JP2007155492A - 温度測定用プローブ - Google Patents

温度測定用プローブ Download PDF

Info

Publication number
JP2007155492A
JP2007155492A JP2005350901A JP2005350901A JP2007155492A JP 2007155492 A JP2007155492 A JP 2007155492A JP 2005350901 A JP2005350901 A JP 2005350901A JP 2005350901 A JP2005350901 A JP 2005350901A JP 2007155492 A JP2007155492 A JP 2007155492A
Authority
JP
Japan
Prior art keywords
probe
cantilever
metal structure
sample
temperature measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005350901A
Other languages
English (en)
Other versions
JP4751190B2 (ja
Inventor
Hisanori Hamao
尚範 濱尾
Osamu Matsuzawa
修 松澤
Hiroshi Takahashi
寛 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2005350901A priority Critical patent/JP4751190B2/ja
Publication of JP2007155492A publication Critical patent/JP2007155492A/ja
Application granted granted Critical
Publication of JP4751190B2 publication Critical patent/JP4751190B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】 SPMにおいてアスペクト比の高い凹凸を有する試料の温度特性および表面形状を精度よく測定し、正確な温度特性や観察像を得ることができるプローブを提供する。
【解決手段】 本発明は、カンチレバー22の先端に温度を測定するための温度測定用素子を形成した温度測定用プローブ1であって、温度測定用素子がカンチレバー22に形成された第1の金属構造体29および第2の金属構造体30で構成され、第1の金属構造体29の先端部と第2の金属構造体30の先端部が重なる形で接続されることで形成されており、且つその接続部直上に先端部が先鋭化されるとともに基部が棒状に形成され、試料上を走査される探針21が形成されていることとした。
【選択図】 図2

Description

本発明は、試料表面の微小領域での熱物性を測定するための温度測定用プローブおよび温度測定装置に関する
現在、試料表面におけるナノメートルオーダの微小な領域を観察するための顕微鏡は、走査型プローブ顕微鏡(SPM:Scanning ProbeMicroscope)が使われている。このSPMの中でも、先端部にプローブを設けたカンチレバーを走査プローブとして使用する原子間力顕微鏡(AFM:Atomic Force Microscope)が、特に注目されている。この原子間力顕微鏡は、カンチレバーのプローブを試料表面に沿って走査し、試料表面と探針との間に発生する原子間力(引力または斥力)をカンチレバーの撓み量として検出することにより、試料表面の形状測定が行われる。カンチレバーには、その撓み量の測定方法の違いから光てこ式と自己検知型のものがある。このような走査型プローブ顕微鏡において、近年、試料表面の凹凸形状とともに試料表面の微小領域での温度分布を測定する方法が提案されている(例えば、特許文献1または2参照。)。
特開平8−105801号公報 特開2001−4455号公報
しかしながら、上述の特許文献1のプローブにおいては、シリコン基板をエッチング等することにより錘状の凹溝を形成し、この凹溝の形状にそって探針が形成されるため、この技術においては、製作プロセス上の制約により、探針の形状は根本部分の径が大きく、先端が尖っている錐状になる。そのため、アスペクト比((探針の高さ)/(探針の根本部分の径))の高い探針の形成が困難になるという問題があった。
このようなアスペクト比の低い探針を用いると、例えば、略垂直な面を有する表面形状を観察する際に、錐状の探針の側面が上記略垂直な面と接触してしまい、正確な表面形状および温度分布が観察できないという問題があった。
また、特許文献2のプローブにおいては、ニッケル細線をカンチレバー及び探針として用いるので、探針の根元部分の径は大きくなってしまうためアスペクト比の高い探針とすることが困難であった。
本発明は、上記の課題を解決するためになされたものであって、アスペクト比の高い凹凸を有する試料の表面形状を感度良く観察することが可能であるとともに、試料の温度特性を検出することが可能であるプローブを提供することである。
上記課題を解決するために、この発明は以下の手段を提案している。
本発明のプローブは表面に絶縁層を有するカンチレバーと、カンチレバーの上面に設けられ、カンチレバーの先端部に第1の端部を有する第1の金属構造体と、カンチレバーの上面に設けられ、第1の端部の上面に設けられた第2の端部を有する第2の金属構造体と、第2の端部の上面に設けられ、棒状に形成された基部と、尖鋭化された先端部とを有する探針と、を有し、カンチレバーの先端部に設けられ、カンチレバーの基端部に設けられた第1の電極に接続された、第1の金属構造体と、第1の金属構造体の上面に設けられ、カンチレバーの基端部に第1の電極に離間して設けられた第2の電極に接続された、第2の金属構造体と、からなる温度測定用素子と、温度測定用素子の上面に設けられ、棒状に形成された基部と、尖鋭化された先端部とを有する探針と、を有することとした。
この発明に係るプローブによれば、探針が温度測定用素子の直上に配設されているので、試料の表面形状を測定するとともに試料の温度特性を正確に測定することができる。また、基部から先端部にかけてその形状が柱状であるためアスペクト比の高い探針とすることができ、それゆえにアスペクト比の高い凹凸に対して正確に追従し測定することができる。
また、上記のプローブにおいて、探針が第2の金属構造体と同じ材料からなることが好ましい。
この発明に係わるプローブによれば、探針を構成する材料と第1の金属構造体を構成する材料が同一であることから探針と第1の金属構造体の接続部で異種材料が接合部を形成することによる温度特性の測定誤差を生じてしまうことも無く、安定した測定結果を得ることができる。
また、本発明の走査型プローブ顕微鏡は、温度特性測定用プローブと、探針を試料の被測定面に接近させて試料表面を走査することにより試料表面形状に応じて変位する探針の変位データを検出する変位検出手段と、探針を試料に対して相対的に試料の表面に平行で、互いに直交する二方向の走査及び試料の表面に垂直方向の移動を行う移動手段と、温度測定用素子の熱起電力検出する熱起電力検出部と、を備える。
この発明に係わる走査型プローブ顕微鏡によれば、アスペクト比が高く、温度測定用素子と試料表面形状測定を行う探針を兼ねたプローブを搭載している。このため、アスペクト比が高い凹凸を表面に有する試料表面微小領域の形状および温度分布、熱特性を感度良く測定することができる。
また、本発明の走査型プローブ顕微鏡は、探針を振動用周波数で共振または強制振動させる加振手段を備え、変位検出手段は、探針の振動状態を検出する振動検出手段である。
この発明に係わる走査型プローブ顕微鏡によれば、DFMモードなどのカンチレバーを振動させて試料の表面形状を測定する場合において、カンチレバーの共振周波数が高まり、試料との相互作用を感度良く測定することができる。
また、本発明のプローブは、変位検出手段をカンチレバー内に設ける。
また、さらには変位検出手段はピエゾ抵抗素子であることとした。
この発明にかかわるプローブによればカンチレバーにレーザ光を反射させる反射面を設ける必要がないので、カンチレバーの形状に制限を受ける必要がなく、プローブの設計の自由度が向上し、製造し易い。また、レーザ光源等の大がかりな装置が不要なので、装置コスト及び装置スペースの削減を図ることができる。
また、本発明のプローブは、シリコン基板を切欠いて、カンチレバーを形成する工程と、カンチレバーの上面に絶縁膜を形成する工程と、カンチレバーの先端部側の絶縁膜の上面に、第1の金属構造体の第1の端部を形成し、第1の端部の上面に第2の金属構造体の第2の端部を形成して、温度測定用素子を形成する工程と、温度測定用素子の上面に電鋳法によって探針を形成する工程と、探針の先端部を電解研磨によって先鋭化させる工程と、シリコン基板を切欠いて、カンチレバーの基端部側に本体部を形成する工程と、からなることとした。
この発明に係わる温度測定用プローブの製造方法によれば、探針を電鋳法によって形成することで、従来の製造方法で困難であったアスペクト比が高い探針を精度良くかつ容易に製造することが可能となる。
また、電界研磨などの手法を用いて先鋭化することで更に試料表面微小領域の温度特性や凹凸を高い分解能にて観察することが可能になる。
本発明によれば、アスペクト比が高くかつ先鋭化された探針とすることができる。このため、アスペクト比の高い凹凸を有する試料表面の微小領域の形状および温度分布、熱特性を精度よく測定することができる。
以下に本願発明の実施の形態について説明する。
図1から図12は、この発明に係る一実施形態を示している。図1に走査型プローブ顕微鏡のブロック図を示す。図2にプローブの斜視図、図3に平面図、図4に断面図を示す。図5から図12にはプローブの製造工程の工程図を示す。
図1に示すように、走査型プローブ顕微鏡1は、試料100を支持する試料支持部9と、試料100を移動させる試料移動手段3と、試料移動手段3によって試料100の試料上面S上を相対的に走査される探針21を有するプローブ20と、プローブ20の探針21をカンチレバー22が共振または強制振動する周波数で振動させる加振手段51とを備えている。プローブ20は、探針21が先端部に突出して設けられるカンチレバー22と、カンチレバー22の基端部を先端部が自由端となるように片持ち状態で固定する本体部23とを備えている。
試料移動手段3は、試料支持部9を支持し、試料上面Sに平行で互いに直交する2方向であるX、Y方向及び試料上面Sに垂直な方向であるZ方向に移動する試料移動手段3と、試料移動手段3を駆動させる駆動装置4とを備える。より詳しくは、試料移動手段3は、試料100をX、Y、Z方向に粗動移動させる粗動機構及び微小移動させるXYスキャナ、及びZスキャナとで構成される。粗動機構に対応する駆動装置4としては、例えばステッピングモータなどである。また、XYスキャナ及びZスキャナに対応する駆動装置4としては、例えばPZT(チタン酸ジルコン酸鉛)等からなる圧電素子であり、電圧が印加されると、電圧印加量及び極性等に応じて試料100をXYZ方向に微小移動させることが可能である。また、加振手段51は、プローブ20に接続され所定の周波数及び振幅で振動するようにプローブ20を加振するPZTからなる圧電素子と、圧電素子に電圧を印加して圧電素子を振動させる加振電源5とを備える。
さらに、図1に示すように、走査型プローブ顕微鏡1は、加振手段51によって加振されたプローブ20の探針21の振動状態を検出する変位検出手段6を備える。変位検出手段6は、探針21の裏面に形成された反射面(例えば、金やアルミニウム等の金属材料をコーティングして形成:図示しない)にレーザ光を照射するレーザ光源と、レーザ光源の電源であるレーザ電源と、反射面で反射したレーザ光を検出するフォトダイオードとを備えている。フォトダイオードで検出されるレーザ光は、DIF信号として出力され、プリアンプで増幅され、交流−直流変換器によって直流変換され、コンピュータ7に送られる。コンピュータ7には、Z電圧フィードバック回路が備えられており、コンピュータ7に入力されたDIF信号に基づいて試料移動手段3のZスキャナに電圧を印加して試料100をZ方向に微小移動させる。
また、図1に示すように、走査型プローブ顕微鏡1は、プローブ20に接続され、探針21で発生する熱起電力を測定する温度特性検出手段8とを備える。また、コンピュータ7は、前述のように駆動装置4、加振電源5、変位検出手段6、及び温度特性検出部8と接続されている。
以上の構成により、走査型プローブ顕微鏡1は、以下に示すように、試料100の表面形状及び温度特性を測定する。まず、コンピュータ7による制御のもとに加振電源5で加振手段51を振動させるとともに、変位検出手段6からプローブ20のカンチレバー22の反射面にレーザ光を照射させる。カンチレバー22は加振手段51から伝達される振動によって上下に振動し、これによりカンチレバー22で反射され変位検出手段6のフォトダイオードで検出されるレーザ光は一定の振幅及び周波数の振動波形を形成する。この状態で、コンピュータ7による制御のもと、駆動装置4を駆動させて、試料100をX、Y方向に走査させて試料100の表面形状及び温度特性を測定する。プローブ20の探針21が走査された位置に凹凸があると、変位検出手段6のフォトダイオードで検出されるレーザ光の振動振幅が減衰される。この振動振幅は、DIF信号としてプリアンプで増幅され、交流−直流変換器によって直流変換され、コンピュータ7に入力される。コンピュータ7には前述のZ電圧フィードバック回路が備えられており、DIF信号化された振動振幅がしきい値を超えた場合、入力されたDIF信号に基づいて駆動装置4を駆動させ、振動振幅がしきい値内で一定となるように試料移動手段3をZ方向に移動し、調整する。これを駆動装置4によって試料100をX、Y方向に移動させて、繰り返すことによって試料100の表面形状の測定を行う。
さらに、試料100の表面形状の測定と平行して、探針21に発生する熱起電力を測定する。これらの試料100の表面形状及び温度特性の測定結果は、試料100のX、Y方向の走査位置とともにコンピュータ7によって表示される。
次に、このような走査型プローブ顕微鏡1に搭載されるプローブ20の詳細の構成について説明する。
図2はプローブ20の全体斜視図であるが、走査型プローブ顕微鏡1に搭載される向きと上下逆となるように記載されている。
図2に示すように、プローブ20は、第1の金属構造体29と第2の金属構造体30と、先端部が先鋭化されるとともに基部が棒状に形成された探針21と、探針21が先端部に突出して設けられたカンチレバー22と、カンチレバー22の基端部を先端部が自由端となるように片持ち状態で固定する本体部23とを備える。カンチレバー22及び本体部23は、シリコン基板、特に、シリコンからなるシリコン活性層24及びシリコン支持層25と、シリコン活性層24とシリコン支持層25とに介装され、SiO2からなるBOX層26とを貼り合わせたSOI基板27(Silicon on Insulator)から形成されている。
また、図3及び図4(図3におけるA−A断面)に示すとおり、カンチレバー22の表面には、絶縁膜28が形成され、絶縁膜28上において先端部から基端部にかけて第1の金属構造体29および第2の金属構造体30が形成されている。絶縁膜28は、SiO2からなるシリコン酸化膜である。また、第1の金属構造体29はクロム、第2の金属構造体30はニッケルからなる金属膜である。なお、第1の金属構造体と第2の金属構造体は、それぞれクロム、ニッケルに限ること無く、金、白金、白金ロジウム、ニクロム、クロメル、アルメルなど、熱電対を形成できる材料であれば良い。探針21は、カンチレバー22の表面の先端部、第1の金属構造体29の第1の端部291、および第2の金属構造体配線30の第2の端部301が重なる形で形成された接続部分上に突出して設けられている。探針21は、ニッケルで形成されており、導電性を有している。なお、探針21を形成する材料は、ニッケルに限らず、後述する電鋳法で形成可能な材料であれば良く、例えば、金、銅、ロジウム、パラジウム、タングステンなどでもよい。
この実施形態のプローブ20では、探針21が、電鋳によって第2の金属構造体30の第2の端部301上に直接形成されているため、探針21先端の温度が、第1の金属構造体29の第1の端部291と第2の金属構造体30の第2の端部301が重なる形で形成された接続部に、ロスが少ない状態伝わるために図1に示す温度特性検出手段8によって試料100の温度特性を測定することができる。また、探針21は先端部が先鋭化されるとともに基部が棒状に形成されているので、アスペクト比の高い探針とすることができる。このため、試料100がアスペクト比の高い凹凸を有する表面形状であったとしても、探針21が凹凸に対して正確に追従し、凹凸の深さ、幅を高い精度で測定し、正確な観察像を得ることができる。さらに、凹凸の深い部分の温度特性の測定も可能となる。
次に、この実施形態のプローブ20の製造方法について説明する。前述のとおり、プローブ20のカンチレバー22及び本体部23は、シリコン活性層24、BOX層26、シリコン支持層25から構成されるSOI基板27から形成される。ここで、シリコン活性層24の厚さはカンチレバー22の厚さに設定され、また、BOX層26及びシリコン支持層25の厚さは本体部23の厚さに設定されている。以下、順に説明する。
図5(a)から(c)に示すように、カンチレバー形成工程において、カンチレバー22を形成する。まず、図5(a)のように、フォトリソグラフィ技術によって、カンチレバー22を形成する範囲にフォトレジスト膜32を形成する。そして、図5(b)に示すとおり、フォトレジスト膜32をマスクとして、シリコン活性層24をBOX層26に達するまでエッチングすることで、カンチレバー22となる部分の周囲のシリコン活性層24を切欠く。そして、フォトレジスト膜32を除去することで、図5(c)に示すとおり、カンチレバー22が形成される。フォトレジスト膜としては、ポジ型でもネガ型でも良い。カンチレバー22をエッチングする方法としては、ドライエッチングでもウェットエッチングでもいずれの方法でも良いが、ドライエッチングが好適である。ドライエッチングであれば、反応性イオンエッチング(RIE:Reactive Ion Etching)やDRIE(Deep Reactive Ion Etching)などがある。またウェットエッチングであれば、水酸化カリウム(KOH)やテトラメチルアンモニウムハイドロオキサイド(TMAH)等のアルカリ性エッチャントによる異方性エッチングなどがある。
次に、図6(a)に示すように、絶縁膜形成工程において、カンチレバー22の表面上に絶縁膜28を形成する。絶縁膜28は熱酸化法によって形成される。また、この際、カンチレバー22の裏面側、つまりシリコン支持層25の表面のうち、本体部23となる部分にも酸化膜33を形成する。すなわち、図6(a)に示すように、シリコン支持層25の表面の全面に、絶縁膜28を形成するのと同時に酸化膜33を形成する。次に、図6(b)に示すように、本体部23の裏面の部分及びカンチレバー22が形成された側の全体をフォトレジスト膜34でパターニングする。そして、図6(c)に示すように、フォトレジスト膜34がパターニングされた部分以外の酸化膜33をフッ酸によって除去し、最後に、図6(d)に示すように、フォトレジスト膜34を除去する。
次に、図7(a)から図7(c)に示すように、温度測定用素子形成工程において、絶縁膜28上に第1の金属構造体29および第2の金属構造体配線30を形成する。まず、図7(a)に示すように、第1の金属構造体29となる部分以外の部分をフォトレジスト膜35でパターニングする。次に、図7(b)に示すように、クロム膜をスパッタリング法によって全面に形成する。そして、図7(c)に示すように、フォトレジスト膜35を除去することによって第1の金属構造体29が形成される。
なお、第1の金属構造体29となるクロム膜を形成する方法は、スパッタリング法に限らず、蒸着法としても良い。また、あらかじめ全体にスパッタリング法あるいは蒸着法によってクロム膜を成膜し、第1の金属構造体29となる部分にフォトレジスト膜をパターニングする。つづいてフォトレジスト膜が形成されていない部分のクロム膜をエッチングにより除去することで第1の金属構造体29を形成する方法としても良い。
次に、第1の金属構造体29の形成する方法と同様に第2の金属構造体30を形成する。図8(a)から(c)に示すように、第2の金属構造体30となる部分以外の部分をフォトレジスト膜36でパターニングする。次に、図8(b)に示すように、ニッケル膜をスパッタリング法によって全面に形成する。そして、図8(c)に示すように、フォトレジスト膜36を除去することによって第2の金属構造体30が形成される。なお、第1の金属構造体30となるニッケル膜を形成する方法は、スパッタリング法に限らず、蒸着法としても良い。
次に探針形成工程において、第1の金属構造体29の第1の端部291および第2の金属構造体配線30の第2の端部301が重なる形で形成された接続部分上に探針21を形成する。探針形成工程は、基部形成工程と、先端部先鋭化工程の2工程で構成される。図9(a)から(c)は、基部形成工程を示している。まず、図9(a)に示すように、カンチレバー22側全体に探針21の高さと略等しい厚さのフォトレジスト膜37を形成する。フォトレジスト膜37としては、ポジレジストとネガレジストがあるが、紫外線、電子ビームあるいはレーザ等で照射された部分のパターンが残るネガレジストが好適であり、例えば、SU−8(化薬マイクロケム株式会社製SU−8シリーズ)などがある。そして、探針21の位置に、基部の断面形状と等しくなるようにマスキングする。ここでは、基部の断面形状が円状であるので、円状にマスキングする。そして、図9(b)に示すように、フォトレジスト膜37を露光し、現像液を滴下して、未露光範囲を溶かし込む。次に、図9(c)に示すように、第2の金属構造体30を一方の電極として電解液に浸潤させて、電鋳法によりニッケルを空洞部分に電鋳することで、探針21の基部と研磨しろを含んだものとが形成される。
次に、図10(a)に示すように、フォトレジスト膜37から露出する探針21の先端部を電解研磨によって、研磨しろを研磨し、先鋭化させる。最後に、図10(b)に示すように、フォトレジスト膜37を除去すれば、先端部が先鋭化され、基部が棒状である探針21が形成される。
次に、図11(a)から(c)に示すように、本体部形成工程において、本体部23を形成する。まず、図11(a)に示すように、探針21、第1の金属構造体29および第2の金属構造体配線30が配設されたカンチレバー22を保護するため、カンチレバー22側の全面にフォトレジスト膜38を形成する。次に、図11(b)に示すように、絶縁膜形成工程で形成した酸化膜33をマスクとして、本体部23以外のシリコン支持層25をエッチングする。この場合、ドライエッチングでもウェットエッチングでもいずれでも構わないが、ウェットエッチングが好適である。そして、図11(c)に示すように、フッ酸によってSiO2層である酸化膜33及び本体部23以外のBOX層26を除去し、フォトレジスト膜38を除去すれば、図12に示すプローブ20が製作される。
図13から図24は、この発明に係る一実施形態を示している。図13に走査型プローブ顕微鏡のブロック図を示す。図14にプローブの斜視図、図15から図23にはプローブの製造工程の工程図を示す。図24は本実施形態のカンチレバーの基部にスリットを形成した例を示している。この実施形態において前述した実施形態で用いた部材と共通の部材には同一の符号を付して、その説明を省略する。
図13に示すように、本実施の形態における走査型プローブ顕微鏡2は、試料100を支持する試料支持部9と、試料100を移動させる試料移動手段3と、試料移動手段3によって試料100の試料上面S上を相対的に走査される探針21を有するプローブ201と、プローブ201の探針21をカンチレバー22が共振または強制振動する周波数で振動させる加振手段51とを備えている。プローブ201は、探針21が先端部に突出して設けられるカンチレバー22と、カンチレバー22の基端部を先端部が自由端となるように片持ち状態で固定する本体部23とを備えている。
試料移動手段3は、試料支持部9を支持し、試料上面Sに平行で互いに直交する2方向であるX、Y方向及び試料上面Sに垂直な方向であるZ方向に移動する試料移動手段3と、試料移動手段3を駆動させる駆動装置4とを備える。より詳しくは、試料移動手段3は、試料100をX、Y、Z方向に粗動移動させる粗動機構及び微小移動させるXYスキャナ、及びZスキャナとで構成される。粗動機構に対応する駆動装置4としては、例えばステッピングモータなどである。また、XYスキャナ及びZスキャナに対応する駆動装置4としては、例えばPZT(チタン酸ジルコン酸鉛)等からなる圧電素子であり、電圧が印加されると、電圧印加量及び極性等に応じて試料100をXYZ方向に微小移動させることが可能である。また、加振手段51は、プローブ201に接続され所定の周波数及び振幅で振動するようにプローブ201を加振するPZTからなる圧電素子と、圧電素子に電圧を印加して圧電素子を振動させる加振電源5とを備える。
また、探針21の変位を測定する変位検出手段60はカンチレバー22の基端部に備えられカンチレバーの撓みを検出するピエゾ抵抗素子により検出した抵抗変化に基づいて探針の変位を測定するものとした。
図14はプローブ201の全体平面図であるが、走査型プローブ顕微鏡2に搭載される向きと上下逆となるように記載されている。
図14に示すように、プローブ201は、第1の金属構造体29と第2の金属構造体30と、先端部が先鋭化されるとともに基部が棒状に形成された探針21と、探針21が先端部に突出して設けられたカンチレバー22と、カンチレバー22の基端部を先端部が自由端となるように片持ち状態で固定する本体部23とを備える。カンチレバー22の基端部には、カンチレバーの撓みを検出するピエゾ抵抗素子40が形成され、カンチレバー22の本体部23にはピエゾ抵抗素子40の抵抗変化を検出するためのピエゾ抵抗素子用電極配線41および42が形成されている。カンチレバー22及び本体部23は、シリコン基板、特に、シリコンからなるシリコン活性層24及びシリコン支持層25と、シリコン活性層24とシリコン支持層25とに介装され、SiO2からなるBOX層26とを貼り合わせたSOI基板27(Silicon on Insulator)から形成されている。
次に、この実施形態のプローブ201の製造方法について説明する。図16および図18は図14のB−B´断面図であり、図15、図17、および図19から図23は図14のA−A´断面図である。
前述のとおり、プローブ201のカンチレバー22及び本体部23は、シリコン活性層24、BOX層26、シリコン支持層25から構成されるSOI基板27から形成される。ここで、シリコン活性層24の厚さはカンチレバー22の厚さに設定され、また、BOX層26及びシリコン支持層25の厚さは本体部23の厚さに設定されている。以下、順に説明する。
図15(a)から(c)に示すように、カンチレバー形成工程において、カンチレバー22を形成する。まず、図15(a)のように、フォトリソグラフィ技術によって、カンチレバー22を形成する範囲にフォトレジスト膜32を形成する。そして、図15(b)に示すとおり、フォトレジスト膜32をマスクとして、シリコン活性層24をBOX層26に達するまでエッチングすることで、カンチレバー22となる部分の周囲のシリコン活性層24を切欠く。そして、フォトレジスト膜32を除去することで、図15(c)に示すとおり、カンチレバー22が形成される。フォトレジスト膜としては、ポジ型でもネガ型でも良い。カンチレバー22をエッチングする方法としては、ドライエッチングでもウェットエッチングでもいずれの方法でも良いが、ドライエッチングが好適である。ドライエッチングであれば、反応性イオンエッチング(RIE:Reactive Ion Etching)やDRIE(Deep Reactive Ion Etching)などがある。またウェットエッチングであれば、水酸化カリウム(KOH)やテトラメチルアンモニウムハイドロオキサイド(TMAH)等のアルカリ性エッチャントによる異方性エッチングなどがある。
次に、図16に示すようにピエゾ抵抗素子形成工程においてカンチレバー22の基端部にピエゾ抵抗素子40を形成する。まず、図16(a)のように、カンチレバー22が形成された側の全体をフォトレジスト膜50でパターニングする。つぎに図16(b)に示すようにフォトリソグラフィ技術によって、ピエゾ抵抗素子40を形成する範囲のフォトレジスト膜50を除去する。そして、図16(C)に示すとおり、フォトレジスト膜50をマスクとして、シリコン活性層24にボロンをイオンインプラしてフォトレジスト膜50を除去することで、図16(d)に示すようにカンチレバー22の基端部にピエゾ抵抗素子40を形成する。フォトレジスト膜としては、ポジ型でもネガ型でも良い。
次に、図17(a)に示すように、絶縁膜形成工程において、カンチレバー22の表面上に絶縁膜28を形成する。絶縁膜28は熱酸化法によって形成される。また、この際、カンチレバー22の裏面側、つまりシリコン支持層25の表面のうち、本体部23となる部分にも酸化膜33を形成する。すなわち、図17(a)に示すように、シリコン支持層25の表面の全面に、絶縁膜28を形成するのと同時に酸化膜33を形成する次に、図17(b)に示すように、本体部23の裏面の部分及びカンチレバー22が形成された側の全体をフォトレジスト膜51でパターニングする。そして、図17(c)に示すように、フォトレジスト膜51がパターニングされた部分以外の酸化膜33をフッ酸によって除去し、最後に、図17(d)に示すように、フォトレジスト膜51を除去する。
次に、図18(a)から図18(d)に示すように、ピエゾ抵抗素子40に電極配線を形成する。まず、図18(a)に示すように、ピエゾ抵抗素子40とピエゾ抵抗素子用電極配線41および42の接続部となる部分以外の部分をフォトレジスト膜52でパターニングする。次に、レジストで保護されていない部分の絶縁膜28をフッ酸により除去し、更にレジスト52を除去する。次に、図18(b)に示すようにカンチレバー22のピエゾ抵抗素子を形成した面全体に電極配線材料となるアルミ膜をスパッタリングにより形成し、図18(c)に示すように、ピエゾ抵抗素子用電極配線41および42となる部分にフォトレジスト膜53を形成する。図18(d)に示すようにフォトレジスト53を形成していない部分のアルミ膜を除去しフォトレジスト膜53を除去することによってピエゾ抵抗素子用電極配線41および42が形成される。
なお、ピエゾ抵抗素子用電極配線41および42を形成する方法は、スパッタリング法に限らず、蒸着法としても良い。また、あらかじめ全体にフォトレジスト膜53を形成し、ピエゾ抵抗素子用電極配線41および42を形成する部分のフォトレジスト膜53を除去する。つづいて、スパッタリング法あるいは蒸着法によってアルミ膜を成膜し、つづいてフォトレジスト膜53を除去することでピエゾ抵抗素子用電極配線41および42を形成する方法としても良い。
次に、図19(a)から図19(c)に示すように、温度測定用素子形成工程において、絶縁膜28上に第1の金属構造体29および第2の金属構造体配線30を形成する。まず、図19(a)に示すように、第1の金属構造体29となる部分以外の部分をフォトレジスト膜54でパターニングする。次に、図19(b)に示すように、クロム膜をスパッタリング法によって全面に形成する。そして、図19(c)に示すように、フォトレジスト膜54を除去することによって第1の金属構造体29が形成される。
なお、第1の金属構造体29となるクロム膜を形成する方法は、スパッタリング法に限らず、蒸着法としても良い。また、あらかじめ全体にスパッタリング法あるいは蒸着法によってクロム膜を成膜し、第1の金属構造体29となる部分にフォトレジスト膜をパターニングする。つづいてフォトレジスト膜54が形成されていない部分のクロム膜をエッチングにより除去することで第1の金属構造体29を形成する方法としても良い。
次に、第1の金属構造体29の形成する方法と同様に第2の金属構造体30を形成する。図20(a)から(c)に示すように、第2の金属構造体30となる部分以外の部分をフォトレジスト膜55でパターニングする。次に、図20(b)に示すように、ニッケル膜をスパッタリング法によって全面に形成する。そして、図20(c)に示すように、フォトレジスト膜55を除去することによって第2の金属構造体30が形成される。なお、第1の金属構造体30となるニッケル膜を形成する方法は、スパッタリング法に限らず、蒸着法としても良い。
次に探針形成工程において、第1の金属構造体29の第1の端部291および第2の金属構造体配線30の第2の端部301が重なる形で形成された接続部分上に探針21を形成する。探針形成工程は、基部形成工程と、先端部先鋭化工程の2工程で構成される。図21(a)から(c)は、基部形成工程を示している。まず、図21(a)に示すように、カンチレバー22側全体に探針21の高さと略等しい厚さのフォトレジスト膜56を形成する。フォトレジスト膜56としては、ポジレジストとネガレジストがあるが、紫外線、電子ビームあるいはレーザ等で照射された部分のパターンが残るネガレジストが好適であり、例えば、SU−8(化薬マイクロケム株式会社製SU−8シリーズ)などがある。そして、探針21の位置に、基部の断面形状と等しくなるようにマスキングする。ここでは、基部の断面形状が円状であるので、円状にマスキングする。そして、図21(b)に示すように、フォトレジスト膜56を露光し、現像液を滴下して、未露光範囲を溶かし込む。次に、図21(c)に示すように、第2の金属構造体30を一方の電極として電解液に浸潤させて、電鋳法によりニッケルを空洞部分に電鋳することで、探針21の基部と研磨しろを含んだものとが形成される。
次に、図22(a)に示すように、フォトレジスト膜56から露出する探針21の先端部を電解研磨によって、研磨しろを研磨し、先鋭化させる。最後に、図22(b)に示すように、フォトレジスト膜56を除去すれば、先端部が先鋭化され、基部が棒状である探針21が形成される。
次に、図23(a)から(c)に示すように、本体部形成工程において、本体部23を形成する。まず、図23(a)に示すように、探針21、第1の金属構造体29および第2の金属構造体配線30が配設されたカンチレバー22を保護するため、カンチレバー22側の全面にフォトレジスト膜57を形成する。次に、図23(b)に示すように、絶縁膜形成工程で形成した酸化膜33をマスクとして、本体部23以外のシリコン支持層25をエッチングする。この場合、ドライエッチングでもウェットエッチングでもいずれでも構わないが、ウェットエッチングが好適である。そして、図23(c)に示すように、フッ酸によってSiO2層である酸化膜33及び本体部23以外のBOX層26を除去し、フォトレジスト膜57を除去すれば、プローブ201が製作される。
以上説明したいずれの実施の形態においてもカンチレバー22を上述のカンチレバー形成工程で、探針21を上述の探針形成工程で形成することにより、カンチレバー22の形成と探針21の形成とを完全に別工程することができる。このため、カンチレバー22をSOI基板27から形成し、探針21を電鋳法によってニッケルから形成することができる。さらに、温度測定用素子形成工程は、探針形成工程に先立って探針21が形成されていない状態で行うことができるので、第1の金属構造体29および第2の金属構造体配線30を容易に形成することができる。なお、上述の各工程において、フォトレジスト膜を露光させることでパターニングするが、これに限らず、電子ビームなどによる直接描画する方法でも構わない。
またさらには、図24に示すようにカンチレバー22の基端部にはスリット24Sが形成されている構造としてもよい。これによりカンチレバー22の基端部はたわみやすい構造となり、更に精度の高い測定を可能とする。
以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
なお、プローブのカンチレバー及び本体部はSOI基板から形成されるものとしたが、これに限ることは無く、樹脂、半導体、ガラス、あるいは金属に絶縁膜をコートしたものなどでも良い。また、プローブの製造工程の中で、探針形成工程において、先端部先鋭化と基部形成の2工程に分けられるとしたが、これに限ることは無い。基部をさらに複数の工程に分けることで、基部の断面形状を変化させることも可能である。
また、プローブに振動を与えて試料の表面形状を測定するDFMモードの走査型プローブ顕微鏡としたが、これに限ることは無く、探針の変位を直接測定するAFMモードに使用するものとしても、アスペクト比の高い凹凸を感度良く測定することができる。
また、プローブには、探針が1つ設けられるものとしたが、これに限ることは無く、複数の探針を突出して設けることで、アレイ化したプローブとしても良い。さらに、プローブは走査型プローブ顕微鏡に備えられるものとしたこれに限ることはない。
この発明の第1の実施形態の走査型プローブ顕微鏡のブロック図である。 この発明の第1の実施形態のプローブの斜視図である。 この発明の第1の実施形態のプローブの平面図である。 この発明の第1の実施形態のプローブの断面図である。 この発明の第1の実施形態のプローブのカンチレバー形成工程を示す工程図である。 この発明の第1の実施形態のプローブの絶縁膜形成工程を示す工程図である。 この発明の第1の実施形態のプローブの温度測定用素子の形成工程を示す工程図である。 この発明の第1の実施形態のプローブの温度測定用素子の形成工程を示す工程図である。 この発明の第1の実施形態のプローブの探針形成工程(基部)を示す工程図である。 この発明の第1の実施形態のプローブの探針先鋭化工程を示す工程図である。 この発明の第1の実施形態のプローブの本体部形成工程を示す工程図である。 この発明の第1の実施形態のプローブの本体部形成工程を示す工程図である。 この発明の第2の実施形態の走査型プローブ顕微鏡のブロック図である。 この発明の第2の実施形態のプローブの平面図である。 この発明の第2の実施形態のプローブのカンチレバー形成工程を示す工程図である。 この発明の第2の実施形態のプローブのピエゾ抵抗素子形成工程を示す工程図である。 この発明の第2の実施形態のプローブの絶縁膜形成工程を示す工程図である。 この発明の第2の実施形態のプローブのピエゾ抵抗素子用電極配線形成工程を示す工程図である。 この発明の第2の実施形態のプローブの温度測定用素子の形成工程を示す工程図である。 この発明の第2の実施形態のプローブの温度測定用素子の形成工程を示す工程図である。 この発明の第2の実施形態のプローブの探針形成工程(基部)を示す工程図である。 この発明の第2の実施形態のプローブの探針先鋭化工程を示す工程図である。 この発明の第2の実施形態のプローブの本体部形成工程を示す工程図である。 この発明の第2の実施形態のプローブの平面図である。
符号の説明
1、2 走査型プローブ顕微鏡
3 試料移動手段
4 駆動装置
51 加振手段
5 加振電源
6、60 変位検出素子
7 コンピューター
8 温度特性検出手段
9 試料支持部
20、201 プローブ
21 探針
22 カンチレバー
23 本体部
24 シリコン活性層
25 シリコン支持層
26 BOX層
27 SOI基板(シリコン基板)
28 絶縁膜
29 第1の金属構造体
291 第1の端部
30 第2の金属構造体
301 第2の端部
33 酸化膜
32、34、35、36、37、38、50
51、52、53、54、55、56、57 フォトレジスト膜
40 ピエゾ抵抗素子
41、42 ピエゾ抵抗素子用電極配線
100 試料

Claims (8)

  1. 表面に絶縁層を有するカンチレバーと、
    前記カンチレバーの上面に設けられ、前記カンチレバーの先端部に第1の端部を有する第1の金属構造体と、
    前記カンチレバーの上面に設けられ、前記第1の端部の上面に設けられた第2の端部を有する第2の金属構造体と、
    前記第2の端部の上面に設けられ、棒状に形成された基部と、尖鋭化された先端部とを有する探針と、
    を有する温度測定用プローブ。
  2. 表面に絶縁層を有するカンチレバーと、
    前記カンチレバーの先端部に設けられ、前記カンチレバーの基端部に設けられた第1の電極に接続された、第1の金属構造体と、一端が前記第1の金属構造体の上面に設けられ、他端が前記カンチレバーの基端部に前記第1の電極に離間して設けられた第2の電極に接続された、第2の金属構造体と、からなる温度測定用素子と、
    前記温度測定用素子の上面に設けられ、棒状に形成された基部と、尖鋭化された先端部とを有する探針と、
    を有する温度測定用プローブ。
  3. 前記探針が、前記第2の金属構造体と同じ材料からなる請求項1または2に記載の温度測定用プローブ。
  4. 請求項1または2に記載の温度特性測定用プローブと、
    前記探針を試料の被測定面に接近させて試料表面を走査することにより試料表面形状に応じて変位する前記探針の変位データを検出する変位検出手段と、
    前記探針を前記試料に対して相対的に前記試料の表面に平行で、互いに直交する二方向の走査及び前記試料の表面に垂直方向の移動を行う移動手段と、
    前記温度測定用素子の熱起電力検出する熱起電力検出部と、
    を備える走査型プローブ顕微鏡。
  5. 前記探針を振動用周波数で共振または強制振動させる加振手段を備え、
    前記変位検出手段は、前記探針の振動状態を検出する振動検出手段である請求項4に記載の走査型プローブ顕微鏡。
  6. 前記変位検出手段を前記カンチレバー内に設ける請求項4に記載の走査型プローブ顕微鏡。
  7. 前記変位検出手段はピエゾ抵抗素子である請求項4に記載の走査型プローブ顕微鏡。
  8. シリコン基板を切欠いて、カンチレバーを形成する工程と、
    前記カンチレバーの上面に絶縁膜を形成する工程と、
    前記カンチレバーの先端部側の前記絶縁膜の上面に、第1の金属構造体の第1の端部を形成し、前記第1の端部の上面に第2の金属構造体の第2の端部を形成して、温度測定用素子を形成する工程と、
    前記温度測定用素子の上面に電鋳法によって探針を形成する工程と、
    前記探針の先端部を電解研磨によって先鋭化させる工程と
    前記シリコン基板を切欠いて、前記カンチレバーの基端部側に本体部を形成する工程と、
    を有する温度測定用プローブの製造方法。
JP2005350901A 2005-12-05 2005-12-05 温度測定用プローブ Expired - Fee Related JP4751190B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005350901A JP4751190B2 (ja) 2005-12-05 2005-12-05 温度測定用プローブ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005350901A JP4751190B2 (ja) 2005-12-05 2005-12-05 温度測定用プローブ

Publications (2)

Publication Number Publication Date
JP2007155492A true JP2007155492A (ja) 2007-06-21
JP4751190B2 JP4751190B2 (ja) 2011-08-17

Family

ID=38240066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005350901A Expired - Fee Related JP4751190B2 (ja) 2005-12-05 2005-12-05 温度測定用プローブ

Country Status (1)

Country Link
JP (1) JP4751190B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047477A (ja) * 2007-08-16 2009-03-05 Seiko Instruments Inc 顕微鏡用プローブ及び走査型プローブ顕微鏡
JP2013019887A (ja) * 2011-07-12 2013-01-31 National Cheng Kung Univ サーマル・プローブ
JP2013242330A (ja) * 2009-01-21 2013-12-05 Seiko Instruments Inc 機械部品の製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210846A (ja) * 1989-02-10 1990-08-22 Hitachi Ltd 半導体lsi検査装置用プローブヘッドの製造方法および検査装置
JPH05133739A (ja) * 1991-11-13 1993-05-28 Yokogawa Electric Corp 探針走査型顕微鏡用探針
JPH08105801A (ja) * 1994-08-12 1996-04-23 Nikon Corp 微小熱電対付きカンチレバー及び走査型温度分布 計測装置
JPH08318386A (ja) * 1995-03-17 1996-12-03 Ebara Corp エネルギービームによる加工方法および加工装置
JPH11295326A (ja) * 1998-04-10 1999-10-29 Nippon Telegr & Teleph Corp <Ntt> 原子間力顕微鏡、トンネル顕微鏡又はスピン偏極トンネル顕微鏡に用いる探針及びカンチレバー並びにその作製法
JP2001004455A (ja) * 1999-06-23 2001-01-12 Japan Science & Technology Corp 微小表面温度分布計測法およびそのための装置
JP2002131211A (ja) * 2000-08-18 2002-05-09 Internatl Business Mach Corp <Ibm> 薄膜熱電物質の熱的及び電気的特性を測定する方法及び装置
JP2003240700A (ja) * 2001-12-04 2003-08-27 Seiko Instruments Inc 走査型プローブ顕微鏡用探針
JP2003279421A (ja) * 2002-03-25 2003-10-02 Seiko Instruments Inc 温度測定プローブおよび温度測定装置
JP2007086079A (ja) * 2005-09-22 2007-04-05 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi 走査型熱顕微鏡のプローブ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210846A (ja) * 1989-02-10 1990-08-22 Hitachi Ltd 半導体lsi検査装置用プローブヘッドの製造方法および検査装置
JPH05133739A (ja) * 1991-11-13 1993-05-28 Yokogawa Electric Corp 探針走査型顕微鏡用探針
JPH08105801A (ja) * 1994-08-12 1996-04-23 Nikon Corp 微小熱電対付きカンチレバー及び走査型温度分布 計測装置
JPH08318386A (ja) * 1995-03-17 1996-12-03 Ebara Corp エネルギービームによる加工方法および加工装置
JPH11295326A (ja) * 1998-04-10 1999-10-29 Nippon Telegr & Teleph Corp <Ntt> 原子間力顕微鏡、トンネル顕微鏡又はスピン偏極トンネル顕微鏡に用いる探針及びカンチレバー並びにその作製法
JP2001004455A (ja) * 1999-06-23 2001-01-12 Japan Science & Technology Corp 微小表面温度分布計測法およびそのための装置
JP2002131211A (ja) * 2000-08-18 2002-05-09 Internatl Business Mach Corp <Ibm> 薄膜熱電物質の熱的及び電気的特性を測定する方法及び装置
JP2003240700A (ja) * 2001-12-04 2003-08-27 Seiko Instruments Inc 走査型プローブ顕微鏡用探針
JP2003279421A (ja) * 2002-03-25 2003-10-02 Seiko Instruments Inc 温度測定プローブおよび温度測定装置
JP2007086079A (ja) * 2005-09-22 2007-04-05 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi 走査型熱顕微鏡のプローブ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047477A (ja) * 2007-08-16 2009-03-05 Seiko Instruments Inc 顕微鏡用プローブ及び走査型プローブ顕微鏡
JP2013242330A (ja) * 2009-01-21 2013-12-05 Seiko Instruments Inc 機械部品の製造方法
JP2013019887A (ja) * 2011-07-12 2013-01-31 National Cheng Kung Univ サーマル・プローブ

Also Published As

Publication number Publication date
JP4751190B2 (ja) 2011-08-17

Similar Documents

Publication Publication Date Title
US8261602B2 (en) Three-dimensional nanoscale metrology using FIRAT probe
US7823216B2 (en) Probe device for a metrology instrument and method of fabricating the same
US8756710B2 (en) Miniaturized cantilever probe for scanning probe microscopy and fabrication thereof
US20070024295A1 (en) Probe for an atomic force microscope
US8695111B2 (en) Video rate-enabling probes for atomic force microscopy
JP4751190B2 (ja) 温度測定用プローブ
JP4785537B2 (ja) プローブ、走査型プローブ顕微鏡、及びプローブの製造方法
JP4931708B2 (ja) 顕微鏡用プローブ及び走査型プローブ顕微鏡
JPH1038916A (ja) プローブ装置及び微小領域に対する電気的接続方法
JP4931640B2 (ja) 走査型プローブ顕微鏡
JPH06258072A (ja) 圧電体薄膜評価装置、原子間力顕微鏡
JP2007114033A (ja) プローブ及び走査型プローブ顕微鏡並びにプローブの製造方法
JPH11160334A (ja) 走査型プローブ顕微鏡の探針および力検出方法
JP2007121316A (ja) 走査型近視野顕微鏡
JP4931733B2 (ja) 顕微鏡用プローブ及び走査型プローブ顕微鏡
US7861315B2 (en) Method for microfabricating a probe with integrated handle, cantilever, tip and circuit
US20240118310A1 (en) Device for measuring and/or modifying a surface
JPH1138020A (ja) 走査型プローブ顕微観察法と走査型プローブ顕微鏡用プローブと走査型プローブ顕微鏡
JP4282588B2 (ja) プローブ及び走査型プローブ顕微鏡
JP2006145430A (ja) プローブ及び走査型プローブ顕微鏡
JPH05157555A (ja) 原子間力顕微鏡用プローブ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081120

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees