JP2007162081A - 高圧処理装置及び高圧処理方法 - Google Patents

高圧処理装置及び高圧処理方法 Download PDF

Info

Publication number
JP2007162081A
JP2007162081A JP2005360794A JP2005360794A JP2007162081A JP 2007162081 A JP2007162081 A JP 2007162081A JP 2005360794 A JP2005360794 A JP 2005360794A JP 2005360794 A JP2005360794 A JP 2005360794A JP 2007162081 A JP2007162081 A JP 2007162081A
Authority
JP
Japan
Prior art keywords
pressure
processing
shield layer
thermal shield
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005360794A
Other languages
English (en)
Other versions
JP5066336B2 (ja
Inventor
Kenji Matsumoto
賢治 松本
Takayuki Komiya
隆行 小宮
Hidekazu Kondo
英一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2005360794A priority Critical patent/JP5066336B2/ja
Priority to US11/610,131 priority patent/US20070134602A1/en
Publication of JP2007162081A publication Critical patent/JP2007162081A/ja
Application granted granted Critical
Publication of JP5066336B2 publication Critical patent/JP5066336B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition

Abstract

【課題】超臨界流体を利用して基板に成膜処理するにあたって、耐圧容器の熱伝導率が小さいことに基づく処理雰囲気の温度安定性の課題を解決し、処理雰囲気の安定化を図って安定して成膜処理を行うことができる高圧処理装置を提供すること。
【解決手段】耐圧容器内にヒータを備えた基板の載置台を設け、前記耐圧容器内において、この載置台から見える部分に耐圧容器の材質よりも熱伝導率の大きい材質例えばアルミニウムや銅などの材質からなる熱的シールド層を積層する。この場合、熱的シールド層内に加熱手段等の温度調整部を設けることが好ましく、また熱的シールド層と耐圧容器の内壁との間に耐圧容器の材質よりも熱伝導率の小さい石英などの断熱層を設けることが好ましい。
【選択図】図1

Description

本発明は、基板例えば半導体ウエハを超臨界流体及び成膜原料を含む処理流体を用いて処理する高圧処理装置及び高圧処理方法に関する。
半導体デバイスの高集積化に伴い、配線の形成についてもアスペクト比が高い微細なパターンに配線材料を埋め込む技術の開発が進められている。その手法の一つとして、超臨界流体を成膜原料の媒体として用いた微細パターンの成膜方法が提案されている。例えば銅(Cu)配線を形成するためには、超臨界状態の二酸化炭素にCuを含む例えば有機錯体化合物からなるプリカーサ(前駆体化合物)を溶解し、これに還元剤である例えば水素を添加した処理流体を半導体ウエハ(以下、「ウエハ」という)の表面に供給してCuの成膜が行われる。
超臨界状態とは、物質の温度・圧力が当該物質固有の値(臨界点)以上となったときに、当該物質が気体と液体との特徴を併せ持つ状態になることをいう。そのため、超臨界状態にある物質を媒体に用いると、液体に近い密度・溶解度を持つことから、気体の媒体に比べてプリカーサの溶解度を高く維持できる一方、気体に近い拡散係数を利用することで、プリカーサを液体の媒体よりも効率よくウエハに輸送することが可能である。そのため、超臨界状態の媒体にプリカーサを溶解した処理流体を用いた成膜では、成膜速度が高く、且つ微細パターンへのカバレッジが良好な成膜を行うことが可能となっている(例えば、特許文献1参照。)。
図11は、このような成膜方法を実施するシステムの一例であり、ウエハに処理流体を供給する高圧処理装置1については簡略化して示されている。前記高圧処理装置1はウエハWを載置するための載置台10と、この載置台10の内部に設けられ、ウエハWを加熱するためのヒータ11と、前記載置台10を囲む処理容器12とを備え、処理容器12内に超臨界状態の二酸化炭素とプリカーサと添加剤(還元剤)である水素とを含む処理流体を導入することで、ウエハWの表面にCu膜が成膜される。
このように上記高圧処理装置1では、処理容器12内に高圧例えば7.4MPaの処理流体を導入することから、処理容器12は高圧に耐え得る高張力材(高張力が加わっても破断しない材料)、例えばステンレススチール(以下、「SUS」という)で形成されている。
ここで処理容器12に求められる特性について簡単に説明する。先ず、ウエハW間の成膜再現性の観点から言うと、処理流体が触れる処理容器12の内壁温度は、31℃〜130℃、例えば70℃で一定に保持されることが望ましい。また、ウエハW面内の成膜均一性の観点から言えば、処理流体が触れる処理容器12の内壁の温度は、むらが無く均一であることが望ましく、例えば内壁の温度差が±5℃よりも小さいことが望ましい。このことは、図12に示すように○印をCu膜の膜厚、■印を処理容器12の内壁の温度とすると、処理容器12の内壁の温度が異なるとウエハWの表面に形成されるCu膜の膜厚も異なるという実験結果によって説明できる。
なお、処理容器12の内壁の温度は、処理流体の超臨界状態、処理流体に溶解しているプリカーサの状態、処理容器12内における処理流体の流れ、ウエハWに与える熱量等を考慮して決定される。
次に、処理容器12の内壁温度に対する外乱要因としては、主に三項目が挙げられる。第一は、ウエハWの搬入、搬出に伴う温度変化である。載置台10にウエハWが載置されているか否かによって、載置台10からの輻射熱量が変化するので、この温度変化はそれに伴って処理容器12の内壁(特に天井部分)が受ける熱量も追随して変化することに起因する。第二は、処理流体の供給、排出に伴う処理雰囲気の温度変化である。これは、高圧処理においては、一般的な減圧CVD装置と異なり、供給される処理流体の密度が高く、熱容量が大きいことに起因しており、供給される処理流体の温度と、処理容器12の内壁温度との差が大きいときに顕著に現れる。第三は、成膜処理の継続に伴う処理容器12の内壁の反射率変化である。成膜処理を連続して行うことによって、処理容器12の内壁に、膜が堆積したり、粉が付着したりして、内壁の反射率が変化する。載置台10の輻射熱量が同じであっても、内壁の反射率が変化した場合には、内壁の温度に差が生じることに起因する。なお、第一及び第二の外乱要因は比較的短周期(例えばウエハWを1枚処理する毎に)に発生するのに対し、第三の外乱要因は比較的長周期(例えばウエハWを100枚処理する毎に)に発生する。
また、処理容器12がSUSで形成されている場合、SUSは熱伝導率が小さく(100℃で16.5W/m・K)、処理雰囲気の温度変化に対応する内壁の温度応答性が悪いことから、内壁の温度にむらが生じやすい。このことが要因になって、処理雰囲気の温度が不安定になり、ウエハWにおける膜厚について高い成膜均一性が得られにくいという問題がある。
また、処理容器12の内壁の温度むらは、その内壁に付着する膜や粉の分布にも影響を与えるため、内壁の反射率にもむらが生じることは避けられず、内壁の温度むらがさらに拡大し、悪循環が起るという問題がある。
ここで、処理容器12において温度制御が必要なのはその内壁であり、外壁まで同じ温度に制御する必要はない。SUSで形成された処理容器12は熱容量が非常に大きいため、処理容器12全体をヒータやチラー等の温度調整手段によって温度制御するには制御能力が相当大きくなくてはならず、電力消費量も多くなるため、運転コストが高くなるという問題もある。
一方特許文献2には、内壁が非金属材料で構成され、被処理基板をその内部に格納する内部チャンバと、前記内部チャンバとの間に所定の隙間領域が形成されるように、前記内部チャンバをその内部に格納し、耐圧材で構成された外部チャンバとを有する2重構造の高圧処理部を備えた高圧処理装置が記載されている。しかしこの装置は、密閉した処理容器に超臨界状態の処理流体を導入した場合に、処理容器内に過大な圧力差が生じて前記処理容器が破壊するのを防止することを目的としており、上述した課題を解決することはできない。
特開2005−187879号公報(図1、段落0018、段落0019) 特開2003−71394号公報(図1、段落0067、段落0068)
本発明はこのような事情に鑑みてなされたものであり、その目的は、超臨界流体を利用して基板に成膜処理するにあたって、耐圧容器の熱伝導率が小さいことに基づく処理雰囲気の温度安定性の課題を解決し、処理雰囲気温度の安定化を図って安定した成膜処理を行うことができる技術を提供することにある。
本発明は、超臨界流体と成膜原料とを含む処理流体を基板に供給して成膜を行う高圧処理装置において、
基板を載置するための載置部がその中に設けられ、超臨界流体を維持する圧力に耐えることのできる耐圧容器と、
この耐圧容器内に処理流体を供給するための処理流体供給部と、
前記耐圧容器の内側に積層され、当該耐圧容器の材質の熱伝導率よりも大きい熱伝導率を有する材質からなる熱的シールド層と、を備えたことを特徴とする。前記熱的シールド層は、例えばアルミニウム、銅、窒化アルミニウム及び炭化ケイ素から選ばれる材料により構成されている。また前記熱的シールド層に温度調整部を設けてもよく、この温度調整部には温度検知手段と、この温度検知手段の検知結果に基づいて温度調整される加熱手段及び冷却手段の少なくとも一方と、が含まれている。
上記高圧処理装置において、前記熱的シールド層と耐圧容器の内壁との間に、耐圧容器の材質の熱伝導率よりも小さい熱伝導率を有する材質からなる断熱層を設けるように構成してもよいし、前記断熱層と耐圧容器の内壁との間に冷却手段を設けるように構成してもよい。
また上記高圧処理装置において、前記載置部は、加熱手段を備えたステージからなり、熱的シールド層は、前記ステージ、処理流体の導入口及び排出口を除いた耐圧容器の内面を全て覆うように設けるようにしてもよい。また耐圧容器内の側面及び上面により区画される空間に嵌合して設けられると共に載置部に載置される基板に対向する面に処理流体の導入口をなす多数の噴出孔が形成された熱的シールド層を兼用する処理流体供給部を備えた構成であってもよい。
また本発明は、超臨界流体と成膜原料とを含む処理流体を被処理基板に供給して成膜を行う高圧処理方法において、
耐圧容器の内側に積層された、当該耐圧容器の材質の熱伝導率よりも大きい熱伝導率を有する材質からなる熱的シールド層により囲まれる処理空間に被処理基板を搬入する工程と、
次いで処理空間に処理流体を供給して被処理基板に成膜を行う工程と、を含むことを特徴とする。
上述した高圧処理方法において、さらに熱的シールド層に設けられた温度検出部と温度調整部とにより、熱的シールド層を設定温度に調整する工程を含んでもよい。また耐圧容器内の側面及び上面により区画される空間に嵌合して設けられると共に載置部に載置される被処理基板に対向する面に処理流体の導入口をなす多数の噴出孔が形成された熱的シールド層を兼用する処理流体供給部を用い、前記噴出孔を介して処理流体を被処理基板に供給するようにしてもよい。
本発明によれば、耐圧容器内に熱的シールド層を積層しており、熱的シールド層は高圧維持機能が不要なので、材質についてはSUSのように高張力性である必要はなく、熱伝導率の大きい材質を選択でき、また厚さについても自由に決められる。このため熱的シールド層として耐圧容器の材質よりも熱伝導率の大きい材質例えばアルミニウムや銅などの材質を用いることができるので、耐圧容器の内壁(詳しくは耐圧容器の内壁に積層された部分)に温度むらが生じにくく、処理雰囲気の温度が安定となり、基板における膜厚について高い成膜均一性を得ることができる。また、ヒーターやチラー等の温度調整手段による温度制御対象は、熱的シールド層のみでよく、耐圧容器全体を温度制御する必要は無い。従って、温度調整手段の能力は小さくて済み、電力消費量を少なくでき、運転コストを低く抑えることができる。
以下、本発明に係る高圧処理装置について図1に基づいて説明する。図1中2は耐圧容器であり、この耐圧容器2は、側面及び底面を構成する耐圧枠材20と、前記耐圧枠材20の上側開口部を塞ぐ上蓋21と、被処理基板であるウエハWを載置するための載置台3とを備えている。前記耐圧枠材20、上蓋21及び載置台3は、後述する超臨界状態の処理流体を維持する圧力に耐え得るステンレススチール(以下、「SUS」という)からなる。このSUSの熱伝導率は100℃で16.5W/m・Kである。またSUSの他に例えば炭素鋼、チタン、ハステロイ(米国へインズインターナショナル社の登録商標)及びインコネル等を用いてもよい。前記耐圧枠材20の上面と前記上蓋21の下面とが接触する部分には、耐圧枠材20側にリング溝22が形成されており、このリング溝22内にはOリング23が収容され、耐圧枠材20と上蓋21との密着性を高めている。また前記耐圧枠材20及び前記上蓋21の内部には、図示しないチラーユニットからの冷媒が通流する冷媒流路24が形成されている。また前記載置台3の下方側には後述するピストンを大気から分離するためのシールプレート4が設けられている。
前記載置台3は前記シールプレート4を貫通したピストンネック5を介してピストン本体51に連結されている。前記ピストン本体51の下方側には液圧キャビティ52が形成されており、この液圧キャビティ52には図示しない液流体システムが接続されている。液流体システムにより液圧キャビティ52内に供給する液体の量を調整するようになっている。また前記シールプレート4とピストン本体51との間には、気圧キャビティ41が形成されており、この気圧キャビティ41には図示しない気流体システムが接続されている。気流体システムにより気圧キャビティ41内に供給する気体の量を調整するようになっている。このようにこの例では、液体キャビティ52内に供給する液体の量と気圧キャビティ41内に供給する気体の量とを調整することによって前記ピストン本体51を昇降するようになっている。即ちピストン本体51が昇降するのに伴って前記載置台3が昇降することになる。
前記載置台3の中央部分には、キノコ型(縦断面がT字状形)の台座31が設けられており、この台座31の基端側には空気圧シリンダー32が接続されている。前記台座31の表面には図2に示すように表面に吸引孔42が多数穿設された真空チャック層37が形成されており、各吸引孔42は真空ポート33に連通している。なお、図1では真空チャック層37は簡略化して記載してある。また、真空吸着に代えて、静電的に吸着させる静電チャックを用いることもできる。また、台座31に代えて、半導体製造装置でよく用いられるリフタピンによる三点支持方式のウエハ上下機構を用いることも可能である。前記空気圧シリンダー32は、前記ピストンネック5の中空の中央部分の底部に設けられ、前記空気圧シリンダー32によって前記台座31が昇降するようになっている。また図2に示すように前記載置台3の表面部には、加熱手段である抵抗発熱体からなる加熱ヒータ34が埋設されたヒータステージ34aが設けられており、前記加熱ヒータ34は図示しない電力供給部に接続されている。
前記載置台3の上方側の空間を囲む耐圧容器2の内壁(上面部及び側周面部)には、熱的シールド層6が設けられている。即ち載置台3の上方側の空間においてヒータステージ34a以外の部分が熱的シールド層6により覆われている。具体的には載置台3の上方側の円筒状の空間において、耐圧容器2の内壁上面部には断熱層25が積層され、この断熱層25の下面及び耐圧容器2の内壁側周面部を覆い且つヒータステージ34a上に処理雰囲気である成膜処理空間Fが形成されるように、上面が塞がれ且つ下面が開口した扁平な筒状体を嵌合して熱的シールド層6が構成される。
前記熱的シールド層6は、耐圧容器2の材質よりも熱伝導率が大きい材質例えばアルミニウム(Al)が用いられる。アルミニウムは熱伝導率が100℃で240W/m・Kとかなり大きく、好ましい材質であるが、これに限らず銅(Cu:熱伝導率が350〜420W/m・K)、窒化アルミニウム(AlN:熱伝導率が150〜280W/m・K)又は炭化ケイ素(SiC:熱伝導率が200〜300W/m・K)あるいはこれらの複合物等を用いてもよい。この熱的シールド層6の厚みは、あまり小さいと蓄熱作用が実質得られなくなり、逆に大き過ぎると温度変化に対する応答が鈍くなることから、例えば0.5mm〜5cmであることが好ましい。そして断熱層25は耐圧容器2と熱的シールド層6とを熱的に遮断するために用いられるので耐圧容器2よりも熱伝導率の小さい材質、例えば石英(石英ガラス:熱伝導率が100℃で1.9W/m・K)が用いられる。また石英の他に例えばアルミナセラミック等を用いてもよい。
また図3に示すように前記熱的シールド層6には、渦巻き状に形成された温度調整部をなすシースヒータ61と温度検知手段である熱電対62とが埋設されている。図1に示すよう上蓋21の上面部には、高圧雰囲気と大気雰囲気とを区画するシーリンググランド63が形成されている。前記シースヒータ61及び熱電対62は前記シーリンググランド63を介して夫々電源部64及び温度コントローラ65に接続されており、温度コントローラ65は熱電対62の温度検出値に基づいてシースヒータ61に供給する電力を制御するようになっている。このように熱的シールド層6内にシースヒータ61と熱電対62とを設けることによって、熱的シールド層6を加熱制御するように構成されている。なお、熱的シールド層6に設けられる温度調整部としてはシースヒータ61の他に例えばペルチェ素子等を用いてもよいし、また温度検知部としては熱電対62の他に例えば測温抵抗体等を用いてもよい。
また前記上蓋21の下面部と前記耐圧枠材20の上面部との間にはスペーサ7が介在されている。前記耐圧枠材20の上面と前記スペーサ7の下面とが接触する部分には、耐圧枠材20側にリング溝26が形成されており、このリング溝26内にはOリング27が収容され、耐圧枠材20とスペーサ7との間の密着性を高めている。また前記スペーサ7の下面と前記載置台3の上面とが接触する部分には、載置台3側にリング溝28が形成されており、このリング溝28内にはOリング29が収容され、載置台3とスペーサ7との密着性を高めている。
また図1に示すように前記上蓋21の内部には媒体である超臨界流体と成膜原料とを含む処理流体を上蓋21と載置台3とで囲まれる成膜処理空間F内に供給するための供給路70と、成膜処理空間F内から処理流体を排出するための排出路71とが形成されている。前記熱的シールド層6の外縁と上蓋21との間には供給路70及び排出路71に夫々連通する、例えばスリット状の隙間66a及び66bが形成されており、この例では供給路70を通流してきた処理流体は隙間66aを介してウエハWの一端側から他端側(図1中においては左側から右側)に向かって流れ、隙間66bを介して排出路71を通って排出されるようになっている。
また前記供給路70及び排出路71には、供給管72及び排出管73が夫々接続されている。この供給管72と排出管73とにより循環路74が形成される。そして前記循環路74には、排出管73側から順に排出バルブV1、V2、循環・加熱・冷却部75、バルブV3が接続されている。
前記排出バルブV1とV2との間には、分岐管76が形成されており、前記分岐管76には、背圧弁V4及び排出部77が接続されている。前記排出部77は、分離回収器、回収バルブ、液体回収部、気体排出部(図示せず)から構成され、さらに必要に応じて真空ポンプ(図示せず)が設けられる。
前記供給管72には、分岐管78及び分岐管79が接続されている。前記分岐管78には、原料混合・加熱器94及び導入バルブV7が接続されている。前記分岐管79には、還元剤混合・加熱器93及び導入バルブV12が接続されている。
前記原料混合・加熱器94には、バルブV8を介してプリカーサ供給部82が接続される。前記プリカーサ供給部82は、成膜原料であるCuを含む例えば有機錯体化合物からなるプリカーサ(前駆体化合物)、例えばCu2+(hfac)2が貯留されている金属原料貯槽95及び金属原料加圧器96から構成される。前記還元剤混合・加熱器93には、バルブV11を介して還元剤供給部83が接続される。前記還元剤供給部83は、還元剤である例えば水素(H2)が貯留されている還元剤貯槽97からなる。
更に前記還元剤混合・加熱器93及び前記原料混合・加熱器94には、上流側から例えば二酸化炭素(CO2)が貯留されている媒体貯槽100、供給元バルブV5、冷却器80、加圧器81が接続されている。前記媒体貯槽100としては、二酸化炭素ボンベ等を用いることができる。また配管内を流れる媒体例えば二酸化炭素や原料を溶解した二酸化炭素といった処理流体が超臨界状態を維持するための30℃を超えた温度例えば40℃に維持されるように、また前記処理流体の温度が大きく変動したりすることのないように、加圧器81の下流側から排出部77に至る配管やバルブには、ヒータや保温材等が巻かれ、適宜温度制御が可能なように構成されている。
また前記耐圧枠材20の側面には、耐圧容器2に対してウエハWを搬入出するための搬送口35が形成されている。
次に上述の高圧処理装置において、耐圧容器2内の載置台3の上にウエハWを載置する動作までを述べる。図4(a)に示すように載置台3は閉鎖位置にあり、つまり載置台3とスペーサ7とがOリング29を介して密着しており、上蓋21と載置台3とで囲まれる成膜処理空間Fは空の状態にある。先ず図4(b)に示すようにピストン本体51によって載置台3が積載(ロード)位置に下げられる。しかる後、図4(c)に示すように図示しない搬送アームによって真空雰囲気のロードロック室から被処理基板であるウエハWを搬送口35を介して耐圧容器2内に搬入する。
続いて図5(a)に示すように台座31が空気圧シリンダー32によって駆動され、ウエハWが上昇させられて図示しない搬送アームから離され、当該搬送アームが耐圧容器2内から外へ引き込められる。ウエハWが台座31により上昇させられて搬送アームから離れると、真空チャック層37によりウエハWが台座31に真空吸着にされる。続いて図5(b)に示すように台座31が空気圧シリンダー32によって下げられ、載置台3の上にウエハWが載置される。しかる後、図5(c)に示すように載置台3がピストン本体51によって上昇させられ、載置台3とスペーサ7とがOリング29を介して密着される。
続いて本発明の高圧処理装置を用いた一連の成膜処理について図6を参照しながら述べる。先ず、耐圧容器2内を排出部77を用いて真空排気する(ステップS1)。一方、載置台3内の加熱ヒータ34は予めオンの状態になっており、載置台3の表面は例えば200℃〜350℃、好ましくは250℃〜300℃の温度に設定されている。また熱的シールド層6に埋設されたシースヒータ61により当該シースヒータ61が例えば70℃に維持されるように温度制御されている。次に供給元バルブV5、導入バルブV7を開放し、原料混合・加熱器94を通して所定の温度例えば40℃まで加熱した媒体(二酸化炭素)を前記耐圧容器2内に導入することにより、耐圧容器2内の圧力を媒体貯槽100内部の圧力程度まで上昇させる。その後、媒体貯槽100内部の圧力を超える圧力の二酸化炭素を導入するため、冷却器80を経て、加圧器81により加圧した二酸化炭素を前記耐圧容器2に導入する。この場合も原料混合・加熱器94を通すことで、導入する二酸化炭素は所定の温度を維持しながら、耐圧容器2内を所定の処理圧力、例えば15MPaまで加圧して、超臨界状態の二酸化炭素(超臨界流体)を得る。この時点で排出バルブV1は開放し、背圧弁V4の圧力制御によって所定の圧力を維持する(ステップS2)。
なお、このプロセスは媒体貯槽100内部の圧力よりも高い圧力の二酸化炭素を耐圧容器2へ導入する例であり、媒体貯槽100に加圧部が設けられ、処理圧力よりも高い圧力にて二酸化炭素を供給できる場合には、冷却器80、加圧器81の代わりに、減圧弁を経て、原料混合・加熱器94のみを通る経路とすればよい。
金属原料加圧器96を稼働後、速やかにバルブV8を開放し、冷却器80、加圧器81を経た所定の圧力の超臨界二酸化炭素に、液体の金属原料を原料混合・加熱器94で混合する。これにより、所定の温度例えば40℃の超臨界流体に金属原料を混合した処理流体を生成する。この処理流体は加圧器81及び金属原料加圧器96を連続に運転することにより、導入バルブV7を通して耐圧容器2に連続的に供給することもできる。ここで、液体の金属原料には、プリカーサであるCu2+(hfac)2等をアルコールなどの有機溶媒に溶解したものを用いることができる。
気体の還元剤この例ではH2を混合する場合には、所定の圧力例えば0.9MPaに調整された還元剤を、還元剤混合・加熱器93を通じ、超臨界二酸化炭素に混合させ処理流体を生成する。この処理流体を、導入バルブV12を通して耐圧容器2に供給する(ステップS3)。なお、液体の還元剤例えばアルコール類を用いた場合には、液体の金属原料と同様に加圧して混合させて処理流体を生成することも可能である。
そして供給路70を通流してきた処理流体は、供給側の隙間66aを介して成膜処理空間F内に入り、ウエハWの一端側から他端側(図1中において左側から右側)に向かって流れ、排出側の隙間66bを介して排出路71を通って排出される。この処理流体は、バルブV2とV3を開放し、循環・加熱・冷却部75により循環し、成膜処理が所定の時間行われる。こうして載置台3に載置されているウエハWの表面では下記(1)式に示す反応が生じてプリカーサが熱分解することにより、ウエハWの表面にCu膜が成膜される。
Cu2+(hfac)2+H2→Cu+2H(hfac)……(1)
ウエハW上にCu膜が形成された後、バルブV2、V3、導入バルブV7及び導入バルブV12を閉じて処理流体の供給を停止する。金属原料については、バルブV8を閉じると共に、金属原料加圧器96を停止することにより、処理流体への混合を停止させる。同様に還元剤についても、バルブV9、V11を閉じて処理媒体への混合を停止させる(ステップS4)。
そして、排出バルブV1を開放すると共に、設定圧力を下げることで背圧弁V4を開放状態とし、耐圧容器2内の処理流体を排出部77により排出する(ステップS5)。排出部77において、二酸化炭素が気体排出部から排出される。また、気体排出部の先に二酸化炭素の分離精製・凝縮器を設けるようにすれば、二酸化炭素を再利用することが可能である。そして上述したように耐圧容器2内の載置台3の上にウエハWを載置する一連の動作とは逆の動作を行うことによって耐圧容器2から、ウエハWが図示しない真空雰囲気のロードロック室に搬出される(ステップS6)。そして後続のウエハWに対しても同様にして成膜処理が行われる。
上述の実施の形態によれば、超臨界流体を維持する圧力に耐え得るためにSUSからなる耐圧容器2を用いているが、この耐圧容器2の内側に熱的シールド層6を積層しており、熱的シールド層6は高圧維持機能が不要なので、その材質についてはSUSのように高張力性である必要はなく、熱伝導率の大きい材質を選択でき、また厚さについても自由に決められる。このため熱的シールド層6として耐圧容器2の材質よりも熱伝導率の大きい材質例えばアルミニウムや銅などの材質を用いることができるので、耐圧容器2内の処理流体に接する部分(いわば耐圧容器2の内壁)に温度むらが生じにくく、成膜処理空間Fの温度が安定となり、ウエハWにおける膜厚について高い成膜均一性を得ることができる。また、温度調整手段この例ではシースヒータ61による温度制御対象は、熱的シールド層6のみでよく、耐圧容器2全体を温度制御する必要は無い。従って、温度調整手段の能力は小さくて済み、電力消費量を少なくでき、運転コストを低く抑えることができる。
続いて本発明の高圧処理装置の他の例について説明する。この例は、図7に示すように上蓋21の下面部(載置台3の上方側)に断熱層25を介して密接された熱的シールド層を兼用するシャワーヘッド90を設けた他は、図1に示す高圧処理装置と同様の構成にある。このシャワーヘッド90は図7に示すように既述のように載置台3の上方空間に嵌合されている熱的シールド層である点は先の実施の形態と同様であるが、内部に分散空間9が形成されると共に載置台3上のウエハWに対向する面に分散空間9に連通する多数の噴出孔91が穿設されている。また耐圧容器2内に形成された供給路70は分散空間9に接続されている。図8に示すように前記シャワーヘッド90は、分散空間9を境として上下に2分割され、シャワーヘッド下部部材92とシャワーヘッド上部部材101とで構成されている。シャワーヘッド下部部材92の上面には、リング溝102が形成されており、このリング溝102内には図示しないOリングが収納され、シャワーヘッド上部部材101とシャワーヘッド下部部材92との密着性を高めている。前記シャワーヘッド上部部材101内には、シースヒータ61と熱電対62とが設けられている。なお、図7において図1に示す高圧処理装置と同じ構成にある部分については便宜上同じ符号を付してある。
この高圧処理装置では、供給路70を通流してきた処理流体は、分散空間9を介してシャワーヘッド90の表面部分に穿設された噴出孔91から下方側に向かって噴出され、隙間66bを介して排出路71を通って排出されるようになっている。このような構成にすると載置台3に載置されているウエハWに対して均一に処理流体が供給される。
さらに本発明の高圧処理装置の他の例について説明する。この例では図9に示すように上蓋21の内部上面部にSUSからなる冷却手段をなすヒートシンク層103を設け、このヒートシンク層103の下面に断熱層25を積層する他は、図1に示す高圧処理装置と同様の構成にある。図10に示すようにこのヒートシンク層103には、渦巻き状に形成されたSUSからなる冷媒配管104が埋設されており、この冷媒配管104は、チラーユニット105に接続されている。前記チラーユニット105から冷媒配管104内にガルデン(伊国ソルベイソレクシス社の登録商標)、フロリナート(米国スリーエム社の登録商標)等の冷媒(温度は例えば40℃〜90℃程度)を流すことで、蓄熱された断熱層25の冷却を図っている。
なお、ヒートシンク層103に設けられる冷却手段としては、冷媒配管104の代わりにヒートパイプを用いてもよい。このヒートパイプは両端が封止され、金属や金属フェルト等よりなる多孔質体が内壁に貼設された、内部が真空の金属製の管体の中に揮発性の液体(作動流体)が少量封入された構成になっている。ヒートパイプの一端側が加熱されると作動流体が蒸発して他端側へ移動し、その後、多孔質体を通って還流されて熱の輸送が行われることからヒートシンク層103に例えば冷却配管のように渦巻き状のヒートパイプを設けるか、あるいは複数の直線状のヒートパイプを平行状に配置するなどの構成とし、その他端側(凝縮部側)をヒートシンク層103から外部に引き出して、例えば冷却媒体などで冷却されている冷却プレートなどの冷却部に接触させることで、断熱層25に蓄熱された熱がヒートパイプを介して冷却部に放熱され、これにより断熱層25の冷却が行われる。なお、図9において図1に示す高圧処理装置と同じ構成にある部分については便宜上同じ符号を付してある。
このような構成にすれば、熱的シールド層6と耐圧容器2とを熱的に遮断する作用が大きくなるので、成膜処理空間Fの温度安定性をより一層高めることができる。
本発明に係る高圧処理装置の一例を示す概略断面図である。 本発明に係る高圧処理装置の構成要素の一部である載置台を示す概略上面図である。 上記高圧処理装置の構成要素の一部を示す概略斜視図である。 上記高圧処理装置を用いて行われる一連の処理を示す作用図である 上記高圧処理装置を用いて行われる一連の処理を示す作用図である 上記高圧処理装置を用いて行われる一連の処理を示すフロー図である。 本発明に係る高圧処理装置の他の例を示す概略断面図である。 上記高圧処理装置の構成要素の一部を示す概略斜視図である。 本発明に係る高圧処理装置の他の例を示す概略断面図である。 上記高圧処理装置の構成要素の一部を示す概略斜視図である。 従来の高圧処理装置を示す説明図である。 処理容器の内壁の温度とウエハの表面に形成されるCu膜の膜厚との関係を示す説明図である。
符号の説明
F 成膜処理空間
W ウエハ
2 耐圧容器
20 耐圧枠材
21 上蓋
25 断熱材
3 載置台
31 台座
4 シールプレート
51 ピストン本体
6 熱的シールド層
61 シースヒータ
62 熱電対
79 ガス供給部
80 加熱器
81 加圧器
82 プリカーサ供給部
83 還元剤供給部

Claims (11)

  1. 超臨界流体と成膜原料とを含む処理流体を基板に供給して成膜を行う高圧処理装置において、
    基板を載置するための載置部がその中に設けられ、超臨界流体を維持する圧力に耐えることのできる耐圧容器と、
    この耐圧容器内に処理流体を供給するための処理流体供給部と、
    前記耐圧容器の内側に積層され、当該耐圧容器の材質の熱伝導率よりも大きい熱伝導率を有する材質からなる熱的シールド層と、を備えたことを特徴とする高圧処理装置。
  2. 前記熱的シールド層は、アルミニウム、銅、窒化アルミニウム及び炭化ケイ素から選ばれる材料により構成されていることを特徴とする請求項1記載の高圧処理装置。
  3. 前記熱的シールド層に温度調整部を設けたことを特徴とする請求項1または2記載の高圧処理装置。
  4. 前記温度調整部は、温度検知手段と、この温度検知手段の検知結果に基づいて温度調整される加熱手段及び冷却手段の少なくとも一方と、を含むことを特徴とする請求項3記載の高圧処理装置。
  5. 前記熱的シールド層と耐圧容器の内壁との間に、耐圧容器の材質の熱伝導率よりも小さい熱伝導率を有する材質からなる断熱層を設けたことを特徴とする請求項1ないし4のいずれか一に記載の高圧処理装置。
  6. 断熱層と耐圧容器の内壁との間に冷却手段を設けたことを特徴とする請求項5記載の高圧処理装置。
  7. 前記載置部は、加熱手段を備えたステージからなり、熱的シールド層は、前記ステージ、処理流体の導入口及び排出口を除いた耐圧容器の内面を全て覆うように設けられていることを特徴とする請求項1ないし6のいずれか一に記載の高圧処理装置。
  8. 耐圧容器内の側面及び上面により区画される空間に嵌合して設けられると共に載置部に載置される基板に対向する面に処理流体の導入口をなす噴出孔が形成された熱的シールド層を兼用する処理流体供給部を備えたことを特徴とする請求項1ないし7のいずれか一に記載の高圧処理装置。
  9. 超臨界流体と成膜原料とを含む処理流体を被処理基板に供給して成膜を行う高圧処理方法において、
    耐圧容器の内側に積層された、当該耐圧容器の材質の熱伝導率よりも大きい熱伝導率を有する材質からなる熱的シールド層により囲まれる処理空間に被処理基板を搬入する工程と、
    次いで処理空間に処理流体を供給して被処理基板に成膜を行う工程と、を含むことを特徴とする高圧処理方法。
  10. 熱的シールド層に設けられた温度検出部と温度調整部とにより、熱的シールド層を設定温度に調整する工程を含むことを特徴とする請求項9記載の高圧処理方法。
  11. 耐圧容器内の側面及び上面により区画される空間に嵌合して設けられると共に載置部に載置される被処理基板に対向する面に処理流体の導入口をなす多数の噴出孔が形成された熱的シールド層を兼用する処理流体供給部を用い、前記噴出孔を介して処理流体を被処理基板に供給することを特徴とする請求項8または9記載の高圧処理方法。


JP2005360794A 2005-12-14 2005-12-14 高圧処理装置及び高圧処理方法 Expired - Fee Related JP5066336B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005360794A JP5066336B2 (ja) 2005-12-14 2005-12-14 高圧処理装置及び高圧処理方法
US11/610,131 US20070134602A1 (en) 2005-12-14 2006-12-13 High-pressure processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360794A JP5066336B2 (ja) 2005-12-14 2005-12-14 高圧処理装置及び高圧処理方法

Publications (2)

Publication Number Publication Date
JP2007162081A true JP2007162081A (ja) 2007-06-28
JP5066336B2 JP5066336B2 (ja) 2012-11-07

Family

ID=38139788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360794A Expired - Fee Related JP5066336B2 (ja) 2005-12-14 2005-12-14 高圧処理装置及び高圧処理方法

Country Status (2)

Country Link
US (1) US20070134602A1 (ja)
JP (1) JP5066336B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250589A (ja) * 2006-03-13 2007-09-27 Tokyo Electron Ltd 高圧処理装置
WO2009038168A1 (ja) * 2007-09-21 2009-03-26 Tokyo Electron Limited 成膜装置および成膜方法
JP2013163846A (ja) * 2012-02-10 2013-08-22 Denso Corp 成膜装置及び成膜方法
JP2022541573A (ja) * 2019-07-26 2022-09-26 アプライド マテリアルズ インコーポレイテッド 基板上にフィルムを形成するための蒸発器チャンバ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292181A (ja) * 1996-04-26 1997-11-11 Kobe Steel Ltd 高温高圧ガス処理装置
JP2000340513A (ja) * 1999-05-05 2000-12-08 Applied Materials Inc 基板処理チャンバ用アンテナコイルアセンブリ
JP2004285479A (ja) * 1998-04-09 2004-10-14 Tokyo Electron Ltd ガスおよびrf(無線周波数)出力を反応室に供給するための積重ねられたシャワヘッド組立体
JP2005072175A (ja) * 2003-08-22 2005-03-17 Tokyo Electron Ltd パーティクル除去装置及びパーティクル除去方法及びプラズマ処理装置
JP2005187879A (ja) * 2003-12-25 2005-07-14 Tokyo Electron Ltd 成膜装置および成膜方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH117622A (ja) * 1997-04-25 1999-01-12 Hitachi Ltd 磁気記録媒体用基板、磁気記録媒体及び磁気記録媒体の製造方法
US6180069B1 (en) * 1999-02-18 2001-01-30 Leco Corporation Cleaning system and method for cleaning a flow restrictor in a supercritical fluid extraction system
US6303906B1 (en) * 1999-11-30 2001-10-16 Wafermasters, Inc. Resistively heated single wafer furnace
KR100425451B1 (ko) * 2001-06-29 2004-03-30 삼성전자주식회사 열처리 챔버 및 이를 이용한 웨이퍼의 열처리 방법
US20030047881A1 (en) * 2001-09-13 2003-03-13 Worm Steven Lee Sealing system and pressure chamber assembly including the same
US6666982B2 (en) * 2001-10-22 2003-12-23 Tokyo Electron Limited Protection of dielectric window in inductively coupled plasma generation
US6796711B2 (en) * 2002-03-29 2004-09-28 Axcelis Technologies, Inc. Contact temperature probe and process
JP4026750B2 (ja) * 2002-04-24 2007-12-26 東京エレクトロン株式会社 基板処理装置
JP4380236B2 (ja) * 2003-06-23 2009-12-09 東京エレクトロン株式会社 載置台及び熱処理装置
JP2006120713A (ja) * 2004-10-19 2006-05-11 Tokyo Electron Ltd 成膜方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292181A (ja) * 1996-04-26 1997-11-11 Kobe Steel Ltd 高温高圧ガス処理装置
JP2004285479A (ja) * 1998-04-09 2004-10-14 Tokyo Electron Ltd ガスおよびrf(無線周波数)出力を反応室に供給するための積重ねられたシャワヘッド組立体
JP2000340513A (ja) * 1999-05-05 2000-12-08 Applied Materials Inc 基板処理チャンバ用アンテナコイルアセンブリ
JP2005072175A (ja) * 2003-08-22 2005-03-17 Tokyo Electron Ltd パーティクル除去装置及びパーティクル除去方法及びプラズマ処理装置
JP2005187879A (ja) * 2003-12-25 2005-07-14 Tokyo Electron Ltd 成膜装置および成膜方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250589A (ja) * 2006-03-13 2007-09-27 Tokyo Electron Ltd 高圧処理装置
WO2009038168A1 (ja) * 2007-09-21 2009-03-26 Tokyo Electron Limited 成膜装置および成膜方法
JPWO2009038168A1 (ja) * 2007-09-21 2011-01-06 東京エレクトロン株式会社 成膜装置および成膜方法
JP2013163846A (ja) * 2012-02-10 2013-08-22 Denso Corp 成膜装置及び成膜方法
JP2022541573A (ja) * 2019-07-26 2022-09-26 アプライド マテリアルズ インコーポレイテッド 基板上にフィルムを形成するための蒸発器チャンバ
US11692261B2 (en) 2019-07-26 2023-07-04 Applied Materials, Inc. Evaporator chamber for forming films on substrates
JP7464692B2 (ja) 2019-07-26 2024-04-09 アプライド マテリアルズ インコーポレイテッド 基板上にフィルムを形成するための蒸発器チャンバ

Also Published As

Publication number Publication date
JP5066336B2 (ja) 2012-11-07
US20070134602A1 (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP4787636B2 (ja) 高圧処理装置
KR101089977B1 (ko) 성막 장치 및 성막 방법, 가스 공급 장치 및 기억 매체
JP4513329B2 (ja) 処理装置
US9976217B2 (en) Film forming method using reversible decomposition reaction
JP4536662B2 (ja) ガス処理装置および放熱方法
JP6115244B2 (ja) 成膜装置
US6602348B1 (en) Substrate cooldown chamber
US20040187787A1 (en) Substrate support having temperature controlled substrate support surface
US20090250008A1 (en) Gas treatment apparatus
US20110030615A1 (en) Method and apparatus for dry cleaning a cooled showerhead
JP2009076919A (ja) 基板処理システムのための多機能チャンバ
US20100236480A1 (en) Raw material gas supply system and film forming apparatus
JP2006303013A (ja) ロードロック装置及び処理方法
JP2007053382A (ja) 基板支持体の能動的冷却
JP2007335425A (ja) 載置台構造及び熱処理装置
US9518322B2 (en) Film formation apparatus and film formation method
JP5066336B2 (ja) 高圧処理装置及び高圧処理方法
JP4927623B2 (ja) ロードロック装置の昇圧方法
US20050235918A1 (en) Substrate treating apparatus
JP4742431B2 (ja) 熱処理装置
JP2005228972A (ja) 成膜方法および成膜装置
JP7149786B2 (ja) 載置ユニット及び処理装置
KR20070109384A (ko) 원자층 증착 공정 장비의 샤워 헤드
JP7353213B2 (ja) 基板処理装置および基板処理方法
JP2008262968A (ja) プラズマ処理装置およびプラズマ処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees