JP2007207417A - マージン読み出しを提供する電気的なヒューズ回路 - Google Patents

マージン読み出しを提供する電気的なヒューズ回路 Download PDF

Info

Publication number
JP2007207417A
JP2007207417A JP2007015220A JP2007015220A JP2007207417A JP 2007207417 A JP2007207417 A JP 2007207417A JP 2007015220 A JP2007015220 A JP 2007015220A JP 2007015220 A JP2007015220 A JP 2007015220A JP 2007207417 A JP2007207417 A JP 2007207417A
Authority
JP
Japan
Prior art keywords
fuse circuit
bit line
nonvolatile memory
memory cell
latch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007015220A
Other languages
English (en)
Inventor
Byeong-Hoon Lee
炳勳 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2007207417A publication Critical patent/JP2007207417A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0441Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing multiple floating gate devices, e.g. separate read-and-write FAMOS transistors with connected floating gates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • G11C16/28Sensing or reading circuits; Data output circuits using differential sensing or reference cells, e.g. dummy cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
    • G11C17/165Memory cells which are electrically programmed to cause a change in resistance, e.g. to permit multiple resistance steps to be programmed rather than conduct to or from non-conduct change of fuses and antifuses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/027Detection or location of defective auxiliary circuits, e.g. defective refresh counters in fuses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C2029/1204Bit line control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Read Only Memory (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Abstract

【課題】マージン読み出しを提供する電気的なヒューズ回路を提供する。
【解決手段】ここに提供される電気的なヒューズ回路は、第1ビットラインに接続された第1不揮発性メモリセルと、第2ビットラインに接続された第2不揮発性メモリセルと、前記第1ビットラインと前記第2ビットラインに接続されたラッチと、テスト動作の間のバイアス制御信号に応答して可変されるバイアス電流を前記ラッチを通じて前記第1ビットラインと前記第2ビットラインのうちのいずれか1つに供給するバイアス電流部とを含む。
【選択図】図1

Description

本発明は半導体装置に係り、より具体的には不揮発性メモリセルを利用したヒューズ回路に関する。
半導体装置(またはチップ)において、チップ製造の以後に設計変更を所望するか特定オプションを選択するためのオプション情報を貯蔵するために、最も多く用いられる方法は、ヒューズを利用するのである。ヒューズ回路は任意回路と係わる信号/電源ラインを接続または切る簡単な役目を実行するが、このようなヒューズ回路の接続と非接続を組み合わせて所望する情報を貯蔵するか設計変更を可能にする。
ヒューズを実現する一般的な方法のうちの1つはレーザヒューズを使用する場合である。このような場合は、あらかじめポリシリコンのような物質を利用してバータイプパターンを形成させておいて、後に必要の時にレーザを調査してポリシリコンを溶かして無くす方法である。すなわち、伝導性物質からなるポリシリコンの両端は初期に電気的に接続されており、レーザによって切られた後にはポリシリコンの両端が断絶される(または電気的に分離する)。このような手続きによってヒューズ回路の接続及び非接続が制御されることができる。しかし、このようなレーザヒューズの切断はパッケージの以前にウェーハレベルテストの時、レーザを利用しなければならない制限事項を伴う。またレーザヒューズは電気的特性を評価する装備と他のレーザ装備に移された後に切断され、これはテスト時間の増加を招来することもある。また、いったん切断されれば、レーザヒューズの構造的特性によって再び復旧(接続)する方法がない制限事項があり、レーザヒューズは一定以上の面積を占めるだけでなく、カッティングのためにパッドオプションを要するため、レイアウト面積を広く占める問題を有する。
上述の短所を解決するために、最近、不揮発性メモリセルを利用してヒューズを実現する電気的なヒューズ回路が多く用いられて来ている。電気的なヒューズ回路は、一般的に、一対の不揮発性メモリセルを含み、このセルは電気的な消去またはプログラムを通じて互いに相補的な状態を維持する。電気的なヒューズ回路は二つの不揮発性メモリセルの閾値電圧を相補的に維持させて情報を記憶することであるため、時間が経っても初めに貯蔵した情報を維持するのかが非常に重要である。すなわち、一セルは閾値電圧が時間が経ってもどの基準より低く維持されるべきであり、他のセルはその基準より高く維持されるべきであるため、時間が経っても貯蔵された情報をそのまま維持するかどうかを評価することは非常に重要である。
本発明の目的はマージン読み出しを支援する電気的なヒューズ回路を提供することにある。
上述の目的を達成するための本発明の特徴によれば、電気的なヒューズ回路は第1ビットラインに接続された第1不揮発性メモリセルと、第2ビットラインに接続された第2不揮発性メモリセルと、前記第1ビットラインと前記第2ビットラインに接続されたラッチと、テスト動作の間のバイアス制御信号に応答して可変されるバイアス電流を前記ラッチを通じて前記第1ビットラインと前記第2ビットラインのうちのいずれか1つに供給するバイアス電流部とを含む。
例示的な実施形態において、前記第1及び第2不揮発性メモリセルはワードラインによって共通に制御される。
例示的な実施形態において、前記バイアス電流部は前記テスト動作の間の前記バイアス制御信号の電圧によって可変されるバイアス電流を前記ラッチを通じて前記第1ビットラインと前記第2ビットラインのうちのいずれか1つに供給する。
例示的な実施形態において、前記バイアス電流部は電源電圧と前記ラッチとの間に接続され、前記バイアス制御信号によって制御される第1PMOSトランジスタと、前記電源電圧と前記ラッチとの間に接続されて、前記バイアス制御信号によって制御される第2PMOSトランジスタとを含む。
例示的な実施形態において、電気的なヒューズ回路は前記第1不揮発性メモリセルのマージンが測定される前記テスト動作の間、前記第2ビットラインを接地電圧に設定する第1放電部と、前記第2不揮発性メモリセルのマージンが測定される前記テスト動作の間、前記第1ビットラインを接地電圧に設定する第2放電部とをさらに含む。
例示的な実施形態において、電気的なヒューズ回路はプリチャージ制御信号に応答して前記第1及び第2ビットラインをプリチャージするように構成されたプリチャージ部をさらに含む。
例示的な実施形態において、電気的なヒューズ回路は前記第1及び第2ビットラインにそれぞれ接続されたインバータをさらに含む。
例示的な実施形態において、電気的なヒューズ回路はスイッチ制御信号に応答して動作し、前記第1及び第2ビットラインと前記ラッチとの間に接続されたスイッチをさらに含む。
例示的な実施形態において、前記第1及び第2不揮発性メモリセルは対応するワードラインによってそれぞれ制御される。
例示的な実施形態において、前記第1及び第2不揮発性メモリセルはEEPROM、フラッシュメモリセル、及び分離ゲートメモリセルのうちのいずれか1つで構成される。
上述のように、不揮発性メモリセルそれぞれの閾値電圧がどこに位置するかを判別することによって、不揮発性メモリセルそれぞれのマージンを測定するのが可能である。また、不揮発性メモリセルの閾値電圧の間の電圧差を判別するのが可能である。
前述の一般的な説明及び次の詳細な説明は全て例示的であると理解しなければならず、請求された発明の付加的な説明が提供されると見なされるべきである。
参照符号が本発明の望ましい実施形態に詳細に表示されており、それの例が添付図面に表示されている。可能な限り、同一の参照番号が同一または類似の部分を参照するために説明及び図面に用いられる。
以下では、不揮発性メモリセルを利用した電気的なヒューズ回路が本発明の特徴及び機能を説明するための例として用いられる。しかし、この技術分野に精通した者はここに記載した内容によって本発明の他の利点及び性能を容易に理解することができるであろう。本発明は他の実施形態を通じてまた、実現されるか適用されることができるであろう。さらに、詳細な説明は本発明の範囲、技術的思想及び他の目的から逸脱せず、観点及び応用によって修正または変更されることができる。
図1は本発明による電気的なヒューズ回路を示す回路図である。図1を参照すると、本発明による電気的なヒューズ回路100は不揮発性メモリセルMC1、MC2を含む。不揮発性メモリセルMC1、MC2それぞれはEEPROM、フラッシュメモリセル、分離ゲートメモリセル、などを利用して実現されることができる。しかし、本発明の不揮発性メモリセルがここに記載したことに限定されないことはこの分野の通常的な知識を習得した者に自明である。例えば、不揮発性メモリセルMC1、MC2は電気的に消去及びプログラム可能なセルで構成されることができる。
引き続き、図1を参照すると、本発明による電気的なヒューズ回路100はスイッチ110、ラッチ120、バイアス電流部130、第1及び第2放電部140、150、プリチャージ部160、及びインバータINV1、INV2を含む。
スイッチ110はNMOSトランジスタM1、M2で構成され、スイッチ制御信号C1に応答してラッチノードLAT、nLATと対応するビットラインBL、nBLを電気的に接続するように構成される。NMOSトランジスタM1はビットラインBLを通じて不揮発性メモリセルMC1に接続されたソース、ラッチノードLATに接続されたドレイン、そしてスイッチ制御信号C1が入力されるように接続されたゲートを有する。NMOSトランジスタM2はビットラインnBLを通じて不揮発性メモリセルMC2に接続されたソース、ラッチノードnLATに接続されたドレイン、及び制御信号C1が入力されるように接続されたゲートを有する。ラッチ120はPMOSトランジスタM3、M4で構成され、ラッチノードLAT、nLATのロジッグレベルをラッチするように構成される。ゲートがラッチノードnLATに接続されたPMOSトランジスタM3はバイアス電流部130とラッチノードLATとの間に形成された電流通路を有する。ゲートがラッチノードLATに接続されたPMOSトランジスタM4はバイアス電流部130とラッチノードnLATとの間に形成された電流通路を有する。
バイアス電流部130はバイアス制御信号C2に応答してラッチ120を構成するPMOSトランジスタM3、M4のソースで可変可能なバイアス電流を供給するように構成され、PMOSトランジスタM5、M6を含む。PMOSトランジスタM5、M6それぞれはバイアス制御信号C2を受け入れるように接続されたゲートを有する。PMOSトランジスタM5は電源電圧VCCに接続されたソースとPMOSトランジスタM3のソースに接続されたドレインとを有し、PMOSトランジスタM6は電源電圧VCCに接続されたソースとPMOSトランジスタM4のソースに接続されたドレインを有する。バイアス制御信号C2の電圧レベルはラッチを通じてラッチノードLAT、nLATに供給される電流の量が可変されるようにテスト動作の間に可変されるであろう。
続いて、図1を参照すると、第1放電部140はNMOSトランジスタM7、M8を含み、制御信号C3、C4に応答してラッチノードLATを放電するように構成される。NMOSトランジスタM7、M8はラッチノードLATと接地電圧の間に直列接続され、制御信号C3、C4によってそれぞれ制御される。第2放電部150はNMOSトランジスタM9、M10を含み、制御信号C3、nC4に応答してラッチノードnLATを放電するように構成される。NMOSトランジスタM9、M10はラッチノードnLATと接地電圧との間に直列接続され、制御信号C3、nC4によってそれぞれ制御される。制御信号nC4は制御信号C4の相補信号である。プリチャージ部160はプリチャージ制御信号nC5に応答してラッチノードLAT、nLATをプリチャージするように構成され、PMOSトランジスタM11、M12を含む。PMOSトランジスタM11は電源電圧VCCとラッチノードLATとの間に接続され、プリチャージ制御信号nC5によって制御される。PMOSトランジスタM12は電源電圧VCCとラッチノードnLATとの間に接続され、プリチャージ制御信号nC5によって制御される。インバータINV1、INV2はラッチノードLAT、nLATにそれぞれ接続されている。
本発明の電気的なヒューズ回路100によれば、テスト動作の時、バイアス電流部130を通じて供給される電流の量を制御するによって、不揮発性メモリセルMC1、MC2それぞれがプログラム/消去される時、そのセルの閾値電圧がどこに位置するか(または分布されているか)を判別するのが可能である。すなわち、不揮発性メモリセルMC1、MC2それぞれのマージンを測定するのが可能である。
図2は本発明による電気的なヒューズ回路のテスト動作を説明するためのタイミング図である。以下では、本発明による電気的なヒューズ回路のテスト動作を参照図面に基づいて詳細に説明する。
上述のように、不揮発性メモリセルそれぞれが消去された/プログラムされた状態において、消去された/プログラムされたセルの閾値電圧がどこに位置するのかを判別するのが非常に重要である。なぜなら、電気的なヒューズ回路に貯蔵された情報は保証期間の間に変化なしに維持されなければならないためである。このために、消去された不揮発性メモリセルとプログラムされた不揮発性メモリセルそれぞれの読み出しマージンを点検すべきである。不揮発性メモリセルそれぞれの読み出しマージンは次のような手続きを通じて点検されるであろう。
まず、制御信号nC5をローで活性化させることによって、ラッチノードLAT、nLATがPMOSトランジスタM11、M12を通じてプリチャージされる。この時、制御信号C1はハイで活性化される。これはビットラインBL、nBLがNMOSトランジスタM1、M2を通じてそれぞれVCC−Vtn(VtnはNMOSトランジスタの閾値電圧)の電圧でプリチャージされるようにする。プリチャージ動作が完了すれば、制御信号nC5はハイレベルで非活性化される。これはPMOSトランジスタM11、M12がターンオフされるようにする。その次に、制御信号C3、nC4はハイで活性化され、制御信号C4は非活性化状態で維持される。制御信号C3、nC4がハイで活性化されることによって、ラッチノードnLATは放電部150を通じて接地電圧に接続される。これはインバータINV2の出力nOPがハイレベルに設定されるようにする。これは不揮発性メモリセルMC2の状態(消去またはプログラム状態)にかかわらずラッチノードnLATがローレベルに設定されるようにする。
これと同時に、不揮発性メモリセルMC1、MC2に接続されたワードラインWLが活性化される。ビットラインnBLは不揮発性メモリセルMC2の状態にかかわらず放電部150を通じて接地電圧で維持される一方、ビットラインBLの電圧は不揮発性メモリセルMC1の状態に応じて可変されるであろう。より具体的に説明すれば、次の通りである。
不揮発性メモリセルMC1が消去/プログラムされたと仮定する。このような仮定の下において、PMOSトランジスタM5を通じて流れる電流の量が可変されるように制御信号C2の電圧が制御されるであろう。例えば、不揮発性メモリセルMC1を通じて流れる電流(以下、“セル電流”と称する)がPMOSトランジスタM5を通じて流れる電流(以下、“バイアス電流”と称する)より多い場合、ラッチノードLATの電圧はインバータINV1のトリップ電圧より低く設定されるであろう。すなわち、インバータINV1の出力OPはハイレベルになる。再び、バイアス電流が増加するように制御信号C2の電圧が可変されるであろう。この時、インバータINV1の出力OPがそのままハイレベルで維持されるかローレベルになる。もし、インバータINV1の出力OPがそのままハイレベルで維持されれば、バイアス電流が増加するように制御信号C2の電圧が可変されるであろう。これと異なり、インバータINV1の出力OPがハイレベルからローレベルに遷移する場合、すなわち、バイアス電流がセル電流より多い場合、バイアス電流とワードラインの電圧を通じて不揮発性メモリセルMC1の閾値電圧がどこに位置するかを判別することができる。すなわち、不揮発性メモリセルMC1の読み出しマージンを測定するのが可能である。
前記の説明によれば、不揮発性メモリセルMC1が消去された状態であるかプログラムされた状態であるかが設定されていない。しかし、バイアス電流の量の不揮発性メモリセルの状態によって異なるという点を除外すれば、不揮発性メモリセルの状態にかかわらず前記の説明と同一の方法によって不揮発性メモリセルがどこに位置するか(または不揮発性メモリセルの読み出しマージン)を判別するのが可能である。
不揮発性メモリセルMC2のテスト動作は制御信号nC4の代りに制御信号C4が活性化されるという点を除外すれば、前記の説明と実質的に同一であるため、それに対する説明は省略する。
不揮発性メモリセルMC1、MC2の間の読み出しマージンがどの程度であるかは不揮発性メモリセルMC1を消去/プログラム状態に設定し、不揮発性メモリセルMC2をプログラム/消去状態に設定した後、前記の方式によって不揮発性メモリセルMC1、MC2それぞれに対する閾値電圧位置を検出するによって判別されることができる。
前記のテスト方法の場合、ワードラインの電圧(例えば、プログラムされたセルの閾値電圧より高い電圧)が固定された状態でバイアス電流を可変させることによって、不揮発性メモリセルのマージンを検出するのが可能である。これと異なり、不揮発性メモリセルそれぞれを消去/プログラムしてバイアス電流(例えば、オンセル電流/オフセル電流に対応する)を固定させた状態で、ワードラインの電圧を可変させることによって不揮発性メモリセルそれぞれのマージンを検出するのが可能である。
図3は本発明の他の実施形態による電気的なヒューズ回路を示す回路図である。図3において、図1に示したことと同一である機能を実行する構成要素は同一の参照番号で表記するため、それに対する説明は省略する。図3に示した電気的なヒューズ回路200は図1のスイッチ110が除去されたという点を除外すれば、図1に示したものと実質的に同一である。
図4は本発明のまた他の実施形態による電気的なヒューズ回路を示す回路図である。
図4において、図1に示したものと同一である機能を実行する構成要素は同一である参照番号で表記するため、それに対する説明は省略する。図4に示した電気的なヒューズ回路300はバイアス電流部130が除去されて2個のワードラインWL_A、WL_Bが使用されるという点を除外すれば、図1に示したものと同一である。図1のバイアス電流部130が除去されることによって、ラッチ120を構成するPMOSトランジスタM3、M4のソースは電源電圧VCCに直接接続されている。2個のワードラインWL_A、WL_Bが用いられることによって、ワードラインWL_Aは不揮発性メモリセルMC1に接続され、ワードラインWL_Bは不揮発性メモリセルMC2に接続される。2個のワードラインWL_A、WL_Bが用いられる場合、不揮発性メモリセルMC1、MC2の閾値電圧の間の電圧差がどの程度であるかを判別するのが可能である。例えば、不揮発性メモリセルMC1が消去されて不揮発性メモリセルMC2がプログラムされた場合、ワードラインWL_Aの電圧は減少させてワードラインWL_Bの電圧は増加するであろう。ワードラインWL_A、WL_Bの電圧が可変される間に、インバータINV1、INV2の出力が変化されるか否かを検出することによって、不揮発性メモリセルMC1、MC2の閾値電圧の間の電圧差を判別するのが可能である。
たとえ、図面に示さなかったが、図4に示した電気的なヒューズ回路300が図1のバイアス電流部130を含むように構成されることができることはこの分野の通常的な知識を習得した者に自明である。
本発明の範囲または技術的思想を逸脱せず、本発明の構造が多様に修正または変更されることができるのはこの分野に熟練された者に自明である。上述の内容を考慮して見る時、もし、本発明の修正及び変更が請求項及び同等物の範囲内に属すれば、本発明がこの発明の変更及び修正を含むことと見なされる。
本発明の一実施形態による電気的なヒューズ回路を示す回路図である。 本発明による電気的なヒューズ回路のテスト動作を説明するためのタイミング図である。 本発明の他の実施形態による電気的なヒューズ回路を示す回路図である。 本発明の他の実施形態による電気的なヒューズ回路を示す回路図である。
符号の説明
100、200、300 電気的なヒューズ回路
110 スイッチ
120 ラッチ
130 バイアス電流部
140、150 放電部
160 プリチャージ部

Claims (10)

  1. 第1ビットラインに接続された第1不揮発性メモリセルと、
    第2ビットラインに接続された第2不揮発性メモリセルと、
    前記第1ビットラインと前記第2ビットラインに接続されたラッチと、
    テスト動作の間、バイアス制御信号に応答して可変されるバイアス電流を前記ラッチを通じて前記第1ビットラインと前記第2ビットラインのうちのいずれか1つに供給するバイアス電流部とを含むことを特徴とする電気的なヒューズ回路。
  2. 前記第1及び第2不揮発性メモリセルはワードラインによって共通に制御されることを特徴とする請求項1に記載の電気的なヒューズ回路。
  3. 前記バイアス電流部は前記テスト動作の間、前記バイアス制御信号の電圧によって可変されるバイアス電流を前記ラッチを通じて前記第1ビットラインと前記第2ビットラインのうちのいずれか1つに供給することを特徴とする請求項1に記載の電気的なヒューズ回路。
  4. 前記バイアス電流部は、
    電源電圧と前記ラッチとの間に接続され、前記バイアス制御信号によって制御される第1PMOSトランジスタと、
    前記電源電圧と前記ラッチとの間に接続されて、前記バイアス制御信号によって制御される第2PMOSトランジスタとを含むことを特徴とする請求項3に記載の電気的なヒューズ回路。
  5. 前記第1不揮発性メモリセルのマージンが測定される前記テスト動作の間、前記第2ビットラインを接地電圧に設定する第1放電部と、
    前記第2不揮発性メモリセルのマージンが測定される前記テスト動作の間、前記第1ビットラインを接地電圧に設定する第2放電部とをさらに含むことを特徴とする請求項1に記載の電気的なヒューズ回路。
  6. プリチャージ制御信号に応答して前記第1及び第2ビットラインをプリチャージするように構成されたプリチャージ部をさらに含むことを特徴とする請求項1に記載の電気的なヒューズ回路。
  7. 前記第1及び第2ビットラインにそれぞれ接続されたインバータをさらに含むことを特徴とする請求項1に記載の電気的なヒューズ回路。
  8. スイッチ制御信号に応答して動作し、前記第1及び第2ビットラインと前記ラッチとの間に接続されたスイッチをさらに含むことを特徴とする請求項1に記載の電気的なヒューズ回路。
  9. 前記第1及び第2不揮発性メモリセルは対応するワードラインによってそれぞれ制御されることを特徴とする請求項1に記載の電気的なヒューズ回路。
  10. 前記第1及び第2不揮発性メモリセルはEEPROM、フラッシュメモリセル、及び分離ゲートメモリセルのうちのいずれか1つで構成されることを特徴とする請求項1に記載の電気的なヒューズ回路。
JP2007015220A 2006-02-03 2007-01-25 マージン読み出しを提供する電気的なヒューズ回路 Pending JP2007207417A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060010839A KR101197555B1 (ko) 2006-02-03 2006-02-03 마진 읽기를 제공하는 전기적인 퓨즈 회로

Publications (1)

Publication Number Publication Date
JP2007207417A true JP2007207417A (ja) 2007-08-16

Family

ID=38310064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007015220A Pending JP2007207417A (ja) 2006-02-03 2007-01-25 マージン読み出しを提供する電気的なヒューズ回路

Country Status (6)

Country Link
US (1) US7590022B2 (ja)
JP (1) JP2007207417A (ja)
KR (1) KR101197555B1 (ja)
DE (1) DE102007006340A1 (ja)
FR (1) FR2897193A1 (ja)
TW (1) TW200731272A (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0169267B1 (ko) * 1993-09-21 1999-02-01 사토 후미오 불휘발성 반도체 기억장치
JP5237116B2 (ja) * 2006-01-27 2013-07-17 キロパス テクノロジー インコーポレイテッド 電気的にプログラム可能なヒューズ・ビット
CN102682828B (zh) * 2012-05-09 2017-07-11 上海华虹宏力半导体制造有限公司 读出放大器电路以及非易失性存储装置
US9076557B2 (en) * 2012-11-19 2015-07-07 Texas Instruments Incorporated Read margin measurement in a read-only memory

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4995004A (en) * 1989-05-15 1991-02-19 Dallas Semiconductor Corporation RAM/ROM hybrid memory architecture
ITRM20010105A1 (it) 2001-02-27 2002-08-27 Micron Technology Inc Circuito a fusibile per una cella di memoria flash.
US6590825B2 (en) 2001-11-01 2003-07-08 Silicon Storage Technology, Inc. Non-volatile flash fuse element
JP3821697B2 (ja) 2001-12-07 2006-09-13 エルピーダメモリ株式会社 半導体集積回路装置のベリファイ方法および半導体集積回路装置
US6775189B2 (en) 2002-12-25 2004-08-10 Ememory Technology Inc. Option fuse circuit using standard CMOS manufacturing process
US7333383B2 (en) * 2005-08-23 2008-02-19 Infineon Technologies Ag Fuse resistance read-out circuit

Also Published As

Publication number Publication date
US20070183244A1 (en) 2007-08-09
TW200731272A (en) 2007-08-16
DE102007006340A1 (de) 2007-09-06
FR2897193A1 (fr) 2007-08-10
US7590022B2 (en) 2009-09-15
KR101197555B1 (ko) 2012-11-09
KR20070079840A (ko) 2007-08-08

Similar Documents

Publication Publication Date Title
JP4832879B2 (ja) 面積が減少した半導体メモリ装置のリペア制御回路
US8427869B2 (en) Voltage switch circuit and nonvolatile memory device using the same
KR20070042543A (ko) 메모리 비트 라인 세그먼트 아이솔레이션
KR100660534B1 (ko) 불휘발성 메모리 장치의 프로그램 검증방법
JP3604932B2 (ja) フラッシュメモリのヒューズセルセンシング回路
US7586788B2 (en) Nonvolatile semiconductor memory having voltage adjusting circuit
KR100426909B1 (ko) 반도체 장치
JP2006294144A (ja) 不揮発性半導体記憶装置
KR100215762B1 (ko) 불휘발성 반도체기억장치 및 검증방법
KR100852179B1 (ko) 퓨즈 회로를 가지는 비휘발성 반도체 메모리 장치 및 그제어방법
JP5031296B2 (ja) Norフラッシュメモリ装置及びそのプログラム方法
JP5045364B2 (ja) 半導体記憶装置
US7274614B2 (en) Flash cell fuse circuit and method of fusing a flash cell
JP2007207417A (ja) マージン読み出しを提供する電気的なヒューズ回路
US8144493B2 (en) CAM cell memory device
KR100362702B1 (ko) 리던던트 디코더 회로
KR101619779B1 (ko) 오티피 메모리 장치
JP4593089B2 (ja) フラッシュメモリ素子におけるトリムビット信号生成回路
JP2010073245A (ja) 不揮発性半導体記憶装置
KR100315311B1 (ko) 플래쉬메모리셀의섹터프로텍션리페어회로및리페어방법
KR20080062079A (ko) 플래쉬 셀 퓨즈 회로 및 이를 구비한 비휘발성 반도체메모리 장치
KR0138625B1 (ko) 플래쉬 메모리 소자용 리던던시 제어 회로
KR100293638B1 (ko) 섹터 프로텍션 회로
KR20010061462A (ko) 플래시 메모리의 비트기억 회로

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100125

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20110531