JP2007197762A - 耐食性および疲労亀裂進展抵抗性に優れた船舶用鋼材 - Google Patents

耐食性および疲労亀裂進展抵抗性に優れた船舶用鋼材 Download PDF

Info

Publication number
JP2007197762A
JP2007197762A JP2006016844A JP2006016844A JP2007197762A JP 2007197762 A JP2007197762 A JP 2007197762A JP 2006016844 A JP2006016844 A JP 2006016844A JP 2006016844 A JP2006016844 A JP 2006016844A JP 2007197762 A JP2007197762 A JP 2007197762A
Authority
JP
Japan
Prior art keywords
less
corrosion
phase
corrosion resistance
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006016844A
Other languages
English (en)
Other versions
JP4763468B2 (ja
Inventor
Seiichi Ogaki
誠一 大垣
Shinji Sakashita
真司 阪下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006016844A priority Critical patent/JP4763468B2/ja
Publication of JP2007197762A publication Critical patent/JP2007197762A/ja
Application granted granted Critical
Publication of JP4763468B2 publication Critical patent/JP4763468B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

【課題】繰り返し応力下における疲労亀裂進展速度を抑制して疲労亀裂進展抵抗性を高めると共に、塗装や電気防食を施さなくても実用化できる耐食性に優れた船舶用鋼材、特にすきま腐食に対する耐久性の向上を図ると共に、海水に起因する塩分付着と湿潤環境による腐食に対しても優れた耐久性を発揮する船舶用鋼材を提供する。
【解決手段】本発明の船舶用耐鋼材は、所定の化学成分組成を満たすと共に、軟質相と硬質相とからなる複合組織であり、且つ硬質相のビッカース硬さHvと軟質相のビッカース硬さHvの比(Hv/Hv)が1.5〜5.0であり、軟質相の粒径が円相当直径で20μm以下である。
【選択図】図4

Description

本発明は、原油タンカー、貨物船、貨客船、客船、軍艦等の船舶において、主要な構造材として用いられる船舶用耐食、耐疲労鋼に関するものであり、特に海水や高温多湿に曝される環境下における耐食性に優れると共に、繰り返し応力下における疲労亀裂進展特性にも優れた船舶用鋼材に関するものである。
上記各種船舶において主要な構造材(例えば、外板、バラストタンク、原油タンク等)として用いられている鋼材は、海水による塩分や高温多湿に曝されることから腐食損傷を受けることが多い。こうした腐食は、浸水や沈没などの海難事故を招く恐れがあることから、鋼材には何らかの防食手段を施す必要がある。これまで行われている防食手段としては、(a)塗装や(b)電気防食等が従来からよく知られている。
このうち重塗装に代表される塗装では、塗膜欠陥が存在する可能性が高く、製造工程における衝突等によって塗膜に傷が付く場合もあるため、素地鋼材が露出してしまうことが多い。このような鋼材露出部においては、局部的に且つ集中的に鋼材が腐食してしまい、内容されている石油系液体燃料の早期漏洩に繋がることになる。
一方、電気防食においては、海水中に完全に浸漬された部位に対しては、非常に有効であるが、大気中で海水飛沫を受ける部位などでは防食に必要な電気回路が形成されず、防食効果が十分に発揮されないことがある。また、防食用の流電陽極が異常消耗や脱落して消失した場合には、直ちに激しい腐食が進行することがある。
上記技術の他、鋼材自体の耐食性を向上させるものとして例えば特許文献1のような技術も提案されている。この技術では、鋼材の化学成分を適切に調整することによって、耐食性を優れたものとし、無塗装であっても使用できる造船用耐食鋼が開示されている。また特許文献2には、鋼材の化学成分組成を適切なものとすることによって、塗膜寿命性を向上させた船舶用鋼材について開示されている。これらの技術では、従来に比べてある程度の耐食性は確保できるようになったといえる。
しかしながら、より厳しい腐食環境下での耐食性については依然として十分なものとはいえず、更なる耐食性向上が要求されることになる。特に、異物と鋼材との接触部分、構造的な理由や防食塗膜の損傷部分等で形成される「すきま」部分における腐食(いわゆるすきま腐食)が顕著になり、寿命を低下させる場合があるが、これまで提案されている技術ではこうした部分における耐食性が不十分である。
ところで、上記各種構造材料では、繰り返し応力が加わるものが少なくないことから、構造材料の安全性を確保するためには、耐食性のみならず、鋼材には疲労特性が良好であることが設計上極めて重要である。
鋼材の疲労過程は、応力集中部での亀裂の発生と、一旦発生した亀裂の進展という2つの過程に大別して考えられる。そして、通常の機械部品では巨視的な亀裂の発生が、使用限界として考えられており、亀裂の進展を許容する設計は殆どされていない。しかしながら、溶接構造物においては、疲労亀裂が発生しても直ちに破壊に至ることはなく、この亀裂が最終段階に至る前に定期検査などで発見され、亀裂の入った部分が修理されるか、或は使用期間内に亀裂が最終破壊に至る長さまでに成長しないならば、亀裂があっても構造物は十分に使用に耐え得ることになる。
溶接構造物では、応力集中部としての溶接止端部が多数存在しており、疲労亀裂の発生を完全に防止することは技術的にも不可能に近く、また経済的にも得策とはいえない。即ち、溶接構造物の疲労寿命を良好にするためには、亀裂の発生そのものを防止するよりも、亀裂が既に存在している状態からの亀裂進展寿命を大幅に延長することが有効であり、そのためには鋼材の亀裂の進展速度をできるだけ遅くするような設計が重要な事項となる。
疲労亀裂進展の速度を抑制する技術としてもこれまで様々なものが提案されており、例えば特許文献3には、硬質相と軟質相の2相組織とし、軟質相/硬質相境界における亀裂の屈曲、停留、分岐によって亀裂進展速度を抑制する技術が提案されている。しかしながら、この技術では鋼材の腐食による板厚減少、腐食損傷については考慮されておらず、更に安全性を高めるためには、耐疲労性と耐腐食性の両特性を満足させる必要がある。
特開2000−17381号公報 特許請求の範囲等 特開2002−266052号公報 特許請求の範囲等 特許第3298544号公報 特許請求の範囲等
本発明は上記の様な事情に着目してなされたものであって、その目的は、繰り返し応力下における疲労亀裂進展速度を抑制して疲労亀裂進展抵抗性を高めると共に、塗装や電気防食を施さなくても実用化できる耐食性に優れた船舶用鋼材、特にすきま腐食に対する耐久性の向上を図ると共に、海水に起因する塩分付着と湿潤環境による腐食に対しても優れた耐久性を発揮する船舶用鋼材を提供することにある。
上記目的を達成することのできた本発明の船舶用鋼材とは、C:0.01〜0.2%(質量%の意味、以下同じ)、Si:0.01〜0.5%、Mn:0.01〜2%、Al:0.05〜0.5%、Cu:0.010〜1.5%、Cr:0.010〜1%を夫々含有する他、P:0.02%以下(0%を含まない)およびS:0.01%以下(0%を含まない)に夫々抑制し、残部がFeおよび不可避的不純物からなり、軟質相と硬質相とからなる複合組織であり、且つ硬質相のビッカース硬さHvと軟質相のビッカース硬さHvの比(Hv/Hv)が1.5〜5.0であり、軟質相の粒径が円相当直径で20μm以下である点に要旨を有するものである。
本発明の船舶用鋼材において、前記軟質相は、フェライト、焼戻しベイナイトおよび焼戻しマルテンサイよりなる群から選ばれる1種以上であり、硬質相は、ベイナイトおよび/またはマルテンサイト(島状マルテンサイトを含む)が挙げられる。また、Crの含有量[Cr]とAlの含有量[Al]の比の値([Cr]/[Al])を1〜15の範囲に調整することが好ましい。
本発明の船舶用鋼材においては、必要によって、(1)Ni:2%以下(0%を含まない)、Co:1%以下(0%を含まない)およびTi:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上、(2)Ca:0.02%以下(0%を含まない)および/またはMg:0.02%以下(0%を含まない)、(3)Se:0.5%以下(0%を含まない)、(4)Sb:0.5%以下(0%を含まない)および/またはSn:0.5%以下(0%を含まない)、(5)B:0.01%以下(0%を含まない)、V:0.1%以下(0%を含まない)およびNb:0.05%以下(0%を含まない)よりなる群から選ばれる1種以上、等を含有させることも有効であり、含有させる成分の種類に応じて船舶用鋼材の特性が更に改善されることになる。
本発明の造船用鋼材においては、所定量のCrとAlを併用させて含有させると共に、化学成分組成を適切に調整することによって、塗装および電気防食を施さなくても実用化できる耐食性に優れた船舶用鋼材が実現でき、特にすきま腐食に対する耐久性の向上を図ると共に、海水に起因する塩分付着と湿潤環境による腐食に対しても優れた耐久性を発揮する船舶用鋼材が実現できた。また、鋼材の組織を軟質相と硬質相とからなる複合組織とし、且つ硬質相のビッカース硬さHvと軟質相のビッカース硬さHvの比(Hv/Hv)を所定の範囲内に制御すると共に、軟質相の粒径を微細化することによって、疲労亀裂進展抵抗性にも優れた鋼材とすることができた。こうした船舶用鋼材は、原油タンカー、貨物船、貨客船、客船、軍艦等の船舶における外板、バラストタンク、原油タンク等の素材として有用である。
本発明者らは、前記課題を解決するために鋭意研究を重ねた。その結果、所定量のAlとCrを併用させて含有させると共に、化学成分組成を適切に調整すれば、すきま腐食に対する耐久性の向上を図ると共に、海水に起因する塩分付着と湿潤環境による腐食に対しても優れた耐久性を発揮する船舶用鋼材が実現できることを見出した。また、鋼材の疲労亀裂進展抵抗性については、硬質相のビッカース硬さHvと軟質相のビッカース硬さHvの比(Hv/Hv)を所定の範囲内に制御した複合組織とすると共に、軟質相の粒径を微細化することによって、その特性が改善されることを見出し、本発明を完成した。
本発明の鋼材においては、AlとCrを併用させて含有させることが重要であり、これらの成分のいずれを欠いても、本発明の目的を達成することができない。これらの成分における各作用効果は後述するが、これらを併用することによって、耐食性が向上した理由は次のように考えることができた。
Alは鋼表面に安定な酸化物防食皮膜を形成する効果がある。鋼中より腐食溶解したAl3+イオンが溶存酸素などと結びついてAl酸化物となり、これが表面に堆積して防食皮膜を形成することになる。この皮膜による防食効果は、船舶における高塩化物環境においては十分とはいえない。一方、Crは上記Alと同様に表面に安定な酸化物皮膜を形成して鋼材を防食する効果を発揮するが、Cr酸化物単独では防食効果が十分であるとはいえない。
上記Al酸化物皮膜は、pHが5〜8.5程度のほぼ中性域では非常に安定性が高いのであるが、pHが8.5を超えるあたりから溶解性が高くなる。船舶用鋼材が曝される海水は、清浄な場合にはpHは8程度であるが、海藻などが繁殖している海域ではpHは9.5程度にまでアルカリ化することがある。また、腐食のカソード反応が起こっているサイトでは溶存酸素の還元で生成したOHイオンのためpHが上昇する傾向にある。こうしたことから、船舶環境でのAl酸化物は必ずしも安定に存在できず、むしろ容易に溶解してその保護性が失われる場合の方が多い。これに対して、Cr酸化物はアルカリ領域での安定性が高いことに加えて、微量に溶解したCrイオンの加水分解平衡でpHを低下させる効果があるため、海水のpH上昇によるAl酸化物の溶解を抑止して、その保護性を確保する作用を発揮することになる。従って、Cr酸化物とAl酸化物とが適切な量で共存することによって、鋼材の防食効果は相乗的に高くなるものと考えられる。
こうした効果は、後述する適切な量に制御することによって発揮されることになるのであるが、これらの含有量の比の値([Cr]/[Al]:質量比)も適切に制御することが好ましい。即ち、この値([Cr]/[Al])が1未満であると、腐食均一性が不十分となりやすく、15を超えると耐すきま腐食性が不十分となる。この[Cr]/[Al]の値は、より好ましくは3以上とするのが良い。一方、[Cr]/[Al]の値の上限については、より好ましくは10以下とするのが良い。
一方、疲労亀裂は、通常の安定成長域では、応力に対して直角方向に進むことになる。こうした疲労亀裂の進展機構を考慮し、亀裂進展に対する抵抗性を高めるためには、鋼材の組織を複合組織とし、軟質相と硬質相の境界にて亀裂を迂回(屈曲)、停留させることによって、亀裂進展速度を低下させ、疲労寿命を延ばせ得るとの着想が得られた。そして、硬質相(以下、「第2相」と呼ぶことがある)における亀裂の屈曲には、一定の硬度差が必要となる。但し、硬度の差が大きくなり過ぎると、脆性破壊を起こし、亀裂は硬質相内を進展することになるので、その効果は却って低下することになる。こうした観点から、本発明の船舶用鋼材においては、硬質相のビッカース硬さHvと軟質相のビッカース硬さHvの比(Hv/Hv)は1.5〜5.0の範囲内に制御する必要がある。
即ち、上記比(Hv/Hv)の値を1.5以上とすることによって、亀裂先端の転位の移動時における軟質相と硬質相の界面亀裂先端の塑性域が変化し、屈曲、停留、分岐が起こるので、亀裂進展速度が低下することになる。但し、硬質相の硬度が高くなり過ぎると、上述の如く、硬質相が亀裂先端の応力により脆性破壊を起こすようになり、亀裂進展抑制効果が低下することになるので、上記比(Hv/Hv)の値を5.0以下とする必要がある。この比の値の好ましい下限は1.7であり、より好ましくは2.0以上であり、好ましい上限は4.5であり、より好ましくは4.0以下である。上記のような比(Hv/Hv)の値を制御するには、硬質相および軟質相の割合を適切に制御するのが良く、こうした観点から軟質相の割合は20〜90面積%とするのが好ましい。尚、以下では、上記比(Hv/Hv)を、単に「硬さ比」と呼ぶことがある。
本発明の鋼材における軟質相とは、フェライト、焼戻しベイナイトおよび焼戻しマルテンサイよりなる群から選ばれる1種以上が挙げられ、硬質相としては、ベイナイトおよび/またはマルテンサイト(島状マルテンサイトを含む)が挙げられる。尚、マルテンサイト(島状マルテンサイトを含む)とは、本発明の硬質相に含まれる相として、マルテンサイトと島状マルテンサイトを区別しない趣旨であり、厳密にはマルテンサイトおよび/または島状マルテンサイトであることを意味する。従って、本発明における硬質相とは、ベイナイト、マルテンサイトおよび島状マルテンサイトよりなる群から選ばれる1種以上の相を含むものである。
本発明の鋼材の組織は、第1相としての軟質相と第2相としての硬質相を含むものであればよいが、必ずしも2相組織である必要はなく、上記した各相を3種或は4種以上を含む複合組織であっても良い。但し、パーライトは、ミクロ的には軟質のフェライトと脆性破壊し易い硬質のセメンタイトが縞状に存在する組織であり、上記効果が得られにくいので、いずれの相にも含まれないものである。
亀裂進展は、上記硬質相/軟質相境界に加えて、粒界においても屈曲、停留、分岐を起こすことで亀裂進展速度が低下することになる。軟質相の粒径が粗大になると、亀裂進展の抵抗となる粒界に衝突する頻度が低下するので、亀裂進展速度が低下しないことになる。本発明の鋼材においては、例えば、過冷を行なうことによって、核生成サイトが増加し、フェライトが微細化することに伴い、硬質相も微細に分散することになる。これによって、亀裂が進展する際に硬質相に遭遇する確率が平均化して、遭遇する頻度が上昇するので、亀裂進展速度が低下するという効果が得られることになる。こうした観点から、本発明の鋼材においては、軟質相の粒径が円相当直径で20μm以下であることも必要である(粒径測定方法については、後述する)。この軟質相の粒径は、好ましくは15μm以下とするのが良い。
本発明の鋼材では、その鋼材としての基本的特性を満足させるために、C,Si,Mn,Cu,P,S等の成分も適切に調整する必要がある。これらの成分の範囲限定理由について、上記Al,Crの各元素による作用効果と共に、次に示す。
[C:0.01〜0.2%]
Cは、材料の強度確保のために必要な元素である。船舶の構造部材としての最低強度、即ち概ね400MPa程度(使用する鋼材の肉厚にもよるが)を得るためには、0.01%以上含有させる必要がある。しかし、0.2%を超えて過剰に含有させると靱性、溶接性が劣化する。こうしたことから、C含有量の範囲は0.01〜0.2%とした。尚、C含有量の好ましい下限は0.02%であり、より好ましくは0.04%以上とするのが良い。また、C含有量の好ましい上限は0.18%であり、より好ましくは0.17%以下とするのが良い。
[Si:0.01〜0.5%]
Siは脱酸と強度確保のために必要な元素であり、0.01%に満たないと構造部材としての最低強度を確保できない。しかし、0.5%を超えて過剰に含有させると溶接性、HAZ(溶接熱影響部)靭性が劣化する。尚、Si含有量の好ましい下限は0.02%であり、より好ましくは0.05%以上とするのが良く、更に好ましくは0.1以上であり、好ましい上限は0.45%であり、より好ましくは0.40%以下とするのが良い。
[Mn:0.01〜2%]
MnもSiと同様に脱酸および強度確保のために必要であり、0.01%に満たないと構造部材としての最低強度を確保できない。しかし、2%を超えて過剰に含有させると靱性が劣化する。尚、Mn含有量の好ましい下限は0.05%であり、より好ましくは0.1%以上、更に好ましくは0.3%以上とするのが良い。また、Mn含有量の好ましい上限は1.8%であり、より好ましくは1.6%以下とするのが良い。
[Al:0.05〜0.5%]
上述したように、Alは表面に安定な酸化物防食皮膜を形成する効果がある。Al含有量が少なくなると、腐食溶解したAl3+イオンは海水中に飛散して鋼材表面に堆積されず、防食皮膜が形成されないことになる。Cr酸化物との共存下で十分な防食効果を発揮させるためには、0.05%以上含有させる必要がある。通常の鋼材であれば、Al含有量が0.10%を超えると溶接部の靭性がやや低下するなど溶接性の点で問題があったが、本発明の鋼材のようにC,Si,P,Sを適正範囲とすることによって、Al含有量が0.1%超〜0.5%までの範囲であっても従来鋼と同様の溶接性を確保することができる。しかしながら、Al含有量が0.5%を超えて過剰になると、溶接性を害することになる。こうしたことから、Al含有量の範囲は0.05〜0.5%とした。尚、Al含有量の好ましい下限は0.06%であり、より好ましくは0.07%以上、更に好ましくは0.08%以上とするのが良い。また、Al含有量の好ましい上限は0.45%であり、より好ましくは0.4%以下、更に好ましくは0.35%以下とするのが良い。
[Cu:0.010〜1.5%]
Cuは、耐食性向上に大きく寄与する緻密な表面錆皮膜を形成するのに有効な元素である。また、Cuを含有させることによって形成される緻密な錆皮膜と、Al酸化物とCr酸化物とが共存する安定な酸化物皮膜とが母材の保護性を相乗的に高めて、優れた耐食性が発揮されることになる。こうした効果を発揮させるためには、Cu含有量は0.01%以上とすることが必要であるが、過剰に含有させると溶接性や熱間加工性が劣化することから、1.5%以下とすることが好ましい。尚、Cu含有量の好ましい下限は0.05%であり、好ましい上限は1.3%であり、より好ましくは1.0%以下である。
[Cr:0.010〜1%]
CrはAlと同様に安定な酸化物皮膜を形成して鋼材を防食する効果を発揮する。本発明では上述のように、Al酸化物とCr酸化物を共存させることによって、鋼材の耐食性が飛躍的に向上することになるのであるが、こうした効果を発揮させるためには、0.01%以上含有させる必要がある。しかしながら、過剰に含有させると溶接性が劣化することから、1%以下とする必要がある。尚、Cr含有量の好ましい下限は0.05%であり、より好ましくは0.1%以上であり、好ましい上限は0.9%であり、より好ましくは0.8%以下である。
[P:0.02%以下(0%を含まない)]
Pは靭性や溶接性を劣化させる元素であり、可能な限り含有量を抑えることが好ましい。P含有量の許容される上限は0.02%までであり、これを超えると船舶用鋼材としての溶接性を確保できない。こうしたことから、P含有量は0.02%以下とした。尚、P含有量の好ましい上限は0.018%であり、より好ましくは0.015%以下である。
[S:0.01%以下(0%を含まない)]
SはPと同様に靭性や溶接性を劣化させる元素であり、可能な限り含有量を抑えることが好ましい。S含有量の許容される上限は0.01%までであり、これを超えると船舶用鋼材としての溶接性を確保できない。こうしたことから、S含有量は0.01%以下とした。尚、S含有量の好ましい上限は0.008%である。
本発明の船舶用鋼材における基本成分は上記の通りであり、残部は鉄および不可避的不純物(例えば、O等)からなるものであるが、これら以外にも鋼材の特性を阻害しない程度の成分(例えば、Zr,N等)も許容できる。但し、これら許容成分は、その量が過剰になると靭性が劣化するので、0.1%程度以下に抑えるべきである。
また、本発明の船舶用鋼材には、上記成分の他必要によって、(1)Ni:2%以下(0%を含まない)、Co:1%以下(0%を含まない)およびTi:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上、(2)Ca:0.02%以下(0%を含まない)および/またはMg:0.02%以下(0%を含まない)、(3)Se:0.5%以下(0%を含まない)、(4)Sb:0.5%以下(0%を含まない)および/またはSn:0.5%以下(0%を含まない)、(5)B:0.01%以下(0%を含まない)、V:0.1%以下(0%を含まない)およびNb:0.05%以下(0%を含まない)よりなる群から選ばれる1種以上、等を含有させることも有効であり、含有させる成分の種類に応じて船舶用鋼材の特性が更に改善されることになる。
[Ni:2%以下(0%を含まない)、Co:1%以下(0%を含まない)およびTi:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上]
Ni,CoおよびTiは、いずれも耐食性向上に有効な元素である。このうちNiおよびCoは、耐食性向上に大きく寄与する緻密な表面錆被膜を形成するのに有効な元素である。こうした効果はその含有量が増加するにつれて増大するが、過剰に含有させると溶接性や熱間加工性が劣化することから、Niについては2%以下、Coについては1%以下とすることが好ましい。Niを含有させるときの好ましい下限は0.001%であり、より好ましくは0.05%以上で、更に好ましくは0.1%以上である。またCoを含有させるときの好ましい下限は0.01%であり、より好ましくは0.05%以上、更に好ましくは0.03%以上である。またより好ましい上限は、Ni:1.5%以下(更に好ましくは1.0%以下)、Co:0.8%以下(更に好ましくは0.6%以下)である。
Tiは耐食性向上に大きく寄与する緻密な表面錆被膜を緻密化してその環境遮断性を向上させると共に、すきま内部における腐食を抑制して、耐すきま腐食性も向上させる元素である。こうした環境下で要求される耐食性向上効果はその含有量が増加するにつれて増大するが、Ti含有量が過剰になると加工性と溶接性を劣化させることになるので、0.1%以下とすることが好ましい。Tiを含有させるときの好ましい下限は0.005%であり、より好ましい上限は0.09%(更に好ましくは0.05%以下)である。
[Ca:0.02%以下(0%を含まない)および/またはMg:0.02%以下(0%を含まない)]
CaおよびMgは、溶解することによってpH上昇作用を示し、鉄の溶解が起こっている局部アノードにおける加水分解反応によるpH低下を抑制して腐食反応を抑制し、耐食性向上に有効な元素である。こうした効果はその含有量が増加するにつれて増大するが、いずれも0.02%を超えて過剰に含有させると加工性と溶接性とを劣化させることになる。CaおよびMgを含有させるときの好ましい下限は0.0005%であり、より好ましくは、0.001%以上とするのが良く、より好ましい上限は0.015%であり、更に好ましくは0.01%以下である。
[Se:0.5%以下(0%を含まない)]
Seは腐食の溶解反応が起こっているサイトのpHを抑制して腐食反応を抑制し、耐食性を向上させる作用を発揮する元素である。こうしたSeを含有させることによって、局部的なpH変化が起こりにくくなるため、腐食均一性が向上する作用がある。また、物質移動が制限されている局所的なpH低下が起こり易い「すきま部」においては、上記した理由によってその効果(局部腐食抑制効果)が有効に発揮される。こうした環境で要求される耐食性向上効果は、その含有量が増加するにつれて増大するが、0.5%を超えて過剰に含有させると加工性と溶接性とを劣化させることになる。尚、Seを含有させるときの好ましい下限は0.005%であり、より好ましくは0.008%以上とするのが良く、更に好ましくは0.010%以上とするのが良い。またSe含有量のより好ましい上限は0.45%であり、更に好ましくは0.40%以下とするのが良い。
[Sb:0.5%以下(0%を含まない)および/またはSn:0.5%以下(0%を含まない)]
SbおよびSnは、Cu,Ni,Ti等による生成錆緻密化作用や、Se,Ca,Mg等によるpH低下作用を助長して耐食性を向上させる元素である。こうした効果は、その含有量が増加するにつれて増大するが、いずれも0.5%を超えて過剰に含有させると、加工性と溶接性が劣化することになる。これらの元素を含有せるときの好ましい下限は、いずれも0.01%であり、より好ましくは0.02%以上とするのが良く、より好ましい上限は0.40%である。
[B:0.01%以下(0%を含まない)、V:0.1%以下(0%を含まない)およびNb:0.05%以下(0%を含まない)よりなる群から選ばれる1種以上]
船舶用鋼材では、適用する部位によってはより高強度化が必要な場合があるが、これら
の元素は強度向上に必要な元素である。このうちBは焼入性を向上して強度向上に有効であるが、0.01%を超えて過剰に含有させると母材靭性が劣化するため好ましくない。Vは、強度向上に有効であるが、0.1%を超えて過剰に含有させると鋼材の靭性劣化を招くことになるので好ましくない。Nbは、強度向上に有効であるが、0.05%を超えて過剰に含有させると鋼材の靭性劣化を招くことになる。尚、これらの元素の好ましい下限は、Bについては0.0001%、より好ましくは0.003%以上、Vについては0.003%、より好ましくは0.005%以上、Nbについては0.003%、より好ましくは0.005%以上である。またより好ましい上限は、Bについては0.009%、Vについては0.07%、Nbについては0.045%である。
本発明の船舶用鋼材は、基本的には塗装を施さなくても鋼材自体が優れた耐食性を発揮するものであるが、必要によって、後記実施例に示すタールエポキシ樹脂塗料、或はそれ以外の代表される重防食塗装、ジンクリッチペイント、ショッププライマー、電気防食などの他の防食方法と併用することも可能である。こうした防食塗装を施した場合には、後記実施例に示すように塗装膜自体の耐食性(塗装耐食性)も良好なものとなる。また、製造方法を下記のように適切に制御して上記のような組織とすることによって、疲労亀裂進展抵抗性にも優れた鋼材とすることができる。
上記のような組織にして本発明の鋼材を製造するには、例えば下記に示す(1)〜(3)の方法によって、硬質相と軟質相を適切に制御して、疲労亀裂進展を抑制することができる。
(1)上記のような化学成分組成を有する鋼片を、950℃以上、1250℃以下に加熱し、加熱温度〜Ar変態点の温度範囲で圧延を終了し、20℃/秒以上の冷却速度で1回目の加速冷却を行い、600〜700℃まで冷却を行った後、当該温度域で10〜100秒保持し(0.5℃/秒以下の冷却速度で放冷しても良い)、その後400℃以下まで5℃/秒以上の冷却速度で2回目の加速冷却を実施する。この方法で各条件の範囲設定理由は次の通りである。
加熱温度:950℃未満では、圧延温度が低くなり過ぎ、1250℃を超えるとオーステナイト粒が粗大化し、母材靭性が劣化するため、950〜1250℃で加熱する必要がある。
圧延温度:圧延温度がAr変態点未満となると、組織に異方性が生じ、衝撃吸収エネルギーが低下する恐れがある上、製造上は圧延負荷が高まり、生産性が低下することになる。
1回目の加速冷却速度:加速冷却を行なうことによって、γが過冷状態となり、低温まで変態が抑制される。その後、低温で変態することで、変態の駆動力が高く、組織が均一微細なフェライトが生成する。冷却速度が20℃/秒未満では、加速冷却中に一部変態が生じ、組織の均一微細化が達成されないことになる。
冷却停止温度:停止温度が600℃未満では、フェライトがアシキュラー状になってしまう、或はベイナイト組織になってしまうことになる。アシキュラー状のフェライトは、靭性は良いが、ポリゴナルフェライトに対して硬度が高く、第2相との硬度差が減少してしまうため、相境界における亀裂進展抑制効果は少ない。その一方で、冷却停止温度が700℃を超えると、所定の保持温度では変態が遅く、十分なフェライト分率(例えば、20面積%以上)が確保できなくなる上、結晶粒が粗大になり、靭性が劣化してしまうことになる。
冷却後の保持時間:この保持時間が10秒未満では変態が十分でなく、フェライト分率が十分でない上、Cが未反応のγに濃縮する余裕がなくなってしまう。また保持時間が100秒を超えると、生産性が低下すると共に、平衡状態に近づき、パーライトの生成が見られるようになる。このパーライトは、フェライトとセメンタイトが層状組織となっているものであるが、セメンタイトは脆く、亀裂先端で脆性破壊を起こすので、亀裂進展抑制効果が小さいものとなる。
2回目の加速冷却速度:この冷却速度が5℃/秒未満では、冷却段階で未変態のオーステナイトからフェライト+パーライトが生成し、硬質相の硬度が十分とならない。
最終冷却停止温度:このときの停止温度が400℃を超えると、硬質相が生成しないか、或は自己焼き戻しによって硬質相が軟化してしまい、硬度が十分に確保できなくため、冷却停止温度は400℃以下とする必要があり、好ましくは300℃以下とするのが良い。
(2)上記のような化学成分組成を有する鋼片を、950℃以上、1250℃以下に加熱し、加熱温度〜Ar変態点の温度範囲で圧延を終了し、(Ar変態点−30℃)〜(Ar変態点+30℃)の温度範囲まで空冷するか、或は5℃/秒以下の冷却速度で冷却した後、5℃/秒以上の冷却速度で加速冷却を実施する。この方法で各条件の範囲設定理由は次の通りである。
加熱温度:950℃未満では、圧延温度が低くなり過ぎ、1250℃を超えるとオーステナイト粒が粗大化し、母材靭性が劣化するため、950〜1250℃で加熱する必要がある。
圧延温度:圧延温度がAr変態点未満となると、組織に異方性が生じ、衝撃吸収エネルギーが低下する恐れがある上、製造上は圧延負荷が高まり、生産性が低下することになる。
冷却速度:(Ar変態点−30℃)〜(Ar変態点+30℃)の温度範囲まで空冷するか、或は5℃/秒以下の冷却速度で冷却加速冷却を行なうことによって、組織をフェライト(α)+γとし、その後の加速冷却でCが濃縮した未変態γから硬質相を生成させることで、軟質相+硬質相の複合組織とすることができる。冷却速度を5℃/秒よりも速くして冷却を行なうと、保持時間をとらない場合には、未変態γへのCの濃縮の時間が少なく、その後の加速冷却によっても十分な硬質相が得られないばかりか、板厚方向の均一性が低下することになる。
冷却停止温度:停止温度が(Ar変態点−30℃)を超えると、フェライトが殆ど生成しておらず、(Ar変態点+30℃)未満では、殆どがフェライト+パーライトに変態が終了しており、軟質相+硬質相が得られなくなる。
2回目の冷却速度:この冷却速度が5℃/秒未満では、冷却段階で未変態のオーステナイトからフェライト+パーライトが生成し、硬質相の硬度が十分とならない。
最終冷却停止温度:このときの停止温度が400℃を超えると、硬質相が生成しないか、或は自己焼き戻しによって硬質相が軟化してしまい、硬度が十分に確保できなくため、冷却停止温度は400℃以下とする必要があり、好ましくは300℃以下とするのが良い。
(3)上記のような化学成分組成を有する鋼片を、950℃以上、1250℃以下に加熱し、加熱温度〜Ar変態点の温度範囲で圧延を終了し、10℃/秒以上の冷却速度で400℃以下まで1回目の加速冷却を行い、その後(Ac変態点+30℃)〜(Ac変態点−30℃)の温度範囲まで再加熱し、その後5℃/秒以上の冷却速度で2回目の加速冷却を実施する。この方法では、再加熱前の組織を焼入れ組織とすることによって、組織単位を微細にすることができ、Ac変態点以上に再加熱することで、高温焼戻しベイナイト、若しくはマルテンサイト+オーステナイト組織となる。焼戻しベイナイト、マルテンサイトから炭化物が逆変態オーステナイトへ拡散し、焼戻しベイナイト、マルテンサイトの硬度が大きく下がると共に、その後の加速冷却によってCが濃縮したγが硬質相に変態することで、硬質相と軟質相の複合組織とすることができる。この方法で各条件の範囲設定理由は次の通りである。
加熱温度:950℃未満では、圧延温度が低くなり過ぎ、1250℃を超えるとオーステナイト粒が粗大化し、母材靭性が劣化するため、950〜1250℃で加熱する必要がある。
圧延温度:圧延温度がAr変態点未満となると、組織に異方性が生じ、衝撃吸収エネルギーが低下する恐れがある上、製造上は圧延負荷が高まり、生産性が低下することになる。
冷却速度、冷却停止温度:冷却速度が10℃/秒未満であったり、冷却停止温度が400℃を超えると、組織が焼戻し組織にならないため、粒径が粗大になり、靭性とともに疲労亀裂進展抵抗性が低下する。
再加熱温度:(Ac変態点+30℃)未満では、α→γ変態が殆ど起こらず、十分な硬質相を確保することができない。(Ac変態点+30℃)を超えると、再加熱後に殆どがα→γ変態してしまい、その後の焼入れで全て硬質相となってしまう。
2回目の加速冷却速度:この冷却速度が5℃/秒未満では、硬質相の硬度が十分とならない。
最終冷却停止温度:このときの停止温度が400℃を超えると、硬質相が生成しないか、或は自己焼き戻しによって硬質相が軟化してしまい、硬度が十分に確保できなくため、冷却停止温度は400℃以下とする必要があり、好ましくは300℃以下とするのが良い。
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含されるものである。
下記表1、2に示す化学成分組成の鋼材を転炉で溶製し、連続鋳造および熱間圧延により各種鋼板を製作した。表1、2に示した変態点(Ar、Ar、Ac、Ac)は下記(1)〜(4)式によって求められた値である。このときの製造条件を表3、4に示す。尚、このときの温度については、t/4(tは板厚)の位置における温度で管理したものであり、詳細な温度管理の手順は下記の通りである。得られた鋼板を切断および表面研削を行って、最終的に100×100×25(mm)の大きさの試験片を作製した(試験片A)。試験片Aの外観形状を図1に示す。
Ar=868−369・[C]+24.6・[Si]−68.1・[Mn]−36.1・[Ni]−20.7・[Cu]−24.8・[Cr]+190・[V] …(1)
Ar=630.5+51.6・[C]+122.4・[Si]−64.8・[Mn]
…(2)
Ac=723−14・[Mn]+22・[Si]−14.4・[Ni]+23.3・
[Cr] …(3)
Ac=908−223.7・[C]+30.49・[Si]−34.3・[Mn]+37.92・[V]−23.5・[Ni] …(4)
但し、[C],[Si],[Mn],[Ni],[Cu],[Cr]および[V]は、夫々C,Si,Mn,Ni,CuおよびVの含有量(質量%)を示す。
[温度管理の手順]
1.プロセスコンピュータを用い、加熱開始から加熱終了までの雰囲気温度や在炉時間に基づいて鋼片の表面から裏面までの任意の位置(例えば、t/4位置)の加熱温度を算出する。
2.算出した加熱温度を用い、圧延中の圧延パススケジュールやパス間の冷却方法(水冷あるいは空冷)のデータに基づいて、板厚方向の任意の位置における圧延温度を計算しつつ圧延を実施する。
3.鋼板の表面温度は圧延ライン上に設置された放射型温度計を用いて実測する。但し、プロセスコンピュータでも理論値を計算しておく。
4.粗圧延開始時、粗圧延終了時、仕上げ圧延開始時にそれぞれ実測した鋼板の表面温度を、プロセスコンピュータから算出される計算温度と照合する。
5.計算温度と実測温度の差が±30℃以上の場合は、計算表面温度が実測温度と一致するように再計算してプロセスコンピュータ上の計算温度とし、±30℃未満の場合は、プロセスコンピュータから算出された計算温度をそのまま用いる。
6.上記算出された計算温度を用い、制御対象としている領域の圧延温度を管理する。
また、図2に示すように20×20×5(mm)の小試験片4個を、100×100×25(mm)の大試験片(前記試験片Aと同じもの)に接触させて、すきま部を形成した試験片Bを作製した。すきま形成用の小試験片と大試験片とは同じ化学成分組成の鋼材として、表面仕上げも前記試験片Aと同じ表面研削とした。そして小試験片の中心に5mmφの孔を、基材側(大試験片側)にねじ孔を開けて、M4プラスチック製ねじで固定した。
更に、平均厚さ250μmのタールエポキシ樹脂塗装(下塗り:ジンクリッチプライマー)を全面に施した試験片C(図3)も用いた。そして防食のための塗膜に傷が付いて素地の鋼材が露出した場合の腐食進展度合いを調べるために、試験片Cの片面には素地まで達するカット傷(長さ:100mm、幅:約0.5mm)をカッターナイフで形成した。
前記表3、4に示した製造方法で得られた各供試材について、試験片A、試験片Bおよび試験片Cを夫々5個ずつ用い腐食試験に供した。このときの腐食試験方法は次の通りである。
[腐食試験方法]
電気防食が作用しないバラストタンク内の上部などの湿潤の大気雰囲気を模擬して、海塩粒子を付着させて湿潤状態に保持する腐食試験を行った(腐食試験A)。また、兵庫県加古川市にて採取した実海水7.5mLをほぼ均一に試験面に滴下して、乾燥させた試験片を温度:50℃、湿度:95%RHの恒温恒湿試験槽内に水平に設置して腐食させた。試験時間は6ヶ月間であり、1ヶ月毎に実海水5.0mLを追加で試験面に滴下した。この試験には、前記試験片Aおよび試験片Bを用いて、耐全面腐食性、腐食均一性および耐すきま腐食性を評価した。
また原油タンク内の上甲板の腐食環境を模擬して、温度を50℃に保持した試験槽内に試験片を水平に設置して、組成:5vol%O−10vol%CO−0.01vol%SO−0.3vol%HSの腐食性ガスを1L/min通気させて試験片を腐食させた(腐食試験B)。このとき、試験槽内は常時水蒸気飽和状態となるように湿度は98%RH以上に制御して、湿潤状態を保持した。試験時間は6ヶ月間である。この試験には、1ヶ月毎に実海水5.0mLを追加で試験面に滴下した。この試験には、前記試験片Aおよび試験片Cを用いて、耐全面腐食性、腐食均一性および塗装腐食性を評価した。
(1)試験片Aについては、試験前後の重量変化を平均板厚減少量D−ave(mm)に換算し、試験片5個の平均値を算出して、各供試材の全面腐食性を評価した。また、触針式三次元形状測定装置を用いて試験片Aの最大侵食深さD−max(mm)を求め、平均板厚減少量[D−ave(mm)]で規格化して(即ち、D−max/D−aveを算出して)、腐食均一性を評価した。尚、試験後の重量測定および板厚測定は、クエン酸水素二アンモニウム水溶液中での陰極電解法[JIS K8284]により鉄錆等の腐食生成物を除去してから行った。
(2)試験片Bについては、すきま部(接触面)の目視観察を行ってすきま腐食発生の有無を調べ、すきま腐食が認められる場合には、上記陰極電解法により腐食生成物を除去し、触針式三次元形状測定装置を用いて最大すきま腐食深さD−crev(mm)を測定した。
(3)塗装処理を施した試験片C(カット傷付き)については、カット傷に垂直方向の塗膜膨れ幅をノギスで測定し、試験片5個の最大値を最大膨れ幅と定義した。
上記耐全面腐食性(D−ave)、腐食均一性(D−max/D−ave)、耐すきま腐食性(D−crev)、塗装耐食性(膨れ面積率および最大膨れ幅)の評価基準は下記表5に示す通りである。
また各供試材について、疲労亀裂進展速度、(硬質相/軟質相)の硬さ比(Hv/Hv)、および軟質相の粒径を下記の方法にて測定した。
[疲労亀裂進展速度]
熱間圧延材を切断し、ASTM E647に準拠し、コンパクト型試験片を用いて、疲労亀裂進展試験を実施することによって、疲労亀裂進展速度を求めた。この際、下記(5)式によって規定されるパリス則が成り立つ安定成長領域ΔK=20(MPa・√m)での値を代表値として評価した。尚、疲労亀裂進展速度の評価、基準については、通常の鋼材が4〜6×10−5mm/cycle(ΔK=20のとき)程度の進展速度であることから、3.5×10−5mm/cycle以下を基準とした。
da/dn=C(ΔK) …(5)
但し、a:亀裂長さ,n:繰り返し数,C,m:材料、荷重等の条件で決まる定数を夫々示す。
[(硬質相/軟質相)の硬さ比]
硬質相のビッカース硬さHv、および軟質相のビッカース硬さHvを、10gfのマイクロビッカース硬度計を用いて測定し、各5点の平均値を求め、硬さ比(Hv/Hv)を計算した。
[軟質相の粒径の測定方法]
(a)鋼材の圧延方向と平行な方向で切断し、板厚の表裏面部を含むサンプルを準備した。
(b)♯150〜♯1000までの湿式エメリー研磨紙若しくはそれと同等の機能を有する研磨方法を用いて研磨し、ダイヤモンドスラリー等の研磨材を用いて鏡面仕上げを施した。
(c)研磨されたサンプルを、3%ナイタール溶液(腐食液)を用いて腐食し、軟質相の結晶粒界を現出させた。
(d)現出させた組織を100倍若しくは400倍の倍率で写真撮影し(6cm×8cmの写真として撮影)、画像解析装置に取り込んだ(100倍では600μm×800μm、400倍では150μm×200μmに相当)。この取り込みに当っては、いずれの倍率においても、1mm×1mmに相当する枚数(100倍では少なくとも6枚の視野、400倍では35枚分の視野)を取り込んだ。
(e)画像解析装置において、一つの粒界に囲まれた領域と同等の面積を有する円に換算し、換算された円の直径を円相当軟質相の粒径と定義した。
(f)全ての視野について測定された値の平均値を平均円相当軟質相粒径として算出した。
腐食試験結果および疲労試験進展速度の測定結果を、硬さ比および軟質相粒径(円相当直径)と共に一括して下記表6、7に示す。
これらの結果から次のように考察できる。まずいずれの腐食試験においても、Al,CuおよびCrの含有量が本発明で規定する適正範囲に満足しない場合(試験No.3〜12)でも、従来の普通鋼(試験No.1,2)に比べて耐全面腐食性はやや改善している。しかしながら、腐食均一性と塗装耐食性については改善効果は認められない。
これに対して、Al、CuおよびCrを適性量含有させたもの(試験No.13〜58)はこれらの元素の添加による相乗効果でいずれの耐食性が大きく向上しており、腐食均一性、耐すきま腐食性および塗装耐食性も向上していることが分かる。こうした耐食性向上には、Al酸化物とCr酸化物とが共存する安定な酸化物防食皮膜と、Cu含有により形成される緻密な錆皮膜の保護作用が相乗的に寄与しているものと考えられた。
このうちAl、CuおよびCrの併用に加えて、更にNi,Co,Ti,Ca,Mg等の耐食性向上元素を含有させることによって(試験No.20〜58)、鋼材の耐全面腐食性が大幅に向上していることが分かる。特に、CaやMgを含有させることによって、腐食均一性や耐すきま腐食性の向上が認められており(試験No.50〜52,54〜58)、これらの元素の局部pH低下の抑制作用によって局所的な腐食が抑制されたものと推察される。
またNi,Coを含有することによって、塗装耐食性の向上効果が認められ(試験No.20〜23,26〜58等)、これらの元素の錆緻密化作用の相乗効果により塗膜傷部における腐食進行が阻止されたものと推察される。
更に、Seを含有させることによって、耐食性は大幅に向上することが明らかであり(試験No.55,55、57、58等)、Seによる局所的なpH変化の抑制効果がすきま腐食等の局部腐食に対する耐食性の向上に寄与しているものと考えられた。尚、試験No.13〜58の結果から明らかなように、([Cr]/[Al])の値を適切に調整することによって、各種耐食性が大幅に優れる結果となっていることが分かる。
一方、疲労亀裂進展速度に関しては、好ましい製造条件を外れたもの(試験No.14,15,17,19,21,23,25,26,28,29,31,32,34,35,37〜40,42,45,47,49および51)では、結晶粒の粗大化が起こったり、十分な硬質相硬さが得られないことによって硬さ比(Hv/Hv)が適切な値にならず、疲労亀裂進展速度が速くなっていることが分かる。このデータに基づいて、硬さ比(Hv/Hv)と疲労亀裂進展速度の関係を図4に示すが、硬さ比を1.5〜5.0の範囲に規定することによって、疲労亀裂進展速度が低くなっていることが分かる。
耐食性試験に用いた試験片Aの外観形状を示す説明図である。 耐食性試験に用いた試験片Bの外観形状を示す説明図である。 耐食性試験に用いた試験片Cの外観形状を示す説明図である。 硬さ比と疲労亀裂進展速度の関係を示すグラフである。

Claims (8)

  1. C:0.01〜0.2%(質量%の意味、以下同じ)、Si:0.01〜0.5%、Mn:0.01〜2%、Al:0.05〜0.5%、Cu:0.010〜1.5%、Cr:0.010〜1を夫々含有する他、P:0.02%以下(0%を含まない)およびS:0.01%以下(0%を含まない)に夫々抑制し、残部がFeおよび不可避的不純物からなり、軟質相と硬質相とからなる複合組織であり、且つ硬質相のビッカース硬さHvと軟質相のビッカース硬さHvの比(Hv/Hv)が1.5〜5.0であり、軟質相の粒径が円相当直径で20μm以下であることを特徴とする耐食性および疲労亀裂進展抵抗性に優れた船舶用鋼材。
  2. 前記軟質相は、フェライト、焼戻しベイナイトおよび焼戻しマルテンサイよりなる群から選ばれる1種以上であり、硬質相は、ベイナイトおよび/またはマルテンサイト(島状マルテンサイトを含む)である請求項1に記載の船舶用鋼材。
  3. Crの含有量[Cr]とAlの含有量[Al]の比の値([Cr]/[Al])が1〜15である請求項1または2に記載の船舶用鋼材。
  4. 更に、Ni:2%以下(0%を含まない)、Co:1%以下(0%を含まない)およびTi:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上を含有する請求項1〜3のいずれかに記載の船舶用鋼材。
  5. 更に、Ca:0.02%以下(0%を含まない)および/またはMg:0.02%以下(0%を含まない)を含有する請求項1〜4のいずれかに記載の船舶用鋼材。
  6. 更に、Se:0.5%以下(0%を含まない)を含有する請求項1〜5のいずれかに記載の船舶用鋼材。
  7. 更に、Sb:0.5%以下(0%を含まない)および/またはSn:0.5%以下(0%を含まない)を含有する請求項1〜6のいずれかに記載の船舶用鋼材。
  8. 更に、B:0.01%以下(0%を含まない)、V:0.1%以下(0%を含まない)およびNb:0.05%以下(0%を含まない)よりなる群から選ばれる1種以上を含有する請求項1〜7のいずれかに記載の船舶用鋼材。
JP2006016844A 2006-01-25 2006-01-25 耐食性および疲労亀裂進展抵抗性に優れた船舶用鋼材 Active JP4763468B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006016844A JP4763468B2 (ja) 2006-01-25 2006-01-25 耐食性および疲労亀裂進展抵抗性に優れた船舶用鋼材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006016844A JP4763468B2 (ja) 2006-01-25 2006-01-25 耐食性および疲労亀裂進展抵抗性に優れた船舶用鋼材

Publications (2)

Publication Number Publication Date
JP2007197762A true JP2007197762A (ja) 2007-08-09
JP4763468B2 JP4763468B2 (ja) 2011-08-31

Family

ID=38452647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006016844A Active JP4763468B2 (ja) 2006-01-25 2006-01-25 耐食性および疲労亀裂進展抵抗性に優れた船舶用鋼材

Country Status (1)

Country Link
JP (1) JP4763468B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007109A (ja) * 2008-06-25 2010-01-14 Sumitomo Metal Ind Ltd 耐食性およびz方向の靭性に優れた鋼材の製造方法
JP2010121157A (ja) * 2008-11-18 2010-06-03 Jfe Steel Corp 耐腐食疲労特性に優れた高強度中空部材用電縫溶接鋼管
JP2011052306A (ja) * 2009-09-04 2011-03-17 Jfe Steel Corp 高湿潤環境下において耐食性に優れる耐候性鋼材
KR101289124B1 (ko) * 2009-12-10 2013-07-23 주식회사 포스코 해수 내식성이 우수한 선박용 강재

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111742A (ja) * 1997-06-10 1999-01-06 Nippon Steel Corp 疲労き裂伝播特性の優れた鋼材及びその製造方法
JP2002121640A (ja) * 2000-10-16 2002-04-26 Sumitomo Metal Ind Ltd 疲労亀裂進展抑制効果を有する鋼板
JP2004143504A (ja) * 2002-10-23 2004-05-20 Nippon Steel Corp 耐疲労き裂伝播特性に優れた厚鋼材とその製造方法
JP2005139517A (ja) * 2003-11-07 2005-06-02 Jfe Steel Kk 高強度高靭性厚鋼板の製造方法
JP2006009129A (ja) * 2004-06-29 2006-01-12 Kobe Steel Ltd 耐食性に優れた船舶用鋼材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111742A (ja) * 1997-06-10 1999-01-06 Nippon Steel Corp 疲労き裂伝播特性の優れた鋼材及びその製造方法
JP2002121640A (ja) * 2000-10-16 2002-04-26 Sumitomo Metal Ind Ltd 疲労亀裂進展抑制効果を有する鋼板
JP2004143504A (ja) * 2002-10-23 2004-05-20 Nippon Steel Corp 耐疲労き裂伝播特性に優れた厚鋼材とその製造方法
JP2005139517A (ja) * 2003-11-07 2005-06-02 Jfe Steel Kk 高強度高靭性厚鋼板の製造方法
JP2006009129A (ja) * 2004-06-29 2006-01-12 Kobe Steel Ltd 耐食性に優れた船舶用鋼材

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007109A (ja) * 2008-06-25 2010-01-14 Sumitomo Metal Ind Ltd 耐食性およびz方向の靭性に優れた鋼材の製造方法
JP2010121157A (ja) * 2008-11-18 2010-06-03 Jfe Steel Corp 耐腐食疲労特性に優れた高強度中空部材用電縫溶接鋼管
JP2011052306A (ja) * 2009-09-04 2011-03-17 Jfe Steel Corp 高湿潤環境下において耐食性に優れる耐候性鋼材
KR101289124B1 (ko) * 2009-12-10 2013-07-23 주식회사 포스코 해수 내식성이 우수한 선박용 강재

Also Published As

Publication number Publication date
JP4763468B2 (ja) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4898543B2 (ja) 耐ピット性に優れた鋼板およびその製造方法
JP4868916B2 (ja) 耐食性に優れた船舶用鋼材
KR100663219B1 (ko) 원유 유조용 강 및 그 제조 방법, 원유 유조 및 그 방식방법
JP4393291B2 (ja) 耐食性に優れた船舶用鋼材
JP4445444B2 (ja) 複合耐食性に優れた船舶用鋼材および溶接構造物
JP2006037201A (ja) 耐食性に優れた船舶用鋼材
JP4616181B2 (ja) 大入熱溶接時のhaz靱性および耐食性に優れた船舶用鋼材
JP5958103B2 (ja) 耐塗膜膨れ性に優れた船舶バラストタンク用鋼材
CN109790607B (zh) 船舶压载舱用钢材和船舶
JP4502948B2 (ja) 耐食性および脆性破壊発生特性に優れた船舶用鋼材
JP4763468B2 (ja) 耐食性および疲労亀裂進展抵抗性に優れた船舶用鋼材
JP4579837B2 (ja) 耐食性および脆性破壊発生特性に優れた船舶用鋼材
JP4659626B2 (ja) 耐食性と母材靭性に優れた船舶用高張力鋼材
JP4444924B2 (ja) 耐食性と母材靭性に優れた船舶用高張力鋼材
JP4119941B2 (ja) 湿潤の大気雰囲気での耐すきま腐食性に優れた船舶用鋼材
JP3923962B2 (ja) 耐食性に優れた船舶用鋼材
JP2008133536A (ja) 耐食性に優れた船舶用鋼材
JP4476928B2 (ja) 耐食性と母材靭性に優れた船舶用高張力鋼材
JP4502950B2 (ja) 耐食性および疲労亀裂進展抵抗性に優れた船舶用鋼材
JP4476927B2 (ja) 耐食性と母材靭性に優れた船舶用高張力鋼材
JP4786995B2 (ja) 溶接性および耐食性に優れた船舶用鋼材
JP4579838B2 (ja) 耐食性および脆性亀裂停止特性に優れた船舶用鋼材
JP5143707B2 (ja) 船舶用鋼材
JP4476926B2 (ja) 大入熱溶接時のhaz靱性および耐食性に優れた船舶用鋼材
JP4502949B2 (ja) 耐食性および脆性亀裂停止特性に優れた船舶用鋼材

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4763468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150