JP2007208232A - 超伝導磁石装置および磁気共鳴イメージング装置 - Google Patents

超伝導磁石装置および磁気共鳴イメージング装置 Download PDF

Info

Publication number
JP2007208232A
JP2007208232A JP2006190146A JP2006190146A JP2007208232A JP 2007208232 A JP2007208232 A JP 2007208232A JP 2006190146 A JP2006190146 A JP 2006190146A JP 2006190146 A JP2006190146 A JP 2006190146A JP 2007208232 A JP2007208232 A JP 2007208232A
Authority
JP
Japan
Prior art keywords
coil bobbin
main coil
shield
thick plate
shield coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006190146A
Other languages
English (en)
Other versions
JP4705528B2 (ja
Inventor
Hiroyuki Watanabe
洋之 渡邊
Atsushi Kawamura
淳 川村
Tomoo Chiba
知雄 千葉
Bishiyuku Yamazaki
美淑 山崎
Teruhiro Takizawa
照広 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP2006190146A priority Critical patent/JP4705528B2/ja
Priority to US11/617,765 priority patent/US7880574B2/en
Priority to EP07250025A priority patent/EP1808705A1/en
Priority to CN2007100015581A priority patent/CN101017722B/zh
Publication of JP2007208232A publication Critical patent/JP2007208232A/ja
Application granted granted Critical
Publication of JP4705528B2 publication Critical patent/JP4705528B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/42Screening
    • G01R33/421Screening of main or gradient magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3806Open magnet assemblies for improved access to the sample, e.g. C-type or U-type magnets

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Electromagnetism (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

【課題】溶接に際し生じる変形と熱による超伝導コイルの通電性能劣化を抑制することができ、上下方向の高さおよび重量を抑制することが可能なMRI装置を提供する。
【解決手段】超伝導磁石装置110は、計測用の磁場を生成する主コイル1とその計測用磁場の外部への漏洩を抑制するための磁場を生成するシールドコイル3とを液体ヘリウムとともに収容する円環状のヘリウム容器7を2つ上下に互いに離間させて略対称的に配置して構成し、その対称面の中央部分に一様な計測用磁場を生成する。そして、円環状のヘリウム容器7の前記対称面に対向する面と反対側の面を構造支持部材としての厚板5によって形成し、シールドコイル3を収容したシールドコイルボビン4は厚板5に支持され、主コイル1を収容した主コイルボビン2は厚板5およびシールドコイルボビン4に支持されるようにした。
【選択図】図2

Description

本発明は、超伝導磁石装置およびその超伝導磁石装置を用いた磁気共鳴イメージング装置(以下、MRI(Magnetic Resonance Imaging)装置と略称する)に関する。
近年、被検体となる患者などに閉塞感を与えない開放型のMRI装置が普及してきている。開放型のMRI装置では、被検体を配置する空間の上部および下部に対称的に、液体ヘリウムが充填された円環状のヘリウムの容器が設けられ、その中に超伝導コイルを巻いたボビン(コイルボビン)が収納される。
このようなMRI装置においては、通常、支持構造体にコイルボビンを支持させ、支持構造体およびコイルボビン全体をヘリウム容器で覆う構造が採られている。このような構造の場合、どうしても空間的寸法が大きくならざるを得ない。このとき、コイルボビンと支持構造体とは上下に重ねる構造となるので、上下方向の寸法が特に大きくなりやすい。MRI装置の上下の寸法が大きくなると、MRI装置の設置に際しては、設置するシールドルームの天井を高くするなどの特別の配慮が必要になるケースが多くなる。また、搬入や輸送に際しても同様の配慮が必要になる。すなわち、大きなMRI装置の輸送、搬入、設置などに際しては、余分なコストが掛かることになる。
また、コイルボビンを支持構造体に取り付ける場合、通常、コイルボビンを支持構造体に溶接する。この場合、(1)その溶接に際し生じる溶接変形によって、超伝導コイルに歪みが生じ、その通電性能が劣化する、(2)溶接に際し生じる熱によって、超伝導コイルの含浸樹脂や超伝導線が変質し、超伝導コイルの通電性能が劣化するなどの問題が発生する。
特開平9−223620号公報には、開放型のMRI装置におけるヘリウム容器およびコイルボビンの構造の一例が開示されている。その例によれば、薄肉のヘリウム容器内にコイルボビンが収納され、そのヘリウム容器およびコイルボビンが支持部材を介して支持構造体に支持されている。この場合、コイルボビンが支持構造体に直接溶接される構造ではないので、前記した溶接に係る超伝導コイルの通電性能劣化の問題は生じない。
特開平9−223620号公報(図1、図2)
しかしながら、特許文献1に示されたヘリウム容器およびコイルボビンの構造の場合、ヘリウム容器と、ヘリウム容器およびコイルボビンを支持する支持構造体とが、別体の構造物として構成されるので、その空間的寸法はどうしても大きくなってしまう。
また、コイルボビンは、薄肉のヘリウム容器を挟み、支持部材を介して支持構造体に支持されるので、コイルボビンに加わる電磁力を効率よく支えることができない。そのため、コイルボビン自身に大きな剛性をもたせることが必要となり、逆に、コイルボビンが大きくなったり、余分の剛性部材などのために部品点数が増加したりして、その重量が増加することになる。
本発明は、以上のような従来技術の問題点を解決しようとするもので、その目的は、コイルボビンに加わる電磁力を効率よく支持構造体の剛性に負担させることができ、また、溶接に際し生じる変形と熱による超伝導コイルの通電性能劣化を抑制することが可能な構
造のコイルボビンおよびヘリウム容器を備えた超伝導磁石装置を実現するとともに、その超伝導磁石装置を用いることによって、上下方向の空間的な大きさおよび重量を抑制することが可能なMRI装置を提供することにある。
本発明は、計測用の磁場を生成する主コイルとその計測用磁場の外部への漏洩を抑制するための磁場を生成するシールドコイルとを冷媒(液体ヘリウム)とともに収容する円環状の冷媒容器(ヘリウム容器)を2つ上下に互いに離間させて略対称的に配置し、その対称面の中央部分に一様な計測用磁場を生成する超伝導磁石装置であり、また、その超伝導磁石装置を用いたMRI装置である。そして、その超伝導磁石装置において、前記円環状の冷媒容器の前記対称面に対向する面と反対側の面を厚板構造支持部材によって形成し、前記シールドコイルを収容したシールドコイルボビンが前記厚板構造支持部材に支持され、前記主コイルを収容した主コイルボビンが前記厚板構造支持部材および前記シールドコイルボビンに支持されるようにした。
本発明によれば、冷媒容器の一部が厚板構造支持部材によって形成される、つまり、厚板構造支持部材が冷媒容器の一部を兼ねた構造であるので、冷媒容器を支持するための構造支持体を他に必要としない。そのため、超伝導磁石装置の総重量を抑制することができ、さらには、この超伝導磁石装置を用いたMRI装置の上下方向の寸法を抑制することができる。また、主コイルボビンを厚板構造支持部材だけでなく、シールドコイルボビンにも支持させる構造としたため、コイルの変形を抑制することができ、安定した計測用磁場を形成できるようになる。
さらに、本発明では、主コイルボビンとシールドコイルボビンとを連結する押さえ金など主コイルボビンとシールドコイルボビンとを溶接しないで連結する手段を提供している。そのため、溶接に際し生じる変形と熱による超伝導コイルの通電性能劣化を抑制することができる。
本発明によれば、安定した高精度の計測用磁場が形成可能で、かつ、その重量および上下の寸法を抑制することが可能な超伝導磁石装置およびMRI装置を提供することができるようになる。
以下、本発明の実施形態について、図面を参照して詳しく説明する。
(第1の実施形態)
図1は、本発明の実施形態に係る超伝導磁石装置を用いたMRI装置の概略構成の例を示した図である。また、図2は、図1のMRI装置の支柱部分を含む超伝導磁石装置の垂直断面の概略を示した図である。
図1に示すように、MRI装置100において、2つの円筒状の真空容器101,102が互いに上下に離間して略対称的に配置され、その2つの真空容器101,102が互いに支柱104,105によって支持されて連結されている。また、2つの円筒状の真空容器101,102に挟まれた部分は、MRI装置100による計測空間であり、被検体となる患者などを乗せたベッド130の先端部分は、その計測空間に出し入れ可能なように構成されている。
真空容器101,102の内部は、伝導および対流による熱の侵入を防止するため真空に保たれている。そして、その内部には、図2に示すように、冷媒である液体ヘリウム1
5が入れられた冷媒容器(以下、ヘリウム容器という)7が収納され、さらに、ヘリウム容器7の内部には、主コイル1を収容した主コイルボビン2と、シールドコイル3を収容したシールドコイルボビン4とが収納されている。ここで、主コイル1は、MRI装置100の計測空間に計測用の磁場を生成する超伝導コイルであり、シールドコイル3は、計測空間の外に漏れる計測用の磁場を打ち消すための磁場を生成する超伝導コイルである。また、真空容器101,102とヘリウム容器7との間には、真空容器101,102の熱輻射を遮蔽するための熱シールド8が設けられている。
以上のような真空容器101,102は、その中に収納されている熱シールド8、ヘリウム容器7、主コイル1、主コイルボビン2、シールドコイル3、シールドコイルボビン4などとともに、超伝導磁石装置110を構成する。このとき、ヘリウム容器7の外形は、円環状(トーラス状)、すなわち、その断面が略円ないし略四角形状をした環状のチューブ形状をしている。このようなヘリウム容器7は、上部の真空容器101および下部の真空容器102それぞれの内部に、上下に略対称的に配置され、支柱104,105の部分では互いに連通した構造となっている。また、このヘリウム容器7は、その一部が構造支持部材を兼ねる厚板5によって構成されるなど、本発明に独特の構造を有しているが、その詳細については、別途、図3以降の図を用いて説明する。
なお、構造支持部材である厚板5を始め、主コイルボビン2、シールドコイルボビン4、ヘリウム容器7、真空容器101,102など超伝導磁石装置110を構成する構造物は、例えば、オーステナイト系ステンレス鋼など非磁性の材料によって形成されている。
また、図2において、Z方向で示した座標軸は、垂直方向の座標軸であり、ここでは、2つの真空容器101,102(または、その中に配置される円環状のヘリウム容器7)が上下に略対称的に配置されたときの対称面の位置を原点とする。なお、その対称面は、しばしば、赤道面と呼ばれることがある。また、R方向で示した座標軸は、円筒状の真空容器101,102の中心(または、円環状のヘリウム容器7の中心)を原点とする極座標表示の半径方向であることを示している。
再度、図1に戻って説明を続ける。上下2つの真空容器101,102に挟まれた計測空間の中央部には、超伝導磁石装置110によってほぼ一様な垂直方向の磁場が生成される。MRI装置100においては、その一様な垂直方向の磁場の中に被検体を配置し、その被検体の磁気共鳴による断層イメージなどを取得する。そのために、真空容器101,102には、その計測空間側の中央部に、窪み部103が設けられ、その窪み部103には、被検体の磁気共鳴信号を生成し、取得するための傾斜磁場コイルおよびRF(Radio Frequency)コイル(いずれも図示せず)などが設けられる。さらに、コンピュータなど
からなる制御装置120が設けられ、その制御装置120は、取得された磁気共鳴信号を解析し、被検体の断層イメージなどを生成し、その生成した被検体の断層イメージなどを表示装置などに表示する。
図3は、本発明の第1の実施形態に係る円環状のヘリウム容器を円周方向に垂直な面で切断したときの断面構造の例を示した図であり、(a)はシールドコイルボビンおよび主コイルボビンを一体成型し、構造支持部材の厚板に溶接した構造の例、(b)は構造支持部材の厚板、シールドコイルボビンおよび主コイルボビンをまとめて一体成型した構造の例である。
図3(a)に示すように、ヘリウム容器7の一部、すなわち、ヘリウム容器7の赤道面(対称面)に対向する面の反対側の面は、厚板5によって形成されている。この場合、シールドコイルボビン4と主コイルボビン2とは、鋳造などによって一体的に成型される。そして、そのシールドコイルボビン4は、厚板5に溶接などによって取り付けられる。ま
た、主コイルボビン2は、その一端がシールドコイルボビン4に支持され、他端が支持部材6を介して厚板5に取り付けられ、その厚板5によって支持される。このとき、支持部材6は、鋳造などによって厚板5と一体的に成型されてもよく、また、シールドコイルボビン4および主コイルボビン2と一体的に成型されてもよい。なお、図3(a)は、支持部材6がシールドコイルボビン4および主コイルボビン2と一体的に成型された例となっている。また、シールドコイルボビン4には、シールドコイル3の外周側への飛び出しを防ぐために、シールドコイル押え部材3aが設けられている。シールドコイル押え部材3aは、例えば、焼き嵌めによってシールドコイルボビン4に取り付けられる。
以上、本実施形態において、厚板5は、主コイル1およびシールドコイル3の構造支持部材として機能する。すなわち、主コイル1およびシールドコイル3それぞれに作用する電磁力に対する剛性確保の役割を果たしている。また、厚板5はヘリウム容器7の一部を構成している。つまり、厚板5がヘリウム容器7の一部を兼用していることになるので、ヘリウム容器7が厚板5と別体の容器として厚板5の全体を覆う構造よりも、部材を低減する上でも、高さ寸法を低減する上でも大きな効果があり、さらには、製造コストを低減する上でも効果がある。
また、主コイル1は、シールドコイル3から反発力を受け、また、赤道面の反対側に位置するもう1つの主コイル1から引力を受けるため、赤道面側へ向かう力が作用する。そのため、主コイル1に対しては、上下方向の力を支持する必要があるが、本実施形態では、その力を厚板5とシールドコイルボビン4によって支持するので、厚板5全体の剛性を利用して効果的に主コイル1の変位を抑制することができる。
また、主コイルボビン2やシールドコイルボビン4を溶接によって厚板5などに取り付ける際の主コイル1やシールドコイル3への熱の影響は、それらのコイルを溶接後に巻線することによって回避することができる。また、ヘリウム容器7は、主コイル1やシールドコイル3のコイルの巻線後に厚板5に溶接することになるが、厚板5の熱容量は大きく、その剛性も大きいので、ヘリウム容器7の溶接の熱が主コイル1やシールドコイル3に伝わって、その熱によって主コイル1やシールドコイル3が変質したり変形したりすることはない。少なくとも、主コイル1やシールドコイル3における温度上昇は、その影響が問題を生じないレベルまで抑制することできる。
図3(b)は、主コイルボビン2およびシールドコイルボビン4を厚板5とともに鋳造によって一体成型した例である。このとき、支持部材6も一体成型してもよいが、また、溶接やボルト締結によって主コイルボビン2および厚板5に取り付けてもよい。
なお、図2および図3においては、主コイル1およびそれを支持する主コイルボビン2は、それぞれ1つだけしか記載されていないが、超伝導磁石装置110によっては、それらが複数設けられる場合もある。また、シールドコイル3およびシールドコイルボビン4についても同様である。本明細書においては、説明を簡単にするために、以下の実施形態においても、主コイル1やシールドコイル3はそれぞれ1つであるとして説明する。
(第2の実施形態)
図4は、本発明の第2の実施形態に係る円環状のヘリウム容器を円周方向に垂直な面で切断したときの断面構造の例を示した図である。なお、第2の実施形態においても超伝導磁石装置110およびMRI装置100の基本的な構成は、第1の実施形態の場合と同じである。そこで、以下の説明で第1の実施形態の場合と同じ構成要素については同じ符号を付し、その説明を省略する(この「なお書き」は、以降の実施形態でも同じ)。
図4に示すように、本実施形態では、シールドコイルボビン4は、鋳造などによって厚
板5と一体的に成型されるが、主コイルボビン2は別体として成型される。そして、主コイルボビン2は、ボルト締結する固定金具10などを用いてシールドコイルボビン4に連結され、さらに、支持部材6を介して厚板5に取り付けられる。ここで、支持部材6は、主コイルボビン2と一体的に成型し、支持部材6と厚板5との連結部を溶接してもよく、ボルト締結などによって連結してもよい。
以上のように、主コイルボビン2を別体として成型し、その後にシールドコイルボビン4や厚板5に取り付ける形態を採ると、主コイルボビン2とシールドコイルボビン4の相対位置の配置に自由度が増加したり、作業手順の融通性や作業性が向上したりするなどのメリットが生じることがある。例えば、主コイルボビン2のコイルの巻線を終えた後、主コイルボビン2をシールドコイルボビン4に連結するようにすれば、主コイルボビン2を外周側から見てシールドコイルボビン4の陰に隠れるような位置に配置することも可能になる。
一般に、巻線後に主コイルボビン2をシールドコイルボビン4に溶接するのは、コイルに対する歪や熱影響の観点から好ましくない。これは、主コイル1やシールドコイル3に歪を発生させたり熱影響を与えたりすると、その通電限界電流が低下する可能性があるからである。本実施形態では、主コイルボビン2をシールドコイルボビン4にボルト締結の固定金具10によって連結するので、そのような問題は生じない。
以上、本実施形態によれば、主コイル1やシールドコイル3に熱による歪や劣化を発生させずに巻線済みの主コイルボビン2とシールドコイルボビン4とを連結することができ、さらには、主コイルボビン2とシールドコイルボビン4との配置の自由度を増加させ、製造工程における作業性を向上させることができる。
(第3の実施形態)
図5は、本発明の第3の実施形態に係る円環状のヘリウム容器の内部構造の例を示した図であり、(a)は、円環状のヘリウム容器を円周方向に垂直な面で切断したときの断面構造の例、(b)は、シールドコイルボビンと主コイルボビンとをそれぞれ分解したときの斜視図およびそれらを連結した後の斜視図である。なお、図5(b)において、その最上段の図は、シールドコイルボビン4を示した図、中段の図は、主コイルボビン2を示した図である。また、最下段の図は、連結後の主コイルボビン2とシールドコイルボビン4を示した図になっている。
本実施形態においては、図5(a),(b)に示すように、主コイルボビン2の外周面には円周方向に沿って所定の間隔ごとに複数の(例えば、6つの)突起部2aが形成されている。また、シールドコイルボビン4の赤道面側の面(図5(b)の場合は底面に相当する)には、主コイルボビン2の突起部2aを嵌め合わせるための鉤部4aが、円周方向に沿って主コイルボビン2の突起部2aと同じ間隔で同じ個数だけ形成されている。
このとき、主コイルボビン2の突起部2aの長さとシールドコイルボビン4の鉤部4aの長さとの和は、主コイルボビン2の突起部2a(または、シールドコイルボビン4の鉤部4a)が形成される間隔よりも小であることが必要である。例えば、主コイルボビン2の突起部2aおよびシールドコイルボビン4の鉤部4aをそれぞれ6個形成した場合には、その形成間隔は、60度(ここでは、長さを角度で表現)となるので、突起部2aおよび鉤部4aの長さを、それぞれ、29度にすればよい(ただし、両者が同じ値である必要はない)。
なお、以上のような主コイルボビン2の突起部2aは、鋳造などにより主コイルボビン2と一体的に成型することができる。同様に、シールドコイルボビン4の鉤部4aは、鋳
造などによりシールドコイルボビン4と一体的に成型することができる。また、支持部材6も主コイルボビン2と一体的に成型することができ、その場合には、支持部材6と厚板5との連結部を溶接によって連結することができる。
次に、主コイルボビン2を、その突起部2aがシールドコイルボビン4の鉤部4aに対して互い違いの位置になるように配置し、主コイルボビン2を上下方向に移動させることによって、主コイルボビン2をシールドコイルボビン4の赤道面側の面に当接させる。そして、主コイルボビン2を円周方向に回転させることによって主コイルボビン2の突起部2aをシールドコイルボビン4の鉤部4aに嵌め合わせる。このようにして、主コイルボビン2とシールドコイルボビン4とが連結される。
以上の本実施形態においては、第2の実施形態のように主コイルボビン2とシールドコイルボビン4とを連結する固定金具10などを必要としない。従って、部品点数やその組立工数を低減することが可能となるので、製造上のコストを効果的に低減することができる。しかも、この場合にも、主コイルボビン2とシールドコイルボビン4とを連結するのに溶接を必要としないので、主コイル1やシールドコイル3に熱による歪や劣化を発生させることなく、巻線済みの主コイルボビン2とシールドコイルボビン4とを連結することができる。
(第4の実施形態)
図6は、本発明の第4の実施形態に係る円環状のヘリウム容器を円周方向に垂直な面で切断したときの断面構造の例を示した図である。なお、本実施形態は、第3の実施形態の変形例と言うこともできる。
図6に示すように、主コイルボビン2の外周部の赤道面に対向する面と反対側の面に、その内周側が開いた鉤部2bを形成する。また、シールドコイルボビン4の赤道面に対向する面に、その外周側が開いた鉤部4bを形成する。これらの鉤部2b,4bは、互いに嵌め合うことが可能な構造となっている。また、本実施形態の場合には、これらの鉤部2b,4bは、主コイルボビン2およびシールドコイルボビン4それぞれの円周方向の全周にわたって形成されていても構わない。
本実施形態は、主コイルボビン2をシールドコイルボビン4に焼き嵌めするのが特徴である。すなわち、主コイルボビン2を加温し、膨張させ、その環の半径を大きくした状態で、鉤部2b,4bをゆるく嵌め合わせる。そして、その後、主コイルボビン2を冷却させ、収縮させることによって、鉤部2b,4bを固く嵌め合わせる。このようにして、主コイルボビン2とシールドコイルボビン4とを連結することができる。
この焼き嵌めは、摂氏400〜500度の温度の中で行われるので、主コイルボビン2へのコイルの巻線は、通常、焼き嵌めの後に行われる。従って、本実施形態の場合には、巻線済みの主コイルボビン2をシールドコイルボビン4に連結することはできないが、この点を除けば、本実施形態においても前記の第3の実施形態の場合と同様の効果を期待することができる。
(第5の実施形態)
図7は、本発明の第5の実施形態に係る円環状のヘリウム容器を円周方向に垂直な面で切断したときの断面構造の例を示した図であり、(a)はシールドコイルボビンの内周側に張り出し部を設けた構造の例、(b)はシールドコイルボビンの内周側に厚板と接続するリブを設けた構造の例、(c)は前記リブの縁端をさらに主コイルボビンの外周側にも接続するように設けた構造の例である。
図7(a)に示すように、本実施形態においては、シールドコイルボビン4の内周側に
張り出し部4cを設ける。この張り出し部4cは、厚板5の張り出し部といってもよく、構造支持部材としての厚板5の剛性を大きくするためのものである。ただし、このような張り出し部4cは、円環状のヘリウム容器7の全周域にわたって設ける必要はない。張り出し部4cは、一部の領域にだけ設けてもよく、また、円周方向の位置に依存してその厚さを変えるようにしてもよい。
一般に、図1および図2に示した開放型のMRI装置100における超伝導磁石装置110においては、上下のコイル群の間で互いに引き合う電磁力が働く。上下のそれぞれのコイルは、厚板5などの構造支持部材に支持され、厚板5は、2つの支柱104,105に支持されている。この場合、厚板5などの構造支持部材は、コイル群に働く電磁力のために、2つの支柱104,105から遠ざかるに伴い次第に大きくなるたわみを生じる。そのため、主コイルボビン2、シールドコイルボビン4が変形し、その結果、主コイル1、シールドコイル3に歪みが生じる。その場合には、MRI装置100の計測空間の中央部に一様な磁場を生成することができなくなる。
本実施形態においては、例えば、2つの支柱104,105の近傍でその厚さが厚い張り出し部4cを設け、その張り出し部4cの厚さは、2つの支柱104,105から遠ざかるに伴い次第に小さくなるようにした。そのような張り出し部4cは、例えば、鋳造などによって、厚板5やシールドコイルボビン4などとともに容易に一体的に成型することができる。
このように成型された張り出し部4cは、厚板5などの構造支持部材の厚さを増すことによって剛性が増大するだけでなく、アーチ橋やつり橋と同様の効果によってより効果的に剛性が増大する。そのため、支柱104,105から遠ざかった位置においても、そのたわみの量を低減することができる。その結果、MRI装置100の計測空間の中央部により精度よく一様な磁場を生成することができるようになる。
図8は、本発明の第5の実施形態に係る円環状のヘリウム容器における主コイルボビンのたわみの量をシミュレーションによって計算した結果の例を示したグラフである。図8において、グラフの縦軸は、主コイルボビン2のたわみの量、つまり、鉛直方向変形量を表したものであり、横軸は、支柱104,105の位置を原点としてその支柱に対する円周方向の位置を角度で表したものである。また、図8において、実線は、張り出し部4cを設けない場合のたわみの量を示し、破線は、張り出し部4cを設けた場合のたわみの量を示している。この図8からは、張り出し部4cを設けることにより、主コイルボビン2のたわみの量が大きく低減されていることが分る。
図7(b)は、図7(a)の変形例であり、図7(b)においては、図7(a)の張り出し部4cに代えて、シールドコイルボビン4の内周側に厚板5と接続するリブ11を設けている。この場合、リブ11は、溶接やボルト締結などにより厚板5およびシールドコイルボビン4に取り付けることができる。リブ11が担う役割は、張り出し部4cと同じである。従って、リブ11は、円環状のヘリウム容器7の全周域にわたって設ける必要はなく、一部の領域にだけ設けたりシールドコイルボビン4の内周側に周方向へ離散的に配置されてもよく、また、円周方向の位置によりその断面の形状や大きさを変えるようにしてもよい。そして、その結果得られる効果は、図7(a)の張り出し部4cを設けたものとほぼ同じである。
図7(c)は、図7(b)の変形例である。図7(c)においては、図7(b)の支持部材6及びリブ11に代えて、厚板5と主コイルボビン2の外周側とに接続するリブ13が設けられている。この場合、リブ13は、溶接やボルト締結などにより厚板5、シールドコイルボビン4及び主コイルボビン2に取り付けることができる。このリブ13は、シールドコイルボビン4の内周側に周方向へ離散的に配置されてもよく、また、円周方向の位置によりその断面の形状や大きさを変えるようにしてもよい。リブ13(図7(c))を設ける効果は、図7(b)の支持部材6及びリブ11を設けた場合とほぼ同じである。
なお、第5の実施形態は、ほかにも同様の効果を有する変形例が存在する。例えば、支持部材6の大きさを支柱104,105の位置からの相対位置によって変えるようにしてもよく、また、ヘリウム容器7の容器の厚みを支柱104,105の位置からの相対位置によって変えるようにしてもよい。すなわち、ヘリウム容器7に含まれる構造部材全体によって合成される剛性が、例えば、支柱104,105近傍で大きく、その支柱104,
105から遠ざかるに従って小さくなるような構造が実現されるものであればよい。さらには、ヘリウム容器7に含まれる構造部材全体によって合成される剛性が、その円環状のヘリウム容器7の円周方向における支柱104,105位置との相対位置に依存して適宜変化するようにヘリウム容器7に含まれる構造部材を配置したものであってもよい。
(第6の実施形態)
図9は、本発明の第6の実施形態に係る円環状のヘリウム容器を円周方向に垂直な面で切断したときの断面構造の例を示した図である。本実施形態においては、図9に示すように、主コイルボビン2の赤道面に対向する面と反対側の面に磁性部材12を設ける。この磁性部材は、主コイル1の経験磁場を低下させたり、計測空間の中央部における磁場を補正したりするために設置されるものである。
この磁性部材12に対しては、通常、赤道面側に向かう電磁力が支配的となるので、図9に示すように、主コイルボビン2とシールドコイルボビン4とで挟みこむような構造とすることにより支持することができる。このような構造にした場合、図5に示したような嵌め合わせが可能となるので、その組立も容易となる。また、主コイル1のコイル数や主コイル1とシールドコイル3の相対位置関係によっては、この磁性部材12を厚板5から支持金具などを介して支持するようにしてもよい。
なお、磁性部材12の断面構造は、円環状のヘリウム容器7の全周にわたって同じ形状である必要はなく、第5の実施形態と同様に、円周方向に沿った位置に依存して変化する形状であってもよい。例えば、磁性部材12の断面は、支柱104,105近傍では大きく、その支柱104,105から遠ざかるに従って小さくなるようなものであっても、または、その逆であってもよい。あるいは、ある部分には磁性部材12が設けられ、その他の部分には磁性部材12が設けられないような構造であってもよい。
以上、本実施形態によれは、MRI装置100の計測空間の中央部により精度よく一様な磁場を生成することができるようになる。
本発明の実施形態に係る超伝導磁石装置を用いたMRI装置の概略構成の例を示した図である。 図1のMRI装置の支柱部分を含む超伝導磁石装置の垂直断面の概略を示した図である。 本発明の第1の実施形態に係る円環状のヘリウム容器を円周方向に垂直な面で切断したときの断面構造の例を示した図である。 本発明の第2の実施形態に係る円環状のヘリウム容器を円周方向に垂直な面で切断したときの断面構造の例を示した図である。 本発明の第3の実施形態に係る円環状のヘリウム容器の内部構造の例を示した図であり、(a)は、円環状のヘリウム容器を円周方向に垂直な面で切断したときの断面構造の例、(b)は、シールドコイルボビンと主コイルボビンとをそれぞれ分解したときの斜視図およびそれらを連結した後の斜視図である。 本発明の第4の実施形態に係る円環状のヘリウム容器を円周方向に垂直な面で切断したときの断面構造の例を示した図である。 本発明の第5の実施形態に係る円環状のヘリウム容器を円周方向に垂直な面で切断したときの断面構造の例を示した図であり、(a)はシールドコイルボビンの内周側に張り出し部を設けた構造の例、(b)はシールドコイルボビンの内周側に厚板と接続するリブを設けた構造の例、(c)は前記リブの縁端をさらに主コイルボビンの外周側にも接続するように設けた構造の例である。 本発明の第5の実施形態に係る円環状のヘリウム容器における主コイルボビンのたわみの量をシミュレーションによって計算した結果の例を示したグラフである。 本発明の第6の実施形態に係る円環状のヘリウム容器を円周方向に垂直な面で切断したときの断面構造の例を示した図である。
符号の説明
1 主コイル
2 主コイルボビン
2a 突起部
2b 鉤部
3 シールドコイル
3a シールドコイル押え部材
4 シールドコイルボビン
4a 鉤部
4b 鉤部
4c 張り出し部
5 厚板(厚板構造支持部材)
6 支持部材
7 ヘリウム容器(冷媒容器)
8 熱シールド
10 固定金具
11,13 リブ
12 磁性部材
15 液体ヘリウム
100 MRI装置
101,102 真空容器
103 窪み部
104,105 支柱
110 超伝導磁石装置
120 制御装置
130 ベッド

Claims (9)

  1. 計測用の磁場を生成する主コイルとその計測用磁場の外部への漏洩を抑制するための磁場を生成するシールドコイルとを冷媒とともに収容する円環状の冷媒容器を2つ上下に互いに離間させて略対称的に配置し、その対称面の中央部分に一様な計測用磁場を生成する超伝導磁石装置において、
    前記円環状の冷媒容器の前記対称面に対向する面と反対側の面を厚板構造支持部材によって形成し、
    前記シールドコイルを収容したシールドコイルボビンが前記厚板構造支持部材に支持され、前記主コイルを収容した主コイルボビンが前記厚板構造支持部材および前記シールドコイルボビンに支持されるようにしたこと
    を特徴とする超伝導磁石装置。
  2. 前記主コイルボビンは、固定金具によって前記シールドコイルボビンに連結されて支持されること
    を特徴とする請求項1に記載の超伝導磁石装置。
  3. 前記主コイルボビンに、その外周面に円周方向に沿って所定の間隔で所定の長さの複数の突起部を形成し、
    前記シールドコイルボビンに、前記主コイルボビンの突起部を嵌め合わせるための鉤部を、前記対称面に対向する面側の内周面に円周方向に沿って、前記主コイルボビンに形成した突起部と同じ間隔で同じ個数だけ形成し、
    前記主コイルボビンを前記主コイルボビンの突起部と前記シールドコイルボビンの鉤部とが互い違いになる位置に配置し、その主コイルボビンを上下方向に移動させることによって、前記シールドコイルボビンに当接させ、さらに、その主コイルボビンを円周方向に回転させることによって、その主コイルボビンの突起部を前記シールドコイルボビンの鉤部に嵌め合わせ、前記主コイルボビンと前記シールドコイルボビンとを連結したこと
    を特徴とする請求項1に記載の超伝導磁石装置。
  4. 前記主コイルボビンの外周部の前記対称面に対向する面と反対側の面に、その内周側が開いた鉤部を形成し、
    前記シールドコイルボビンの前記対称面に対向する面に、その外周側が開いた鉤部を形成し、
    前記主コイルボビンを焼き嵌めすることによって、前記主ボビンの鉤部と前記シールドボビンの鉤部とを嵌め合わせ、前記主コイルボビンと前記シールドコイルボビンとを連結したこと
    を特徴とする請求項1に記載の超伝導磁石装置。
  5. 前記厚板構造支持部材、前記主コイルボビン、前記シールドコイルボビン、および、前記主コイルボビンを前記厚板構造支持部材に支持させるための主コイルボビン支持部材のうち少なくとも1つは、その半径方向に沿った面での断面形状がその円周方向に沿って変化する形状であること
    を特徴とする請求項1に記載の超伝導磁石装置。
  6. 前記厚板構造支持部材、前記主コイルボビン、前記シールドコイルボビン、および、前記主コイルボビンを前記厚板構造支持部材に支持させるための主コイルボビン支持部材にて構成される構造体において、
    前記主コイルボビン支持部材は、前記シールドコイルボビンの内周側に周方向へ離散的に配置したリブであること
    を特徴とする請求項1に記載の超伝導磁石装置。
  7. 前記厚板構造支持部材、前記主コイルボビン、前記シールドコイルボビン、および、前記主コイルボビンを前記厚板構造支持部材に支持させるための主コイルボビン支持部材を含む前記円環状の冷媒容器を構成する全ての構造部材によって合成される剛性が、前記円環状の冷媒容器の円周方向に沿って変化するように前記構造部材を配置したことを
    を特徴とする請求項1に記載の超伝導磁石装置。
  8. 前記主コイルボビンの前記対称面に対向する面と反対側の面側に磁性を有する部材を配置したこと
    を特徴とする請求項1に記載の超伝導磁石装置。
  9. 計測用の磁場を生成する主コイルとその計測用磁場の外部への漏洩を抑制するための磁場を生成するシールドコイルとを冷媒とともに収容する円環状の冷媒容器を2つ上下に互いに離間させて略対称的に配置し、その対称面の中央部分に一様な計測用磁場を生成する超伝導磁石装置を用いた磁気共鳴イメージング装置において、
    前記円環状の冷媒容器の前記対称面に対向する面と反対側の面を厚板構造支持部材によって形成し、
    前記シールドコイルを収容したシールドコイルボビンが前記厚板構造支持部材に支持され、前記主コイルを収容した主コイルボビンが前記厚板構造支持部材および前記シールドコイルボビンに支持されるようにしたこと
    を特徴とする磁気共鳴イメージング装置。
JP2006190146A 2006-01-05 2006-07-11 超伝導磁石装置および磁気共鳴イメージング装置 Expired - Fee Related JP4705528B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006190146A JP4705528B2 (ja) 2006-01-05 2006-07-11 超伝導磁石装置および磁気共鳴イメージング装置
US11/617,765 US7880574B2 (en) 2006-01-05 2006-12-29 Superconducting magnet and magnetic resonance imaging apparatus using the same
EP07250025A EP1808705A1 (en) 2006-01-05 2007-01-04 Superconducting magnet and magnetic resonance imaging apparatus using the same
CN2007100015581A CN101017722B (zh) 2006-01-05 2007-01-05 超导磁铁装置及核磁共振成像装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006000834 2006-01-05
JP2006000834 2006-01-05
JP2006190146A JP4705528B2 (ja) 2006-01-05 2006-07-11 超伝導磁石装置および磁気共鳴イメージング装置

Publications (2)

Publication Number Publication Date
JP2007208232A true JP2007208232A (ja) 2007-08-16
JP4705528B2 JP4705528B2 (ja) 2011-06-22

Family

ID=37963645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006190146A Expired - Fee Related JP4705528B2 (ja) 2006-01-05 2006-07-11 超伝導磁石装置および磁気共鳴イメージング装置

Country Status (4)

Country Link
US (1) US7880574B2 (ja)
EP (1) EP1808705A1 (ja)
JP (1) JP4705528B2 (ja)
CN (1) CN101017722B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050621A1 (ja) * 2012-09-27 2014-04-03 株式会社 日立メディコ 超電導磁石装置および磁気共鳴イメージング装置
WO2016136383A1 (ja) * 2015-02-27 2016-09-01 株式会社日立製作所 磁気共鳴イメージング装置
JP2020035958A (ja) * 2018-08-31 2020-03-05 ジャパンスーパーコンダクタテクノロジー株式会社 超伝導マグネット装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2456159A (en) * 2008-01-04 2009-07-08 Siemens Magnet Technology Ltd Magnetic Coil Former
JP5115606B2 (ja) * 2009-10-14 2013-01-09 住友電気工業株式会社 超電導機器用容器および超電導機器
CN102148083B (zh) * 2010-02-09 2013-04-03 通用电气公司 超导磁体
CN102360689B (zh) * 2011-06-02 2012-10-03 中国科学院电工研究所 开放式传导冷却核磁共振超导磁体系统
US8391938B2 (en) * 2011-06-15 2013-03-05 Electric Power Research Institute, Inc. Transportable rapid deployment superconducting transformer
CN103065757B (zh) * 2013-01-25 2015-04-22 中国科学院电工研究所 一种用于乳房成像的磁共振成像超导磁体系统
WO2015048249A1 (en) * 2013-09-25 2015-04-02 William Marsh Rice University Epr systems for flow assurance and logging
EP3189528B1 (en) * 2014-09-02 2018-07-18 Koninklijke Philips N.V. Bobbin assembly and method of producing a bobbin assembly
DE102015218749A1 (de) 2015-09-29 2017-03-30 Siemens Healthcare Gmbh Adaptive MR-Lokalspule

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340811A (ja) * 1997-06-09 1998-12-22 Mitsubishi Electric Corp 超電導磁石装置
JP2001212109A (ja) * 1999-11-15 2001-08-07 General Electric Co <Ge> 開放設計型超伝導マグネット用ヘリウム容器構造体

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3245944A1 (de) * 1982-12-11 1984-06-14 Bruker Analytische Meßtechnik GmbH, 7512 Rheinstetten Elektromagnet fuer die nmr-tomographie
DE3907927A1 (de) * 1989-03-11 1990-09-20 Bruker Analytische Messtechnik Magnetsystem
DE4007265A1 (de) * 1990-03-08 1991-09-12 Bruker Analytische Messtechnik Supraleitende magnetspulenanordnung
JPH05121227A (ja) * 1991-08-29 1993-05-18 Toshiba Corp Mri装置用のマグネツト
US5291169A (en) * 1992-11-02 1994-03-01 General Electric Company Open architecture magnetic resonance imaging superconducting magnet assembly
US5389909A (en) * 1993-11-08 1995-02-14 General Electric Company Open architecture magnetic resonance imaging passively shimmed superconducting magnet assembly
US5381122A (en) * 1994-01-14 1995-01-10 General Electric Company Open MRI magnet having a support structure
US5545997A (en) * 1994-05-13 1996-08-13 Bruker Analytische Messtechnik Gmbh Therapy tomograph with homogeneity device
DE4416907C1 (de) * 1994-05-13 1995-09-07 Bruker Analytische Messtechnik Therapietomograph mit Homogenisierungseinrichtung
GB2291970A (en) * 1994-07-28 1996-02-07 Oxford Magnet Tech Double wall thermal shield for MRI magnet
US5402094A (en) * 1994-08-15 1995-03-28 Enge; Harald A. MRI mammography magnet
US5528210A (en) * 1994-11-10 1996-06-18 The Babcock & Wilcox Company W-shaped superconducting electromagnetic system for magnetic levitation vehicles
JP3731231B2 (ja) * 1995-11-30 2006-01-05 株式会社日立メディコ 超電導磁石装置
GB2309305B (en) * 1996-01-19 2000-05-31 Oxford Magnet Tech Improvements in or relating to MRI magnets
DE69739151D1 (de) * 1996-10-30 2009-01-15 Hitachi Medical Corp Offene supraleitende Magnetvorrichtung
US6078234A (en) * 1998-07-09 2000-06-20 General Electric Company Helium vessel for open architecture magnetic resonance imaging superconducting magnet
US6011454A (en) * 1998-12-30 2000-01-04 Huang; Xianrui Superconducting magnet suspension assembly
GB2355798B (en) * 1999-10-26 2004-05-19 Oxford Magnet Tech Improved magnetic coil former
US6289681B1 (en) * 1999-11-17 2001-09-18 General Electric Company Superconducting magnet split cryostat interconnect assembly
US6147579A (en) * 1999-11-17 2000-11-14 General Electric Company Superconducting magnet non-uniform thermal insulation blankets
JP3971093B2 (ja) 2000-08-28 2007-09-05 株式会社日立製作所 均一磁場発生用マグネット及びそれを用いた磁気共鳴イメージング装置
US6570475B1 (en) * 2000-11-20 2003-05-27 Intermagnetics General Corp. Split type magnetic resonance imaging magnet
US7242191B2 (en) 2002-11-25 2007-07-10 General Electric Company Cold mass support structure and helium vessel of actively shielded high field open MRI magnets
JP4186636B2 (ja) * 2003-01-30 2008-11-26 株式会社日立製作所 超電導磁石
US6914431B2 (en) * 2003-03-14 2005-07-05 Ge Medical Systems Global Technology Company, Llc MRI system with pulsed readout magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340811A (ja) * 1997-06-09 1998-12-22 Mitsubishi Electric Corp 超電導磁石装置
JP2001212109A (ja) * 1999-11-15 2001-08-07 General Electric Co <Ge> 開放設計型超伝導マグネット用ヘリウム容器構造体

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050621A1 (ja) * 2012-09-27 2014-04-03 株式会社 日立メディコ 超電導磁石装置および磁気共鳴イメージング装置
JPWO2014050621A1 (ja) * 2012-09-27 2016-08-22 株式会社日立製作所 超電導磁石装置および磁気共鳴イメージング装置
US9864022B2 (en) 2012-09-27 2018-01-09 Hitachi, Ltd. Superconducting magnet device and magnetic resonance imaging device
WO2016136383A1 (ja) * 2015-02-27 2016-09-01 株式会社日立製作所 磁気共鳴イメージング装置
JP2020035958A (ja) * 2018-08-31 2020-03-05 ジャパンスーパーコンダクタテクノロジー株式会社 超伝導マグネット装置
JP7022035B2 (ja) 2018-08-31 2022-02-17 ジャパンスーパーコンダクタテクノロジー株式会社 超伝導マグネット装置

Also Published As

Publication number Publication date
CN101017722B (zh) 2012-01-11
US7880574B2 (en) 2011-02-01
JP4705528B2 (ja) 2011-06-22
EP1808705A1 (en) 2007-07-18
CN101017722A (zh) 2007-08-15
US20070152789A1 (en) 2007-07-05

Similar Documents

Publication Publication Date Title
JP4705528B2 (ja) 超伝導磁石装置および磁気共鳴イメージング装置
JP5534713B2 (ja) 超電導マグネット
JP5432429B2 (ja) 磁気共鳴イメージング・システムで使用するための複合封止容器及び、その製造方法
JP2005143853A (ja) 超伝導磁石装置及びそれを用いた磁気共鳴イメージング装置
JP4703408B2 (ja) 超電導電磁石装置
US8698499B2 (en) Electromagnet devices compatible with magnetic resonance and MRI devices where circulating current directions alternate between coil groups separated by elevation angles between 26.25 and 55 degrees
US20160243589A1 (en) Vibration motor and method of manufacturing the same
JP4521311B2 (ja) 磁気共鳴イメージング装置
JP6033642B2 (ja) 超電導マグネット装置
US11521783B2 (en) Reactor including outer iron-core and method for manufacturing the same
JP5416930B2 (ja) 磁気共鳴イメージング装置
JP2006261335A (ja) 超電導マグネット装置
JP2010200794A (ja) 磁気共鳴イメージング装置
JP2005144132A (ja) 超伝導磁石装置及びそれを用いた磁気共鳴イメージング装置
JP5057941B2 (ja) 超電導マグネット装置
JP5443249B2 (ja) 超電導マグネット装置
JP4152737B2 (ja) 振動を減少させた高磁場開放型磁気共鳴マグネット
JP2011194136A (ja) 超伝導磁石装置および磁気共鳴イメージング装置
JP2018023407A (ja) 磁気共鳴イメージング装置
JP2006326177A (ja) Mri用超電導磁石装置
JPS63292608A (ja) 電磁石装置
JP2019009206A (ja) 超電導磁石装置の超電導コイル支持構造、及び超電導磁石装置
WO2019176557A1 (ja) 超電導コイル装置
WO2015170632A1 (ja) 磁気共鳴イメージング装置
JP5298056B2 (ja) 超電導磁石装置及び磁気共鳴イメージング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110311

R150 Certificate of patent or registration of utility model

Ref document number: 4705528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees