JP2007178278A - エンコーダ及びレーザ照射装置 - Google Patents

エンコーダ及びレーザ照射装置 Download PDF

Info

Publication number
JP2007178278A
JP2007178278A JP2005377595A JP2005377595A JP2007178278A JP 2007178278 A JP2007178278 A JP 2007178278A JP 2005377595 A JP2005377595 A JP 2005377595A JP 2005377595 A JP2005377595 A JP 2005377595A JP 2007178278 A JP2007178278 A JP 2007178278A
Authority
JP
Japan
Prior art keywords
light
emission
light source
encoder
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005377595A
Other languages
English (en)
Other versions
JP5035657B2 (ja
Inventor
Toru Imai
亨 今井
Akihiro Watanabe
昭宏 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Sendai Nikon Corp
Original Assignee
Nikon Corp
Sendai Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Sendai Nikon Corp filed Critical Nikon Corp
Priority to JP2005377595A priority Critical patent/JP5035657B2/ja
Publication of JP2007178278A publication Critical patent/JP2007178278A/ja
Application granted granted Critical
Publication of JP5035657B2 publication Critical patent/JP5035657B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Transform (AREA)

Abstract

【課題】移動体の位置情報を高精度に検出する。
【解決手段】半導体レーザ51は、圧電素子53上に固設されている。圧電素子53の駆動方向と、レーザビームの射出方向とは直交するように設置されている。圧電素子53は、半導体レーザ51の位置を、X軸方向に周期的に変動させている。この変動により、光源3からのレーザ光の出射位置が、X軸方向に周期的に変動するようになる。半導体レーザ51は小型で軽量であるため、振動周波数を高くすることができる。
【選択図】図2

Description

本発明は、エンコーダ及びレーザ照射装置に係り、さらに詳しくは、光電式のエンコーダ及び該エンコーダに好適に適用されるレーザ照射装置に関する。
従来より、移動体の変位を信号化するエンコーダとして、光電式のエンコーダが用いられている。光電式のエンコーダは、移動体に固設されたスケール上に光を照射し、スケールを介した光の受光結果に含まれる移動体の変位に関する情報を検出するエンコーダである。スケール上には、回折格子などのパターンが形成されており、移動体の移動に伴ってスケール上の光の照射位置が変化し光の照射位置にあるそのパターンに応じてスケールを介した光の状態が変化するので、その状態の変化により、移動体の変位に関する情報を検出するのである。
光電式のエンコーダでは、移動体の変位を検出分解能の高度化が進められており、最近では、そのスケール上に照射される光を、その移動体の変位の計測方向に振動させ、その光の照射位置に応じた上記受光結果の変化に基づいて、上記相対変位を高精度に出力するエンコーダが提案されている(例えば、特許文献1参照)。このようなエンコーダでは、スケールの相対位置を精度良く検出するために、スケールの移動速度に対し、計測方向に関する光の振動周波数を十分に高くする必要がある。しかしながら、光をスケール上で振動させるためには、スケール上に光を導く光学系などをその周波数で駆動する必要があり、その駆動機構の共振周波数が低い場合には、レーザビームの照射位置の変動周波数を高くするのが困難となる。
米国特許第6,639,686号明細書
本発明は、第1の観点からすると、所定方向に沿って配列されたパターンに光を照射する光源と、前記パターンを介して、前記光を受光する受光部とを備えるエンコーダにおいて、前記光源は、前記パターンに照射される前記光を、前記パターンが配列された前記所定方向に周期的に変動させるために、光の出射位置及び出射角度の少なくとも一方を変化させることを特徴とするエンコーダである。
これによれば、パターンに照射される光を、そのパターンが配列された所定方向に周期的に変動させるために、光源における光の出射位置及び出射角度の少なくとも一方を変化させている。このようにすれば、光の照射位置を周期的に変動させるために、その光の光路中の光学系などの重量物を機械的に振動させる必要がなくなる。その結果、その光を振動させる機構の共振周波数を高くして、光の振動周波数を高く設定することができる。
本発明は、第2の観点からすると、光を発光する発光器と;前記発光器から発光された光を所定幅の平行光に変換する光学系と;前記光学系で変換された平行光を、所定方向に沿って配列されたパターンに照射する対物光学素子と;前記光の進行方向に直交する方向に関する前記光学系の位置及び角度のいずれか一方を、周期的に変動させる振動子と;を備えるエンコーダである。
これによれば、発光器から発光された光を所定幅の平行光に変換する光学系の位置及び角度のいずれか一方を、振動子により周期的に振動させるので、出射位置及び出射角度が変化しない光源を用いる場合や、対物光学素子などの位置を変動させることがその重量などから適当でない場合にも、パターンに照射される光を振動させることができるようになる。
本発明は、第3の観点からすると、レーザ光を射出するレーザ発振器と;前記レーザ発振器の位置を、前記レーザ光の出射方向に直交する方向に周期的に変動させる振動子と;を備えるレーザ照射装置である。
これによれば、振動子がレーザ発振器をレーザ光の出射方向に直交する方向に振動させるため、レーザ光の出射位置を周期的に振動させることができる。
≪第1の実施形態≫
以下、本発明の第1の実施形態について説明する。図1には、本発明の第1の実施形態に係るエンコーダ100の主要部の概略構成が示されている。エンコーダ100は、X軸方向に移動可能な不図示の移動する物体(移動体)に固設されたスケール20にレーザビームを照射して、その反射光に基づいて、移動体の変位情報を検出する光学式エンコーダである。
図1に示されるように、エンコーダ100は、ヘッド部16とスケール20とを備えている。ヘッド部16は、不図示の固定部に固定されており、スケール20との相対変位に関する情報を含むレーザビームを検出するための検出ヘッドである。スケール20は、上記相対変位を検出するための目盛としての役割を果たすスケールである。
ヘッド部16は、光源3と、コリメータレンズ4と、ビームスプリッタ6と、対物レンズ7と、焦点レンズ8と、光センサ9と、集光レンズ11と、CCD13と、コントローラ15とを備えている。
光源3は、−Z側にレーザビーム(波長は、例えば640nm)を出射するレーザ光源である。光源3からのレーザビームの出射位置は、X軸方向に周期的に変動している。
図2には、光源3の主要部の概略構成が示されている。図2に示されるように、光源3は、半導体レーザ51と、圧電素子53と、ベース55と、キャップ56と、透過窓57とを含んで構成されている。
半導体レーザ51は、例えば活性層(発光層)をクラッド層(閉じ込め層)で両面から挟んだ、ダブルへテロ接合の半導体素子を有している。一方のクラッド層はそれぞれP型の半導体であり、他方のクラッド層はN型の半導体である。そのダブルへテロ構造の半導体素子のZ軸両端に正負の電極が取り付けられている。正負電極を通じて、上記半導体素子の順方向に活性電流を流すと、活性層の両側の各接合部には電位障壁が形成されているので、活性層の伝導帯には電子が貯まり、価電子帯にはホールが貯まるようになるが、活性層は、クラッド層に比べエネルギーギャップが低くなっているため、電子とホールが再結合し、活性層において自然放出光が生じ、それが伝導帯電子を刺激して光が誘導放出されるようになる。
活性層は、両クラッド層よりも屈折率が高くなっているため、発生した誘導放出光は活性層内に閉じ込められる。さらに、半導体の単結晶は強いへき開性をもっているため、誘導放出光は、へき開面から戻ってレーザ発振を起こし、最終的には、レーザビームが−Z方向に射出されるようになる。すなわち、半導体レーザ51においては、半導体素子の各層と平行な方向に出射される。
圧電素子53は、その一端がベース55に固定され、他端に半導体レーザ51が固定されている。これにより、不図示の圧電素子駆動装置により圧電素子53に所定の電圧が印加されると、その電圧に応じて圧電素子53がX軸方向に伸縮し、その伸縮に応じて半導体レーザ51のX位置が変化するようになる。本実施形態では、圧電素子駆動装置により、この圧電素子53に、その大きさが正弦波状に変動する電圧を印加している。この正弦波電圧の角周波数をωとする。これにより、半導体レーザ51のX位置も、正弦波状に変化する。すなわち、レーザビームの出射方向は−Z方向であり、半導体レーザ51は圧電素子53により、レーザビームの出射方向と直交する方向に振動するように設定されている。
なお、光源3としては、図3に示される構成のものを採用することも可能である。図3に示される光源3の構成は、主として、半導体レーザ51’が、図2に示される半導体レーザ51のような端面発光型の半導体レーザではなく、面発光型のレーザである点が異なっている。面発光型のレーザでは半導体の各層と垂直な方向にレーザビームが出射されるため、レーザビームの出射面が−Z側(透過部)側となるように、半導体レーザ51’を圧電素子53の端部に固定する必要がある。
なお、図2、図3に示される光源3はともに、その構造上、圧電素子の駆動方向とレーザビームの射出方向とは直交するようになる。いずれにしても、半導体レーザ51、51’は、小型で軽量であるため、圧電素子53を中心とする半導体レーザの駆動機構の共振周波数は、例えば、光源3全体をX軸方向に振動させたときの共振周波数よりも高くすることができる。
光源3から出射されたレーザビームは、コリメータレンズ4で平行光に変換された後、ビームスプリッタ6に入射する。ビームスプリッタ6において、レーザビームは、反射して−X側に進むレーザビームと、そのまま透過して−Z側に進むレーザビームとに分離される。
−X側に進んだレーザビームは、集光レンズ11によって集光され、CCD13に入射する。CCD13は、その撮像面に入射したレーザビームの光強度分布を、画像信号に変換して、コントローラ15に送る。コントローラ15は、この画像信号に基づいて、光強度分布のピーク位置を検出する。ピーク位置の算出には、様々な方法を適用することができるが、例えば、スライス法などを適用することができる。
前述のとおり、光源13から発せられるレーザビームの出射位置はX軸方向に振動しているため、CCD13に入射するレーザビームの位置もそれに応じて振動し、コントローラ15によって検出されるピーク位置も振動する。そこで、コントローラ15は、検出されたピーク位置の振動中心を一定時間監視する。そして、このピーク位置の振動中心が、当初の位置からずれた場合には、そのずれを修正するようなオフセット指令を、不図示の圧電素子駆動装置に出力する。圧電素子駆動装置は、そのオフセット指令に従って、圧電素子53に印加する正弦波電圧にオフセットを与える。これにより、圧電素子53による半導体レーザ51の位置の振動中心がそのオフセット分だけ補正され、光源3から発せられるレーザビームの出射位置が調整され、その出射位置の変動範囲の経時変化が低減される。
なお、必ずしも、圧電素子53の正弦波電圧にオフセット電圧を加える必要はない。例えば、レーザビームの光路中に平行平板を挿入して、その角度を調節することによって、レーザビームの通過位置の変動の中心を一定に保つようにしても構わない。
一方、ビームスプリッタ6を通過して、対物レンズ7によってスケール上のグレーティング1上に集光される。
スケール20は、不図示の移動体上に取り付けられている。スケール20上には、その移動体の移動方向(X軸方向)に周期性を有する反射型のグレーティング1が形成されている。このグレーティング1は例えば、凹凸面型の回折格子である。また、そのピッチ(周期)pは、全区間で同一である。pは、50μm以下、例えば2μm又は1.6μmである。
グレーティング1の回折格子のピッチpは、エンコーダ100に求められる分解能に応じて適切に決定される。当然、高分解能が要求されるようになれば、ピッチpも短く設定される。このピッチpに対応する空間角周波数をω’とする。すなわちグレーティング1は、空間角周波数ω’の正弦波回折格子である。上述したように、エンコーダ100では、光源3におけるレーザビームの出射位置が、所定の角周波数ωで、X軸方向に振動している。このため、スケール20のグレーティング1上に照射されるレーザビームもX軸方向に各周波数ωで周期的に変動している。
スケール20の相対変位を精度良く検出するためには、グレーティング1の空間角周波数ω’と、移動体の移動速度(すなわちスケール20の移動速度)と、圧電素子53による半導体レーザ51の駆動周波数ωとの関係を適切なものとする必要がある。すなわち、グレーティング1の空間角周波数ω’と、移動体の移動速度(すなわちスケール20の移動速度)とのバランスを考慮して、圧電素子53による半導体レーザ51の位置の変動周波数ωを、十分に高くする必要がある。本実施形態では、光源3全体でなく、内部の半導体レーザ51のみを駆動しているので、圧電素子53による半導体レーザ51の位置の変動周波数ωを高くすることができるようになり、グレーティング1の空間角周波数ω’を上げて、スケール20の変位の分解能を上げることができる。
グレーティング1上で反射したレーザビームは、対物レンズ7を通過して、ビームスプリッタ6で折り曲げられ、焦点レンズ8を経由して、光センサ9で受光される。光センサ9は、フォトダイオードなどから構成されており、光センサ9の受光結果は、電流信号に変換される。光センサ9の受光結果に相当する電流信号は、不図示のI−Vコンバータにより電圧信号に変換される。その電圧信号は、不図示の検出装置へ送られる。
上述したように、エンコーダ100では、スケール20のグレーティング1上に照射されるレーザビームは、所定の角周波数ωで、X軸方向に振動している。このため、光センサ9から出力される信号は、スケール20上の回折格子の空間角周波数ω’の信号成分と、角周波数ωの成分とを含んだ信号となっている。言い換えると、この出力信号は、スケール20上のグレーティング1の空間角周波数ω’の信号が、周波数ωで変調された変調信号となっている。
不図示の検出装置では、この変調信号を周波数ωで復調し、スケール20の空間角周波数ω’の信号を抽出する。その信号の位相は、ヘッド部16に対するスケール18のグレーティング1周期内の相対変位に関する情報である。検出装置は、位相と、これまでにカウントされたスケール20のX位置とに基づいて、検出ヘッド16に対するスケール20の相対変位に関する情報を算出して、出力する。
以上詳細に述べたように、本実施形態によれば、光源3が、スケール20のグレーティング1に照射されるレーザビームをスケール20のグレーティング1の配列方向(X軸方向)に周期的に変動させるために、レーザビームの出射位置を変化させている。これにより、光源3自体や、そのレーザビームの光路中の光学系などの重量物を機械的に振動させる必要がなくなる。その結果、そのレーザビームの照射位置を変動させる機構の共振周波数を高くして、レーザビームの照射位置の変動周波数ωを高く設定することができる。
光源3は、その光源3及び光センサ9に対してスケール20のグレーティング1がX軸方向に相対移動している間、レーザビームの出射位置を変化させる。これにより、光センサ9では、スケール20がX軸方向に相対変位に関する情報に相当する信号(すなわち空間周波数ω’に対応する信号)が、レーザビームの出射位置の角周波数ωでの周期的な変動によって変調された変調信号が受光されるようになるので、その信号を復調すれば、その相対変位に関する情報を精度良く検出することができる。
本実施形態では、光源3は、レーザビームを発光する半導体レーザ51、51’と、半導体レーザ51、51’の位置をレーザビームの出射方向に直交する方向に周期的に変動させる圧電素子53とを備えている。
半導体レーザ51、51’は、小型で軽量であり、その位置を高い周波数で好適に振動させることが可能である。半導体レーザ51は、ダブルへテロ接合方式のものであったが、ホモ接合方式のものであってもよいことは勿論である。すなわち、本発明は、レーザビームの発振方式には限定されない。
また、圧電素子53は、リニアリティや、ヒステリシスなどの特性が良好であり、半導体レーザ51、51’の位置を周期的に変動させるのに好適である。圧電素子53は、機械的共振点が高いため、高い周波数で半導体レーザを変動させることができる。
なお、光を発光する発光器としては、小型で軽量であれば、半導体レーザ以外のものを採用することができる。また、圧電素子の代わりに磁歪素子を用いることもできる。また、小型のボイス・コイル・モータや、MEMS(Micro Electro Mechanical Systems)、例えば、静電型アクチュエータや、熱アクチュエータなどを採用することも可能である。
また、本実施形態によれば、半導体レーザ51と光センサ9との間における、レーザビームの通過位置に対応する光強度分布に相当する画像信号を出力するCCD13と、その画像信号に基づいて、光源3からのレーザビームの出射位置を監視し、それを調整するコントローラ15とをさらに備える。このように、コントローラ15によって、光源3からのレーザビームの出射位置の変動中心の経時変化を監視して、その監視結果に基づいてレーザビームの出射位置を調整することにより、光の出射位置の変動中心が一定に保たれるようになり、経時変化によるスケール20の相対変位の検出誤差が増大するのを低減することができる。
本実施形態のエンコーダ100では、レーザビームを射出する半導体レーザ51、51’と、半導体レーザ51、51’の位置を、レーザビームの出射方向(−Z方向)に直交する方向(X軸方向)に周期的に変動させる圧電素子53と、を備えるレーザ照射装置としての光源3を備えることによって、スケール20の相対位置情報に関する情報を含むレーザビームの変調を実現している。
なお、本実施形態では、光源3からのレーザビームの出射位置を変調したが、光源からの出射角度を変調するようにしてもよい。この場合には、半導体レーザ51、51’の角度を変化させるアクチュエータは、回転型のアクチュエータとなる。
また、光源3の内部には、例えば、半導体レーザでのレーザ光の強度を検出するフォトダイオードなどが備えられている場合もある。この場合にも、軽量化の観点から、圧電素子53に取り付けられるのは、半導体レーザ51、51’だけでよい。
また、本実施形態では、半導体レーザ51、51’自体をアクチュエータに固定して、その位置を振動させたが、光源3から発せられるレーザビームの出射位置又は出射角度が周期的に変化させればよいのであって、半導体レーザ自体の位置を変動させる必要はない。例えば、半導体レーザと透過窓との間のレーザビームの光路上にMEMSを配置し、そのMEMSの駆動によってレーザビームの出射位置又は出射角度が周期的に変化すればよい。すなわち、光源3の内部に、半導体レーザの光の出射位置のドリフトを検出する機構を備えるようにしてもよい。
≪第2の実施形態≫
次に、本発明の第2の実施形態に基づいて説明する。図4には、本発明の第2の実施形態に係るエンコーダ101の概略的な構成が示されている。図4に示されるように、エンコーダ101は、光源3の代わりに光源3’を備える点と、コリメータレンズ4をX軸方向に駆動するアクチュエータ30を備える点とが異なっている。
光源3’としては、一般的な市販の半導体レーザパッケージを採用することができる。すなわち、上記第1の実施形態のように、出射するレーザビームの出射位置や出射角度を周期的に変化させる機能を有する光源である必要はない。
アクチュエータ30としては、上記第1の実施形態と同様に、圧電素子を適用することができるが、アクチュエータの種類には限定されない。ただし、上記第1の実施形態と同様に、コリメータレンズ4を、角周波数ωでX軸方向に振動させることができる能力が要求される。この振動により、コリメータレンズ4から射出される平行光の出射位置は、X軸方向に振動する。結果的に、スケール20のグレーティング1上のレーザビームの照射位置は、X軸方向に振動し、光センサ9において、その振動による変調信号が検出され、上記第1の実施形態と同様に、この変調信号に基づいて、スケール20(すなわち移動体)のX軸方向の変位が検出される。
本実施形態では、コリメータレンズ4から発せられる平行光の位置は、X軸方向に振動しているため、CCD13に入射するレーザビームの位置もそれに応じて振動し、コントローラ15によって検出されるピーク位置も振動する。そこで、コントローラ15は、検出されたピーク位置の振動中心を一定時間監視する。そして、このピーク位置の振動中心が、当初の位置からずれた場合には、そのずれを修正するようなオフセット指令を、不図示のアクチュエータ駆動装置に出力する。アクチュエータ駆動装置は、そのオフセット指令に従って、アクチュエータ30に印加する正弦波電圧にオフセットを与える。これにより、アクチュエータ30によるコリメータレンズ4の位置の振動中心がそのオフセット分だけずれ、コリメータレンズ4から発せられる平行光の出射位置が調整され、その出射位置の変動範囲の経時変化が低減される。
以上詳細に説明したように、本実施形態によれば、光源3から発光されたレーザビームを所定幅の平行光に変換するコリメータレンズ4の位置を、アクチュエータ30により周期的に変動させるので、光源3からのレーザビームの出射位置や、対物レンズ7などを変動させることが適当でない場合、例えば、対物レンズ7がコリメータレンズ4に比して重い場合にも、スケール20のグレーティング1に照射するレーザビームの照射位置を変動させることができる。
また、本実施形態では、コリメータレンズ4をアクチュエータ30により振動させたが、このコリメータレンズ4の代わりに、平行平板を配置して、平行平板を回転振動させるようにしてもよい。このようにしても、スケール20のグレーティング1上のレーザ光の照射位置は、X軸方向に振動するようになる。すなわち、本実施形態では、光学系の位置を変動させたが、光学系の角度を変動させるようにしてもよい。
また、本実施形態においても、光源3と光センサ9との間における、レーザビームの光強度分布に相当する画像信号を出力するCCD13と、その画像信号に基づいて、コリメータレンズ4の位置の変動状態を調整するコントローラ15とをさらに備えている。このようにすれば、コリメータレンズ4の位置の変動中心の変化を監視して、その監視結果に基づいてレーザビームの出射位置を調整することにより、コリメータレンズ4の位置の変動中心が一定に保たれるようになり、経時変化による検出誤差の増大が低減される。
なお、上記各実施形態では、CCD13の画像信号からレーザビームの出射位置のドリフトを検出したが、本発明はこれには限られない。
例えば、CCD13の代わりに、絞りを置き、その後方に受光素子を置き、絞りと集光レンズ11によるレーザビームの集光位置とが一致したときだけ、そのレーザビームが受光素子に入射されるようにすれば、上記第1、第2の実施形態と同様に、レーザビームの位置の変動中心がドリフトしていることを検出することができる。また、これらの代わりに、受光面が小さい受光素子を用いてもよい。
また、CCD13の代わりに、ナイフエッジを配置するようにしてもよい。集光レンズ11により集光されたレーザビームは、ナイフエッジ上に集光されるようになる。ナイフエッジに遮られずに通過した光は、受光素子によって受光され電気信号に変換されるようにする。
レーザビームのスポットの振動中心が、ナイフエッジの端部と一致している場合には、受光素子から出力される信号のデューティ比は50%となるように設定されているが、レーザビームの振動中心がナイフエッジの端部と一致していない場合には、受光素子から出力される信号のデューティ比は50%からずれてくる。したがって、この場合には、この信号のデューティ比が50%となるように、レーザビームのスポットの振動中心を調整すればよい。
なお、上記各実施形態では、レーザビームのスポットの振動中心のドリフトを検出し、そのドリフト分、アクチュエータの駆動を調整したが、エンコーダの出力、すなわちスケール20の相対変位をドリフト分補正するようにしてもよい。
上記各実施形態では、ビームスプリッタ6としてハーフミラーを用いているが、偏光ビームスプリッタを用いても構わない。この他、エンコーダ内部の各種構成要素は、適宜設計変更が可能である。レーザビームの波長や、各回折格子のピッチ、各種アクチュエータの駆動周波数などは、求められる分解能に応じて適宜変更することができる。また、上記各実際形態では、スケールを反射型としたが、スケールを透過型としてもよいことは勿論である。
なお、上記各実施形態では、それぞれ、正弦波信号によりアクチュエータを駆動したが、駆動信号は、三角波、のこぎり波でもよく、周期信号であればよい。また、いわゆる回折光干渉方式のエンコーダや、いわゆる影絵方式のエンコーダにも本発明を適用することができる。また、コリメータレンズ4の代わりに、回折格子を置き、その回折格子で光源3からのレーザビームに対する0次光、±1次回折光を発生させ、それらの回折光の出射角度を周期的に変動させる3ビーム方式のエンコーダにも、本発明を適用することができる。
また、リニアエンコーダだけでなく、ロータリーエンコーダにも本発明を適用することができることは勿論である。また、グレーティング1は、透過型の回折格子であってもよい。この場合、ビームスプリッタ6はなくてもよく、集光レンズ8、光センサ9などは、スケール20の−Z側に配置することができる。また、上記各実施形態では、ヘッド部16を固定し、スケール20を移動体に配置したが、ヘッド部16を移動体に配置し、スケール20を固定するようにしてもよい。
以上説明したように、本発明のエンコーダは、移動体の変位を検出するのに適しており、本発明のレーザ照射装置は、エンコーダに用いられるのに適している。
本発明の第1の実施形態に係るエンコーダの主要部の概略構成を示す図である。 光源の主要部の概略構成の一例(その1)を示す図である。 光源の主要部の概略構成の一例(その2)を示す図である。 本発明の第2の実施形態に係るエンコーダの主要部の概略構成を示す図である。
符号の説明
3、3’…光源、4…コリメータレンズ、6…ビームスプリッタ、7…対物レンズ、8…集光レンズ、9…光センサ、11…集光レンズ、13…CCD13…コントローラ、16…ヘッド部、20…スケール、30…アクチュエータ、51、51’…半導体レーザ、53…圧電素子、55…ベース、56…キャップ、57…ガラス窓、100、101…エンコーダ。

Claims (9)

  1. 所定方向に沿って配列されたパターンに光を照射する光源と、
    前記パターンを介して、前記光を受光する受光部とを備えるエンコーダにおいて、
    前記光源は、前記パターンに照射される前記光を、前記パターンが配列された前記所定方向に周期的に変動させるために、光の出射位置及び出射角度の少なくとも一方を変化させることを特徴とするエンコーダ。
  2. 前記光源は、前記光源及び前記受光部に対して前記パターンが前記所定方向に相対移動している間、前記光の出射位置及び出射角度の少なくとも一方を変化させることを特徴とする請求項1に記載のエンコーダ。
  3. 前記光源は、光を発光する発光器と;
    前記発光器の位置を前記光の出射方向に直交する方向に周期的に変動させる振動子と;を備えることを特徴とする請求項1又は2に記載のエンコーダ。
  4. 前記発光器は、半導体レーザであり、
    前記振動子は、圧電素子及び磁歪素子のいずれか一方であることを特徴とする請求項2に記載のエンコーダ。
  5. 前記光源と前記受光部との間で、光の通過位置の変動中心を監視する監視装置と;
    その監視結果に基づいて、前記光源からの光の出射位置及び出射角度の少なくとも一方を調整する調整装置と;をさらに備えることを特徴とする請求項1〜4のいずれか一項に記載のエンコーダ。
  6. 光を発光する発光器と;
    前記発光器から発光された光を所定幅の平行光に変換する光学系と;
    前記光学系で変換された平行光を、所定方向に沿って配列されたパターンに照射する対物光学素子と;
    前記光の進行方向に直交する方向に関する前記光学系の位置及び角度のいずれか一方を、周期的に変動させる振動子と;を備えるエンコーダ。
  7. 前記光学系は、コリメータレンズ又は平行平板であることを特徴とする請求項6に記載のエンコーダ。
  8. 前記前記光学系の変動中心を監視する監視装置と;
    その監視結果に基づいて、前記光学系の位置及び角度のいずれか一方を、周期的に変動させる制御装置と;をさらに備えることを特徴とする請求項6又は7に記載のエンコーダ。
  9. レーザ光を射出するレーザ発振器と;
    前記レーザ発振器の位置を、前記レーザ光の出射方向に直交する方向に周期的に変動させる振動子と;を備えるレーザ照射装置。
JP2005377595A 2005-12-28 2005-12-28 エンコーダ及びレーザ照射装置 Expired - Fee Related JP5035657B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005377595A JP5035657B2 (ja) 2005-12-28 2005-12-28 エンコーダ及びレーザ照射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005377595A JP5035657B2 (ja) 2005-12-28 2005-12-28 エンコーダ及びレーザ照射装置

Publications (2)

Publication Number Publication Date
JP2007178278A true JP2007178278A (ja) 2007-07-12
JP5035657B2 JP5035657B2 (ja) 2012-09-26

Family

ID=38303613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005377595A Expired - Fee Related JP5035657B2 (ja) 2005-12-28 2005-12-28 エンコーダ及びレーザ照射装置

Country Status (1)

Country Link
JP (1) JP5035657B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8529823B2 (en) 2009-09-29 2013-09-10 Asml Netherlands B.V. Imprint lithography
JP2013250167A (ja) * 2012-05-31 2013-12-12 Pioneer Electronic Corp 距離計測装置、距離補正方法、距離補正プログラム、および記録媒体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313113A (ja) * 1987-06-16 1988-12-21 Canon Inc 走査光学装置
JPH0223482A (ja) * 1988-05-11 1990-01-25 Symbol Technol Inc 可動レーザー素子、光学素子及びセンサー素子を有するミラー無しスキャナー
JPH0358014A (ja) * 1989-07-27 1991-03-13 Omron Corp ビームスキャニング装置
US6639686B1 (en) * 2000-04-13 2003-10-28 Nanowave, Inc. Method of and apparatus for real-time continual nanometer scale position measurement by beam probing as by laser beams and the like of atomic and other undulating surfaces such as gratings or the like relatively moving with respect to the probing beams

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313113A (ja) * 1987-06-16 1988-12-21 Canon Inc 走査光学装置
JPH0223482A (ja) * 1988-05-11 1990-01-25 Symbol Technol Inc 可動レーザー素子、光学素子及びセンサー素子を有するミラー無しスキャナー
JPH0358014A (ja) * 1989-07-27 1991-03-13 Omron Corp ビームスキャニング装置
US6639686B1 (en) * 2000-04-13 2003-10-28 Nanowave, Inc. Method of and apparatus for real-time continual nanometer scale position measurement by beam probing as by laser beams and the like of atomic and other undulating surfaces such as gratings or the like relatively moving with respect to the probing beams

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8529823B2 (en) 2009-09-29 2013-09-10 Asml Netherlands B.V. Imprint lithography
JP2013250167A (ja) * 2012-05-31 2013-12-12 Pioneer Electronic Corp 距離計測装置、距離補正方法、距離補正プログラム、および記録媒体

Also Published As

Publication number Publication date
JP5035657B2 (ja) 2012-09-26

Similar Documents

Publication Publication Date Title
US7332709B2 (en) Photoelectric encoder
JP5500075B2 (ja) エンコーダ
JP2008122277A (ja) エンコーダ
WO2008032485A1 (fr) Projecteur laser
JP2007170938A (ja) エンコーダ
JP4147947B2 (ja) 光走査装置及びこれを用いた物体検出装置、描画装置
JP4827857B2 (ja) エンコーダ
JP2009271495A (ja) 固定スキャン周波数微小電子機械スキャン制御器、及び、その制御方法
JP2009145609A (ja) 光走査装置および光走査方法および画像形成装置
JP2011180294A (ja) 光走査装置の駆動制御装置
JP5035657B2 (ja) エンコーダ及びレーザ照射装置
JP5128108B2 (ja) 位置測定装置及び位置測定装置を作動させる方法
JPS625677A (ja) 周波数安定化半導体レ−ザ−素子
JP2005077288A (ja) レーダ装置
JP5212840B2 (ja) エンコーダ
JP2005241482A (ja) 光偏向器、光偏向器における偏向手段の共振周波数を検出する検出装置及び方法
JP4880519B2 (ja) 干渉測定装置
US8345339B2 (en) Optical deflector
WO2007074752A1 (ja) チルトセンサ及びエンコーダ
JP2012189546A (ja) 変位センサ
JP6115655B2 (ja) エンコーダ装置、及び装置
JP2676875B2 (ja) 外部共振器型半導体レーザ及び波長多重光伝送装置
JP4858755B2 (ja) エンコーダ
JP4130599B2 (ja) レーザ光照射装置
JP4220219B2 (ja) 変位光量変換装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5035657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees