JP2007214515A - Structure of nitride semiconductor - Google Patents

Structure of nitride semiconductor Download PDF

Info

Publication number
JP2007214515A
JP2007214515A JP2006035635A JP2006035635A JP2007214515A JP 2007214515 A JP2007214515 A JP 2007214515A JP 2006035635 A JP2006035635 A JP 2006035635A JP 2006035635 A JP2006035635 A JP 2006035635A JP 2007214515 A JP2007214515 A JP 2007214515A
Authority
JP
Japan
Prior art keywords
layer
algan layer
type
composition
algan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006035635A
Other languages
Japanese (ja)
Other versions
JP4986472B2 (en
Inventor
Atsushi Nishikawa
敦 西川
Toshiki Makimoto
俊樹 牧本
Kazuhide Kumakura
一英 熊倉
Tetsuya Akasaka
哲也 赤坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006035635A priority Critical patent/JP4986472B2/en
Publication of JP2007214515A publication Critical patent/JP2007214515A/en
Application granted granted Critical
Publication of JP4986472B2 publication Critical patent/JP4986472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure of a nitride semiconductor element using an AlGaN layer that obtains a high breakdown voltage while keeping the resistance of the element high. <P>SOLUTION: The adoption of the AlGaN layer for a layer for holding a voltage of the nitride semiconductor element in place of a GaN layer can increase the breakdown voltage. Concretely, an n<SP>+</SP>-type AlGaN buffer layer 404, an n<SP>+</SP>-type AlGaN layer 406, an n-type AlGaN layer 408, and a p-type InGaN layer 410 are sequentially grown on the surface of an n-type conductive SiC substrate 402 to manufacture a pn junction diode. A crystal defect can be suppressed and the breakdown voltage can be increased by selecting the Al composition of the AlGaN layer 406 to be larger than the Al composition of the AlGaN buffer layer 404. Further, the element resistance is suppressed lower by forming an ohmic electrode 430 to the rear side of the SiC substrate 402. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、一般に窒化物半導体の構造に関し、さらに詳細には、熱伝導率の高いSiC基板上に作製した窒化物半導体において、特に素子抵抗を低く抑えたまま、降伏電圧を高くするための構造に関する。   The present invention generally relates to a structure of a nitride semiconductor, and more particularly, a structure for increasing a breakdown voltage in a nitride semiconductor manufactured on a SiC substrate having high thermal conductivity, particularly while keeping a device resistance low. About.

GaNやAlNなどの窒化物半導体は、ワイドバンドギャップを有するため、電子デバイスとして低損失かつ高い電圧で動作することが期待でき、パワーエレクトロニクス用の半導体材料として有望視されている。   Since nitride semiconductors such as GaN and AlN have a wide band gap, they can be expected to operate as an electronic device with low loss and high voltage, and are promising as semiconductor materials for power electronics.

一般に、降伏電圧(ブレイクダウン電圧)は、電圧を保持する層の半導体材料の絶縁破壊電界と層厚によって決まる。従って、層厚を増加することで、高い降伏電圧を得ることができる。しかし、GaNは残留キャリア密度が高く、層厚を増加させていくと、GaN層が完全に空乏化する前に降伏が起こるため、層厚の増加による高耐圧化が制限されていた。そこで、半導体材料をGaNよりもバンドギャップが大きく、絶縁破壊電界の大きなAlGaNに変更することにより、高い降伏電圧を有する電子デバイスの作製が検討されている。   In general, the breakdown voltage (breakdown voltage) is determined by the breakdown electric field and the layer thickness of the semiconductor material of the layer holding the voltage. Therefore, a high breakdown voltage can be obtained by increasing the layer thickness. However, GaN has a high residual carrier density, and when the layer thickness is increased, breakdown occurs before the GaN layer is completely depleted, so that a high breakdown voltage due to an increase in the layer thickness is limited. Therefore, the production of an electronic device having a high breakdown voltage has been studied by changing the semiconductor material to AlGaN having a larger band gap than that of GaN and a large dielectric breakdown electric field.

図1に、電圧を保持する層としてAlGaN層を使用し、降伏電圧を増加させた例として、ショットキーダイオードの構造を示す(非特許文献1参照)。このショットキーダイオード100は、半絶縁性サファイア基板102上に20nm厚のAlN層104と、不純物ドーピングを行わない(アンドープ)2.5μm厚のAlGaN層106とを順次形成し、その表面上にPt/Ti/Auのショットキー電極120およびTi/Al/Pt/Auオーミック電極130を形成している。オーミック電極130を形成するために電極層の近傍108にはSiイオンを打ち込んでいる。アンドープAlGaN層106のAl組成を0%から25%まで変化させることにより、降伏電圧を2.3kVから4.3kVまで増加させている。   FIG. 1 shows a Schottky diode structure as an example in which an AlGaN layer is used as a voltage holding layer and the breakdown voltage is increased (see Non-Patent Document 1). In this Schottky diode 100, a 20 nm thick AlN layer 104 and an undoped (undoped) 2.5 μm thick AlGaN layer 106 are sequentially formed on a semi-insulating sapphire substrate 102, and Pt is formed on the surface thereof. A / Ti / Au Schottky electrode 120 and a Ti / Al / Pt / Au ohmic electrode 130 are formed. In order to form the ohmic electrode 130, Si ions are implanted in the vicinity 108 of the electrode layer. The breakdown voltage is increased from 2.3 kV to 4.3 kV by changing the Al composition of the undoped AlGaN layer 106 from 0% to 25%.

図1に示す構造では、AlGaN層を用いることによって降伏電圧を増加しているが、電流はAlGaN層の表面近傍を横方向に流れるため、表面欠陥の影響によりアンドープAlGaN層の絶縁破壊電界は理論的に予想されている値の1/30程度と低く、電極間距離を長くすることによって高耐圧を実現している。そのため、アンドープAlGaN層を横方向に流れる電流の抵抗が無視できず、またAlGaN層の表面にオーミック電極を形成するため、AlGaN層と電極層との接触抵抗の増大が避けられない。その結果、オン抵抗は3.2Ωcmと高くなっている。このように、図1に示す構造では、AlGaNの持つ優れた特性が十分に発揮されておらず、低い素子抵抗と高い降伏電圧の両方を実現できていなかった。 In the structure shown in FIG. 1, the breakdown voltage is increased by using the AlGaN layer, but since the current flows laterally in the vicinity of the surface of the AlGaN layer, the breakdown electric field of the undoped AlGaN layer is theoretically affected by the surface defects. The breakdown voltage is as low as about 1/30 of the expected value, and a high breakdown voltage is realized by increasing the distance between the electrodes. For this reason, the resistance of the current flowing in the lateral direction through the undoped AlGaN layer cannot be ignored, and since an ohmic electrode is formed on the surface of the AlGaN layer, an increase in contact resistance between the AlGaN layer and the electrode layer is inevitable. As a result, the on-resistance is as high as 3.2 Ωcm 2 . As described above, in the structure shown in FIG. 1, the excellent characteristics of AlGaN are not fully exhibited, and both a low element resistance and a high breakdown voltage cannot be realized.

図2に、pinダイオードの降伏電圧を増大させることを目的として、AlGaN層を利用した例を示す(非特許文献2)。このpinダイオード200は、サファイア基板202上にAlNバッファ層204と、0.5μm厚のn型AlGaN層206と、1.5μm厚のアンドープAlGaN層208と、0.5μm厚のMgドーピングGaN層210とを順次形成している。n型AlGaN層206およびアンドープAlGaN層208のAl組成は同一であり、それぞれ0%、20%、40%の3通りである。サファイア基板202は半絶縁性であるため、n型のオーミック電極220は、n型AlGaN層206の表面に形成する必要がある。電流は、図2に示したn型AlGaN層206中を横方向に流れることになる。ここで、AlGaNはGaNよりも抵抗が高いので、n型GaN層を用いた場合に比べてn型AlGaN層206を用いた図2の構造では素子抵抗が増大する。さらに、n型AlGaN層と電極層との接触抵抗も高くなるため、この構造では低抵抗を実現できない。また、アンドープAlGaN層のAl組成を増大させるにつれて結晶欠陥が増大しており、逆方向電流−電圧特性(I−V特性)におけるリーク電流が増大するため、Al組成を増加させると降伏電圧の低下も起きている。   FIG. 2 shows an example in which an AlGaN layer is used for the purpose of increasing the breakdown voltage of the pin diode (Non-Patent Document 2). The pin diode 200 includes an AlN buffer layer 204, a 0.5 μm thick n-type AlGaN layer 206, a 1.5 μm thick undoped AlGaN layer 208, and a 0.5 μm thick Mg doped GaN layer 210 on a sapphire substrate 202. Are sequentially formed. The Al composition of the n-type AlGaN layer 206 and the undoped AlGaN layer 208 is the same, and there are three ways of 0%, 20%, and 40%, respectively. Since the sapphire substrate 202 is semi-insulating, the n-type ohmic electrode 220 needs to be formed on the surface of the n-type AlGaN layer 206. The current flows in the lateral direction in the n-type AlGaN layer 206 shown in FIG. Here, since AlGaN has a higher resistance than GaN, the device resistance increases in the structure of FIG. 2 using the n-type AlGaN layer 206 as compared with the case where the n-type GaN layer is used. Furthermore, since the contact resistance between the n-type AlGaN layer and the electrode layer also increases, this structure cannot achieve a low resistance. Further, as the Al composition of the undoped AlGaN layer increases, the crystal defects increase, and the leakage current in the reverse current-voltage characteristics (IV characteristics) increases. Therefore, when the Al composition is increased, the breakdown voltage decreases. Is also happening.

A. P. Zhang, et al. “Al composition dependence of breakdown voltage in AlXGa1-XN Schottky rectifiers,” Appl. Phys. Lett., Vol.76, No.13, pp.1767-1769, March 2000.A. P. Zhang, et al. “Al composition dependence of breakdown voltage in AlXGa1-XN Schottky rectifiers,” Appl. Phys. Lett., Vol.76, No.13, pp.1767-1769, March 2000. T. G. Zhu, et al. “GaN and AlXGa1-XNp-i-n High-Voltage Rectifiers Grown by Metalorganic Chemical Vapor Deposition,” Phys. Stat. Sol. A, vol.188, No.1, pp.301-305, 2001.T. G. Zhu, et al. “GaN and AlXGa1-XNp-i-n High-Voltage Rectifiers Grown by Metalorganic Chemical Vapor Deposition,” Phys. Stat. Sol. A, vol.188, No.1, pp.301-305, 2001.

以上、従来の構造として、電圧を保持する層としてAlGaN層を利用した例を示した。しかしながら、GaN層の代わりにAlGaN層を用いることによって、高い降伏電圧を実現することはできるが、AlGaN層を横方向に流れる電流の抵抗および電極層との接触抵抗が高くなり、ショットキーダイオードまたはpn接合ダイオード全体の抵抗が高くなるという問題が発生する。また、AlGaN層は混晶層であることから結晶欠陥が混入しやすく、リーク電流が増大すると降伏電圧の低下を招く。   As described above, an example in which an AlGaN layer is used as a layer for holding a voltage has been shown as a conventional structure. However, by using an AlGaN layer instead of the GaN layer, a high breakdown voltage can be realized, but the resistance of the current flowing in the AlGaN layer in the lateral direction and the contact resistance with the electrode layer are increased, and a Schottky diode or There arises a problem that the resistance of the entire pn junction diode increases. In addition, since the AlGaN layer is a mixed crystal layer, crystal defects are likely to be mixed in, and when the leakage current increases, the breakdown voltage decreases.

ここで、図3に示すように、n型のオーミック電極220を形成するためにn型AlGaN層206ではなく、n型GaN層306を用いると、横方向を流れる電流の抵抗および接触抵抗は小さくなるが、n型GaN層306とアンドープAlGaN層208の間の格子定数や熱膨張係数が異なるために、アンドープAlGaN層208にクラックが発生しやすくなり降伏電圧は低下する。従って、従来の構造では、素子の抵抗を低く抑えたまま、降伏電圧を高くすることは不可能であった。   Here, as shown in FIG. 3, when the n-type GaN layer 306 is used instead of the n-type AlGaN layer 206 to form the n-type ohmic electrode 220, the resistance of the current flowing in the lateral direction and the contact resistance are small. However, since the lattice constant and the thermal expansion coefficient between the n-type GaN layer 306 and the undoped AlGaN layer 208 are different, cracks are likely to occur in the undoped AlGaN layer 208 and the breakdown voltage is lowered. Therefore, in the conventional structure, it is impossible to increase the breakdown voltage while keeping the resistance of the element low.

本発明の目的は、電圧を保持する層としてAlGaN層を使用した窒化物半導体素子において、素子の抵抗を低く保ったまま、高い降伏電圧を実現することができる構造を提供することにある。   An object of the present invention is to provide a structure capable of realizing a high breakdown voltage while keeping the resistance of an element low in a nitride semiconductor element using an AlGaN layer as a voltage holding layer.

本発明は、このような目的を達成するために、請求項1に記載の発明は、導電性のSiC基板上に作製した窒化物半導体の構造であって、前記SiC基板上に形成され、前記SiC基板と同じ導電型を有する第1のAlGaN層と、前記第1のAlGaN層上に形成され、前記SiC基板と同じ導電型を有する第2のAlGaN層であって、Al組成が前記第1のAlGaN層と同じかそれ以下の第2のAlGaN層と、前記第2のAlGaN層上に形成され、前記SiC基板と同じ導電型を有する第3のAlGaN層であって、Al組成が前記第2のAlGaN層と同じかそれ以下の第3のAlGaN層とを備えたことを特徴とする。   In order to achieve the above object, the present invention provides a nitride semiconductor structure fabricated on a conductive SiC substrate, formed on the SiC substrate, and A first AlGaN layer having the same conductivity type as the SiC substrate; and a second AlGaN layer formed on the first AlGaN layer and having the same conductivity type as the SiC substrate, wherein the Al composition is the first AlGaN layer. A second AlGaN layer equal to or less than the AlGaN layer and a third AlGaN layer formed on the second AlGaN layer and having the same conductivity type as the SiC substrate, wherein the Al composition is the first AlGaN layer. And a third AlGaN layer equal to or less than the second AlGaN layer.

また、請求項2に記載の発明は、請求項1に記載の構造であって、前記SiC基板の裏面に形成されたオーミック電極をさらに備えたことを特徴とする。   The invention according to claim 2 is the structure according to claim 1, further comprising an ohmic electrode formed on a back surface of the SiC substrate.

また、請求項3に記載の発明は、請求項1または2に記載の構造であって、前記第3のAlGaN層よりも上の層に形成され、前記導電性基板と異なる導電性を有するInGaN層(In組成≧0)をさらに備えたことを特徴とする。   The invention according to claim 3 is the structure according to claim 1 or 2, wherein the InGaN is formed in a layer above the third AlGaN layer and has conductivity different from that of the conductive substrate. A layer (In composition ≧ 0) is further provided.

また、請求項4に記載の発明は、請求項1ないし3のいずれかに記載の構造であって、前記第2のAlGaN層のAl組成を前記導電性SiC基板側から前記第2のAlGaN層側へ漸次減少させたことを特徴とする。   According to a fourth aspect of the present invention, there is provided the structure according to any one of the first to third aspects, wherein the Al composition of the second AlGaN layer is changed from the conductive SiC substrate side to the second AlGaN layer. It is characterized by being gradually reduced to the side.

また、請求項5に記載の発明は、請求項1ないし4のいずれかに記載の構造であって、前記第1のAlGaN層の不純物ドーピング濃度は、1×1018cm−3以上であることを特徴とする。 The invention according to claim 5 is the structure according to any one of claims 1 to 4, wherein the impurity doping concentration of the first AlGaN layer is 1 × 10 18 cm −3 or more. It is characterized by.

また、請求項6に記載の発明は、請求項1ないし5のいずれかに記載の構造であって、前記第3のAlGaN層の不純物ドーピング濃度は、1×1018cm−3未満であることを特徴とする。 The invention according to claim 6 is the structure according to any one of claims 1 to 5, wherein the impurity doping concentration of the third AlGaN layer is less than 1 × 10 18 cm −3. It is characterized by.

また、請求項7に記載の発明は、請求項1ないし6のいずれかに記載の構造であって、前記第3のAlGaN層は、アンドープ層であることを特徴とする。   The invention according to claim 7 is the structure according to any one of claims 1 to 6, wherein the third AlGaN layer is an undoped layer.

また、請求項8に記載の発明は、請求項1ないし7のいずれかに記載の構造であって、前記SiC基板の導電型は、n型であることを特徴とする。   The invention according to claim 8 is the structure according to any one of claims 1 to 7, wherein the conductivity type of the SiC substrate is n-type.

本発明によれば、オーミック電極層を導電性SiC基板の裏面に形成することによって、電極を形成するための窒化物半導体層が必要なくなり、素子抵抗を小さくできる。また、AlGaN層の結晶欠陥によるリーク電流の増大に対して、AlGaN層のAl組成以上のAl組成を有するAlGaNバッファ層をAlGaN層とSiC基板の間に挿入することで、両者の格子定数差および熱膨張係数差により発生する結晶欠陥を低減でき、AlGaN層のクラックおよび結晶欠陥によるリーク電流を低減し、高い降伏電圧を実現することができる。これにより、素子の抵抗を低く保ったまま、降伏電圧を高くすることができる。   According to the present invention, by forming the ohmic electrode layer on the back surface of the conductive SiC substrate, the nitride semiconductor layer for forming the electrode is not necessary, and the element resistance can be reduced. Also, in response to an increase in leakage current due to crystal defects in the AlGaN layer, an AlGaN buffer layer having an Al composition equal to or higher than the Al composition of the AlGaN layer is inserted between the AlGaN layer and the SiC substrate, so that the difference in both lattice constants and Crystal defects generated due to the difference in thermal expansion coefficient can be reduced, leakage current due to cracks and crystal defects in the AlGaN layer can be reduced, and a high breakdown voltage can be realized. Thereby, the breakdown voltage can be increased while keeping the resistance of the element low.

本発明は、導電性SiC基板に導電性のAlGaNバッファ層を形成し、その上にAlGaN層よりも不純物濃度およびAl組成の低いAlGaN層を形成するとともに、導電性SiC基板の裏面にオーミック電極を形成するように構成する。AlGaNバッファ層を挿入することにより、AlGaN層の結晶欠陥を低減し、高い降伏電圧を実現することができる。また、基板に半絶縁性のサファイアではなく、導電性のSiC基板を用い、さらにその裏面にオーミック電極を形成することで素子の抵抗を低く保つことができる。   In the present invention, a conductive AlGaN buffer layer is formed on a conductive SiC substrate, an AlGaN layer having a lower impurity concentration and Al composition than the AlGaN layer is formed thereon, and an ohmic electrode is formed on the back surface of the conductive SiC substrate. Configure to form. By inserting the AlGaN buffer layer, crystal defects in the AlGaN layer can be reduced and a high breakdown voltage can be realized. Further, the resistance of the element can be kept low by using a conductive SiC substrate instead of semi-insulating sapphire for the substrate and further forming an ohmic electrode on the back surface thereof.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図4に、本発明によるpn接合ダイオードの構造の一例を示す。このpn接合ダイオード400は、有機金属気相成長(MOVPE)法により、n型導電性SiC基板402の表面上に100nm厚のn型AlGaNバッファ層404と、500nm厚のn型AlGaN層406と、225nm厚のn型AlGaN層408と、140nm厚のp型InGaN層410とを順次成長させて作製した。n型およびp型の不純物にはそれぞれSiおよびMgを用いた。また、n型AlGaNバッファ層404、n型AlGaN層406およびn型AlGaN層408のSi不純物ドーピング濃度は、それぞれ2×1019cm−3、2×1018cm−3、1×1017cm−3であり、p型InGaN層のMg不純物濃度は、4×1019cm−3である。ここで、高濃度Si不純物ドーピング層と低濃度Si不純物ドーピング層を意図的に区別するために、高濃度のSi不純物層には「n」の記号を、低濃度の不純物層には「n」の記号を用いることにする。 FIG. 4 shows an example of the structure of a pn junction diode according to the present invention. The pn junction diode 400 includes an n + type AlGaN buffer layer 404 having a thickness of 100 nm and an n + type AlGaN layer 406 having a thickness of 500 nm on the surface of the n type conductive SiC substrate 402 by metal organic vapor phase epitaxy (MOVPE). Then, an n-type AlGaN layer 408 having a thickness of 225 nm and a p-type InGaN layer 410 having a thickness of 140 nm were sequentially grown. Si and Mg were used for n-type and p-type impurities, respectively. In addition, the Si impurity doping concentrations of the n + -type AlGaN buffer layer 404, the n + -type AlGaN layer 406, and the n-type AlGaN layer 408 are 2 × 10 19 cm −3 , 2 × 10 18 cm −3 , and 1 × 10 17, respectively. cm −3 , and the Mg impurity concentration of the p-type InGaN layer is 4 × 10 19 cm −3 . Here, in order to intentionally distinguish the high-concentration Si impurity doped layer from the low-concentration Si impurity-doped layer, the symbol “n + ” is used for the high-concentration Si impurity layer, and “n + ” is used for the low-concentration impurity layer. "Is used.

型AlGaNバッファ層404のドーピング濃度を2×1019cm−3と高くした理由は、n型SiC基板との接合面における結晶性を損なわない範囲でキャリア濃度を高くして、接合面の異種接合によるバンドオフセットやバリアに対する導電性を確保するためである。また、n型AlGaN層408のドーピング濃度を1×1017cm−3と低くした理由は、キャリア濃度を低くしてこの層における耐圧を確保するためである。 The reason why the doping concentration of the n + -type AlGaN buffer layer 404 is increased to 2 × 10 19 cm −3 is that the carrier concentration is increased within a range that does not impair the crystallinity at the bonding surface with the n-type SiC substrate. This is to ensure conductivity with respect to the band offset and barrier due to the heterogeneous bonding. The reason why the doping concentration of the n-type AlGaN layer 408 is lowered to 1 × 10 17 cm −3 is to ensure the breakdown voltage in this layer by lowering the carrier concentration.

型AlGaNバッファ層404のAl組成を15%とした。n型AlGaN層406およびn型AlGaN層408のAl組成は同一であり、0〜25%とし、p型InGaN層410のIn組成は10%とした。なお、メサ構造の作製にはECRエッチング法を用いた。また、電子ビーム蒸着により、p型InGaN410上にはPd/Auのオーミック電極420を、導電性n型SiC基板402の裏面にはTi/Auのオーミック電極430を形成した。p型InGaN上に形成したPd/Auのオーミック電極の大きさは100μm×100μmである。 The Al composition of the n + -type AlGaN buffer layer 404 was 15%. The Al composition of the n + -type AlGaN layer 406 and the n-type AlGaN layer 408 is the same, 0 to 25%, and the In composition of the p-type InGaN layer 410 is 10%. Note that the ECR etching method was used to fabricate the mesa structure. Also, a Pd / Au ohmic electrode 420 was formed on the p-type InGaN 410 and a Ti / Au ohmic electrode 430 was formed on the back surface of the conductive n-type SiC substrate 402 by electron beam evaporation. The size of the Pd / Au ohmic electrode formed on the p-type InGaN is 100 μm × 100 μm.

本発明では、n型SiC基板の裏面にn型のオーミック電極を形成し、電流を基板の表面から基板の裏面へ流しているため、図1または図2のように、n型AlGaN層の横方向の抵抗および電極層との接触抵抗がなく、素子抵抗を低くできる。また、AlGaN層のリーク電流をサファイア基板ではなく、格子定数差の小さいSiC基板を用い、さらにAl組成がAlGaN層のAl組成以上であるAlGaNバッファ層を挿入することで、格子定数および熱膨張係数差によるAlGaN層内のクラックおよび結晶欠陥を低減している。   In the present invention, an n-type ohmic electrode is formed on the back surface of the n-type SiC substrate, and a current is passed from the front surface of the substrate to the back surface of the substrate. Therefore, as shown in FIG. There is no resistance in the direction and no contact resistance with the electrode layer, and the element resistance can be lowered. Also, the leakage constant of the AlGaN layer is not a sapphire substrate, but a SiC substrate with a small difference in lattice constant is used, and an AlGaN buffer layer whose Al composition is greater than or equal to the Al composition of the AlGaN layer is inserted, so that the lattice constant and thermal expansion coefficient are Cracks and crystal defects in the AlGaN layer due to the difference are reduced.

図5に、図4の構造におけるpn接合ダイオードの降伏電圧とn型AlGaN層のAl組成の関係を示す。降伏電圧は、逆方向I−V特性において1μAの電流が流れる電圧と定義した。図4に示した構造では、降伏電圧はn型AlGaN層408によって決まる。pn接合ダイオードの降伏電圧はn型AlGaN層のAl組成が10%以下のときには、膜厚が225nmと小さいためGaN層を用いた場合との顕著な差は現れない。また、n型AlGaNバッファ層404のAl組成よりもn型AlGaN層407のAl組成が大きくなるとAlGaNのバンドギャップが大きくなるにも関わらず、降伏電圧は急激に低下する。この理由は次の通りである。まず、n型AlGaNバッファ層のAl組成に対してn型AlGaN層のAl組成が大きくなるとn型AlGaN層の格子定数がn型AlGaNバッファ層の格子定数より小さくなるため、n型AlGaN層内に引っ張り応力がかかることになる。一般にクラックや結晶欠陥の混入する臨界膜厚は、圧縮応力よりも引っ張り応力がかかるときのほうが小さい。よって、n型AlGaN層内の引っ張り応力によって、クラックや結晶欠陥が混入しやすく、n型AlGaN層内のリーク電流が増加するため、降伏電圧の低下が起こると考えられる。従って、n型AlGaNバッファ層のAl組成は、n型AlGaN層のAl組成以上であることが必要である。図5を参照すると、n型AlGaN層のAl組成がn型AlGaNバッファ層のAl組成(15%)以上になる点線の右側の領域で、降伏電圧が急速に低下していることが分かる。しかし、AlGaNはAl組成が高くなるほど、Si不純物が活性化しにくくなり、かつ電子の移動度が減少するために抵抗率が高くなるので、素子抵抗を低く保ったまま降伏電圧を高くするためには設計に注意が必要である。 FIG. 5 shows the relationship between the breakdown voltage of the pn junction diode and the Al composition of the n-type AlGaN layer in the structure of FIG. The breakdown voltage was defined as a voltage through which a current of 1 μA flows in the reverse IV characteristic. In the structure shown in FIG. 4, the breakdown voltage is determined by the n-type AlGaN layer 408. When the Al composition of the n-type AlGaN layer is 10% or less, the breakdown voltage of the pn junction diode is as small as 225 nm, so that there is no significant difference from the case where the GaN layer is used. In addition, when the Al composition of the n-type AlGaN layer 407 is larger than the Al composition of the n + -type AlGaN buffer layer 404, the breakdown voltage is drastically lowered although the band gap of AlGaN is increased. The reason is as follows. First, since the lattice constant of the n-type AlGaN layer becomes smaller than the lattice constant of the n + -type AlGaN buffer layer when the Al composition of the n-type AlGaN layer becomes larger than the Al composition of the n + -type AlGaN buffer layer, the n-type AlGaN layer A tensile stress is applied inside. In general, the critical film thickness mixed with cracks and crystal defects is smaller when tensile stress is applied than compressive stress. Therefore, it is considered that cracks and crystal defects are likely to be mixed due to tensile stress in the n-type AlGaN layer, and the leakage current in the n-type AlGaN layer is increased, so that the breakdown voltage is lowered. Therefore, the Al composition of the n + -type AlGaN buffer layer needs to be greater than or equal to the Al composition of the n-type AlGaN layer. Referring to FIG. 5, it can be seen that the breakdown voltage rapidly decreases in the region on the right side of the dotted line where the Al composition of the n-type AlGaN layer is greater than or equal to the Al composition (15%) of the n + -type AlGaN buffer layer. However, the higher the Al composition of AlGaN, the more difficult the Si impurities are activated and the higher the resistivity because the mobility of electrons decreases, so in order to increase the breakdown voltage while keeping the device resistance low. Careful design is required.

図6に、本発明によるpn接合ダイオードの構造の一例を示す。このpn接合ダイオード600は、実施例1と同様に、MOVPE法により、導電性n型SiC基板602の表面上に100nm厚のn型AlGaNバッファ層604と、500nm厚のn型AlGaN層606と、225nm厚のn型AlGaN層608と、140nm厚のp型InGaN層610とを順次成長させて作製した。n型AlGaNバッファ層のAl組成は25%とした。n型AlGaN層およびn型AlGaN層のAl組成はそれぞれ15%とし、p型InGaN層のIn組成は10%とした。各AlGaN層のAl組成以外は実施例1と同一である。 FIG. 6 shows an example of the structure of a pn junction diode according to the present invention. Similar to the first embodiment, the pn junction diode 600 includes a 100 nm thick n + -type AlGaN buffer layer 604 and a 500 nm thick n + -type AlGaN layer 606 on the surface of the conductive n-type SiC substrate 602 by MOVPE. Then, an n-type AlGaN layer 608 having a thickness of 225 nm and a p-type InGaN layer 610 having a thickness of 140 nm were sequentially grown. The Al composition of the n + -type AlGaN buffer layer was 25%. The Al composition of the n + -type AlGaN layer and the n-type AlGaN layer was 15%, and the In composition of the p-type InGaN layer was 10%. Except for the Al composition of each AlGaN layer, it is the same as Example 1.

この構造における降伏電圧は60Vである。このとき、n型AlGaN層の絶縁破壊電界は2.7MV/cmとなり、n型GaN層を用いたときに得られた絶縁破壊電界2.1MV/cmから増加している。この降伏電圧の増加は、n型AlGaN層608内のリーク電流を抑えるためにn型AlGaNバッファ層604のAl組成をn型AlGaN層606のAl組成よりも10%高くしたことによる。順方向I−V特性における100mAでの微分抵抗をオン抵抗と定義すると、1.3mΩcmと十分に低い値を示した。同様の構造で、n型AlGaN層およびn型AlGaN層をそれぞれn型GaN層およびn型GaN層としたときのオン抵抗は1.2mΩcmであるから、AlGaN層を用いたことによる大きな抵抗の増加は見られない。従って、AlGaN層による降伏電圧の増加と低抵抗を同時に実現している。 The breakdown voltage in this structure is 60V. At this time, the breakdown electric field of the n-type AlGaN layer is 2.7 MV / cm, which is increased from the breakdown electric field 2.1 MV / cm obtained when the n-type GaN layer is used. This increase in breakdown voltage is due to the fact that the Al composition of the n + -type AlGaN buffer layer 604 is made 10% higher than the Al composition of the n + -type AlGaN layer 606 in order to suppress the leakage current in the n-type AlGaN layer 608. When the differential resistance at 100 mA in the forward IV characteristics was defined as the on-resistance, a sufficiently low value of 1.3 mΩcm 2 was shown. With the same structure, when the n + -type AlGaN layer and the n-type AlGaN layer are an n + -type GaN layer and an n-type GaN layer, respectively, the on-resistance is 1.2 mΩcm 2. There is no increase in resistance. Therefore, an increase in breakdown voltage and low resistance are simultaneously realized by the AlGaN layer.

図7に、本発明によるpn接合ダイオードの構造の一例を示す。このpn接合ダイオード700は、実施例2と同様に、MOVPE法により、導電性n型SiC基板702の表面上に100nm厚のn型AlGaNバッファ層704と、500nm厚のn型AlGaN層706と、225nm厚のn型AlGaN層708と、140nm厚のp型InGaN層710とを順次成長させて作製した。n型AlGaNバッファ層704のAl組成は、SiC基板との界面では25%とし、n型AlGaN層706へ向かって漸次減少させ、n型AlGaN層706との界面では15%とした。n型AlGaN層706およびn型AlGaN層708のAl組成は、ともに15%とし、p型InGaN層710のIn組成は、10%とした。n型AlGaNバッファ層のAl組成がSiC基板界面からn型AlGaN層界面に向かって漸次減少している以外は実施例2と同一である。 FIG. 7 shows an example of the structure of a pn junction diode according to the present invention. Similar to the second embodiment, the pn junction diode 700 includes a 100 nm thick n + -type AlGaN buffer layer 704 and a 500 nm thick n + -type AlGaN layer 706 on the surface of the conductive n-type SiC substrate 702 by MOVPE. Then, an n-type AlGaN layer 708 having a thickness of 225 nm and a p-type InGaN layer 710 having a thickness of 140 nm were sequentially grown. Al composition of the n + -type AlGaN buffer layer 704 at the interface between the SiC substrate of 25% towards n + -type AlGaN layer 706 gradually decreases, was 15% in the interface between the n + -type AlGaN layer 706. Both the Al composition of the n + -type AlGaN layer 706 and the n-type AlGaN layer 708 were 15%, and the In composition of the p-type InGaN layer 710 was 10%. The same as Example 2, except that the Al composition of the n + -type AlGaN buffer layer gradually decreases from the SiC substrate interface toward the n + -type AlGaN layer interface.

この構造における降伏電圧はn型AlGaN層708によって決まるため、60Vと実施例2と変わらないが、オン抵抗は1.0mΩcmと減少する。この抵抗の減少は、n型AlGaNバッファ層のAl組成をSiC基板界面からn型AlGaN層界面へと漸次減少させることによって、n型AlGaNバッファ層とn型AlGaN層との界面でのバンド不連続の影響を小さくしているためである。 Since the breakdown voltage in this structure is determined by the n-type AlGaN layer 708, it is 60 V, which is the same as in Example 2, but the on-resistance is reduced to 1.0 mΩcm 2 . This decrease in resistance is caused by gradually decreasing the Al composition of the n + -type AlGaN buffer layer from the SiC substrate interface to the n + -type AlGaN layer interface, and thereby at the interface between the n + -type AlGaN buffer layer and the n + -type AlGaN layer. This is because the influence of the band discontinuity is reduced.

図8に、本発明によるpn接合ダイオードの構造の一例を示す。このpn接合ダイオード800は、実施例2と同様に、MOVPE法により、導電性n型SiC基板802の表面上に100nm厚のn型AlGaNバッファ層804と、500nm厚のn型AlGaN層806と、225nm厚のn型AlGaN層808と、140nm厚のp型InGaN層810とを順次成長させて作製した。n型AlGaNバッファ層804のAl組成は25%とした。n型AlGaN層806のAl組成は、n型AlGaNバッファ層804との界面では25%とし、n型AlGaN層808へ向かって漸次減少させ、n型AlGaN層808との界面では15%とした。n型AlGaN層808のAl組成は15%とし、p型InGaN層810のIn組成は10%とした。n型AlGaN層のAl組成がn型AlGaNバッファ層界面からn型AlGaN層界面に向かって漸次減少している以外は実施例2と同一である。 FIG. 8 shows an example of the structure of a pn junction diode according to the present invention. As in the second embodiment, the pn junction diode 800 includes a 100 nm thick n + -type AlGaN buffer layer 804 and a 500 nm thick n + -type AlGaN layer 806 on the surface of the conductive n-type SiC substrate 802 by MOVPE. Then, an n-type AlGaN layer 808 having a thickness of 225 nm and a p-type InGaN layer 810 having a thickness of 140 nm were sequentially grown. The Al composition of the n + -type AlGaN buffer layer 804 was 25%. The Al composition of the n + -type AlGaN layer 806 is 25% at the interface with the n + -type AlGaN buffer layer 804, gradually decreases toward the n-type AlGaN layer 808, and 15% at the interface with the n-type AlGaN layer 808. did. The Al composition of the n-type AlGaN layer 808 was 15%, and the In composition of the p-type InGaN layer 810 was 10%. except that the n + -type AlGaN layer of Al composition is gradually reduced toward the n-type AlGaN layer interface from the n + -type AlGaN buffer layer interface is the same as in Example 2.

この構造における降伏電圧はn型AlGaN層808によって決まるため、60Vと実施例2と変わらない。オン抵抗は1.1mΩcmと実施例2と比べて減少するが、実施例3よりも高くなる。この理由は次の通りである。n型AlGaN層のAl組成をn型AlGaNバッファ層界面からn型AlGaN層界面に向かって漸次減少させることによって、n型AlGaN層とn型AlGaN層の界面でのバンド不連続の影響を小さくなり、実施例2と比べて抵抗は低くなるが、実施例3と比べるとAl組成が高いAlGaN層の部分が長くなるため抵抗が高くなる。 Since the breakdown voltage in this structure is determined by the n-type AlGaN layer 808, it is 60 V, which is the same as in the second embodiment. The on-resistance is 1.1 mΩcm 2, which is lower than that in Example 2, but higher than that in Example 3. The reason is as follows. By the Al composition of the n + -type AlGaN layer toward the n + -type AlGaN buffer layer interface to the n-type AlGaN layer interface decreases gradually, the band discontinuity effects at the interface of the n + -type AlGaN layer and the n-type AlGaN layer However, the resistance is lower than that of the second embodiment, but the resistance is higher because the portion of the AlGaN layer having a higher Al composition is longer than that of the third embodiment.

図9に、本発明によるpn接合ダイオードの構造の一例を示す。このpn接合ダイオード900は、実施例3と同様に、MOVPE法により、導電性n型SiC基板902の表面上に100nm厚のn型AlGaNバッファ層904と、500nm厚のn型AlGaN層906と、225nm厚のアンドープAlGaN層908と、140nm厚のp型InGaN層910とを順次成長させて作製した。アンドープAlGaN層には意図的に不純物ドーピングをしていないこと以外は実施例3と同一である。 FIG. 9 shows an example of the structure of a pn junction diode according to the present invention. Similar to the third embodiment, the pn junction diode 900 includes an n + type AlGaN buffer layer 904 having a thickness of 100 nm and an n + type AlGaN layer 906 having a thickness of 500 nm on the surface of the conductive n type SiC substrate 902 by the MOVPE method. Then, an undoped AlGaN layer 908 having a thickness of 225 nm and a p-type InGaN layer 910 having a thickness of 140 nm were sequentially grown. Example 3 is the same as Example 3 except that the undoped AlGaN layer is not intentionally doped with impurities.

この構造における降伏電圧は70Vと高くなる。これは、アンドープAlGaN層に不純物ドーピングを行わないことによってキャリア濃度が下がり、空乏層幅が大きくなるため、AlGaN層908により均一に電界がかかるためである。このときの絶縁破壊電圧は、3.1MV/cmである。オン抵抗は、AlGaN層のキャリア濃度が下がることにより抵抗が高くなるため、1.2mΩcmとなった。しかし、依然として素子抵抗を低く保ったまま、降伏電圧を高くすることができる。 The breakdown voltage in this structure is as high as 70V. This is because an electric field is uniformly applied to the AlGaN layer 908 because the carrier concentration is lowered and the depletion layer width is increased by not doping the undoped AlGaN layer. The dielectric breakdown voltage at this time is 3.1 MV / cm. The on-resistance was 1.2 mΩcm 2 because the resistance increased as the carrier concentration of the AlGaN layer decreased. However, the breakdown voltage can be increased while the device resistance is still kept low.

図10に、本発明によるpn接合ダイオードの構造の一例を示す。このpn接合ダイオード1000は、実施例5と同様に、MOVPE法により、導電性n型SiC基板1002の表面上に100nm厚のn型AlGaNバッファ層1004と、200nm厚のn型AlGaN層1006と、2.0μm厚のアンドープAlGaN層1008と、140nm厚のp型InGaN層1010とを順次成長させて作製した。n型AlGaNバッファ層1004のAl組成は、SiC基板1002との界面では35%とし、n型AlGaN層1006へ向かって漸次減少させ、n型AlGaN層1006との界面では25%とした。n型AlGaN層1006のAl組成は25%とし、アンドープAlGaN層1008には意図的なドーピングは行っていない。また、p型InGaN層1010のIn組成は10%とした。n型AlGaNバッファ層およびn型AlGaN層のAl組成、そしてアンドープAlGaN層の膜厚以外は実施例4と同一である。 FIG. 10 shows an example of the structure of a pn junction diode according to the present invention. Similar to the fifth embodiment, the pn junction diode 1000 includes an n + type AlGaN buffer layer 1004 having a thickness of 100 nm and an n + type AlGaN layer 1006 having a thickness of 200 nm on the surface of the conductive n type SiC substrate 1002 by the MOVPE method. Then, an undoped AlGaN layer 1008 having a thickness of 2.0 μm and a p-type InGaN layer 1010 having a thickness of 140 nm were sequentially grown. Al composition of the n + -type AlGaN buffer layer 1004, and 35% at the interface with the SiC substrate 1002, toward the n + -type AlGaN layer 1006 gradually decreases, was 25% in the interface between the n + -type AlGaN layer 1006 . The Al composition of the n + -type AlGaN layer 1006 is 25%, and the undoped AlGaN layer 1008 is not intentionally doped. The p-type InGaN layer 1010 had an In composition of 10%. Example 4 is the same as Example 4 except for the Al composition of the n + -type AlGaN buffer layer and the n + -type AlGaN layer and the film thickness of the undoped AlGaN layer.

この構造における降伏電圧は640Vである。このとき、Al組成が25%のアンドープAlGaN層の絶縁破壊電界は3.6MV/cmである。Al組成の高いAlGaN層1008を用いることにより、SiC基板との格子定数差、熱膨張係数差が小さくなるため、クラックが発生しにくく、1.8μmまでアンドープAlGaN層の膜厚を増加させることができたため、高い降伏電圧が実現された。また、このときのオン抵抗は、3.8mΩcmであり、アンドープAlGaN層厚が増大することによって若干高くなったが許容範囲内である。 The breakdown voltage in this structure is 640V. At this time, the breakdown electric field of the undoped AlGaN layer having an Al composition of 25% is 3.6 MV / cm. By using the AlGaN layer 1008 having a high Al composition, the difference in lattice constant and thermal expansion coefficient from the SiC substrate is reduced, so that cracks are unlikely to occur and the film thickness of the undoped AlGaN layer can be increased to 1.8 μm. As a result, a high breakdown voltage was realized. Further, the on-resistance at this time is 3.8 mΩcm 2, which is slightly increased as the undoped AlGaN layer thickness increases, but is within an allowable range.

図11に、本発明によるショットキーダイオードの構造の一例を示す。このショットキーダイオード1100は、実施例5と同様に、MOVPE法を用いて、導電性n型SiC基板1102の表面上に100nm厚のn型AlGaNバッファ層1104と、500nm厚のn型AlGaN層1106と、225nm厚のアンドープAlGaN層1108とを順次成長させて作製した。n型AlGaNバッファ層1104、n型AlGaN層1106のSi不純物ドーピング濃度は、それぞれ2×1019cm−3、2×1018cm−3である。実施例4と異なる点は、140nm厚のp型InGaN層を成長していない点である。この後、電子ビーム蒸着により、アンドープAlGaN層1108上にはPd/Auのショットキー電極1120、そして導電性n型SiC基板1102の裏面にはTi/Auのオーミック電極1130を形成した。メサ構造の作製にはECRエッチング法を用いた。ここで、Pd/Au電極は、p型InGaN層に対してはオーミック電極となり、アンドープAlGaN層に対してはショットキー電極となる。 FIG. 11 shows an example of the structure of a Schottky diode according to the present invention. Similar to the fifth embodiment, the Schottky diode 1100 includes a 100 nm thick n + type AlGaN buffer layer 1104 and a 500 nm thick n + type AlGaN on the surface of the conductive n type SiC substrate 1102 using the MOVPE method. A layer 1106 and an undoped AlGaN layer 1108 having a thickness of 225 nm were sequentially grown. The Si impurity doping concentrations of the n + -type AlGaN buffer layer 1104 and the n + -type AlGaN layer 1106 are 2 × 10 19 cm −3 and 2 × 10 18 cm −3 , respectively. The difference from Example 4 is that a 140 nm thick p-type InGaN layer is not grown. Thereafter, a Pd / Au Schottky electrode 1120 was formed on the undoped AlGaN layer 1108 by electron beam evaporation, and a Ti / Au ohmic electrode 1130 was formed on the back surface of the conductive n-type SiC substrate 1102. An ECR etching method was used to fabricate the mesa structure. Here, the Pd / Au electrode is an ohmic electrode for the p-type InGaN layer and a Schottky electrode for the undoped AlGaN layer.

この構造における降伏電圧は65Vであり、実施例5で示したように、同じ膜厚(225nm)のアンドープAlGaN層を用いたpn接合ダイオードの降伏電圧(70V)とほぼ等しい値が得られた。降伏電圧の大きさは、ダイオードの種類(pn接合ダイオードあるいはショットキーダイオード)に依存せず、電圧を保持するアンドープAlGaN層に依存するからである。また、順方向I−V特性からは、1.1mΩcmという低いオン抵抗が得られている。同じ膜厚(225nm)のアンドープAlGaN層を用いたpn接合ダイオードのオン抵抗(1.2mΩcm)よりも若干低い理由は、p型InGaN層に関連する抵抗成分が無くなったためと考えられる。 The breakdown voltage in this structure was 65 V, and as shown in Example 5, a value almost equal to the breakdown voltage (70 V) of a pn junction diode using an undoped AlGaN layer having the same film thickness (225 nm) was obtained. This is because the breakdown voltage does not depend on the type of diode (pn junction diode or Schottky diode) but depends on the undoped AlGaN layer holding the voltage. Further, from the forward IV characteristics, a low on-resistance of 1.1 mΩcm 2 is obtained. The reason why the resistance is slightly lower than the on-resistance (1.2 mΩcm 2 ) of the pn junction diode using the undoped AlGaN layer having the same film thickness (225 nm) is considered to be because the resistance component related to the p-type InGaN layer has disappeared.

このように、ショットキーダイオードにおいても、ダイオードの抵抗を低く保ったまま、高い降伏電圧を得ることができる。   Thus, even in a Schottky diode, a high breakdown voltage can be obtained while keeping the resistance of the diode low.

以上、本発明について、具体的にいくつかの実施例について説明したが、本発明の原理を適用できる多くの実施可能な形態に鑑みて、ここに記載した実施例は、単に例示に過ぎず、本発明の範囲を限定するものではない。例えば、本発明の原理は、例示したpn接合ダイオード、ショットキーダイオードに限らず、バイポーラトランジスタ、電界効果トランジスタなどの半導体デバイスに適用することができる。また、ここに例示した実施例は、本発明の趣旨から逸脱することなくその構成と詳細を変更することができる。さらに、説明のための構成要素および手順は、本発明の趣旨から逸脱することなく変更、補足、またはその順序を変えてもよい。   While the present invention has been described with respect to several embodiments, the embodiments described herein are merely illustrative in view of many possible forms to which the principles of the present invention can be applied. It is not intended to limit the scope of the invention. For example, the principle of the present invention is not limited to the illustrated pn junction diode and Schottky diode, but can be applied to semiconductor devices such as bipolar transistors and field effect transistors. Further, the configuration and details of the embodiments exemplified herein can be changed without departing from the spirit of the present invention. Further, the illustrative components and procedures may be changed, supplemented, or changed in order without departing from the spirit of the invention.

降伏電圧を増加させるために、AlGaN層を使用したショットキーダイオードの構造の一例を示す図である。It is a figure which shows an example of the structure of the Schottky diode which uses an AlGaN layer in order to increase a breakdown voltage. 降伏電圧を増加させるために、AlGaN層を使用したpn接合ダイオードの構造の一例を示す図である。It is a figure which shows an example of the structure of the pn junction diode which uses an AlGaN layer in order to increase a breakdown voltage. 図2において、AlGaN層に代えてGaN層を使用したpn接合ダイオードの構造の一例を示す図である。In FIG. 2, it is a figure which shows an example of the structure of the pn junction diode which replaced with the AlGaN layer and used the GaN layer. 本発明の実施例1によるpn接合ダイオードの構造の一例を示す図である。It is a figure which shows an example of the structure of the pn junction diode by Example 1 of this invention. 図4のpn接合ダイオードにおける降伏電圧とn型AlGaN層のAl組成の関係を示すグラフである。5 is a graph showing the relationship between the breakdown voltage and the Al composition of the n-type AlGaN layer in the pn junction diode of FIG. 本発明の実施例2によるpn接合ダイオードの構造の一例を示す図である。It is a figure which shows an example of the structure of the pn junction diode by Example 2 of this invention. 本発明の実施例3によるpn接合ダイオードの構造の一例を示す図である。It is a figure which shows an example of the structure of the pn junction diode by Example 3 of this invention. 本発明の実施例4によるpn接合ダイオードの構造の一例を示す図である。It is a figure which shows an example of the structure of the pn junction diode by Example 4 of this invention. 本発明の実施例5によるpn接合ダイオードの構造の一例を示す図である。It is a figure which shows an example of the structure of the pn junction diode by Example 5 of this invention. 本発明の実施例6によるpn接合ダイオードの構造の一例を示す図である。It is a figure which shows an example of the structure of the pn junction diode by Example 6 of this invention. 本発明の実施例7によるショットキーダイオードの構造の一例を示す図である。It is a figure which shows an example of the structure of the Schottky diode by Example 7 of this invention.

符号の説明Explanation of symbols

100 ショットキーダイオード
200 pinダイオード
300 pinダイオード
400,600,700,800,900,1000 pn接合ダイオード
1100 ショットキーダイオード
DESCRIPTION OF SYMBOLS 100 Schottky diode 200 Pin diode 300 Pin diode 400,600,700,800,900,1000 pn junction diode 1100 Schottky diode

Claims (8)

導電性のSiC基板上に作製した窒化物半導体の構造であって、
前記SiC基板上に形成され、前記SiC基板と同じ導電型を有する第1のAlGaN層と、
前記第1のAlGaN層上に形成され、前記SiC基板と同じ導電型を有する第2のAlGaN層であって、Al組成が前記第1のAlGaN層と同じかそれ以下の第2のAlGaN層と、
前記第2のAlGaN層上に形成され、前記SiC基板と同じ導電型を有する第3のAlGaN層であって、Al組成が前記第2のAlGaN層と同じかそれ以下の第3のAlGaN層と
を備えたことを特徴とする構造。
A nitride semiconductor structure fabricated on a conductive SiC substrate,
A first AlGaN layer formed on the SiC substrate and having the same conductivity type as the SiC substrate;
A second AlGaN layer formed on the first AlGaN layer and having the same conductivity type as the SiC substrate, the Al composition being the same as or lower than the first AlGaN layer; ,
A third AlGaN layer formed on the second AlGaN layer and having the same conductivity type as the SiC substrate, wherein the Al composition is the same as or less than the second AlGaN layer; A structure characterized by comprising.
請求項1に記載の構造であって、
前記SiC基板の裏面に形成されたオーミック電極をさらに備えたことを特徴とする構造。
The structure of claim 1,
A structure further comprising an ohmic electrode formed on the back surface of the SiC substrate.
請求項1または2に記載の構造であって、
前記第3のAlGaN層よりも上の層に形成され、前記導電性基板と異なる導電性を有するInGaN層(In組成≧0)をさらに備えたことを特徴とする構造。
The structure according to claim 1 or 2,
A structure further comprising an InGaN layer (In composition ≧ 0) formed in a layer above the third AlGaN layer and having conductivity different from that of the conductive substrate.
請求項1ないし3のいずれかに記載の構造であって、
前記第2のAlGaN層のAl組成を前記導電性SiC基板側から前記第2のAlGaN層側へ漸次減少させたことを特徴とする構造。
A structure according to any one of claims 1 to 3,
A structure wherein the Al composition of the second AlGaN layer is gradually reduced from the conductive SiC substrate side to the second AlGaN layer side.
請求項1ないし4のいずれかに記載の構造であって、
前記第1のAlGaN層の不純物ドーピング濃度は、1×1018cm−3以上であることを特徴とする構造。
A structure according to any one of claims 1 to 4,
The structure in which the impurity doping concentration of the first AlGaN layer is 1 × 10 18 cm −3 or more.
請求項1ないし5のいずれかに記載の構造であって、
前記第3のAlGaN層の不純物ドーピング濃度は、1×1018cm−3未満であることを特徴とする構造。
A structure according to any one of claims 1 to 5,
The structure characterized in that the impurity doping concentration of the third AlGaN layer is less than 1 × 10 18 cm −3 .
請求項1ないし6のいずれかに記載の構造であって、
前記第3のAlGaN層は、アンドープ層であることを特徴とする構造。
The structure according to any one of claims 1 to 6,
The third AlGaN layer is an undoped layer.
請求項1ないし7のいずれかに記載の構造であって、
前記SiC基板の導電型は、n型であることを特徴とする構造。
A structure according to any one of claims 1 to 7,
A structure characterized in that the conductivity type of the SiC substrate is n-type.
JP2006035635A 2006-02-13 2006-02-13 Nitride semiconductor structure Active JP4986472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006035635A JP4986472B2 (en) 2006-02-13 2006-02-13 Nitride semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006035635A JP4986472B2 (en) 2006-02-13 2006-02-13 Nitride semiconductor structure

Publications (2)

Publication Number Publication Date
JP2007214515A true JP2007214515A (en) 2007-08-23
JP4986472B2 JP4986472B2 (en) 2012-07-25

Family

ID=38492649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006035635A Active JP4986472B2 (en) 2006-02-13 2006-02-13 Nitride semiconductor structure

Country Status (1)

Country Link
JP (1) JP4986472B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103361719A (en) * 2013-07-05 2013-10-23 华灿光电股份有限公司 Method for growing gallium nitride epitaxial layer on buffer layer
JP2016066813A (en) * 2011-05-18 2016-04-28 ローム株式会社 Semiconductor device and method of manufacturing the same
WO2017163881A1 (en) * 2016-03-23 2017-09-28 三菱電機株式会社 Semiconductor device and method for manufacturing semiconductor device
JP2018032828A (en) * 2016-08-26 2018-03-01 学校法人法政大学 Semiconductor device and method of manufacturing the same
CN109119508A (en) * 2018-08-08 2019-01-01 镇江镓芯光电科技有限公司 Incident solar blind ultraviolet detector of a kind of back and preparation method thereof
CN111180527A (en) * 2019-12-30 2020-05-19 深圳第三代半导体研究院 GaN-based PN diode and preparation method thereof
US10770554B2 (en) 2016-03-31 2020-09-08 Sciocs Company Limited Nitride semiconductor substrate, semiconductor device, and method for manufacturing nitride semiconductor substrate
US10818757B2 (en) 2016-03-31 2020-10-27 Sciocs Company Limited Nitride semiconductor substrate, semiconductor device, and method for manufacturing nitride semiconductor substrate
CN112233972A (en) * 2020-12-17 2021-01-15 中电化合物半导体有限公司 Gallium nitride-based epitaxial structure and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107958939A (en) * 2016-10-17 2018-04-24 南京励盛半导体科技有限公司 One kind nitridation Gallium base heterojunction Schottky diode structures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026385A (en) * 2000-07-06 2002-01-25 Hitachi Cable Ltd Light emitting diode
JP2003059938A (en) * 2001-06-07 2003-02-28 Nippon Telegr & Teleph Corp <Ntt> Nitride semiconductor stack and semiconductor device therefor
JP2003060212A (en) * 2001-08-20 2003-02-28 Sanken Electric Co Ltd Schottky barrier diode and manufacturing method therefor
JP2003229566A (en) * 2001-11-27 2003-08-15 Furukawa Electric Co Ltd:The POWER CONVERSION APPARATUS AND GaN-BASED SEMICONDUCTOR DEVICE USED FOR THE SAME
JP2003273398A (en) * 2002-03-20 2003-09-26 Nippon Telegr & Teleph Corp <Ntt> Semiconductor material and semiconductor device using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026385A (en) * 2000-07-06 2002-01-25 Hitachi Cable Ltd Light emitting diode
JP2003059938A (en) * 2001-06-07 2003-02-28 Nippon Telegr & Teleph Corp <Ntt> Nitride semiconductor stack and semiconductor device therefor
JP2003060212A (en) * 2001-08-20 2003-02-28 Sanken Electric Co Ltd Schottky barrier diode and manufacturing method therefor
JP2003229566A (en) * 2001-11-27 2003-08-15 Furukawa Electric Co Ltd:The POWER CONVERSION APPARATUS AND GaN-BASED SEMICONDUCTOR DEVICE USED FOR THE SAME
JP2003273398A (en) * 2002-03-20 2003-09-26 Nippon Telegr & Teleph Corp <Ntt> Semiconductor material and semiconductor device using it

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016066813A (en) * 2011-05-18 2016-04-28 ローム株式会社 Semiconductor device and method of manufacturing the same
CN103361719B (en) * 2013-07-05 2016-08-10 华灿光电股份有限公司 A kind of method of the epitaxial layer of growing gallium nitride on the buffer layer
CN103361719A (en) * 2013-07-05 2013-10-23 华灿光电股份有限公司 Method for growing gallium nitride epitaxial layer on buffer layer
WO2017163881A1 (en) * 2016-03-23 2017-09-28 三菱電機株式会社 Semiconductor device and method for manufacturing semiconductor device
CN108780815A (en) * 2016-03-23 2018-11-09 三菱电机株式会社 The manufacturing method of semiconductor device and semiconductor device
DE112017001490B4 (en) 2016-03-23 2023-04-06 Mitsubishi Electric Corporation SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE
CN108780815B (en) * 2016-03-23 2021-07-13 三菱电机株式会社 Semiconductor device and method for manufacturing semiconductor device
US10784350B2 (en) 2016-03-23 2020-09-22 Mitsubishi Electric Corporation Semiconductor device and method for manufacturing semiconductor device
US10818757B2 (en) 2016-03-31 2020-10-27 Sciocs Company Limited Nitride semiconductor substrate, semiconductor device, and method for manufacturing nitride semiconductor substrate
US10770554B2 (en) 2016-03-31 2020-09-08 Sciocs Company Limited Nitride semiconductor substrate, semiconductor device, and method for manufacturing nitride semiconductor substrate
JP2018032828A (en) * 2016-08-26 2018-03-01 学校法人法政大学 Semiconductor device and method of manufacturing the same
CN109119508A (en) * 2018-08-08 2019-01-01 镇江镓芯光电科技有限公司 Incident solar blind ultraviolet detector of a kind of back and preparation method thereof
CN109119508B (en) * 2018-08-08 2023-10-20 镇江镓芯光电科技有限公司 Back incidence solar blind ultraviolet detector and preparation method thereof
CN111180527A (en) * 2019-12-30 2020-05-19 深圳第三代半导体研究院 GaN-based PN diode and preparation method thereof
CN112233972A (en) * 2020-12-17 2021-01-15 中电化合物半导体有限公司 Gallium nitride-based epitaxial structure and preparation method thereof
CN112233972B (en) * 2020-12-17 2021-03-02 中电化合物半导体有限公司 Gallium nitride-based epitaxial structure and preparation method thereof

Also Published As

Publication number Publication date
JP4986472B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4986472B2 (en) Nitride semiconductor structure
US9184305B2 (en) Method and system for a GAN vertical JFET utilizing a regrown gate
US8390029B2 (en) Semiconductor device for reducing and/or preventing current collapse
US8519439B2 (en) Nitride semiconductor element with N-face semiconductor crystal layer
US9324844B2 (en) Method and system for a GaN vertical JFET utilizing a regrown channel
JP5494474B2 (en) Semiconductor device and manufacturing method thereof
JP2009200096A (en) Nitride semiconductor device and power conversion apparatus including the same
JP2008288474A (en) Hetero junction field effect transistor
JP5292895B2 (en) Nitride semiconductor transistor
JP5997234B2 (en) Semiconductor device, field effect transistor, and electronic device
US20150263155A1 (en) Semiconductor device
JP2011071307A (en) Field effect transistor and method of manufacturing the same
JP6225584B2 (en) Semiconductor device evaluation method, semiconductor device and manufacturing method thereof
JP2011009493A (en) Semiconductor device, and method of manufacturing the same
JP2008243881A (en) Semiconductor device and its manufacturing method
JP2009026975A (en) Semiconductor apparatus
JP2007059719A (en) Nitride semiconductor
JP2016134564A (en) Semiconductor device
TWI626747B (en) Hetero-junction semiconductor device and method of manufacturing a hetero-junction semiconductor device
JP2015198175A (en) nitride semiconductor device
JP2007208037A (en) Semiconductor device
JP2007250727A (en) Field effect transistor
JP2005302861A (en) Semiconductor device using group iii-v nitride semiconductor
JP2011108712A (en) Nitride semiconductor device
JP2019054015A (en) Nitride semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100513

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100513

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

R150 Certificate of patent or registration of utility model

Ref document number: 4986472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350