を行い、またこのような動作を繰り返して実行することにより、自動運転を行う。
ここで、自動組み立て装置100は、メンテナンスを行う場合など、自動運転を停止することがある。このような停止状態から自動運転に復帰する場合など、自動運転を開始する際、自動組み立て装置100は、まず、それら可動部を撮影した画像データに基づいて、どの動作ステップで停止しているかを推定する。そして自動組み立て装置100は、予め定められた動作ステップの遷移の順序又はその逆順にしたがって可動部を所定の動作ステップの開始位置まで移動させる。その後自動組み立て装置100は、その所定の動作ステップから自動運転を開始する。このように、自動組み立て装置100は、画像データに基づいて可動部がどの動作ステップで停止しているかを自動的に判断し、可動部を所定の動作ステップの開始位置まで移動させる。そのため、自動組み立て装置100は、手動操作で可動部を所定位置まで移動させるという煩雑な作業を要することなく、容易に自動運転を開始することができる。また自動組み立て装置100は、可動部を予め定められた動作ステップの遷移の順序又はその逆順にしたがって移動させるため、可動部同士が移動中に衝突するような危険を生じることなく、可動部を安全に所定の位置まで移動させることができる。さらに自動組み立て装置100は、メンテナンス作業などによって、各可動部が最初に停止した位置からずれてしまっている場合であっても、自動組み立て装置100が停止している位置と最も近い動作ステップを見つけ、適切に可動部を所定の位置まで移動させるため、容易に自動運転を開始することができる。
図1に、本発明の実施形態に係る自動組み立て装置100の構成ブロック図を示す。
本発明の実施形態に係る自動組み立て装置100は、一例として、直径50mm、高さ50mmの円筒形をした基幹部品(ワーク)2の中心に、直径20mm、高さ10mmの円筒形の部品3を上方から嵌め込んで完成品4を製造するものである。
本発明の実施形態に係る自動組み立て装置100は、ワーク2と部品3から完成品4の組み立てを行う組み立て装置本体部5と、組み立て装置本体部5の制御を行う制御装置6を有する。また組み立て装置本体部5は、搬送ユニット10、上下ユニット20、ワーク搬入部60、部品投入部70、組み立て部80及びワーク排出部90を有する。一方、制御装置6は、撮像部30、制御部40、記憶部50及び操作部55を有する。
図2に、本発明の実施形態に係る自動組み立て装置100の概略構成図を示す。
本発明の実施形態に係る自動組み立て装置100では、ワーク2は、ワーク搬送路1に沿ってワーク搬入部60から搬入され、ワーク排出部90により排出される。一方、部品3は、部品投入部70により、ワーク搬入部60と略直交する方向から投入され、ワーク搬入部60とワーク排出部90の中間にある組み立て部80で、ワーク2に組み付けられる。
ワーク搬入部60は、前工程から送られてきたワーク2を連続的に自動組み立て装置100に搬入可能なように、ワーク2を載せて運ぶベルトコンベアで構成する。部品投入部70は、部品投入側から組み立て部80側へ緩やかな下降傾斜路であって、振動により、投入された部品3が徐々に組み立て部80側へ搬送される。ワーク排出部90は、ワーク搬入部60同様、ベルトコンベアで構成する。そして、搬送ユニット10が部品組み付け済みのワーク(完成品)4を組み立て部80側に最も近いワーク排出部90のワーク排出位置91に排出すると、その完成品4を載せて次工程へ搬送する。
可動部である搬送ユニット10は、ワーク搬送路1と略平行に取り付けられ、ワーク搬入部60の終端付近のワーク取得位置61にあるワーク2を捕捉し、ワーク排出部90の方へ平行移動して組み立て部80へ搬送する。さらに完成品4をワーク排出部90に存在するワーク排出位置91へと搬送する。
搬送ユニット10は、ワーク搬送方向と略並行方法の長さ150mm、略垂直方向の幅50mmからなる部材11と、部材11の下部に取り付けられたグリッパ12及び駆動用のサーボモータを備える。グリッパ12は、ワーク搬送方向にワークの幅とほぼ等しい間隔で配置した2本の爪で構成し、ワーク搬送路1に沿って2セット配置する。
また搬送ユニット10は、ワーク搬送路1の存在する平面内で、ワーク搬送路1と直交する方向、及びワーク搬送路1と平行方向に移動可能である。また搬送ユニット10の原点位置を、搬送ユニット10がワーク搬送路1上にあるワーク2と接触しないよう、ワーク搬送路1から約30mm後方に離れた位置に設定する。そして、原点位置にある搬送ユニット10に送り動作を指示すると、ワーク搬送路1に沿って、ワーク排出方向へ向けて約70mm移動する(この移動先を便宜上送り位置と呼ぶ)。さらに、送り位置にある搬送ユニット10に、戻り動作が指示されると、原点位置へ戻るように、ワーク搬送路1に沿って、ワーク搬入方向に約70mm移動する。一方、原点位置若しくは送り位置にある搬送ユニット10に前進動作が指示されると、搬送ユニット10は、ワーク搬送路1上にあるワーク2又は完成品4を捕捉するため、若しくは保持しているワーク2又は完成品4をワーク搬送路1上にリリースするため、ワーク搬送路1に近づく方向に約30mm移動する。逆に、ワーク搬送路1に近接した位置にある搬送ユニット10に対し、後退動作が指示されると、搬送ユニット10はワーク搬送路1から離れる方向に約30mm移動する。
可動部である上下ユニット20は、上部ユニット21、及び下部ユニット22で構成される。下部ユニット22は組み立て部80へ搬送されてきたワーク2を固定する。一方、上部ユニット21は、開閉可能な爪からなるワークチャック23、及びワークチャック23が取り付けられるチャックシリンダ24、及びこれらを駆動するサーボモータを備えている。組み立て部80に配置した上下ユニット20は、上部ユニット21が部品3を捕捉して上下運動し、下部ユニット22がワーク2を固定することにより、ワーク2に部品3を組み付けて完成品4を製造する。
上部ユニット21は、初期状態では、組み立て部80に搬送されてくるワーク2、部品3と衝突しないように、組み立て部80の上方に退避しておく。組み立て部80に部品3が来ると、上部ユニット21は下降し、ワークチャック23を閉じて(チャック動作)部品3を保持する。部品3を保持すると、上部ユニット21は上方に移動する。その後ワーク2が組み立て部80へ搬送されてくると、再び上部ユニット21は下降し、ワーク2に部品3を挿入し、組み付ける。部品の組み付けが終わると、ワークチャック23は開いて(アンチャック動作)部品をリリースし、再び上部ユニット21は上方に移動する。この上下方向の移動距離は、組み立て部80にワーク2が存在する場合、約10mmであり、ワーク2が存在しない場合約60mmである。
ワークチャック23は、同一水平面内に並置される2本の爪で構成され、チャックシリンダ24の下部に設けられる。また、ワークチャック23の2本の爪は、それぞれチャックシリンダ24と長手方向の端部近傍の一点で取り付けられ、その取り付け点を中心として回転可能となっている。そして、ワークチャック23が部品3を把持するようにチャック動作を行う場合、両方の爪が略平行になるまでその間隔を狭めるように動作する。逆に、ワークチャック23が部品3を手放すようにアンチャック動作を行う場合には、両方の爪の間隔が開くように、それぞれの爪が最大で約15°ずつ回転移動する。
本実施形態によると、制御される対象である可動部に検出マークが形成される。すなわち、搬送ユニット10の部材11のワーク搬入部60側端部の上面に、直径5mmの円形を有する検出マーク13が、及びワーク排出部90側端部の上面に、直径5mmの円形を有する検出マーク14が取り付けられる。検出マーク13及び14は、撮像部30で撮影する画像データにおいて、搬送ユニット10がどの位置にあっても、どちらかの検出マークが写り込むようになっている。また、撮影された画像データ上で、検出マーク13、14に対応する画素値がその周囲に対応する画素値と大きく異なるように、検出マーク13、14は、例えば、濃淡、色などがその周囲と異なるように設計される。
さらに、上下ユニット20の上部ユニット21においても、チャックシリンダ24の上面に、検出マーク13、14と同様の検出マーク25が取り付けられている。さらに、撮像部30で撮影する画像データにおいて、上部ユニット21が如何なる位置にあっても、検出マーク25が写り込むよう配置されている。同様に、チャック23の上面にも、検出マーク13、14と同様の検出マーク26が付される。また検出マーク26は、チャック23の開閉によらず、撮像部30で撮影する画像データに写り込むように配置されている。なお、検出マーク13、14、25及び26は、同じ大きさ及び形状に限定されない。各検出マークは、それぞれ異なる大きさ及び/又は形状を有していてもよい。
撮像部30は、例えばCCDカメラ等で構成され、自動組み立て装置100の可動部である搬送ユニット10及び上下ユニット20の全可動範囲を1枚の画像データに含めるように撮影する。また撮像部30は、1台若しくは複数のカメラで構成し、設備に含まれる全ての可動部は、何れかのカメラで撮影されるように構成してもよい。さらに、可動部の移動を画像データ上の位置の変化として捉えられるように、撮像部30を撮影対象である各可動部の動作平面から離れたところに配置することが好ましい。
さらに撮像部30は、可動部の動作を逐次捉えられるように、連続的に撮影可能であることが好ましく、例えばビデオレート(30Hz)で撮影を行う。そして撮影した画像データは制御部40へ送信され、必要に応じて記憶部50に保存される。
次に、制御部40及び記憶部50について説明する。
制御部40及び記憶部50は、パーソナルコンピュータ(PC)及びその周辺機器で構成することができる。ここで制御部40は、PCの中央演算装置(CPU)、リードオンリーメモリ(ROM)、ランダムアクセスメモリ(RAM)などの半導体メモリ、PCに読み込まれたプログラム、及びRS232Cといった外部出力ポートなどで構成される。さらに、搬送ユニット10などの可動部に対して制御信号を与えるためのドライバを内蔵する。そして、外部出力ポートを通じて各可動部に接続される。
図1に示すように、制御部40は、動作指示手段41と、位置検出手段42と、移動終了判定手段43と、動作ステップ推定手段44を有する。そして制御部40は、自動組み立て装置100が自動運転可能なように、各可動部及び撮像部30を制御する。また制御部40は、操作部55から入力された操作信号にしたがって、自動組み立て装置100の停止、自動運転の開始、可動部の所定位置への移動といった制御を行う。
制御部40は、自動組み立て装置100が自動運転状態にある場合、各動作ステップ毎に、記憶部50から取得した動作指示情報にしたがって、動作指示手段41を通じて可動部を移動させる。そして制御部40は、撮像部30から取得した画像データに基づいて、位置検出手段42で可動部の位置を検出し、移動終了判定手段43で、動作指示情報に含まれる移動経路情報に示された移動目的地に到達したか否かを判定する。全ての可動部が移動目的地に到達していると判断した場合、制御部40は、次の動作ステップの動作指示情報を読み込み、次の動作ステップへ移行する。制御部40は、こうして各動作ステップの制御を順番に行っていくことにより、自動組み立て装置100を連続的に動作させる。
一方、制御部40は、自動組み立て装置100が停止している状態から自動運転を開始する場合、動作ステップ推定手段44で、位置検出手段42で検出された各可動部の位置及び移動経路情報に基づいて、自動組み立て装置100がどの動作ステップで停止しているかを推定する。そして制御部40は、停止している動作ステップを推定すると、その動作ステップに対応する動作指示情報を記憶部50から読み込み、その動作指示情報にしたがって、動作指示手段41を通じて可動部をその停止している動作ステップの移動目的地まで移動させる(ただし、全ての可動部が、その移動目的地から所定の範囲内にいると判定された場合は、この移動を省略してもよい)。その後、制御部40は、通常の自動運転状態と同様にして各動作ステップの制御を行い、所定の動作ステップの開始点まで各可動部を移動させる。一旦各可動部が所定の動作ステップの開始点まで戻ると、その後、自動組み立て装置100は、自動運転を開始する。なお、自動運転を開始する所定の動作ステップは、例えば自動組み立て装置100の1回の動作における最初の動作ステップとすることができる。または、停止していると推定された動作ステップの次の動作ステップとすることができる。自動運転を開始する所定の動作ステップは、予め設定情報として記憶部50に記憶させておき、制御部40はその設定情報を参照することにより、所定の動作ステップを決定する。
動作指示手段41は、動作ステップ毎に、記憶部50に記憶されている動作指示情報を参照して、可動部に対して所定の方向へ移動・停止などの制御信号を与える。また、動作指示手段41は、搬送ユニット10と上下ユニット20が同時に動作する場合など、複数の可動部が動作する場合には、必要に応じて移動開始のタイミングをずらし、物理的な干渉を起こさないよう制御する。そして、それらの制御信号は、内蔵のドライバを通じて、各可動部へ送信される。
ここで動作指示情報は、各動作ステップ毎に設定される。そして動作指示情報は、移動経路情報として、各可動部ごとに設定された移動目的地の画像データ上の座標値、及びその座標値からのずれ量の許容範囲を含む。さらに動作指示情報は、動作指示手段41を通じて各可動部を移動させる方向に相当する制御信号を表す移動方向情報を保持することができる。例えば、可動部の一つである搬送ユニット10を前進動作させる場合は‘1’、後退動作させる場合は‘−1’と予め設定しておくことにより、制御部40は、動作指示情報を読み込み、動作指示情報に含まれる各可動部の移動方向情報を参照することにより、各可動部を所定の方向へ移動させることができる。
位置検出手段42は、撮像部30から取得した画像データを解析し、画像データ上で可動部の位置を検出する。ここで可動部の位置は、可動部に付された検出マークの位置として表される。
位置検出手段42は、まず画像データ上に、検出マークがそれぞれ一つずつ含まれるように関心領域を設定する。この様子を図3に示す。図3は、可動部の位置検出に用いる画像データの概略図であり、図3において、ハッチングで示された略円形の領域が、各検出マーク13、14、25、26である。そして、関心領域ROI1〜ROI4が、各検出マークをそれぞれ一つずつ含むように設定される。そして位置検出手段42は、各関心領域ROI1〜ROI4において、画像データを検出マークに対応する画素とその他の画素に分離するように2値化する。2値化の閾値は、撮像部30で実際に撮影した画像データに基づいて、経験的に設定する。2値化が終了すると、位置検出手段42は、各関心領域ROI1〜ROI4において、検出マークに相当する画素の重心Mgi(i=13,14,25,26)を算出する。その重心Mgiを各可動部の位置とする(ただし搬送ユニット10については、検出マーク13と14の二つを有しているため、Mg13又はMg14の何れか一方を、その位置とする)。このように、位置検出手段42は、それぞれ一つだけ検出マークを含む関心領域において検出マークの重心を求めるため、ある検出マークの位置を検出する際に、誤って他の検出マークの位置を検出することを防止できる。
次に、可動部の位置検出処理の別の一例について説明する。この例においても、可動部に付された検出マークを検出し、検出マークの位置を可動部の位置とする。
この例では、画像データを2値化する代わりに、検出マークの外形形状に沿って存在する、近傍画素との信号値の差が大きい画素(エッジ画素という)を検出する。図4を用いて、このエッジ画素の検出に使用するフィルタの概略を説明する。例えば、画像データ上で、検出マークが図4(a)に示される略円形状をしており、検出マークに相当する画素が、その周辺画素と比較して輝度が高い(画素値が大きい)場合、図4(b)に示すように、検出マークの外径形状に沿って差分演算を行うフィルタを用いて、関心領域内でフィルタリング処理を行う。フィルタリング処理の結果は、フィルタの中心画素Cに相当する画素に出力される。そして、そのフィルタリング処理の出力結果が最も高くなる画素を、検出マークの中心Mcとして検出する。そして、検出マークの中心Mcを可動部の位置とする。このように検出マークの外径形状に基づいて検出マークの位置を認識する場合、各検出マークがそれぞれ異なる形状及び/又は異なる大きさを有するように設計しておけば、検出マークごとに関心領域を設定しなくても、他の検出マークを誤認識する危険性を低下させることができる。特に、異なる検出マークが、画像データ上のほぼ同じ位置を通る可能性がある場合、すなわち、一つの検出マークのみを含むような関心領域の設定が不可能な場合に有効である。
なお、本発明で使用可能な位置検出処理は上記のものに限られず、他にもパターンマッチングに基づく処理などを使用することができる。
移動終了判定手段43は、位置検出手段42で検出した可動部の位置と記憶部50に記憶されている動作指示情報を参照して、可動部が各動作ステップにおける移動目的地に到達したか否かを判定する。そして、移動目的地に到達したと判定した場合、制御部40は、動作指示手段41を通じて、可動部を停止させる。
なお、可動部が移動目的地に到達したか否かについては、以下のように判定できる。まず、動作指示情報から、可動部に対する、その動作ステップにおける移動目的地Pを取得する。そして、位置検出手段42により検出した可動部の位置と、移動目的地Pとの距離dを算出する。その距離dが所定の閾値Thd以下であれば、移動終了判定手段43は、可動部が移動目的地Pに到達したと判定する。そして、制御部40は、動作指示手段41を通じて、可動部を停止させる。一方、距離dが上記の閾値Thdよりも大きい場合には、可動部は移動を終了していないと判定する。なお、所定の閾値Thdは、画像データの解像度と要求される可動部の位置精度に基づいて決定され、例えば1画素のような値とすることができる。
移動終了判定手段43は、その動作ステップで移動する可動部のうち、何れか一つでも移動目的地に到達していないと判定した場合、解析に使用した画像データを廃棄する。そして制御部40は、全ての可動部が移動終了したと判定されるか、動作ステップを開始してからの経過時間が、所定のタイムアウト時間Toutを超えるまで、撮像部30から画像データを再取得し、位置検出手段42、移動終了判定手段43での処理を繰り返す。所定のタイムアウト時間Toutを超えても、全ての動作ステップが移動終了したと判定することができない場合、制御部40は、動作指示手段41を通じて全ての可動部の移動を停止する。さらに、操作部55を通じて警告メッセージの表示を行ってもよい。
動作ステップ推定手段44は、位置検出手段42で検出された可動部の位置及び移動経路情報に基づいて、自動組み立て装置100がどの動作ステップで停止しているかを推定する。その推定は以下のように行う。
動作ステップ推定手段44は、記憶部50から、全ての動作ステップについて各可動部の移動経路情報を取得し、その移動経路情報に示される移動目的地を所定の基準点に設定する。そして、動作ステップ推定手段44は、移動終了判定手段43において可動部が移動目的地に到達したか否かを判定するのと同様に、各可動部が、各動作ステップにおけるその可動部の移動目的地(基準点)から所定の範囲内に存在しているか否かを判定する。もし、ある動作ステップjについて、可動部が移動目的地から所定の範囲内に存在していると判定された場合、動作ステップ推定手段44は、その動作ステップに可動部が幾つ存在するかを表す度数Csjを1増加させる。なお、上記の所定の範囲は、画像データの解像度と要求される可動部の位置精度に基づいて決定され、例えば1画素のような値に設定することができる。
そして、全ての可動部について調べると、動作ステップ推定手段44は、各度数Csjのうち、最も値の大きい度数Csmaxを求める。そして、その最大度数Csmaxに対応する動作ステップj=maxを、自動組み立て装置100の可動部が停止している動作ステップと推定する。
なお、自動組み立て装置100が、何れかの動作ステップの途中で停止した場合など、可動部は何れの動作ステップの移動目的地にも存在しないことになる。そこで、このような場合には、可動部を一旦所定の方向へ移動させた後、改めてどの移動目的地にいるかを判定する。その際、制御部40は、動作指示手段41を通じて可動部を予め定めた優先度にしたがって順に移動させる。その優先度は、可動部が他の可動部と物理的に干渉することがない移動方向など、可動部の移動に伴う危険が小さい移動方向ほど高くなるように設定される。例えば、可動部が搬送ユニット10の場合、優先度は、搬送ユニット10が搬送路1から離れる方向に対して最も高くなり、搬送ユニット10が搬送路1に沿って原点位置に戻る方向に対して2番目に高くなる。同様に、可動部が上下ユニット20の上部ユニット21の場合、優先度は、上部ユニット21が上昇する方向の方が下降する方向よりも高くなる。さらに、可動部が上下ユニット20のワークチャック23の場合、優先度は、ワークチャック23が開く方向の方が、閉じる方向よりも高くなる。
可動部が優先度にしたがって所定の方向に移動を開始し、所定時間経過すると、制御部40は、自動運転時と同様に撮像部30に指示してその可動部を撮影させる。そして制御部40は、可動部を撮影した画像データを取得して、位置検出手段42によりその可動部の位置を検出する。そして、再度動作ステップ推定手段44により、何れかの動作ステップの移動目的地に到達しているか否かを判断する。最も優先度の高い方向に可動部を移動させても、可動部が何れの動作ステップの移動目的地にも存在しない場合には、制御部40は、優先度が次に高い方向に可動部を移動させ、上記と同様の処理を繰り返す。なお、上記の所定時間は、可動部が移動目的地に到達するまでに十分な時間、例えば、任意の動作ステップにおいて可動部が移動開始地点から移動目的地まで到達するのに要する時間の平均値に設定する。
また、自動組み立て装置100の1回の動作に含まれる動作ステップのうちの異なる動作ステップについて、全ての可動部が同じ移動経路を辿る場合がある。このような場合、上記の最大度数Csmaxに対応する動作ステップが複数存在することがある。そこで動作ステップ推定手段44は、最大度数Csmaxに対応する動作ステップが複数存在する場合、それら動作ステップのうち、自動運転開始前の所定の動作ステップに移動させるために、最も動作数の少ない動作ステップと推定する。例えば、後述するように、自動組み立て装置100は、1回の動作においてステップS101からS113までの13の動作ステップを有し、自動運転開始前の所定の動作ステップをS101(すなわち、動作ステップS113の移動終了地点)とする。ここで動作ステップS101とS110に対して、上記度数Csjが最大度数Csmaxとなったと仮定する。この場合、自動組み立て装置100が、自動運転時に辿る動作ステップの順序に対して逆順にも移動できる構造であれば、動作ステップ推定手段44は、現在の動作ステップをS101(すなわち、動作ステップS101の移動終了時)と推定する。一方、自動組み立て装置100が、自動運転時に辿る動作ステップの順序の通りにしか移動できない構造となっていれば、動作ステップ推定手段44は、現在の動作ステップをS110と推定する。このように、動作ステップ推定手段44は、できる限り所定の動作ステップに移動させるまでの動作ステップ数を減らすことで、自動運転開始までに要する時間を少なくすることができる。
記憶部50は、フラッシュメモリのような不揮発性メモリ、ハードディスクのような磁気記録媒体、CD−ROM、CD−RAM、DVD−ROM、DVD−RAMなどの光記録媒体で構成される。また、記憶部50は、上記の動作指示情報など各種の制御情報及び撮像部30で撮影された画像データ、自動運転時のログ情報等を保存する。
操作部55は、タッチパネル、マウスなどのポインティングデバイスと、液晶ディスプレイなどの表示デバイスで構成される。そして操作部55は、操作者の指示にしたがって、自動組み立て装置100を自動運転状態から停止したり、逆に停止状態から自動運転状態に移行させるための制御信号を制御部40へ送信する。あるいは、操作部55は、操作者の指示にしたがって、組み立て装置100の各可動部を所定の動作ステップの開始点まで移動させるための制御信号を制御部40へ送信する。本実施形態では、操作部55は、例えば表示デバイス上に、「自動運転開始」、「停止」などの操作ボタンを表示する。そして操作者が、その操作ボタンに触れたり、その操作ボタン上でダブルクリックするなどの選択動作を行うだけで、その操作ボタンに対応付けられた制御信号を制御部40へ送信することができる。このように、操作ボタンを1回操作する程度の簡単な操作で、自動組み立て装置100の自動運転を開始させることができる。
また操作部55は、表示デバイス上に、自動組み立て装置100の状態を表す情報を表示することもできる。
以下に、本発明の自動運転装置を適用した第1の実施形態である自動組み立て装置100の動作について説明する。自動組み立て装置100は、1回の動作で一つのワーク2と一つの部品3から一つの完成品4を組み立てる。
図5は、自動組み立て装置100の1回の動作を示すフローチャートである。また図6は、自動組み立て装置100の可動部である搬送ユニット10、上下ユニット20の動作のタイミングチャートを示す。図6において、上部に示したS101等の記号501は、後述する各動作ステップの実行タイミングを示す。また、各可動部の動作を横欄毎に示し、タイミングチャート線502がその横欄に存在する場合、各可動部はその横欄の左側欄503に示された動作を行うことを表す。どちらの動作を示す欄にも属さず、中間線上にタイミングチャート線502が存在する場合、その可動部は動作を行わず、その前状態を保持し続けることを表す。
以下に説明する各動作ステップでは、搬送ユニット10などの可動部が移動目的地まで移動したか否かを、撮像部30が撮影した画像データに基づいて制御部40が判断し、移動目的地に存在すると判断した場合、その動作ステップを終了する。そして、その移動目的地は、次の動作ステップにおける、各可動部の移動開始位置となる。
初期状態では、搬送ユニット10は原点位置、上下ユニット20については、上部ユニット21が上方に退避した位置に存在する。
最初に、制御部40は、動作指示手段41を通じて搬送ユニット10に対してワーク搬送路1に近づくよう前進動作させる制御信号を送信する。その制御信号に基づいて、搬送ユニット10がワークを掴むために前進動作する(ステップS101)。
制御部40は、搬送ユニット10の前進動作は終了したと判定した場合、動作指示手段41を通じて搬送ユニット10のサーボモータに搬送ユニット10を後退動作させるよう制御信号を送信する。その制御信号に基づいて、搬送ユニット10はワーク2を保持したまま後退動作を行う(ステップS102)。この後退動作に伴って、ワーク2に取り付ける部品3が、部品投入部70より組み立て部80に移動する。
制御部40は、搬送ユニット10の後退動作は終了したと判定した場合、動作指示手段41を通じて上部ユニット21のサーボモータに制御信号を送信する。その制御信号に基づいて、上部ユニット21が下降する(ステップS103)。
制御部40は、上部ユニット21の下降動作は終了したと判定した場合、次の動作として、ワークチャック23を閉じるよう、動作指示手段41を通じて上部ユニット21のサーボモータに制御信号を送信する。その制御信号に基づいてワークチャック23が閉じる。そしてワークチャック23が組み立て部80にある部品3を捕捉する(チャック動作)(ステップS104)。
制御部40は、ワークチャック23のチャック動作が終了したと判定した場合、動作指示手段41を通じて上部ユニット21のサーボモータに上部ユニット21を上昇させるよう制御信号を送信する。その制御信号に基づいて、上部ユニット21は部品3を保持したまま上昇する(ステップS105)。
制御部40は、上部ユニット21の上昇動作は終了したと判定した場合、次の動作として、搬送ユニット10を送り動作させ、その後前進動作させるよう、動作指示手段41を通じて搬送ユニット10のサーボモータに制御信号を送信する。その制御信号に基づいて、搬送ユニット10は、ワーク2を組み立て部80に搬送するためにワーク2を保持したままワーク搬送路1に沿って送り動作し、その後前進動作する(ステップS106)。
制御部40は、搬送ユニット10の移動は終了したと判定した場合、次の動作として、上部ユニット21を下降させるよう、動作指示手段41を通じて上部ユニット21のサーボモータに制御信号を送信する。その制御信号に基づいて、上部ユニット21が下降し、組み立て部80にあるワーク2に、部品3を取り付ける(ステップS107)。この時、下部ユニット22は、ワーク2を固定する。
制御部40は、上部ユニット21の下降動作は終了したと判定した場合、次の動作として、搬送ユニット10に後退動作させ、その後戻り動作をさせる。同時に、ワークチャック23に対し、部品3をリリースするよう開く動作(アンチャック動作)を行わせる。そのため、制御部40は、動作指示手段41を通じて、搬送ユニット10のサーボモータに制御信号を送信する。その制御信号に基づき、搬送ユニット10がワーク2をリリースして後退し、その後戻り動作して原点位置に復帰する。同時に、制御部40は上部ユニット21のサーボモータに制御信号を送信する。その制御信号に基づき、ワークチャック23はアンチャック動作を行う(ステップS108)。
搬送ユニット10の移動完了、ワークチャック23のアンチャック動作の完了が確認されると、制御部40は、次の動作として、上部ユニット21を上昇させるよう、動作指示手段41を通じて上部ユニット21のサーボモータに制御信号を送信する。その制御信号に基づき、上部ユニット21は上昇する(ステップS109)。
制御部40は、上部ユニット21の上昇動作は終了したと判定した場合、次の動作として、部品組み付け済みのワーク(完成品)4を捕捉するため、搬送ユニット10を前進させる。そのため、制御部40は、動作指示手段41を通じて搬送ユニット10のサーボモータに対して制御信号を送信する。その制御信号に基づいて、搬送ユニット10は前進動作する(ステップS110)。
制御部40は、搬送ユニット10の前進が終了したと判定した場合、動作指示手段41を通じて搬送ユニット10のサーボモータに対して後退動作をさせる制御信号を送信する。その制御信号に基づいて、搬送ユニット10は完成品4を保持したまま後退する(ステップS111)。
制御部40は、搬送ユニット10の後退が終了したと判定した場合、動作指示手段41を通じて、搬送ユニット10のサーボモータに対して送り動作及び前進動作をさせる制御信号を送信する。その制御信号に基づき、搬送ユニット10は完成品4をワーク排出部90へ排出するために、完成品4を保持したまま、送り動作し、その後前進する(ステップS112)。
制御部40が搬送ユニット10の前進終了を確認すると、完成品4がワーク排出部90のワーク排出位置91に排出される。そして、制御部40は、動作指示手段41を通じて搬送ユニット10のサーボモータに対して、後退動作した後戻り動作を行うよう制御信号を送信する。そしてその制御信号に基づき、搬送ユニット10は原点位置に復帰する(ステップS113)。
上記のように、自動組み立て装置100は、ステップS101からS113までを1サイクルとして繰り返し動作することによって、ワーク2と部品3を組み立てて完成品4を製造する。
次に、図7及び図8を用いて、停止状態にある自動組み立て装置100の自動運転を開始する場合の動作フローを説明する。なお、このフローチャートで示される動作の制御も、制御部40により行われる。
図7に示すように、まず、操作部55より、自動運転開始を指示する操作信号を制御部40が受信すると、制御部40は自動運転復帰動作を開始する。そして、制御部40は、撮像部30に対して各可動部が写るように撮影する指示を与える。撮像部30は、その指示にしたがって撮影し、取得した画像データを制御部40へ送信する(ステップS201)。
次に、制御部40の動作ステップ推定手段44は、各動作ステップS101〜S113に相当する度数Csj(j=101,102,...,113)の値を初期化する(すなわち、0を代入する)(ステップS202)。
そして制御部40は、搬送ユニット10、上下ユニット20の上部ユニット21、ワークチャック23のうち、着目する可動部を可動部iとして設定する(ステップS203)。可動部iを設定すると、制御部40の位置検出手段42は、可動部iの位置を検出する(ステップS204)。可動部iの位置が検出されると、制御部40の動作ステップ推定手段44は、ステップS101を着目する動作ステップjとして設定する(ステップS205)。その後動作ステップ推定手段44は、記憶部50から動作ステップjにおける可動部iの移動経路情報として、移動目的地の画像データ上の位置座標を取得する。そして位置検出手段42は、移動目的地と可動部iの位置とを比較して、可動部iが動作ステップjにおける移動目的地から所定の範囲内に存在するか否かを判定する(ステップS206)。
ステップS206において、可動部iが動作ステップjの移動目的地から所定の範囲内に存在すると判定された場合、動作ステップ推定手段44は、その動作ステップjに対応する度数Csjを1増加する(ステップS207)。一方ステップS206において、可動部iが動作ステップjの移動目的地に存在しないと判断された場合には、何もしない。
次に、動作ステップ推定手段44は、最後の動作ステップ(本実施形態では、S113)に対して、ステップS206の判定を行ったか否かを調べる(ステップS208)。そして、最後の動作ステップについて、まだステップS206の判定を行っていない場合、動作ステップ推定手段44は、着目する動作ステップjを次の動作ステップに設定し(ステップS209)、制御をステップS206の前に戻す。
一方、図8に示すように、ステップS208において、最後の動作ステップについて、ステップS206の判定が行われた場合、可動部iが何れかの動作ステップの移動目的地に存在すると判定されたか否かを判定する(ステップS210)。係る判定は、何れかの度数Csjがインクリメントされたか否かを調べることによって行うことができる。何れの動作ステップについても、可動部iが移動目的地に存在しないと判定された場合、すなわち、可動部iがどの動作ステップで停止しているか推定できない場合、制御部40は、動作指示手段41を通じて予め定めた優先度にしたがって可動部iを所定の方向へ移動させる(ステップS211)。そして所定時間経過後、制御部40は、撮像部30に対して可動部iが写るように撮影する指示を与える。撮像部30は、その指示にしたがって撮影し、取得した画像データを制御部40へ送信する(ステップS212)。その後制御部40は、制御をステップS205の前に戻し、再度ステップS205以降の処理を繰り返す。
一方、ステップS210において、可動部iが何れかの動作ステップの移動目的地に存在すると判定された場合、動作ステップ推定手段44は、全ての可動部についてステップS204〜S210の処理を行ったか否か判定する(ステップS213)。そして、何れかの可動部について未だそれらの処理を行っていない場合、その可動部を次の着目可動部として設定し(ステップS214)、制御をステップS204の前に戻す。
一方、ステップS213において、全ての可動部に対して上記の処理を終えたと判定された場合、動作ステップ推定手段44は、度数Csjから最大のものを求め、その最大度数Csmaxに対応する動作ステップを、可動部が停止している動作ステップとして推定する(ステップS215)。なお、最大度数Csmaxに対応する動作ステップが複数存在する場合には、自動運転を開始する動作ステップの開始位置に近い方を現在の動作ステップとして推定する。
可動部が停止している動作ステップが推定されると、制御部40は、記憶部50よりその動作ステップ以降の動作指示情報を取得し(ステップS216)、その動作指示情報にしたがって各可動部を、動作ステップの遷移順にしたがって自動運転開始位置(例えば、動作ステップS101の開始位置)まで移動させる(ステップS217)。その後制御部40は、自動組み立て装置100の自動運転を開始する。
以上説明してきたように、本発明の自動運転装置を適用した自動組み立て装置100は、画像データに基づいて、どの動作ステップで停止しているかを自動的に判断し、可動部を所定の動作ステップの開始位置まで移動させるため、手動操作で可動部を所定位置まで移動させるという煩雑な作業を要することなく、容易に自動運転を開始することができる。さらに自動組み立て装置100は、可動部を予め定められた動作ステップの遷移にしたがって移動させるため、可動部同士が移動中に衝突するような危険を生じることなく、安全に自動運転を開始することができる。
なお、上述してきた実施形態は、本発明を説明するためのものであり、本発明は、これらの実施形態に限定されるものではない。
例えば、動作ステップ推定手段44において、可動部がどの動作ステップで停止しているかを推定する際、移動経路情報としてその動作ステップの移動目的地のみを用いる代わりに、その動作ステップにおける可動部の移動経路上の各点の画像データ上の座標を用いてもよい。例えば、各動作ステップにおいて可動部が直線的に移動する場合、各動作ステップごとにその可動部の移動開始点と移動目的地とを結ぶ直線を予め求めておく。そして、その直線と画像データから検出された可動部の位置との距離を求め、その距離が所定の許容範囲内(例えば、2画素以内)であれば、その可動部はその動作ステップに存在すると判定する。同様に、ワークチャック23のように可動部が円弧状に移動する場合は、その円弧にしたがって可動部の移動経路を設定する。また、搬送ユニット10のように、途中で移動方向が変化する場合は、その移動方向が変化する屈曲点と移動開始位置とを結ぶ線分、及び屈曲点と移動目的地を結ぶ線分とをそれぞれ移動経路として予め求めておけばよい。
さらに、上記の実施形態では、ステップS201〜S217までの手順を、自動運転を開始するための手順として説明したが、必ずしも自動運転の開始に限定されるものではない。各可動部を単に所定の動作ステップまで移動させる手順としても使用することができる。
上記のように、本発明に係る操作装置は、実装される設備等の仕様に応じて、本発明の範囲内で適宜最適化される。
本発明の自動運転装置を適用した自動組み立て装置の構成ブロック図である。 本発明の自動運転装置を適用した自動組み立て装置の概略構成図である。 可動部の位置検出に使用する画像データの概略図である。 (a)は可動部に付された検出マークの画像データ上での形状の一例を表す図であり、(b)は検出マークの検出に使用するフィルタを表す図である。 本発明の自動運転装置を適用した自動組み立て装置における、1回の動作を示すフローチャートである。 本発明の自動運転装置を適用した自動組み立て装置における、1回の動作を示すタイミングチャートである。 本発明の自動運転装置を適用した自動組み立て装置が自動運転を開始する場合の動作を示すフローチャートである。 本発明の自動運転装置を適用した自動組み立て装置が自動運転を開始する場合の動作を示すフローチャートである。
符号の説明
100 自動組み立て装置(自動運転装置)
1 搬送路
2 ワーク
3 部品
4 完成品
5 組み立て装置本体部
6 制御装置
10 搬送ユニット(可動部)
11 部材
12 グリッパ
13、14 検出マーク
20 上下ユニット(可動部)
21 上部ユニット
22 下部ユニット
23 ワークチャック
24 チャックシリンダ
25、26 検出マーク
30 撮像部
40 制御部
41 動作指示手段
42 位置検出手段
43 移動終了判定手段
44 動作ステップ推定手段
50 記憶部
55 操作部
60 ワーク搬入部
61 ワーク取得位置
70 部品挿入部
80 組み立て部
90 ワーク排出部
91 ワーク排出位置

Claims (7)

  1. 1回の動作を複数の動作ステップに分割し、該複数の動作ステップの予め定められた順序にしたがって移動する少なくとも一つの可動部(10、20)を有する自動運転装置(100)であって、
    前記可動部(10、20)を撮影した画像データを取得する撮像部(30)と、
    前記可動部(10、20)の各動作ステップにおける移動経路情報及び前記動作ステップの順序に基づいて、前記可動部(10、20)を移動させる制御部(40)とを有し、
    該制御部(40)は、
    前記画像データに基づいて、前記可動部(10、20)の位置を検出する位置検出手段(42)と、
    前記可動部(10、20)が停止している場合において、前記可動部(10、20)の検出された位置及び前記移動経路情報に基づいて、前記可動部(10、20)が停止している動作ステップを推定する動作ステップ推定手段(44)とを有し、前記可動部(10、20)を、停止していると推定された動作ステップから前記動作ステップの順序又はその逆順にしたがって所定の位置へ移動させることを特徴とする自動運転装置。
  2. 前記所定の位置は、前記複数の動作ステップのうちの所定の動作ステップにおける前記可動部(10、20)の移動開始位置である、請求項1に記載の自動運転装置。
  3. 前記可動部(10、20)が前記所定の動作ステップにおける移動開始位置へ移動した後、自動運転を開始する請求項2に記載の自動運転装置。
  4. 前記動作ステップ推定手段(44)は、前記可動部(10、20)が停止している動作ステップを推定できなかった場合、前記制御部(40)は、前記可動部(10、20)を予め定めた方向に移動させ、
    前記撮像部(30)は前記移動させられた可動部(10、20)を撮像した第2の画像データを取得し、
    前記位置検出手段(42)は前記第2の画像データに基づいて前記移動させられた可動部(10、20)の第2の位置を検出し、
    前記動作ステップ推定手段(44)は、前記第2の位置に基づいて前記移動させられた可動部(10、20)が停止している動作ステップを推定する、請求項1〜3の何れか一項に記載の自動運転装置。
  5. 前記少なくとも一つの可動部(10、20)は、複数の可動部を含み、
    且つ前記動作ステップ推定手段(44)は、各動作ステップ毎に、前記複数の可動部(10、20)のそれぞれについて、前記可動部(10、20)の位置が前記移動経路情報に含まれる所定の基準点から所定の範囲内にある前記可動部(10、20)の数を計数し、前記可動部(10、20)の数が最も多い動作ステップを前記可動部(10、20)が停止している動作ステップと推定する、請求項1〜4の何れか一項に記載の自動運転装置。
  6. 前記所定の基準点は、各動作ステップにおける前記可動部(10、20)の移動経路上の任意の点である、請求項5に記載の自動運転装置。
  7. 1回の動作を複数の動作ステップに分割し、該複数の動作ステップの予め定められた順序にしたがって移動する少なくとも一つの可動部(10、20)を有する自動運転装置(100)において、停止中の該可動部(10、20)を所定の位置へ移動させる方法であって、
    前記可動部(10、20)を撮影した画像データを取得し(S201)、
    前記画像データに基づいて前記可動部(10、20)の位置を検出し(S204)、
    検出された前記可動部(10、20)の位置及び前記可動部(10、20)の各動作ステップにおける移動経路情報に基づいて、前記可動部(10、20)が停止している動作ステップを推定し(S215)、
    前記動作ステップの順序又は逆順にしたがって、前記可動部(10、20)を停止していると推定された動作ステップから前記所定の位置へ移動させる(S217)、
    ことを特徴とする方法。
JP2006056126A 2006-03-02 2006-03-02 自動運転装置 Expired - Fee Related JP4844172B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006056126A JP4844172B2 (ja) 2006-03-02 2006-03-02 自動運転装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006056126A JP4844172B2 (ja) 2006-03-02 2006-03-02 自動運転装置

Publications (2)

Publication Number Publication Date
JP2007233822A true JP2007233822A (ja) 2007-09-13
JP4844172B2 JP4844172B2 (ja) 2011-12-28

Family

ID=38554341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006056126A Expired - Fee Related JP4844172B2 (ja) 2006-03-02 2006-03-02 自動運転装置

Country Status (1)

Country Link
JP (1) JP4844172B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019191999A (ja) * 2018-04-26 2019-10-31 東芝三菱電機産業システム株式会社 プラント監視制御システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131001A (ja) * 1984-11-29 1986-06-18 Toyota Motor Corp ロボツト用制御装置
JP2001252883A (ja) * 2000-03-09 2001-09-18 Denso Corp 移動ロボットシステム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131001A (ja) * 1984-11-29 1986-06-18 Toyota Motor Corp ロボツト用制御装置
JP2001252883A (ja) * 2000-03-09 2001-09-18 Denso Corp 移動ロボットシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019191999A (ja) * 2018-04-26 2019-10-31 東芝三菱電機産業システム株式会社 プラント監視制御システム
JP7187813B2 (ja) 2018-04-26 2022-12-13 東芝三菱電機産業システム株式会社 プラント監視制御システム

Also Published As

Publication number Publication date
JP4844172B2 (ja) 2011-12-28

Similar Documents

Publication Publication Date Title
JP6462000B2 (ja) 部品実装機
JP4845032B2 (ja) 画像処理機能付き撮像装置及び検査システム
JP2011183537A (ja) ロボットシステム及びロボット装置並びにワーク取り出し方法
JP5881244B2 (ja) 部品実装装置、基板検出方法及び基板製造方法
JP7002831B2 (ja) 部品実装機
JP2006260443A (ja) 監視制御装置及び監視制御方法
JP4462161B2 (ja) 監視制御装置及び監視制御方法
JP6795520B2 (ja) 実装装置および撮像処理方法
JP4672537B2 (ja) 表面実装機
JP4844172B2 (ja) 自動運転装置
JP2007196301A (ja) 画像を用いた自動運転装置及び自動運転方法
JP4349298B2 (ja) 監視制御装置及び監視制御方法
JP2010052060A (ja) 自動運転装置
KR101890765B1 (ko) 비젼 시스템 기반의 pin 검출을 이용하는 pcb 진단 장치 및 방법
JP6328964B2 (ja) ノズルストッカおよび部品装着装置
JP2009283646A (ja) 部品実装機及び部品実装機の画像認識方法
JP2006235699A (ja) シミュレーション装置及びシミュレーション方法
JP2006228799A (ja) 検査結果報知装置
JP4992934B2 (ja) チップ検査装置及びチップ検査方法
JP4618203B2 (ja) 電子部品実装装置及び電子部品実装方法
JP2006221238A (ja) 駆動制御装置及び駆動制御方法
JP4449862B2 (ja) 可動部の操作装置及び操作方法
JP6761477B2 (ja) 部品実装装置および位置認識方法
JP4544117B2 (ja) 制御情報生成装置
JP2020035052A (ja) 撮影装置の制御方法、撮影装置、および部品の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4844172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees