JP2007206380A - 光変調装置 - Google Patents

光変調装置 Download PDF

Info

Publication number
JP2007206380A
JP2007206380A JP2006025201A JP2006025201A JP2007206380A JP 2007206380 A JP2007206380 A JP 2007206380A JP 2006025201 A JP2006025201 A JP 2006025201A JP 2006025201 A JP2006025201 A JP 2006025201A JP 2007206380 A JP2007206380 A JP 2007206380A
Authority
JP
Japan
Prior art keywords
modulator
signal
output
input
low frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006025201A
Other languages
English (en)
Other versions
JP4935093B2 (ja
Inventor
Toshiaki Kobayashi
利秋 小林
Kenji Uchida
賢治 内田
Akira Toyama
晃 遠山
Katsuya Ikezawa
克哉 池澤
Akira Miura
明 三浦
Kyoichi Akasaka
恭一 赤坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2006025201A priority Critical patent/JP4935093B2/ja
Priority to EP07002106A priority patent/EP1816506A1/en
Priority to US11/700,813 priority patent/US7672033B2/en
Publication of JP2007206380A publication Critical patent/JP2007206380A/ja
Application granted granted Critical
Publication of JP4935093B2 publication Critical patent/JP4935093B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0327Operation of the cell; Circuit arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】バーストモードで動作させる光通信システムにおいて、LN変調器を使用し、高速且つ広帯域なバースト信号を光変調することが可能な光変調装置を実現する。
【解決手段】光通信システムに用いられる外部変調方式の光変調装置において、LN変調器と、光分岐回路と、光電変換器と、バイアス制御回路と、入力電気信号に応じてLN変調器を駆動するLN変調器用ドライバと、入力電気信号の直流及び低周波成分を遮断するコンデンサと、入力電気信号の直流及び低周波成分を補償する低周波成分補償回路と、バイアス制御回路の出力と低周波成分補償回路の出力を加算し、LN変調器のバイアス制御信号を生成する加算回路とを備える。
【選択図】 図1

Description

本発明は、光通信システムに用いられる外部変調方式の光変調装置に関し、特に高速且つ広帯域なバースト信号を光変調することが可能な光変調装置に関する。
近年、光通信システムの進歩に伴い、高周波の出力光信号(光パルス)を安定して出力することが可能な光変調装置が求められており、例えば、EA(Electro Absorption)変調器(以下、単にEA変調器と呼ぶ。)やニオブ酸リチウム(LiNbO3)等の電気光学効果(ボッケルス効果)を有する材料を基板に用いたLN(Lithium Niobate)変調器(以下、単にLN変調器と呼ぶ。)等の外部変調器を備えた光変調装置が実用化されている。
従来の光変調装置に関連する先行技術文献としては次のようなものがある。
特許2642499号公報 特許3398929号公報
図6はこのような従来の光変調装置の一例を示す構成ブロック図である。図6において、1は一定波長(例えば1550nm)の光を常に出力する光源、2は光源1から入射される光を変調し出力するEA変調器、3は外部からの入力電気信号の論理レベルに応じてEA変調器2を駆動するEA変調器用ドライバである。
光源1の出力端子はEA変調器2の入力端子に接続され、EA変調器用ドライバ3の出力端子はEA変調器2の変調入力信号端子に接続される。EA変調器用ドライバ3の入力端子には入力電気信号が入力され、EA変調器2の出力端子からは出力光信号が出力される。
ここで、図6に示す従来例の動作を説明する。EA変調器2はEA変調器用ドライバ3から入力される変調入力信号に応じて光の吸収又は通過を行う電界吸収型の光変調器である。EA変調器用ドライバ3は外部から入力される入力電気信号がローレベルの場合、光源1から入射された光を吸収させる変調入力信号をEA変調器2に出力することで、EA変調器2から出力される出力光信号を消灯状態とする。
また、EA変調器用ドライバ3は外部から入力される入力電気信号がハイレベルの場合、光源1から入射された光を通過させる変調入力信号をEA変調器2に出力することで、EA変調器2から出力される出力光信号を点灯状態とする。
この結果、EA変調器用ドライバ3に入力される入力電気信号の論理レベルに応じて、EA変調器用ドライバ3がEA変調器2を駆動し、EA変調器2に入力される光が変調され、EA変調器2から出力される出力光信号を消灯状態又は点灯状態とすることが可能になる。
図7はこのような従来の光変調装置の他の一例を示す構成ブロック図である。図7において、4は一定波長(例えば1550nm)の光を常に出力する光源、5は光源4から入射される光を変調して出力するLN変調器、6はLN変調器5から出力される出力光信号を分岐する光分岐回路、7は外部からの入力電気信号の論理レベルに応じてLN変調器5を駆動するLN変調器用ドライバ、8はLN変調器用ドライバ7から出力される変調入力信号の直流及び低周波成分をカットするコンデンサ、9は光分岐回路6で分岐された光信号を電気信号に変換するO/E(Optical/Electrical)変換器(光電変換器)、10はO/E変換器9の出力信号に基づいてLN変調器5のバイアス点を調整するバイアス制御回路である。
光源4の出力端子はLN変調器5の入力端子に接続され、LN変調器5の出力端子は光分岐回路6の入力端子に接続される。光分岐回路6の一方の出力は出力光信号として出力され、光分岐回路6の他方の出力端子はO/E変換器9の入力端子に接続される。
また、O/E変換器9の出力端子はバイアス制御回路10の入力端子に接続され、バイアス制御回路10の出力端子はLN変調器5のバイアス制御信号入力端子に接続される。コンデンサ8の一端はLN変調器5の変調入力信号端子に接続され、コンデンサ8の他端はLN変調器用ドライバ7の出力端子に接続される。また、入力電気信号はLN変調器用ドライバ7の入力端子に接続される。
ここで、図7に示す従来例の動作を説明する。LN変調器5は内部で光源4から入射された光を2つに分岐し、LN変調器用ドライバ7から入力される変調入力信号に応じて光の位相を変化させた後、再び1つの光に合波して出力するマッハツェンダ型の光変調器である。
LN変調器用ドライバ7は外部から入力される入力電気信号がローレベルの場合、LN変調器5内で分岐した2つの光の位相が”π”だけ異なるよう変化させる変調入力信号をLN変調器5に出力し、2つの光を逆位相で合波させ、出力光信号を消灯状態とする。
また、LN変調器用ドライバ7は外部から入力される入力電気信号がハイレベルの場合、LN変調器5内で分岐した2つの光の位相が一致するよう変化させる変調入力信号をLN変調器5に出力し、2つの光を同位相で合波させ、出力光信号を点灯状態とする。
バイアス制御回路10はLN変調器5内部の2つの経路の位相差を調整して出力光信号の消灯又は点灯を可能とするようにLN変調器5のDCバイアス点を調整する。このDCバイアス点は温度や経時変化によってドリフトするため、LN変調器5の出力光信号を光分岐回路6で分岐し、分岐した出力光信号を使用してバイアス制御回路10により常に調整する必要がある。
また、LN変調器5への入力電気信号としては、通常、連続的に発生し、マーク率(ハイレベルとローレベルの出現比)がほぼ一定のNRZ(Non Return to Zero)信号やRZ(Return to Zero)信号が用いられている。また、LN変調器用ドライバ7内部のDCバイアス値を任意に設定することができる等の利点があるため、一般にLN変調器用ドライバ7の入出力、若しくは、LN変調器用ドライバ7の内部に直流及び低周波成分カット用のコンデンサ8が使用されることが多い。
この結果、LN変調器用ドライバ7に入力される入力電気信号の論理レベルに応じて、LN変調器用ドライバ7がLN変調器5を駆動し、LN変調器5に入力される光が変調され、LN変調器5から出力される出力光信号を消灯状態又は点灯状態とすることが可能になる。また、LN変調器5から出力される出力光信号を光分岐回路6で分岐し、O/E変換器9で光信号から電気信号に変換し、バイアス制御回路10でDCバイアス点を調整することにより、LN変調器5内部の2つの経路の位相差が正確に制御されるので、出力光信号の光波形品位を良くすることが可能になる。
しかし、図6に示す従来例では、EA変調器を使用しているため、消光比が悪いという問題点があった。一方、図7に示す従来例では、LN変調器を使用しているため、図6に示すEA変調器を用いた光変調装置と比較し、消光比の点で優れている。
但し、システム上の理由や更なる高速化のため、光変調装置をバーストモードで動作させる要請がある場合、図7に示す従来例では問題が生ずる。任意のタイミングでバーストが発生し得るバーストモードでは、その信号中に”0Hz”からバーストのビットレート程度までの広帯域の周波数成分を含み得る。
しかし、図7に示す従来例では直流及び低周波成分カット用のコンデンサがあるため、このコンデンサにより元のバースト信号中にある直流及び低周波成分が遮断されてしまう。その結果、正常な光変調信号が得られず、直流及び低周波成分が欠落したバースト信号に対応した光変調出力が生じてしまう。
また、この直流及び低周波成分カット用のコンデンサを無くして入力電気信号からLN変調器用ドライバを経由し、LN変調器までを直流的に結合する構成にした場合には、広帯域且つ高速なバースト信号に対応したLN変調器用ドライバの実現が困難になる。
一般的には、LN変調器に入力される変調入力信号の振幅は”3Vpーp”程度が必要になる。さらに、LN変調器を駆動するバースト信号のビットレートが数十Gbpsオーダの高速信号を想定した場合、LN変調器用ドライバは直流から数十Gbpsオーダの広帯域且つ”3Vpーp”程度の信号発生を要求され、非常にその実現が困難になる。
以上により、高速且つ広帯域なバースト信号を光変調することが可能な光変調装置の実現が難しいという問題があった。
従って本発明が解決しようとする課題は、バーストモードで動作させる光通信システムにおいて、EA変調器ではなく、LN変調器を使用することで消光比の優れた光変調出力が得られ、高速且つ広帯域なバースト信号を光変調することが可能な光変調装置を実現することにある。
このような課題を達成するために、本発明のうち請求項1記載の発明は、
光通信システムに用いられる外部変調方式の光変調装置において、
光源から入射された光を変調し、出力光信号として出力するLN変調器と、前記出力光信号を分岐する光分岐回路と、この光分岐回路の出力信号を電気信号に変換する光電変換器と、この光電変換器の出力信号に基づいて信号を生成するバイアス制御回路と、入力電気信号に応じて前記LN変調器を駆動するLN変調器用ドライバと、このLN変調器用ドライバの入力端子、若しくは、出力端子に接続され、前記入力電気信号の直流及び低周波成分を遮断するコンデンサと、前記入力電気信号の前記コンデンサにより失われる前記直流及び低周波成分を補償する低周波成分補償回路と、前記バイアス制御回路の出力と前記低周波成分補償回路の出力を加算し、前記LN変調器のバイアス点を調整するバイアス制御信号を生成する加算回路とを備えたことを特徴とするものである。
請求項2記載の発明は、
光通信システムに用いられる外部変調方式の光変調装置において、
光源から入射された光を変調し、出力光信号として出力すると共に内蔵された光電変換器により前記出力光信号を電気信号に変換するLN変調器と、前記電気信号に基づいて信号を生成するバイアス制御回路と、入力電気信号に応じて前記LN変調器を駆動するLN変調器用ドライバと、このLN変調器用ドライバの入力端子、若しくは、出力端子に接続され、前記入力電気信号の直流及び低周波成分を遮断するコンデンサと、前記入力電気信号の前記コンデンサにより失われる前記直流及び低周波成分を補償する低周波成分補償回路と、前記バイアス制御回路の出力と前記低周波成分補償回路の出力を加算し、前記LN変調器のバイアス点を調整するバイアス制御信号を生成する加算回路とを備えたことを特徴とするものである。
請求項3記載の発明は、
請求項1若しくは請求項2記載の発明である光変調装置において、
前記LN変調器が、
前記加算回路を内蔵していることを特徴とするものである。
請求項4記載の発明は、
光通信システムに用いられる外部変調方式の光変調装置において、
光源から入射された光を変調し、出力光信号として出力するLN変調器と、前記出力光信号を分岐する光分岐回路と、この光分岐回路の出力信号を電気信号に変換する光電変換器と、この光電変換器の出力信号に基づいて前記LN変調器のバイアス点を調整するバイアス制御信号を生成するバイアス制御回路と、入力電気信号に応じて前記LN変調器を駆動するLN変調器用ドライバと、このLN変調器用ドライバの入力端子、若しくは、出力端子に接続され、前記入力電気信号の直流及び低周波成分を遮断するコンデンサと、前記入力電気信号の前記コンデンサにより失われる前記直流及び低周波成分を補償する低周波成分補償回路と、前記LN変調器用ドライバの出力と前記低周波成分補償回路の出力を加算し、前記LN変調器の変調入力信号を生成する加算回路とを備えたことを特徴とするものである。
請求項5記載の発明は、
光通信システムに用いられる外部変調方式の光変調装置において、
光源から入射された光を変調し、出力光信号として出力すると共に内蔵された光電変換器により前記出力光信号を電気信号に変換するLN変調器と、前記電気信号に基づいて前記LN変調器のバイアス点を調整するバイアス制御信号を生成するバイアス制御回路と、入力電気信号に応じて前記LN変調器を駆動するLN変調器用ドライバと、このLN変調器用ドライバの入力端子、若しくは、出力端子に接続され、前記入力電気信号の直流及び低周波成分を遮断するコンデンサと、前記入力電気信号の前記コンデンサにより失われる前記直流及び低周波成分を補償する低周波成分補償回路と、前記LN変調器用ドライバの出力と前記低周波成分補償回路の出力を加算し、前記LN変調器の変調入力信号を生成する加算回路とを備えたことを特徴とするものである。
請求項6記載の発明は、
請求項1乃至請求項5のいずれかに記載の発明である光変調装置において、
前記コンデンサが、
前記LN変調器用ドライバに内蔵されていることを特徴とするものである。
本発明によれば次のような効果がある。
請求項1,2,3及び請求項6の発明によれば、LN変調器用ドライバに入力される入力電気信号の直流及び低周波成分を低周波成分補償回路で抽出及び増幅し、バイアス制御回路からの出力と加算した信号でLN変調器のバイアス制御を行うことにより、コンデンサにより遮断された入力電気信号の直流及び低周波成分を補償できるので、高速且つ広帯域なバースト信号を光変調することが可能な光変調装置の実現が可能になる。
請求項4,5及び請求項6の発明によれば、LN変調器用ドライバに入力される入力電気信号の直流及び低周波成分を低周波成分補償回路で抽出及び増幅し、LN変調器用ドライバからの出力と加算した信号でLN変調器を駆動することにより、コンデンサにより遮断された入力電気信号の直流及び低周波成分を補償できるので、高速且つ広帯域なバースト信号を光変調することが可能な光変調装置の実現が可能になる。
以下本発明を図面を用いて詳細に説明する。図1は本発明に係る光変調装置の一実施例を示す構成ブロック図である。図1において11は一定波長(例えば1550nm)の光を常に出力する光源、12は光源11から入射される光を変調し出力するLN変調器、13はLN変調器12から出力される出力光信号を分岐する光分岐回路、14は外部からの入力電気信号の論理レベルに応じてLN変調器12を駆動するLN変調器用ドライバである。
また、15はLN変調器用ドライバ14から出力される変調入力信号の直流及び低周波成分をカットするコンデンサ、16は光分岐回路13で分岐された光信号を電気信号に変換するフォトダイオード等のO/E変換器、17はO/E変換器16の出力信号に基づいてLN変調器12のバイアス点を調整するバイアス制御回路、18は入力電気信号の直流及び低周波成分を抽出する低周波成分抽出回路、19は低周波成分抽出回路18の出力を増幅する直流アンプ、20はバイアス制御回路17の出力と直流アンプ19の出力を加算する加算回路である。
さらに、低周波成分抽出回路18及び直流アンプ19は低周波成分補償回路100を構成している。
光源11の出力端子はLN変調器12の入力端子に接続され、LN変調器12の出力端子は光分岐回路13の入力端子に接続される。光分岐回路13の一方の出力は出力光信号として出力され、光分岐回路13の他方の出力端子はO/E変換器16の入力端子に接続される。
また、O/E変換器16の出力端子はバイアス制御回路17の入力端子に接続され、バイアス制御回路17の出力端子は加算回路20の一方の入力端子に接続される。加算回路20の出力端子はLN変調器12のバイアス制御信号入力端子に接続される。
また、LN変調器用ドライバ14の出力端子はコンデンサ15の一端に接続され、コンデンサ15の他端はLN変調器12の変調入力信号端子に接続される。入力電気信号はLN変調器用ドライバ14の入力端子及び低周波成分抽出回路18の入力端子にそれぞれ接続される。低周波成分抽出回路18の出力端子は直流アンプ19の入力端子に接続され、直流アンプ19の出力端子は加算回路20の他方の入力端子に接続される。
ここで、図1に示す実施例の動作を図2及び図3を用いて説明する。図2はLN変調器用ドライバ14からLN変調器12までの経路の伝達特性を示す特性図、図3は低周波成分抽出回路18の伝達特性を示す特性図である。
基本的な動作は図7の従来例とほぼ同一であり、異なる点は低周波成分抽出回路18、直流アンプ19及び加算回路20を追加したことである。入力電気信号はLN変調器用ドライバ14を経由してコンデンサ15により、図2中”CH01”に示すような低周波遮断特性で濾波されるので、直流及び低周波成分が欠落する。
一方、低周波成分抽出回路18は図3中”CH02”に示すような伝達特性を有しているので、入力電気信号の直流及び低周波成分を抽出し、高周波成分は遮断する。この伝達特性のカットオフ周波数は図2中”CH01”に示す低周波遮断特性のカットオフ周波数と等しい。低周波成分抽出回路18の出力は直流アンプ19で増幅され、加算回路20においてバイアス制御回路17の出力と加算される。そして、加算回路20の出力信号がLN変調器12のバイアス制御信号入力端子に入力される。
LN変調器12の内部ではLN変調器用ドライバ14からの入力と加算回路20からの入力が光波位相領域で加算されるため、コンデンサ15で遮断された入力電気信号の直流及び低周波成分が反映されるので、LN変調器用ドライバ14に入力される入力電気信号に対応した出力光信号を得ることができる。
ここで、LN変調器12内の光波位相領域で入力電気信号が復元される過程の詳細を説明する。入力電気信号はLN変調器用ドライバ14及びコンデンサ15を経由してLN変調器12に入力され、LN変調器12内部で式(1)に示すような光波位相差を生じる。ここで、”Δφh”は光波位相差、”Vin_h”はコンデンサ15を通過する入力電気信号の高周波成分、”Kdr”はLN変調器用ドライバ14の利得、”Krf”はLN変調器12の変調入力信号に関する比例定数、”θrf”は位相オフセットである。
Δφh=Krf・Kdr・Vin_h+θrf (1)
一方、低周波成分抽出回路18、直流アンプ19、加算器20を経由してLN変調器12に入力される入力電気信号はLN変調器12内部で式(2)に示すような光波位相差を生じる。ここで、”Δφl”は光波位相差、”Vin_l”は低周波成分抽出回路18で抽出された入力電気信号の直流及び低周波成分、”Kdc”は直流アンプ19の利得、”Kcont”はLN変調器12のバイアス制御入力信号に関する比例定数、”θdc”は位相オフセットである。
Δφl=Kdc・Kcont・Vin_l+θdc (2)
ここで、直流アンプ20の利得”Kdc”を”(Krf・Kdr/Kcont)”とすれば、式(2)は式(3)に示すとおりになる。
Δφl=Krf・Kdr・Vin_l+θdc (3)
LN変調器12はLN変調器用ドライバ14と直流アンプ19により駆動されるので、LN変調器12内部での光波位相差は式(4)に示すように式(1)と式(3)の和となる。ここで、”Vin”は入力電気信号で、”Vin_h”と”Vin_l”の周波数成分は相互に補うので、”Vin=Vin_h+Vin_l”の関係がある。
Δφh+Δφl=Krf・Kdr・(Vin_h+Vin_l)+θrf+θdc
=Krf・Kdr・Vin+θrf+θdc (4)
式(4)の位相オフセット” θrf+θdc”は固定的な位相差であり、バイアス制御回路17により補正可能な量である。従って、この位相オフセット” θrf+θdc”を無視すれば、式(4)の左辺の統合した位相差” Δφh+Δφl”は入力電気信号がLN変調器用ドライバ14を経由してコンデンサ15が無い状態、すなわち、DC結合された状態で直接LN変調器12を駆動したものと等価であることが分かる。
一般にLN変調器12の光波位相差変換に関する比例定数は、LN変調器12の通常の変調入力に対する定数よりも、バイアス制御入力に対する定数の方が小さく、” Kcont<Krf”となる。また、LN変調器12のバイアス制御入力は、LN変調器12の緩慢なDCバイアスの変動に対応できればよいため、通常さほど広帯域ではない。
本発明の実現には、LN変調器用ドライバ14に関わるコンデンサ15による低周波遮断のカットオフ周波数が、LN変調器12のバイアス制御入力が持つ帯域内となるように、コンデンサ15の容量を選ばなければならない。
この結果、LN変調器用ドライバ14に入力される入力電気信号の直流及び低周波成分のみを低周波成分抽出回路18で抽出し、直流アンプ19で増幅し、バイアス制御回路17からの出力と加算した信号でLN変調器12のバイアス制御を行うことにより、LN変調器用ドライバ14の出力に取り付けられたコンデンサ15により遮断された入力電気信号の直流及び低周波成分を補償できるので、高速且つ広帯域なバースト信号を光変調することが可能な光変調装置の実現が可能になる。
なお、図1に示す実施例においては外付けの光分岐回路13とO/E変換器16を使用しているが、LN変調器内蔵のモニタ用O/E変換器を使用してもよい。この場合、光分岐回路13は不要になり、LN変調器12に内蔵されているモニタ用O/E変換器から出力される電気信号が直接バイアス制御回路17に入力されるようになる。
また、図1に示す実施例においては低周波成分抽出回路18及び直流アンプ19で低周波成分補償回路100を構成しているが、回路構成に関しては何らこれに限定されるものではなく、例えば、O/E変換器の出力と入力電気信号の誤差を増幅する誤差アンプを使用して低周波成分補償回路を構成してもよい。
この場合の動作を図4を用いて説明する。図4は誤差アンプを用いた本発明に係る光変調装置の他の実施例を示す構成ブロック図である。図4において11,12,13,14,15,16,17及び20は図1と同一符号を付してあり、21は誤差アンプである。
入力電気信号は誤差アンプ21の一方の入力端子に接続され、O/E変換器16の出力端子は誤差アンプ21の他方の入力端子に接続される。誤差アンプ21の出力端子は加算器20の他方の入力端子に接続される。その他の接続関係は図1に示す実施例と同一であるので、その説明は省略する。
基本的な動作は図1に示す実施例とほぼ同一であり、異なる点は直流及び低周波成分の補償を入力電気信号とO/E変換器16の出力の誤差を誤差アンプ21で増幅することにより得ていることである。
この結果、LN変調器用ドライバ14に入力される入力電気信号とO/E変換器16の出力の誤差を誤差アンプ21で増幅し、バイアス制御回路17からの出力と加算した信号でLN変調器12のバイアス制御を行うことにより、LN変調器用ドライバ14の出力に取り付けられたコンデンサ15により遮断された入力電気信号の直流及び低周波成分を補償できるので、高速且つ広帯域なバースト信号を光変調することが可能な光変調装置の実現が可能になる。
また、図1に示す実施例においては直流アンプ19の出力とバイアス制御回路17の出力を加算回路20で加算してLN変調器12に入力しているが、LN変調器にバイアス制御用の入力端子が2つあり、それらの電位差がLN変調器内の光波位相差に変換される場合には、そのバイアス制御用の入力端子の一方に直流アンプの出力を接続し、他方にバイアス制御回路の出力を接続する構成としてもよい。
また、図1に示す実施例においては入力電気信号の直流及び低周波成分をLN変調器12に対してバイアス制御信号として印加し、光波位相領域で加算を行ったが、必ずしもそうする必要は無く、電気信号領域で加算を行ってもよい。具体的には、図1に示す直流アンプ19の利得をLN変調器用ドライバ14の利得に合わせ、その直流アンプ19の出力をLN変調器用ドライバ14の出力と電気的に加算し、その加算結果をLN変調器12に対して通常の変調入力信号として印加する。
この場合の動作を図5を用いて説明する。図5は本発明に係る光変調装置の他の実施例を示す構成ブロック図である。図5において11,12,13,14,15,16,1718,19,20及び100は図1と同一符号を付してある。
光源11の出力端子はLN変調器12の入力端子に接続され、LN変調器12の出力端子は光分岐回路13の入力端子に接続される。光分岐回路13の一方の出力は出力光信号として出力され、光分岐回路13の他方の出力端子はO/E変換器16の入力端子に接続される。O/E変換器16の出力端子はバイアス制御回路17の入力端子に接続され、バイアス制御回路17の出力端子はLN変調器12のバイアス制御信号入力端子に接続される。
また、LN変調器用ドライバ14の出力端子はコンデンサ15の一端に接続され、コンデンサ15の他端は加算回路20の一方の入力端子に接続される。入力電気信号はLN変調器用ドライバ14の入力端子及び低周波成分抽出回路18の入力端子にそれぞれ接続される。低周波成分抽出回路18の出力端子は直流アンプ19の入力端子に接続され、直流アンプ19の出力端子は加算回路20の他方の入力端子に接続される。加算回路20の出力端子はLN変調器12の変調入力信号端子に接続される。
ここで、図5に示す実施例の動作を説明する。LN変調器12の出力光信号は光分岐回路13で分岐され、分岐された信号はO/E変換器16で光信号から電気信号に変換される。この電気信号に基づいてバイアス制御回路17はLN変調器12内部の2つの経路の位相差を調整して出力光信号の消灯又は点灯を可能とするようにLN変調器12のDCバイアス点を調整する。このバイアス点の調整動作は図7に示す従来例と同じである。
LN変調器用ドライバ14はコンデンサ15により直流及び低周波成分がカットされた変調入力信号を加算回路20の一方の入力端子に入力する。また、低周波成分抽出回路18で入力電気信号の直流及び低周波成分を抽出し、直流アンプ19で増幅された信号が加算回路20の他方の入力端子に入力される。
そして、加算回路20で加算された変調入力信号がLN変調器12の変調入力信号端子に入力されるので、入力電気信号の直流及び低周波成分が補償された状態でLN変調器12を駆動することが可能になる。
この結果、LN変調器用ドライバ14に入力される入力電気信号の直流及び低周波成分を低周波成分抽出回路18で抽出し、直流アンプ19で増幅し、LN変調器用ドライバ14からの出力と加算した信号でLN変調器12を駆動することにより、コンデンサ15により遮断された入力電気信号の直流及び低周波成分を補償できるので、高速且つ広帯域なバースト信号を光変調することが可能な光変調装置の実現が可能になる。
また、図1に示す実施例においては入力電気信号がローレベルの場合、出力光信号を消灯状態とし、入力電気信号がハイレベルの場合、出力光信号を点灯状態としているが、入力電気信号がローレベルの場合、出力光信号を点灯状態とし、入力電気信号がハイレベルの場合、出力光信号を消灯状態としてもよい。
また、図1に示す実施例及び図5に示す実施例においてはコンデンサ15をLN変調器用ドライバ14の出力端子に取り付けているが、LN変調器用ドライバ14の入力端子に接続、若しくは、LN変調器用ドライバ14に内蔵されていてもよい。
本発明に係る光変調装置の一実施例を示す構成ブロック図である。 LN変調器用ドライバからLN変調器までの経路の伝達特性を示す特性図である。 低周波成分抽出回路の伝達特性を示す特性図である。 誤差アンプを用いた本発明に係る光変調装置の他の実施例を示す構成ブロック図である。 本発明に係る光変調装置の他の実施例を示す構成ブロック図である。 従来の光変調装置の一例を示す構成ブロック図である。 従来の光変調装置の他の一例を示す構成ブロック図である。
符号の説明
1,4,11 光源
2 EA変調器
3 EA変調器用ドライバ
5,12 LN変調器
6,13 光分岐回路
7,14 LN変調器用ドライバ
8,15 コンデンサ
9,16 O/E変換器
10,17 バイアス制御回路
18 低周波成分抽出回路
19 直流アンプ
20 加算回路
21 誤差アンプ
100 低周波成分補償回路

Claims (6)

  1. 光通信システムに用いられる外部変調方式の光変調装置において、
    光源から入射された光を変調し、出力光信号として出力するLN変調器と、
    前記出力光信号を分岐する光分岐回路と、
    この光分岐回路の出力信号を電気信号に変換する光電変換器と、
    この光電変換器の出力信号に基づいて信号を生成するバイアス制御回路と、
    入力電気信号に応じて前記LN変調器を駆動するLN変調器用ドライバと、
    このLN変調器用ドライバの入力端子、若しくは、出力端子に接続され、前記入力電気信号の直流及び低周波成分を遮断するコンデンサと、
    前記入力電気信号の前記コンデンサにより失われる前記直流及び低周波成分を補償する低周波成分補償回路と、
    前記バイアス制御回路の出力と前記低周波成分補償回路の出力を加算し、前記LN変調器のバイアス点を調整するバイアス制御信号を生成する加算回路と
    を備えたことを特徴とする光変調装置。
  2. 光通信システムに用いられる外部変調方式の光変調装置において、
    光源から入射された光を変調し、出力光信号として出力すると共に内蔵された光電変換器により前記出力光信号を電気信号に変換するLN変調器と、
    前記電気信号に基づいて信号を生成するバイアス制御回路と、
    入力電気信号に応じて前記LN変調器を駆動するLN変調器用ドライバと、
    このLN変調器用ドライバの入力端子、若しくは、出力端子に接続され、前記入力電気信号の直流及び低周波成分を遮断するコンデンサと、
    前記入力電気信号の前記コンデンサにより失われる前記直流及び低周波成分を補償する低周波成分補償回路と、
    前記バイアス制御回路の出力と前記低周波成分補償回路の出力を加算し、前記LN変調器のバイアス点を調整するバイアス制御信号を生成する加算回路と
    を備えたことを特徴とする光変調装置。
  3. 前記LN変調器が、
    前記加算回路を内蔵していることを特徴とする
    請求項1若しくは請求項2記載の光変調装置。
  4. 光通信システムに用いられる外部変調方式の光変調装置において、
    光源から入射された光を変調し、出力光信号として出力するLN変調器と、
    前記出力光信号を分岐する光分岐回路と、
    この光分岐回路の出力信号を電気信号に変換する光電変換器と、
    この光電変換器の出力信号に基づいて前記LN変調器のバイアス点を調整するバイアス制御信号を生成するバイアス制御回路と、
    入力電気信号に応じて前記LN変調器を駆動するLN変調器用ドライバと、
    このLN変調器用ドライバの入力端子、若しくは、出力端子に接続され、前記入力電気信号の直流及び低周波成分を遮断するコンデンサと、
    前記入力電気信号の前記コンデンサにより失われる前記直流及び低周波成分を補償する低周波成分補償回路と、
    前記LN変調器用ドライバの出力と前記低周波成分補償回路の出力を加算し、前記LN変調器の変調入力信号を生成する加算回路と
    を備えたことを特徴とする光変調装置。
  5. 光通信システムに用いられる外部変調方式の光変調装置において、
    光源から入射された光を変調し、出力光信号として出力すると共に内蔵された光電変換器により前記出力光信号を電気信号に変換するLN変調器と、
    前記電気信号に基づいて前記LN変調器のバイアス点を調整するバイアス制御信号を生成するバイアス制御回路と、
    入力電気信号に応じて前記LN変調器を駆動するLN変調器用ドライバと、
    このLN変調器用ドライバの入力端子、若しくは、出力端子に接続され、前記入力電気信号の直流及び低周波成分を遮断するコンデンサと、
    前記入力電気信号の前記コンデンサにより失われる前記直流及び低周波成分を補償する低周波成分補償回路と、
    前記LN変調器用ドライバの出力と前記低周波成分補償回路の出力を加算し、前記LN変調器の変調入力信号を生成する加算回路と
    を備えたことを特徴とする光変調装置。
  6. 前記コンデンサが、
    前記LN変調器用ドライバに内蔵されていることを特徴とする
    請求項1乃至請求項5のいずれかに記載の光変調装置。
JP2006025201A 2006-02-02 2006-02-02 光変調装置 Expired - Fee Related JP4935093B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006025201A JP4935093B2 (ja) 2006-02-02 2006-02-02 光変調装置
EP07002106A EP1816506A1 (en) 2006-02-02 2007-01-31 Optical modulator for burst-mode transmission
US11/700,813 US7672033B2 (en) 2006-02-02 2007-02-01 Light modulating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006025201A JP4935093B2 (ja) 2006-02-02 2006-02-02 光変調装置

Publications (2)

Publication Number Publication Date
JP2007206380A true JP2007206380A (ja) 2007-08-16
JP4935093B2 JP4935093B2 (ja) 2012-05-23

Family

ID=38110380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025201A Expired - Fee Related JP4935093B2 (ja) 2006-02-02 2006-02-02 光変調装置

Country Status (3)

Country Link
US (1) US7672033B2 (ja)
EP (1) EP1816506A1 (ja)
JP (1) JP4935093B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078435A1 (ja) * 2007-12-17 2009-06-25 Fujikura Ltd. 外部変調器の制御装置及び制御方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972986A1 (en) * 2007-03-22 2008-09-24 Yokogawa Electric Corporation Light modulation apparatus and light modulator control method
JP4891417B2 (ja) * 2010-02-23 2012-03-07 住友大阪セメント株式会社 電界計測装置
US8543010B2 (en) * 2010-02-24 2013-09-24 Jds Uniphase Corporation Bias control in an optical modulator and transmitter
JP6031963B2 (ja) * 2012-11-21 2016-11-24 富士通株式会社 光送信装置、光送信方法、および光送信プログラム
JP5785589B2 (ja) * 2013-06-27 2015-09-30 日本電信電話株式会社 バースト光信号送信装置及びバースト光信号送信装置の制御方法
CN104699155B (zh) * 2015-02-14 2016-03-23 深圳帕格精密系统有限公司 一种电光型光调制器数字自动偏置电压控制方法及装置
WO2021181820A1 (ja) 2020-03-09 2021-09-16 株式会社キトー 電気チェーンブロック

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04294318A (ja) * 1991-03-25 1992-10-19 Mitsubishi Electric Corp 光変調器バイアス自動制御回路
JP2000162563A (ja) * 1998-11-25 2000-06-16 Fujitsu Ltd 光変調装置及び光変調器の制御方法
JP2004037647A (ja) * 2002-07-01 2004-02-05 Mitsubishi Electric Corp 光送信装置
JP2004294827A (ja) * 2003-03-27 2004-10-21 Anritsu Corp 光変調器のバイアス電圧制御方法および光変調装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605926B2 (ja) * 1978-11-22 1985-02-14 三菱電機株式会社 光変調装置
JP2642499B2 (ja) 1990-03-01 1997-08-20 富士通株式会社 光送信器、光変調器の制御回路および光変調方法
JP3499605B2 (ja) * 1994-09-07 2004-02-23 株式会社東芝 光外部強度変調器
JP3742477B2 (ja) * 1997-02-17 2006-02-01 富士通株式会社 光変調器
JP3565313B2 (ja) * 1998-05-25 2004-09-15 富士通株式会社 光送信機並びに該光送信機を有する端局装置及び光通信システム
KR100323585B1 (ko) * 1998-08-31 2002-10-25 한국전기통신공사 오프레벨 샘플링에 의한 전기광학광변조기의 바이어스 안정화방법
FR2792735B1 (fr) * 1999-04-26 2003-06-20 France Telecom Dispositif et procede de reglage du signal de commande d'un modulateur electro-optique
JP2003518641A (ja) * 1999-12-24 2003-06-10 コーニング オーティーアイ インコーポレイテッド アナログ変調の方法及びこの方法を用いる光エミッタ
JP3398929B2 (ja) 2000-03-17 2003-04-21 株式会社東芝 光変調器のバイアス制御回路
JP3765967B2 (ja) * 2000-06-30 2006-04-12 三菱電機株式会社 光送信装置およびこれに用いる光変調器のバイアス電圧制御方法
JP4922594B2 (ja) * 2005-05-23 2012-04-25 富士通株式会社 光送信装置、光受信装置、およびそれらを含む光通信システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04294318A (ja) * 1991-03-25 1992-10-19 Mitsubishi Electric Corp 光変調器バイアス自動制御回路
JP2000162563A (ja) * 1998-11-25 2000-06-16 Fujitsu Ltd 光変調装置及び光変調器の制御方法
JP2004037647A (ja) * 2002-07-01 2004-02-05 Mitsubishi Electric Corp 光送信装置
JP2004294827A (ja) * 2003-03-27 2004-10-21 Anritsu Corp 光変調器のバイアス電圧制御方法および光変調装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078435A1 (ja) * 2007-12-17 2009-06-25 Fujikura Ltd. 外部変調器の制御装置及び制御方法

Also Published As

Publication number Publication date
US7672033B2 (en) 2010-03-02
JP4935093B2 (ja) 2012-05-23
EP1816506A1 (en) 2007-08-08
US20070177252A1 (en) 2007-08-02

Similar Documents

Publication Publication Date Title
JP4935093B2 (ja) 光変調装置
JP5853386B2 (ja) 光変調装置および光変調制御方法
JP4646048B2 (ja) 単一側波帯信号光の生成方法および単一側波帯信号光の生成回路
US7734192B2 (en) Control apparatus and control method for optical modulator
US7450288B2 (en) Optical modulation device, optical transmitter, and optical transmission equipment
US6836622B2 (en) Optical transmitter, and method of controlling bias voltage to the optical transmitter
JP3723358B2 (ja) 光変調装置及び光変調器の制御方法
JP5506575B2 (ja) 光変調器、光送信装置およびバイアス調整方法
US7215894B2 (en) Optical transmitter device
US10498457B2 (en) Optical carrier-suppressed signal generator
JP3772738B2 (ja) 光変調装置
JP4527993B2 (ja) 光変調装置及び光変調方法
US6542280B2 (en) Return-to-zero optical modulator with configurable pulse width
US7746909B2 (en) Method and systems for optimizing laser and electro-absorption modulator performance for long-haul optical transmission
JP2013088702A (ja) 光変調器の駆動制御装置
US6535316B1 (en) Generation of high-speed digital optical signals
JP2001133824A (ja) 角度変調装置
JP2002328348A (ja) 光変調装置および交番位相化パルス発生装置
JP2004037647A (ja) 光送信装置
JPH10148801A (ja) 外部変調方式による光変調装置
JPH09246633A (ja) 光通信用光源装置
WO2015159528A1 (ja) 光送信装置及び電源電圧制御方法
JP2000122015A (ja) 光変調器
JPH0961768A (ja) 外部変調方式による光変調装置
JP2015191130A (ja) 光発生装置、及び光発生装置の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees