JP2007200466A - 垂直磁気記録媒体及びその製造方法 - Google Patents

垂直磁気記録媒体及びその製造方法 Download PDF

Info

Publication number
JP2007200466A
JP2007200466A JP2006018575A JP2006018575A JP2007200466A JP 2007200466 A JP2007200466 A JP 2007200466A JP 2006018575 A JP2006018575 A JP 2006018575A JP 2006018575 A JP2006018575 A JP 2006018575A JP 2007200466 A JP2007200466 A JP 2007200466A
Authority
JP
Japan
Prior art keywords
magnetic recording
substrate
recording layer
magnetic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006018575A
Other languages
English (en)
Inventor
Shioji Fujita
塩地 藤田
Satoru Matsunuma
悟 松沼
Toshinori Sugiyama
寿紀 杉山
Yoriyuki Ogano
順之 小賀野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2006018575A priority Critical patent/JP2007200466A/ja
Publication of JP2007200466A publication Critical patent/JP2007200466A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】 トラック間の磁気的な干渉を抑え、高トラック密度を達成できるディスクリートトラック型の垂直磁気記録媒体の量産性を向上させる。
【解決手段】 所定の凹凸パターンが表面に形成された基板と、基板の凹凸パターン上に形成された軟磁性裏打ち層と、軟磁性裏打ち層上に形成された磁気記録層とを備え、基板に形成された凹凸パターンの凹部の深さdと、軟磁性裏打ち層の膜厚d1と、磁気記録層の膜厚d2との間に、d2<d<d1の関係が成立する垂直磁気記録媒体を提供することにより、ディスクリートトラック型の垂直磁気記録媒体の量産性を向上させることができる。
【選択図】 図2

Description

本発明は磁気ディスク装置等に用いる垂直磁気記録媒体及びその製造方法に関し、より詳細には、トラックの高密度化が可能なディスクリートトラック構造の垂直磁気記録媒体及びその製造方法に関する。
近年、磁気ディスク装置(ハードディスク装置)の小型化、高速化及び大容量化が進むとともに、ハードディスクのトラックの高密度化も進展している。しかしながら、ハードディスクの狭トラック化が進展するに伴い、トラックの幅に対する情報の記録時に生じる書き滲み量の割合が増加するという問題が生じる。情報の記録時に書き滲み量の割合が増加すると、記録マークを再生した際に、書き滲み部分からの信号がノイズとして再生される、いわゆる、サイドストロークという現象が増大する。この課題を解決するために、ディスクリートトラック型の媒体が提案されている(例えば、特許文献1参照)。この媒体は、いわゆるパターンドメディアと呼ばれる媒体の一種であり、トラック間を物理的に分離した構造を有する媒体である。トラック間を物理的に分離することにより記録時の書き滲みを防止することができる。
ハードディスク装置では、線記録密度は既に1000kFCIに近く、この線記録密度を記録マークの長さに換算すると2.5nm程度となる。ジッタを考慮すると、この長さの1/10、すなわち、0.25nm程度の精度が記録マークに必要となる。一方、トラック密度は150kTPI程度、トラックピッチに直すと170nmとなる。位置決めを考慮すると、このピッチの1/10、すなわち、17nm程度の精度がトラックピッチに必要となる。従って、情報の高密度化を図るためには、加工上は、線記録密度を上げるよりトラック密度を上げる方が容易である。即ち、ディスクリートトラック媒体は、データビットセルまでもパターン化するパターンドメディアよりも、製造上有利である。
従来、微小なパターンを加工するためには、回転型電子線描画装置(EBR)が用いられる。しかしながら、精密工学会誌 vol.70,No.3,2004 「回転型EB描画技術」 p.320よると、EBRの位置精度は、標準偏差σで概ね2nmである。従って、EBRを用いてフォトリソグラフィ技術によりディスクリートトラック媒体を加工する場合、上述したようにEBRの位置精度は標準偏差σで概ね2nmであるので、余裕を持たせて加工精度を3σとすると、ばらつきが6nmとなり、トラックピッチをこの10倍として、60nm程度(400kTPI程度)であれば十分加工可能である。
また、日経エレクトロニクス 2004.2.2号によると、ハードディスク装置の記録容量の伸びは近年鈍化しており、現状のハードディスク媒体では潜在的な能力として、400Gb/inの高密度化が可能とされているが、今のところ、デモ実験で線記録密度876kBPI、トラック密度194kTPIの170GB/inが最大記録密度である。ディスクリートトラック媒体を用いた場合、トラック密度は2倍程度までは高密度化が可能である。すなわち、ディスクリートトラック媒体では、線記録密度を従来どおりの方法で高密度化したとすると、300〜400GB/inの記録密度が達成可能となる。それゆえ、ディスクリートトラック媒体は、トラック密度200kTPI以上(トラックピッチ127nm以下)で、高記録密度を達成する場合に有利である。
ところで、従来、基板にグルーブを設け、トラック間の干渉を抑え、高記録密度を目指す技術が開示されている(例えば、特許文献2参照)。特許文献2では、記録層厚さをグルーブの段差以下することでトラック間を分離し、トラック間の干渉を受け難くしている。また同様に、トラック間をグルーブまたはランドによって分離する記録媒体が開示されている(例えば、特許文献3参照)。なお、これらの特許文献2及び3で開示されている記録媒体は本質的に光磁気記録媒体であり、媒体は厚く、レーザーで磁気記録層をキュリー点近くまで加熱して情報を記録する媒体である。
特開2004−110896号広報 特開2003−151183号広報 特開2004−134064号広報
上述のように、特許文献1には、高トラック密度化が可能なディスクリートトラック媒体が提案されているが、その量産方法については具体的に開示されていない。そこで、ディスクリートトラック媒体の量産方法及び量産可能な構造のディスクリートトラック媒体が要望されている。
また、特許文献2及び3には、基板にグルーブまたはランドを設け、トラック間の干渉を抑え、高記録密度を図る技術が開示されているが、この技術は上述のように光磁気記録媒体に適用されている。すなわち、ハードディスク装置用の垂直磁気記録媒体に適用することは考慮されていない。
垂直磁気記録媒体は、特許文献2または3に記載されている光磁気記録媒体とは膜構造が異なり、基板と磁気記録層との間に軟磁性裏打ち層を有する。軟磁性裏打ち層は、情報記録時に磁気記録層に印加される磁場を集束させるための層である。基板と磁気記録層との間に軟磁性裏打ち層を設けると、情報記録時には、記録ヘッドから発生したヘッド磁界がヘッド、磁気記録層及び軟磁性裏打ち層との間で還流し、垂直磁気記録の効率が向上する。このような膜構造の垂直磁気記録媒体に、特許文献2及び3に開示されている技術をそのまま適用して、グルーブによって垂直磁気記録媒体のトラック間を分離すると、軟磁性裏打ち層もトラック間で磁気的に分離される恐れがある。この場合には、情報記録時に、ヘッド、記録層及び軟磁性裏打ち層の間で生成されるヘッド磁束の還流を妨げられ垂直磁気記録の効率が低下する恐れがある。
本発明は上記課題を解決するためになされたものであり、本発明の第1の目的は、ディスクリートトラック型の垂直磁気記録媒体の量産性を向上させることが可能な垂直磁気記録媒体及びその製造方法を提供することである。
また、本発明の第2の目的は、情報記録時に、ヘッド、記録層及び軟磁性裏打ち層の間で生成されるヘッド磁束の還流を妨げることがなく、安定して垂直磁気記録が可能なディスクリートトラック型の垂直磁気記録媒体及びその製造方法を提供することである。
本発明の第1の態様に従えば、垂直磁気記録媒体であって、所定の凹凸パターンが表面に形成された基板と、上記基板の凹凸パターン上に形成された軟磁性裏打ち層と、上記軟磁性裏打ち層上に形成された磁気記録層とを備え、上記凹凸パターンの凹部の深さdと、上記軟磁性裏打ち層の膜厚d1と、上記磁気記録層の膜厚d2との間に、d2<d<d1の関係が成立することを特徴とする垂直磁気記録媒体が提供される。
本発明の第1の態様に従う垂直磁気記録媒体では、上記垂直磁気記録媒体が初期化された状態で、上記基板の凸部上に位置する磁気記録層の領域の磁化方向が、上記基板の凹部上に位置する磁気記録層の領域の磁化方向と逆向きであることが好ましい。
本発明の第2の態様に従えば、垂直磁気記録媒体であって、所定の凹凸パターンが表面に形成された基板と、上記基板の凹凸パターン上に形成された磁気記録層とを備え、上記凹凸パターンの凹部の深さdと、上記磁気記録層の膜厚d2との間に、d2<dの関係が成立し、且つ、上記垂直磁気記録媒体が初期化された状態で、上記基板の凸部上に位置する磁気記録層の領域の磁化方向が上記基板の凹部上に位置する磁気記録層の領域の磁化方向と逆向きであることを特徴とする垂直磁気記録媒体が提供される。
本発明の第1及び第2の態様に従う垂直磁気記録媒体では、上記基板の凸部上に位置する磁気記録層の領域と、上記基板の凹部上に位置する磁気記録層の領域とが磁気的に分断されていることが好ましい。
本発明の垂直磁気記録媒体の一例を図2に示す。図2は、本発明の垂直磁気記録媒体の円周方向の概略断面図である。本発明の垂直磁気記録媒体は、図2示すように、表面に所定の凹凸パターン(図2中の凸部11a及び凹部11b)が形成された基板11上に、主に、軟磁性裏打ち層12及び磁気記録層14がこの順で積層された構造を有する。そして、本発明の垂直磁気記録媒体では、図2に示すように、基板11の凹凸パターンの凹部11bの深さdと、軟磁性裏打ち層12の膜厚d1と、磁気記録層14の膜厚d2との間に、d2<d<d1の関係が成立することを特徴とする。軟磁性裏打ち層12及び磁気記録層14は基板11上にスパッタ法や蒸着法等により形成される。なお、図2の例では、基板11と磁気記録層14との間には配向制御層13が形成されており、磁気記録層14上には保護層15が形成されているが、ここでは、説明を簡略化するため、配向制御層13及び保護層15の説明は省略する。
また、基板11の凹凸パターンとしては、例えば、図1(b)に示すように、ユーザーデータの記録領域3にはトラック4間に溝5(グルーブ)を形成することが好ましく、サーボフィールド2には同期パターンやアドレスパターンなどを所定の凹凸パターン(図1(b)中のパターン6〜9)で形成することが好ましい。
基板11に形成された凹部11bの深さdと、軟磁性裏打ち層12の膜厚d1と、磁気記録層14の膜厚d2との間に、d2<d<d1の関係が成立するように軟磁性裏打ち層12及び磁気記録層14をスパッタ法や蒸着法等で磁気記録層14を形成すると、図2に示すように、基板11の凸部11a上に位置する磁気記録層14の領域14a(以下、凸領域ともいう)と、基板11の凹部11b上に位置する磁気記録層14の領域14b(以下、凹領域ともいう)との間の領域14cは非常に薄い膜となり、この領域14cはほとんど磁気特性を示さない膜となる。また、基板11の凹部11bの形状(側壁の傾斜角等)や磁気記録層14の膜厚によっては、磁気記録層14の凸領域14aと凹領域14bとの間が物理的に分断される場合もある。すなわち、基板11の凹部11bの深さdと、軟磁性裏打ち層12の膜厚d1と、磁気記録層14の膜厚d2との間に、上述のような関係が成立するように垂直磁気記録媒体を作製すると、磁気記録層14の凸領域14aと磁気記録層14の凹領域14bとが磁気的に分断された状態となり、ディスクリートトラック型の垂直磁気記録媒体を作製することができる。
なお、上述のように、磁気記録層14の凸領域14aと磁気記録層14の凹領域14bとが磁気的に分断された状態となるように軟磁性裏打ち層12の膜厚d1及び磁気記録層14の膜厚d2を調整するだけでなく、基板11の凹部11bの形状(側壁の傾斜角や凹部の幅等)もまた適宜設定する必要がある。
従って、本発明の垂直磁気記録媒体では、基板上に予め所定の凹凸パターンを形成しておき、その上に磁気記録層及び軟磁性裏打ち層の膜厚が上記関係を満たすように形成するだけで、磁気的に分断されたディスクリートトラック型の垂直磁気記録媒体を作製することができる。それゆえ、磁気記録層をパターニングする際にフォトリソグラフィ技術やエッチング等を用いる必要がないので、製造がより簡易になり量産性を向上させることができる。
また、本発明の垂直磁気記録媒体では、軟磁性裏打ち層12の膜厚d1が基板11に形成された凹部11bの深さdより厚くなる(d<d1)ように、軟磁性裏打ち層12が形成されている。このような関係を成立させることにより、図2に示すように、基板11の凹部11b上に位置する軟磁性裏打ち層12の領域と、基板11の凸部11a上に位置する軟磁性裏打ち層12の領域とが十分な膜厚でつながるので、基板11の凹凸パターンにより軟磁性裏打ち層12がその膜面方向に磁気的に分離されることがなくなる。それゆえ、情報記録時には、図4の破線41に示すように、ヘッド40、磁気記録層14及び軟磁性裏打ち層12の間で、ヘッド磁束を還流させることができ、基板11の凸部11a上に位置する磁気記録層の凸領域への書き込み効率を向上させることができる。
ただし、上述のように、軟磁性裏打ち層は記録時に記録ヘッドから発生した磁束を還流させるため、面内方向(膜面方向)で十分な断面積(膜厚)で繋がっていなければならない。それゆえ、記録ヘッドから発生した磁束を確実に還流させるために、軟磁性裏打ち層の膜厚d1は、基板の凹凸深さdより厚く(d1>d)且つできるだけ厚い方が望ましい。具体的には、d1をdの約2倍以上とすることが好ましく、より好ましくは、d1をdの約5倍以上とすることが好ましい。また、より具体的には、本発明者らの検証実験では、d1を約d+80nm以上とすることが好ましいことが分かっている。しかしながら、軟磁性裏打ち層の膜厚d1が厚すぎると、基板の凹凸パターンが軟磁性裏打ち層表面では崩れてしまい、磁気記録層に基板の凹凸パターンが反映されなくなる。それゆえ、基板の凹凸パターンを磁気記録層に反映させるために、軟磁性裏打ち層の膜厚d1をできるだけ薄い方が望ましい。すなわち、軟磁性裏打ち層の膜厚d1は、基板の凹凸深さdより厚く(d1>d)するとともに、記録時のヘッドが生じる磁束を確実に還流させる程度には厚くし、且つ、磁気記録層に基板の凹凸パターンが反映される程度には薄くすることが望ましい。
また、本発明の垂直磁気記録媒体では、磁気記録層の凸領域の磁化方向と、基磁気記録層の凹領域の磁化方向とが反対方向になるように初期化することが好ましい。より具体的に説明すると、図2の示す垂直磁気記録媒体のように、磁気記録層14の凸領域14aの磁化17(白抜き矢印)の方向と、磁気記録層14の凹領域14bの磁化16の方向とが反対方向になるように初期化することが好ましい。
図2に示すように、初期化の際に、磁気記録層14の凸領域14a及び凹領域14bの磁化方向が互いに逆方向になるように磁化すると、磁気記録層14の凸領域14a及び凹領域14bからそれぞれ発生する漏洩磁界の方向も逆となる。それゆえ、ヘッドが磁気記録層14の凸領域14aから凹領域14b(あるいは、その逆)に移動する際に検出する信号の変化が大きくなる。すなわち、磁気記録層14の凸領域14a及び凹領域14bの境界における検出信号のS/Nが大きくなる。それゆえ、図2の垂直磁気記録媒体のように磁気記録層14の凸領域14a及び凹領域14bの磁化方向が互いに逆方向になるように初期化すると、例えば、サーボパターン等の信号を高S/Nで検出することが可能になる。
また、本発明の垂直磁気記録媒体では、トラックピッチが127nm以下であり、基板の凸部上に位置する保護膜表面から軟磁性裏打ち層上面までの距離が50nm以下であることが好ましい。上述したように、今のところ、ハードディスクではデモ実験で線記録密度876kBPI、トラック密度194kTPIの170GB/inが最大記録密度である。ディスクリートトラック型の垂直磁気記録媒体を用いた場合、トラック密度は2倍程度までは高密度化が可能であるので、線記録密度を従来どおりの方法で高密度化したとすると、300〜400GB/inの記録密度が達成可能となる。それゆえ、本発明の垂直磁気記録媒体では、トラック密度200kTPI以上(トラックピッチ127nm以下)で、高記録密度を達成する場合に有利である。また、本発明の垂直磁気記録媒体では、基板の凸部上に位置する領域、すなわち、情報を記録する領域において、保護膜表面から軟磁性裏打ち層までの厚さを約50nm以下にすることにより、1000kFCI以上の線記録密度を達成することができる。
本発明の第3の態様に従えば、垂直磁気記録媒体の製造方法であって、所定の凹凸パターンが表面に形成された基板を用意することと、上記基板の凹凸パターン上に、軟磁性裏打ち層を形成することと、上記軟磁性裏打ち層上に、磁気記録層を形成することとを含み、上記凹凸パターンの凹部の深さdと、上記軟磁性裏打ち層の膜厚d1と、上記磁気記録層の膜厚d2との間に、d2<d<d1の関係が成立するように上記軟磁性裏打ち層及び上記磁気記録層を形成することを特徴とする垂直磁気記録媒体の製造方法が提供される。
本発明の第4の態様に従えば、垂直磁気記録媒体の製造方法であって、所定の凹凸パターンが表面に形成された基板を用意することと、上記基板の凹凸パターン上に、磁気記録層を形成することと、上記基板の凸部上に位置する磁気記録層の領域の磁化方向が上記基板の凹部上に位置する磁気記録層の領域の磁化方向と逆向きになるように初期化することとを含み、上記凹凸パターンの凹部の深さdと、上記磁気記録層の膜厚d2との間に、d2<dの関係が成立するように上記磁気記録層を形成することを特徴とする垂直磁気記録媒体の製造方法が提供される。
また、本発明の垂直磁気記録媒体の製造方法では、磁気記録層を形成した後、続けて同じ成膜装置の中でSiOを連続成膜し、次いで、スパッタエッチを行い平坦な保護膜を形成してもよい。または、磁気記録層まで成膜した時点で媒体を成膜装置から取り出し、回転塗布・ベークすることでSiO膜を磁気記録層の上に形成し、その後、所定の膜厚になるまでSiO膜を研磨して保護膜を形成しても良い。
本発明の垂直磁気記録媒体及びその製造方法よれば、基板上に予め所定の凹凸パターンを形成しておき、基板の凹部深さdと、基板上に形成される軟磁性裏打ち層及び磁気記録層のそれぞれの膜厚d1及びd2との間にd2<d<d1の関係を満たすように、軟磁性裏打ち層及び磁気記録層を基板上に形成するだけで、磁気記録層に磁気的に分断されたパターンを形成することができる。それゆえ、磁気記録層をパターニングする際にフォトリソグラフィ技術やエッチング等を用いる必要がないので、ディスクリートトラック型の垂直磁気記録媒体の製造がより簡易になり量産性を向上させることができる。
また、本発明の垂直磁気記録媒体及びその製造方法よれば、軟磁性裏打ち層の膜厚d1を基板の凹部深さdより厚くするので、基板の凹部上に位置する軟磁性裏打ち層の領域と、基板の凸部上に位置する軟磁性裏打ち層の領域とが膜面方向に十分な膜厚(断面積)でつながるので、軟磁性裏打ち層が、基板の凹凸パターンにより膜面方向に磁気的に分離されることがなくなる。それゆえ、情報記録時に、ヘッド、磁気記録層及び軟磁性裏打ち層の間にヘッド磁束を還流させることができ、書き込み効率を向上させることができる。
さらに、本発明の垂直磁気記録媒体及びその製造方法によれば、初期化の際に、磁気記録層の凸領域を、磁気記録層の凹領域の磁化方向とは反対方向になるように磁化するので、磁気記録層の凸領域と凹領域との境界部で得られる検出信号のS/Nが大きくなる。それゆえ、本発明の垂直磁気記録媒体及びその製造方法によれば、例えば、サーボパターン等の信号を高S/Nで検出することが可能になる。
以下に、本発明の垂直磁気記録媒体及びその製造方法の実施例を図面を参照ながら具体的に説明するが、本発明はこれに限定されるものではない。
[磁気ディスク]
実施例で作製した垂直磁気記録型の磁気ディスクの概略構成図を図1及び2に示した。図1(a)はこの例で作製した磁気ディスクの斜視図であり、図1(b)はこの例の磁気ディスクのサーボフィールド近傍の概略平面図であり、図1(c)は図1(b)中のA−A断面図である。また、図2は図1(c)中の破線領域Bの拡大図である。
この例で作製した磁気ディスクは、図1(c)及び図2に示すように、所定の凹凸パターンが形成された基板11上に、軟磁性裏打ち層12、配向制御層13、磁気記録層14及び保護層15が順次積層された構造を有する。この例では、基板11としてガラス基板を用いた。なお、図1(c)では、説明を簡略化するために、配向制御層13は省略した。
基板11上には、図1(a)に示すように、径方向の外周側に向かって広がる扇状のサーボフィールド2が複数設けられ、サーボフィールド2間にはユーザー情報等が記録される記録領域3とが設けられている。複数のサーボフィールド2は、図1(a)に示すように、周方向に等間隔で配置されている。また、基板11上のサーボフィールド2及び記録領域3には、図1(b)及び(c)に示すように、所定の凹凸パターンが形成されている。具体的には、ユーザー情報等が記録される記録領域3には、図1(b)に示すように、トラック4を渦巻状に形成し、トラック4間にはグルーブ5を形成した。なお、トラック4を同心円状に形成しても良いが、露光工程の難易度が増す。また、サーボフィールド2には、図1(b)に示すように、同期パターン6、アドレスパターン7、サーボパターン8及びクロックパターン9をそれぞれ所定のパターンで形成した。なお、図1には8つのサーボフィールド2を周方向に等間隔で配置した例を示しているが、実際には1024つのサーボフィールド2を設けた。これは、偏心のある磁気ディスクに対してデータ面サンプルサーボでヘッドをトラックに追随させるためには多数のサーボフィールドが必要であるからである。
[磁気ディスクの製造方法]
次に、この例の磁気ディスクの製造方法を説明する。まず、基板11上に、図1(b)に示すような所定の凹凸パターンをパターニングする方法について説明する。なお、この例では、スタンパを用いて基板11のパターニングを行った。
まず、スタンパ作製用のシリコン基板を用意し、そのシリコン基板にレジストを塗布してベークした。次いで、レジストが塗布されたシリコン基板を回転型電子線露光装置(EBR)に装着して露光し、レジスト膜に潜像を形成した。次いで、露光されたレジスト膜を現像してシリコン基板上に所定のレジストパターンを形成した。次いで、レジストパターンが形成されたシリコン基板を炭化フッ素ガス中でRIEを行い、レジストパターン間に露出したシリコン基板表面をエッチングした。これによりレジストパターンをシリコン基板に転写した。次いで、残存したレジストを除去した後、所定の凹凸パターンが形成されたシリコン基板の表面に、無電解鍍金でニッケル導電膜を形成し、続けてニッケル電鋳することによりスタンパを作製した。上述の無電解鍍金及び鍍金の方法と同様な方法で、最初のスタンパのレプリカを複数作製することができる。
この例では、上述の方法で、凹部の深さが28nm、凹部の深さのばらつきが1nm以下であるスタンパを作製した。なお、この例では、スタンパ上のトラックピッチを140nmとし、ランドとグルーブの幅の比を10:4とした。また、凹凸パターンの加工エリアはスタンパ上の半径18mm〜30mmの領域とした。
次に、上述の方法で作製したスタンパを用いて、ガラス基板をパターニングする方法を説明する。スタンパを用いて、基板をパターニングする方法としては、次の3通りの方法(1)〜(3)が考えられる。いずれの方法を用いても、1枚のスタンパで10万回程度のパターン転写が可能である。
(1)まず、ハードディスク用のガラス基板を用意し、その上にレジストを塗布してベークする。次いで、レジスト膜上からスタンパを型押しして、スタンパの凹凸パターンをレジスト膜に転写する。次いで、ガラス基板を炭化フッ化ガス中でRIEを行い、レジスト膜に形成された凹凸パターンをガラス基板に転写する。最後に、レジスト膜を剥離して洗浄し、所定の凹凸パターンが形成されたガラス基板を得る。
(2)まず、ハードディスク用のガラス基板を用意し、その表面を研磨する。次いで、ガラス基板の研磨した表面に樹脂を押し出し、樹脂上からスタンパで型押してスタンパの凹凸パターンを転写する。次いで、樹脂を硬化させることにより、所定の凹凸パターンが形成されたガラス基板を得る。
(3)まず、ハードディスク用のガラス基板を用意し、その表面を研磨する。次いで、ガラス基板の研磨した表面にUV硬化樹脂を回転塗布する。次いで、ガラス基板上に塗布されたUV硬化樹脂をスタンパで型押ししながら、UV照射を行い、UV硬化樹脂を硬化させることにより、所定の凹凸パターンが形成されたガラス基板を得る。
方法(1)を用いた場合には、ガラス基板自身をパターニングするのでガラス基板の耐熱性を保ちつつ形成された凹凸パターンの精度も高い。ただし、(2)及び(3)の方法に比べてコスト高になる。また、方法(1)で所定の凹凸パターンを基板両面に形成する場合には、裏面も上述の方法と同様の工程でパターニングするか、あるいは、パターニングした基板を張り合わせる必要がある。
方法(2)は、量産向きの方法であり、両面同時成型が可能であり、さらにコストも低い。ただし、ガラス基板上に形成された樹脂が硬化する過程で変形するので、この変形を見込んでスタンパを作製する必要がある。
方法(3)は、低コストで且つ変形も少なく、精度の高いパターニングが可能である。しかしながら、方法(3)では、パターニングの際にUV硬化樹脂を硬化させるために基板越しにUV照射するので、基板としてはUV透過性のガラス基板を選ぶ必要がある。また、方法(3)では、方法(2)のように、同時に基板の両面をパターニングすることができない。それゆえ、方法(3)で基板両面を同時にパターニングするためには、装置に何らかの工夫が必要である。なお、方法(3)で片面をパターニングした基板を張り合わせて両面をパターニングしても良いが、その場合には方法(2)に比べてコストが高くなる。
本発明では、上記方法(1)〜(3)のいずれの方法を用いて基板表面をパターニングしても良いが、上述のように、それぞれ一長一短があるので、設計条件や用途等に応じて適宜パターニング方法を選択する必要がある。この例では、上述の方法(1)で基板表面に所定の凹凸パターンを形成した。具体的には、次のようにして基板表面に所定の凹凸パターンを形成した。
まず、ガラス基板上にレジストを塗布して、プリベークした。この際、レジスト膜の膜厚が55nmとなるように形成した。次いで、レジストが塗布された基板を加熱してスタンパで型押し、スタンパの凹凸パターンをレジスト膜に転写した。次いで、ガラス基板を炭化フッ化ガス中でRIEを行った。この際、ガラス基板とレジストのエッチングレートは1.6程度であるので、そのエッチングレートを考慮して、基板に形成される凹部の深さdが22nmになるようにエッチング時間を制御した。このようにして作製されたガラス基板の表面を原子間力顕微鏡(AFM)で測定したところ、凹部の深さdは22〜25nmであった。
上述のような方法で図1(b)に示すような所定の凹凸パターンが形成されたガラス基板11を作製した後、ガラス基板11を洗浄し、連続成膜装置に投入した。そして、ガラス基板11上に、スパッタ法で次のようにして各層12〜15を形成した。
まず、基板11上に、軟磁性裏打ち層12としてCo88Ta10Zr膜を120nmの膜厚(d1)で形成した。次いで、軟磁性裏打ち層12上に、配向制御層13としてRu膜を15nmの膜厚で形成した。次いで、配向制御層13上に、磁気記録層14としてCo70Pt15Cr−(SiO[at%]を16nmの膜厚(d2)で形成した。そして、磁気記録層14上に、保護膜15としてSiO膜を形成した。なお、保護層15の形成では、一旦磁気記録層14表面にその段差が埋まる厚さでSiO膜を形成した後、保護膜15表面を水平化するために、保護層15表面をスパッタエッチングした。この例では、基板11の凸部11a上に位置する保護層15の領域の膜厚が3nmとなるようにスパッタエッチングした。上述のようにして、この例のディスクリートトラック型の磁気ディスク1を作製した。
上述のように、基板11の凹部深さdと、軟磁性裏打ち層12の膜厚d1と、磁気記録層14の膜厚d2との間にd2<d<d1の関係を満たすように、磁気ディスクを作製すると、図2に示すように、磁気記録層14の凸領域14aと、磁気記録層14の凹領域14bとの間の領域14cは非常に薄い膜となり、この領域14cはほとんど磁気特性を示さない膜となる。それゆえ、磁気記録層14の凸領域14aと、磁気記録層14の凹領域14bとが磁気的に分断されたディスクリートトラック型の磁気ディスクが得られる。すなわち、この例の製造方法では、基板11の凹部深さdと、軟磁性裏打ち層12の膜厚d1と、磁気記録層14の膜厚d2との間にd2<d<d1の関係が満たされるように、軟磁性裏打ち層12及び磁気記録層14を基板11上に形成するだけで、磁気記録層に磁気的に分断されたパターンを形成することができる。それゆえ、この例の製造方法では、磁気記録層をフォトリソグラフィ技術やエッチング等を用いて直接パターニングする必要がないので、ディスクリートトラック型の磁気ディスクの製造がより簡易になり、量産性を向上させることができる。
また、上述のように、この例の製造方法では、軟磁性裏打ち層12の膜厚d1を基板11の凹部11bの深さdより厚くしているので、基板11の凹部11b上に位置する軟磁性裏打ち層の領域と、基板11の凸部11a上に位置する軟磁性裏打ち層12の領域とが十分な膜厚でつながるので、軟磁性裏打ち層12が、基板11の凹凸パターンにより膜面方向に磁気的に分離されることがなくなる。それゆえ、情報記録時に、ヘッド、磁気記録層及び軟磁性裏打ち層の間にヘッド磁束を還流させることができ、書き込み効率を向上させることができる。
なお、この例のディスクリートトラック型の磁気ディスクで用いた磁気記録層を、凹凸パターンが形成されていない基板上に形成して、その磁気特性を測定したところ、膜面に対して垂直方向の保磁力Hc=5.2kOe、逆磁区核形成磁界Hn=−0.8kOe、角形比SQ=0.95及び飽和磁化Ms=700emu/cmであった。また、この例の磁気ディスクで用いた磁気記録層を、凹凸パターンが形成されている基板上に形成した際の保護層表面粗さはRa=0.9nmであった。
また、この例で作製したディスクリートトラック型の磁気ディスクの保護層上に、潤滑膜をデイップし、テープクリーニング及びバニッシュ工程を行った。その後、浮上量12nmのピエゾヘッドでグライドチェックを行ったところ、問題無くヘッドが浮上することを確認した。
[磁気ディスクの初期化]
次に、この例で作製したディスクリートトラック型の磁気ディスクの初期化について、図3及び4を用いて説明する。図4は、この例で作製した磁気ディスクのサーボフィールドの周方向の一部の断面を拡大した図である。なお、図4では、説明を簡略化するため配向制御層は省略した。
まず、この例で作製した磁気ディスク1を、図3に示すように、初期化装置に装着し、磁気ディスクの膜面に対して垂直方向に電磁石30で強い磁界31(図3の例では下向きの磁界)を加えながら、磁気ディスク1を回転させる。そして、電磁石30を磁気ディスクの半径方向(図3中の矢印A1方向)に移動させることにより、磁気ディスクの磁気記録層全面を一方向(図3の例では下向き)に磁化した。
次に、磁気記録層全面が一方向に磁化された磁気ディスク1の表面上に、図4に示すように、単磁極ヘッド40を浮上させた。そして、単磁極ヘッド40を図4中の矢印A2方向(磁気ディスクの周方向)に移動させながら、磁気記録層14の凸領域の磁化方向が反転(図4では上向き)するように、単磁極ヘッド40で逆方向磁界42を磁気記録層14に印加した。なお、図4に示すように、単磁極ヘッド40を磁気ディスク1上に浮上させて反転磁界42を印加しても、磁気記録層14の凹領域は、単磁極ヘッド40からの距離が十分遠いので反転することはない。このようにして、この例の磁気ディスク1では、磁気記録層14の凸領域の磁化方向と、磁気記録層14の凹領域の磁化方向とが互いに逆方向になるように初期化した。なお、この例では、図4に示すようにサーボフィールド上の磁気記録層の領域だけでなく、ユーザー情報等が記録される記録領域上のランドトラックとグルーブトラックとの間でも磁化方向が反対になるように、ランドトラックの磁化方向を反転させて初期化した。このように初期化した理由は次の通りである。
図3に示す方法で、磁気記録層全面を一方向に磁化した場合でも、基板上に凹凸パターンが形成されているので、磁気記録層14の凸領域及び凹領域とヘッドとの距離が異なる。それゆえ、磁気記録層14の凸領域からの漏洩磁界の強度と、磁気記録層14の凹領域からの漏洩磁界の強度は異なり、サーボフィールドなどに形成されたパターン化されたデータを、磁気記録層14の凸領域及び凹領域からそれぞれ発生する漏洩磁界の強度差から読み出すことができる。しかしながら、基板11の凹部の深さdが浅いと、磁気記録層14の凸領域及びヘッド間の距離と凹領域及びヘッド間の距離との差が小さくなり、磁気記録層14の凸領域及び凹領域からそれぞれ発生する漏洩磁界の強度差も小さくなる。そのような場合には、磁気記録層14の凸領域と凹領域の境界部で検出される信号のS/Nが低下する。
それに対して、この例の磁気ディスクのように、磁気記録層14の凸領域と凹領域の磁化方向が互いに逆方向になるように初期化すると、磁気記録層14の凸領域及び凹領域からそれぞれ発生する漏洩磁界の向きが反対になり、磁気記録層14の凸領域及び凹領域の境界で信号の変化が大きくなり検出し易くなる。それゆえ、この例の磁気ディスク1では基板11の凹部の深さが浅くても高S/Nでサーボフィールド等に形成されたパターン化されたデータを再生することができる。また、この例の磁気ディスク1では、ユーザー情報等が記録される記録領域のランドトラックとグルーブトラックと間においても、磁化方向が互いに反対になるように初期化しており、記録領域において、このように初期化すると、ヘッドがオフトラックした場合のS/Nの低下が明確になり、BER(ビットエラーレート)のオフトラックマージンが広がる。
[動作テスト]
次に、上述の方法で初期化されたこの例の磁気ディスクを、φ2.5”用のハードディスク装置に組み込み、動作テストを行った。その結果、通常のドライブと同様に動作することが確認された。なお、この動作テストで、磁気ディスクをハードディクに組み込む際、磁気ディスクの偏心をできるだけ小さくなるよう調整し、偏心量は1μm以下とした。また、この例では、磁気ヘッドとして、幅100nmのライトヘッドと、幅90nmのリードヘッド(TMR)とを有する複合ヘッドを用いた。そして、BER(ビットエラーレート)のオフトラックマージンを測定すると96nmであった。
[比較例1]
比較例1では、軟磁性裏打ち層の膜厚が20nm及び25nmである2種類の磁気ディスクを作製した。軟磁性裏打ち層の膜厚を変えたこと以外は、実施例と同様にして磁気ディスクを作製した。すなわち、この例では、基板の凹部の深さd(22〜25nm)と、軟磁性裏打ち層の膜厚d1との関係がd≧d1となる磁気ディスクを作製した。この例で作製した2種類の磁気ディスクに対しても、実施例と同様に初期化して動作テストを行ったところ、磁束が還流せず、情報を記録することができず、全く再生信号が得られなかった。
[比較例2]
比較例2では、磁気記録層の膜厚を30nmとした磁気ディスクを作製した。磁気記録層の膜厚を変えたこと以外は、実施例と同様にして磁気ディスクを作製した。すなわち、この例では、基板の凹部の深さd(22〜25nm)と、磁気記録層の膜厚d2との関係がd2>dとなる磁気ディスクを作製した。この例で作製した磁気ディスクに対しても、実施例と同様に初期化して動作テストを行ったところ、オフトラック方向のBERのマージンが28nmとなり、実施例より狭くなった。
本発明の垂直磁気記録媒体及びその製造方法によれば、上述のようにより簡易な方法で高精度のディスクリートトラック型の垂直磁気記録媒体を提供することができる。それゆえ、本発明の垂直磁気記録媒体及びその製造方法は、高記録密度可能な磁気記録媒体を低コストで量産するための垂直磁気記録媒体及びその製造方法として好適である。
図1は、実施例で作製した磁気ディスクの概略構成図であり、図1(a)は斜視図であり、図1(b)はサーボフィールドの拡大図であり、図1(c)は図1(b)中のA−A断面図である。 図2は、図1(c)中の破線で囲まれた領域Bの拡大図である。 図3は、実施例で作製した磁気ディスクの初期化を説明するための図である。 図4は、実施例で作製した磁気ディスクの初期化を説明するための図である。
符号の説明
1 磁気ディスク
2 サーボフィールド
3 ユーザー情報記録領域
4 ランドトラック
5 グルーブトラック
6 同期パターン
7 アドレスパターン
8 サーボパターン
9 クロックパターン
11 基板
12 軟磁性裏打ち層
13 配向制御層
14 磁気記録層
15 保護層

Claims (6)

  1. 垂直磁気記録媒体であって、
    所定の凹凸パターンが表面に形成された基板と、
    上記基板の凹凸パターン上に形成された軟磁性裏打ち層と、
    上記軟磁性裏打ち層上に形成された磁気記録層とを備え、
    上記凹凸パターンの凹部の深さdと、上記軟磁性裏打ち層の膜厚d1と、上記磁気記録層の膜厚d2との間に、d2<d<d1の関係が成立することを特徴とする垂直磁気記録媒体。
  2. 上記垂直磁気記録媒体が初期化された状態で、上記基板の凸部上に位置する磁気記録層の領域の磁化方向が、上記基板の凹部上に位置する磁気記録層の領域の磁化方向と逆向きであることを特徴とする請求項1に記載の垂直磁気記録媒体。
  3. 垂直磁気記録媒体であって、
    所定の凹凸パターンが表面に形成された基板と、
    上記基板の凹凸パターン上に形成された磁気記録層とを備え、
    上記凹凸パターンの凹部の深さdと、上記磁気記録層の膜厚d2との間に、d2<dの関係が成立し、且つ、上記垂直磁気記録媒体が初期化された状態で、上記基板の凸部上に位置する磁気記録層の領域の磁化方向が上記基板の凹部上に位置する磁気記録層の領域の磁化方向と逆向きであることを特徴とする垂直磁気記録媒体。
  4. 上記基板の凸部上に位置する磁気記録層の領域と、上記基板の凹部上に位置する磁気記録層の領域とが磁気的に分断されていることを特徴とする請求項1〜3のいずれか一項に記載の垂直磁気記録媒体。
  5. 垂直磁気記録媒体の製造方法であって、
    所定の凹凸パターンが表面に形成された基板を用意することと、
    上記基板の凹凸パターン上に、軟磁性裏打ち層を形成することと、
    上記軟磁性裏打ち層上に、磁気記録層を形成することとを含み、
    上記凹凸パターンの凹部の深さdと、上記軟磁性裏打ち層の膜厚d1と、上記磁気記録層の膜厚d2との間に、d2<d<d1の関係が成立するように上記軟磁性裏打ち層及び上記磁気記録層を形成することを特徴とする垂直磁気記録媒体の製造方法。
  6. 垂直磁気記録媒体の製造方法であって、
    所定の凹凸パターンが表面に形成された基板を用意することと、
    上記基板の凹凸パターン上に、磁気記録層を形成することと、
    上記基板の凸部上に位置する磁気記録層の領域の磁化方向が上記基板の凹部上に位置する磁気記録層の領域の磁化方向と逆向きになるように初期化することとを含み、
    上記凹凸パターンの凹部の深さdと、上記磁気記録層の膜厚d2との間に、d2<dの関係が成立するように上記磁気記録層を形成することを特徴とする垂直磁気記録媒体の製造方法。

JP2006018575A 2006-01-27 2006-01-27 垂直磁気記録媒体及びその製造方法 Withdrawn JP2007200466A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006018575A JP2007200466A (ja) 2006-01-27 2006-01-27 垂直磁気記録媒体及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006018575A JP2007200466A (ja) 2006-01-27 2006-01-27 垂直磁気記録媒体及びその製造方法

Publications (1)

Publication Number Publication Date
JP2007200466A true JP2007200466A (ja) 2007-08-09

Family

ID=38454909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006018575A Withdrawn JP2007200466A (ja) 2006-01-27 2006-01-27 垂直磁気記録媒体及びその製造方法

Country Status (1)

Country Link
JP (1) JP2007200466A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222103A (ja) * 2010-04-14 2011-11-04 Toshiba Corp 磁気記録媒体及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222103A (ja) * 2010-04-14 2011-11-04 Toshiba Corp 磁気記録媒体及びその製造方法
US9053733B2 (en) 2010-04-14 2015-06-09 Kabushiki Kaisha Toshiba Magnetic recording medium with magnetic portions of different orientations and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP4625322B2 (ja) Dtrパターン化cssゾーンを有する磁気記録ディスク
US6347016B1 (en) Master information carrier, process for producing the carrier, and method and apparatus for recording master information signal on magnetic recording medium by using the carrier
JP4724060B2 (ja) 磁気ディスク装置
JP2004178794A (ja) 垂直磁気離散トラック記録ディスク
US7986493B2 (en) Discrete track magnetic media with domain wall pinning sites
JP4111276B2 (ja) 磁気記録媒体及び磁気記録再生装置
JP2004178793A (ja) 磁気離散トラック記録ディスク
JP4381444B2 (ja) 磁気記録媒体、磁気記録媒体の製造方法、および磁気記録装置
JP4218896B2 (ja) 磁気記録媒体、記録再生装置およびスタンパー
JP4850671B2 (ja) モールド及びその製造方法、並びに磁気記録媒体
JP2006127681A (ja) 磁気記録媒体及びその製造方法、磁気記録再生装置
JP2006099932A (ja) 磁気記録媒体、磁気記録再生装置及び磁気記録媒体製造用スタンパ
US7715137B2 (en) Servo patterns for patterned media
JP2007012117A (ja) 磁気記録媒体、磁気記録媒体用基板、および磁気記録装置
JP2006216171A (ja) 磁気記録媒体、記録再生装置およびスタンパー
JP2008251141A (ja) モールド構造体及びその製造方法
EP1081687B1 (en) Magnetic recording medium and its manufacturing method
JP4425286B2 (ja) 磁気記録媒体及びその記録再生装置
JP2007200466A (ja) 垂直磁気記録媒体及びその製造方法
JP2010146670A (ja) 磁気記録媒体及びその製造方法並びに記憶装置
JP2007273042A (ja) 磁気記録媒体及び磁気記録再生装置
JP4082403B2 (ja) マスター情報担体とその製造方法及び磁気記録媒体の製造方法
JP2008299964A (ja) 磁気ディスク及びその製造方法
JP2010129142A (ja) 記憶媒体および記憶装置
JP2008041183A (ja) 磁気転写用マスター体及びサーボパターンの転写方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407