JP2007114248A - 液晶デバイスおよび光ピックアップ - Google Patents

液晶デバイスおよび光ピックアップ Download PDF

Info

Publication number
JP2007114248A
JP2007114248A JP2005302595A JP2005302595A JP2007114248A JP 2007114248 A JP2007114248 A JP 2007114248A JP 2005302595 A JP2005302595 A JP 2005302595A JP 2005302595 A JP2005302595 A JP 2005302595A JP 2007114248 A JP2007114248 A JP 2007114248A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal layer
voltage
light
aberration correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005302595A
Other languages
English (en)
Other versions
JP4792910B2 (ja
Inventor
Masayuki Kamiyama
雅之 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2005302595A priority Critical patent/JP4792910B2/ja
Publication of JP2007114248A publication Critical patent/JP2007114248A/ja
Application granted granted Critical
Publication of JP4792910B2 publication Critical patent/JP4792910B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Optical Head (AREA)

Abstract

【課題】往復の光路での収差補正機能と波長板の機能とを両方併せ持ちながら、デバイスの軽量化、コンパクト化およびコスト低減を図る。
【解決手段】液晶デバイスは、2層の液晶層21・31と、各液晶層の両側に順に配置される配向膜および電極と、各電極に電圧を印加する電圧印加手段とを有している。液晶層21の両側に配置した配向膜の配向方向と、液晶層31の両側に配置した配向膜の配向方向とは、互いに直交しており、かつ、入射光の偏光方向に対してそれぞれ略±45°傾いている。また、液晶層21の両側に配置した電極の一方と、液晶層31の両側に配置した電極の一方とは、同じ形状で分割されている。電圧印加手段は、液晶層21・31のそれぞれにおいて分割領域間で透過光に位相差が生じ、同じ分割領域において液晶層21・31で透過光に位相差が生じるように、液晶層21・31の各電極に電圧を印加する。
【選択図】図1

Description

本発明は、液晶層に電圧を印加して液晶層の屈折率を変化させ、液晶層を透過する光の位相を変化させることにより、光学系にて発生する収差を補正する液晶デバイスと、その液晶デバイスを備えた光ピックアップとに関するものである。
図13は、従来の光ピックアップの概略の構成を示す説明図である。この構成の光ピックアップでは、光源101(例えばレーザーダイオード)から出射された直線偏光(例えばP偏光)は、コリメーターレンズ102で略平行光となり、偏光ビームスプリッター103を透過して収差補正デバイス104に入射する。なお、収差補正デバイス104の詳細については後述する。
収差補正デバイス104から出射される光は、1/4波長板105に入射して円偏光に変換され、対物レンズ106によって光ディスクDに集光される。なお、対物レンズ106は、アクチュエーター107によって上下左右に駆動され、これによって、フォーカシングやトラッキングが行われる。
光ディスクDで反射された光は、再び対物レンズ106を透過した後、1/4波長板105にて直線偏光(例えばS偏光)に変換され、収差補正デバイス104を透過して、偏光ビームスプリッター103にて反射される。そして、反射光は、集光レンズ108によって光検出器109に集光され、そこで電気信号に変換される。
上記した収差補正デバイス104は、光学系にて発生する収差を補正するものであって、例えば液晶層を2層有し、かつ、各液晶層の両側に配向膜および電極を順に配置した液晶デバイスで構成されている。なお、説明の便宜上、偏光ビームスプリッター103側に配置される液晶層を第1の液晶層104aと称し、光ディスクD側に配置される液晶層を第2の液晶層104bと称することとする。
図14(a)は、第1の液晶層104aの両側に配置される配向膜201a・201bの配向方向を示し、図14(b)は、第2の液晶層104bの両側に配置される配向膜202a・202bの配向方向を示している。これらの図に示すように、配向膜201a・201bの配向方向は、光源101からの入射光の偏光方向と同じ方向に設定されている一方、配向膜202a・202bの配向方向は、光源101からの入射光の偏光方向に対して垂直方向に設定されている。また、第1の液晶層104aの一方の側の電極および第2の液晶層104bの一方の側の電極は、複数の電極に分割されている。
したがって、収差補正デバイス104において、光源101からの入射光は、第1の液晶層104aによってその波面が変化する。つまり、第1の液晶層104aの両側の配向膜201a・201bの配向方向が上記入射光の偏光方向と同じであるので、第1の液晶層104aの両側の電極への電圧印加によって第1の液晶層104aの屈折率が各分割領域ごとに変化することにより、透過光の位相が分割領域ごとに変化する。これにより、光源101から光ディスクDまでの光路にて発生する収差を補正することができる。
一方、光ディスクDにて反射され、1/4波長板105を介して収差補正デバイス104に入射する光は、第2の液晶層104bによってその波面が変化する。つまり、第2の液晶層104aの両側の配向膜202a・202bの配向方向が光ディスクDからの反射光の偏光方向と同じであるので、第2の液晶層104bの両側の電極への電圧印加によって第2の液晶層104bの屈折率が各分割領域ごとに変化することにより、透過光の位相が分割領域ごとに変化する。これにより、光ディスクDから光検出器109までの光路にて発生する収差を補正することができる。
なお、図14では、収差補正デバイス104の配向膜201a・201bの配向方向と配向膜202a・202bの配向方向とを、それぞれ、光源101から入射する光の偏光方向と光ディスクDからの反射光(1/4波長板105を介して入射する光)の偏光方向とにしている。しかし、配向膜の配向方向が2層の液晶層同士で直交していれば、それぞれの方向の成分に対して2つの液晶層で同等の効果を与えることができるので、配向膜の配向方向を必ずしも入射光や反射光の偏光方向に合わせる必要はない。また、収差補正デバイス104は、1/4波長板105と対物レンズ106との間に配置されてもよい。
以上で説明したような、液晶層を2層有する収差補正デバイス104を用いた光ピックアップとしては、例えば特許文献1および2に開示されている。
また、例えば特許文献3に開示された光ピックアップでは、液晶パネルを1枚用いて収差補正を行っている。より具体的には、液晶パネルの一方の透明電極を複数に分割し、分割された各電極に印加する電圧を変えることで、各分割領域ごとに屈折率を変え、波面収差(主として球面収差やコマ収差)を補正している。
また、特許文献4に開示された光ピックアップでは、波長板を構成する2つの液晶素子に、温度に応じた電圧を印加することにより、温度変化にかかわらず、上記の波長板を常に例えば1/4波長板として機能させている。ただし、上記波長板には、上述した特許文献1ないし3のような収差補正機能はない。
なお、従来の1/4波長板、すなわち、図13の1/4波長板105について補足的に説明しておくと、以下の通りである。図15は、1/4波長板105の遅相軸および進相軸と入射光の偏光方向との関係を模式的に示す説明図である。
1/4波長板105は、液晶のような屈折率異方性のある材料で構成されている、1/4波長板105の遅相軸方向の屈折率は、これと直交方向の進相軸方向の屈折率よりも高いため、遅相軸方向の偏光成分は、進相軸方向の偏光成分に対して位相が遅れる。したがって、光ピックアップにおいて、光源101からの入射光の偏光方向に対して遅相軸および進相軸をそれぞれ±45°傾斜して配置すると、遅相軸方向および進相軸方向で同相であるために直線偏光だった入射光は、遅相軸方向の偏光成分が進相軸方向の偏光成分に対して1/4波長遅れるため、直線偏光から円偏光に変換される。一方、光ディスクDからの反射光は、再度この1/4波長板105を透過する際に、遅相軸方向の偏光成分がさらに1/4波長遅れるため、円偏光から入射時と直交方向の直線偏光に変換される。
特開2002−251774号公報 特開2002−319172号公報 特許第3443226号公報 特開2002−269797号公報
ところで、液晶層を用いて収差補正デバイスを構成する場合、往復の光路で収差を補正するには、液晶層は、図13で示したように2層必要である。一方、液晶層を用いて波長板を構成する場合、特許文献4では2層の液晶層を用いているが、これは温度変化対策などのためで、機能的には1層の液晶層で波長板を構成することが可能である。
したがって、往復の収差補正機能と波長板の機能とを両方兼ね備えた液晶デバイスを構成しようとした場合、単に従来の構成を組み合わせただけでは、液晶層は少なくとも3層必要であり、デバイスの軽量化および小型化を図ることできず、また、デバイスのコストを低減することもできない。
本発明は、上記の問題点を解決するためになされたものであって、その目的は、往復の収差補正機能と波長板の機能とを両方併せ持ちながら、デバイスの軽量化、コンパクト化およびコスト低減を図ることができる液晶デバイスと、その液晶デバイスを備えた光ピックアップとを提供することにある。
本発明の液晶デバイスは、2層の液晶層と、各液晶層の両側に順に配置される配向膜および電極と、上記電極に電圧を印加して各液晶層の屈折率を変化させることで、各液晶層を透過する光の位相を変化させる電圧印加手段とを備え、各液晶層を第1の液晶層および第2の液晶層とすると、第1の液晶層の両側に配置した配向膜の配向方向と、第2の液晶層の両側に配置した配向膜の配向方向とは、互いに直交しており、かつ、(光源からの)入射光の偏光方向に対してそれぞれ略±45°傾いており、第1の液晶層の両側に配置した電極の一方と、第2の液晶層の両側に配置した電極の一方とは、同じ形状で分割されており、上記電圧印加手段は、第1の液晶層および第2の液晶層のそれぞれにおいて、分割領域間で透過光に位相差が生じ、かつ、同じ分割領域において第1の液晶層と第2の液晶層とで透過光に位相差が生じるように、第1の液晶層および第2の液晶層の各電極に電圧を印加することを特徴としている。
上記の構成によれば、第1の液晶層の両側に配置した配向膜の配向方向と、第2の液晶層の両側に配置した配向膜の配向方向とは、互いに直交しており、かつ、入射光の偏光方向に対してそれぞれ略±45°傾いている。これにより、電圧印加手段が第1の液晶層および第2の液晶層の各電極に電圧を印加したときには、各液晶層の屈折率変化により、2層の液晶層のそれぞれが入射光の偏光方向の±45°の方向の成分に対して位相を変化させる。したがって、第1の液晶層側から入射する光と、第2の液晶層側から入射する光との両方について収差を補正することが可能となる。つまり、往復の光路において発生する収差を補正することが可能となる。
しかも、第1の液晶層の両側に配置した電極の一方と、第2の液晶層の両側に配置した電極の一方とは、同じ形状で分割されており、電圧印加手段は、第1の液晶層および第2の液晶層のそれぞれにおいて、分割領域(分割された個々の電極に対応する領域)間で透過光に位相差が生じるように、第1の液晶層および第2の液晶層の各電極に電圧を印加するので、光学系にて発生する収差(例えば球面収差)を補正することができる。
また、電圧印加手段は、同じ分割領域において第1の液晶層と第2の液晶層とで透過光に位相差が生じるように、第1の液晶層および第2の液晶層の各電極に電圧を印加するので、例えば上記位相差が入射光の1/4波長であれば、入射光の偏光状態を直線偏光から円偏光、または円偏光から直線偏光に変えることができる。
このように、本発明によれば、2層の液晶層を用いて、入射光の波面(収差)と偏光状態とを両方とも変化させることができる。つまり、往復の光路での収差補正機能と波長板の機能とを両方併せ持つデバイスを液晶層2層で実現することができる。その結果、デバイスの軽量化、コンパクト化およびコスト低減を図ることができる。
特に、上記電圧印加手段が、同じ分割領域において第1の液晶層と第2の液晶層とで、透過光に1/4波長の位相差が生じるように、第1の液晶層および第2の液晶層の各電極に電圧を印加すれば、本発明の液晶デバイスに1/4波長板としての機能を持たせることができ、収差補正機能と1/4波長板の機能とを両方併せ持つデバイスを実現することができる。
また、本発明は、使用メディアを検出する使用メディア検出手段と、使用メディアに照射される光の波長ごとに設定され、収差を補正可能な、一方の液晶層における透過光の位相パターンを収差補正パターンとして記憶する収差補正パターン記憶手段と、使用メディアに照射される光の波長ごとに設定され、第1の液晶層および第2の液晶層の各電極に印加される電圧と、第1の液晶層および第2の液晶層の屈折率との関係を示すテーブルを記憶するテーブル記憶手段と、第1の液晶層および第2の液晶層の各電極に印加する電圧を設定する電圧設定手段とをさらに備え、上記電圧設定手段は、上記使用メディア検出手段で検出された使用メディアに照射される光の波長に応じた収差補正パターンを上記収差補正パターン記憶手段から読み出し、一方の液晶層における透過光の位相パターンを決定する一方、上記位相パターンに対して1/4波長分進んだ位相パターンを他方の液晶層における透過光の位相パターンに決定し、各位相パターンと各液晶層の層厚とに基づいて各液晶層の屈折率を各分割領域ごとに算出し、上記テーブル記憶手段に記憶されたテーブルから上記屈折率に応じた電圧を各分割領域ごとに求め、上記電圧印加手段は、上記電圧設定手段にて求められた各分割領域ごとの電圧を、第1の液晶層および第2の液晶層の各電極に印加する構成であってもよい。
上記の構成によれば、電圧設定手段により、使用波長、すなわち、使用メディア検出手段で検出された使用メディアに照射される光の波長に応じた収差補正パターンが収差補正パターン記憶手段から読み出され、これをもとに、各液晶層における透過光の位相パターンが決定される。このとき、第1の液晶層と第2の液晶層との間での透過光の位相差は、使用波長の1/4波長に設定されている。
そして、電圧設定手段により、各位相パターンと各液晶層の層厚とに基づいて各液晶層の屈折率が各分割領域ごとに算出され、テーブル記憶手段に記憶されたテーブルから上記屈折率に応じた電圧が各分割領域ごとに求められる。電圧印加手段は、電圧設定手段にて求められた各分割領域ごとの電圧を、第1の液晶層および第2の液晶層の各電極に印加する。
このように、収差補正および1/4波長板を実現するのに必要な電圧として、使用波長(使用メディア)に応じた電圧が第1の液晶層および第2の液晶層の各電極に印加されるので、使用波長(使用メディア)ごとに良好な特性の液晶デバイスを実現することができる。
また、本発明は、環境温度を検出する温度検出手段と、環境温度ごとに設定され、収差を補正可能な、一方の液晶層における透過光の位相パターンを収差補正パターンとして記憶する収差補正パターン記憶手段と、環境温度ごとに設定され、第1の液晶層および第2の液晶層の各電極に印加される電圧と、第1の液晶層および第2の液晶層の屈折率との関係を示すテーブルを記憶するテーブル記憶手段と、第1の液晶層および第2の液晶層の各電極に印加する電圧を設定する電圧設定手段とをさらに備え、上記電圧設定手段は、上記温度検出手段で検出された環境温度に応じた収差補正パターンを上記収差補正パターン記憶手段から読み出し、一方の液晶層における透過光の位相パターンを決定する一方、上記位相パターンに対して1/4波長分進んだ位相パターンを他方の液晶層における透過光の位相パターンに決定し、各位相パターンと各液晶層の層厚とに基づいて各液晶層の屈折率を各分割領域ごとに算出し、上記テーブル記憶手段に記憶されたテーブルから上記屈折率に応じた電圧を各分割領域ごとに求め、上記電圧印加手段は、上記電圧設定手段にて求められた各分割領域ごとの電圧を、第1の液晶層および第2の液晶層の各電極に印加する構成であってもよい。
上記の構成によれば、電圧設定手段により、現在の環境温度、すなわち、温度検出手段で検出された環境温度に応じた収差補正パターンが収差補正パターン記憶手段から読み出され、これをもとに、各液晶層における透過光の位相パターンが決定される。このとき、第1の液晶層と第2の液晶層との間での透過光の位相差は、使用波長の1/4波長に設定されている。
そして、電圧設定手段により、各位相パターンと各液晶層の層厚とに基づいて各液晶層の屈折率が各分割領域ごとに算出され、テーブル記憶手段に記憶されたテーブルから上記屈折率に応じた電圧が各分割領域ごとに求められる。電圧印加手段は、電圧設定手段にて求められた各分割領域ごとの電圧を、第1の液晶層および第2の液晶層の各電極に印加する。
このように、収差補正および1/4波長板を実現するのに必要な電圧として、環境温度に応じた電圧が第1の液晶層および第2の液晶層の各電極に印加されるので、環境温度ごとに良好な特性の液晶デバイスを実現することができる。
また、本発明は、使用メディアを検出する使用メディア検出手段と、環境温度を検出する温度検出手段と、使用メディアに照射される光の波長ごとおよび環境温度ごとに設定され、収差を補正可能な、一方の液晶層における透過光の位相パターンを収差補正パターンとして記憶する収差補正パターン記憶手段と、使用メディアに照射される光の波長ごとおよび環境温度ごとに設定され、第1の液晶層および第2の液晶層の各電極に印加される電圧と、第1の液晶層および第2の液晶層の屈折率との関係を示すテーブルを記憶するテーブル記憶手段と、第1の液晶層および第2の液晶層の各電極に印加する電圧を設定する電圧設定手段とをさらに備え、上記電圧設定手段は、上記使用メディア検出手段で検出された使用メディアに照射される光の波長と上記温度検出手段にて検出された環境温度とに応じた収差補正パターンを上記収差補正パターン記憶手段から読み出し、一方の液晶層における透過光の位相パターンを決定する一方、上記位相パターンに対して1/4波長分進んだ位相パターンを他方の液晶層における透過光の位相パターンに決定し、各位相パターンと各液晶層の層厚とに基づいて各液晶層の屈折率を各分割領域ごとに算出し、上記テーブル記憶手段に記憶されたテーブルから上記屈折率に応じた電圧を各分割領域ごとに求め、上記電圧印加手段は、上記電圧設定手段にて求められた各分割領域ごとの電圧を、第1の液晶層および第2の液晶層の各電極に印加する構成であってもよい。
上記の構成によれば、電圧設定手段により、使用波長(使用メディア検出手段で検出された使用メディアに照射される光の波長)と、現在の環境温度(温度検出手段で検出された環境温度)とに応じた収差補正パターンが収差補正パターン記憶手段から読み出され、これをもとに、各液晶層における透過光の位相パターンが決定される。このとき、第1の液晶層と第2の液晶層との間での透過光の位相差は、使用波長の1/4波長に設定されている。
そして、電圧設定手段により、各位相パターンと各液晶層の層厚とに基づいて各液晶層の屈折率が各分割領域ごとに算出され、テーブル記憶手段に記憶されたテーブルから上記屈折率に応じた電圧が各分割領域ごとに求められる。電圧印加手段は、電圧設定手段にて求められた各分割領域ごとの電圧を、第1の液晶層および第2の液晶層の各電極に印加する。
このように、収差補正および1/4波長板を実現するのに必要な電圧として、使用波長および環境温度の両方に応じた電圧が第1の液晶層および第2の液晶層の各電極に印加されるので、使用波長および環境温度ごとに良好な特性の液晶デバイスを実現することができる。
本発明の光ピックアップは、上述した本発明の液晶デバイスを備えていることを特徴としている。本発明の液晶デバイスは、収差補正機能と波長板の機能とを両方併せ持っているので、従来のような1/4波長板が不要となる分、光ピックアップの構成を簡素化することができる。
本発明によれば、往復の光路での収差補正機能と波長板の機能とを両方併せ持つデバイスを液晶層2層で実現することができ、デバイスの軽量化、コンパクト化およびコスト低減を図ることができるとともに、光ピックアップの構成を簡素化することができる。
本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。
(1.光ピックアップの構成)
図2は、本実施形態に係る光ピックアップの概略の構成を示す説明図である。この光ピックアップは、光源1と、コリメーターレンズ2と、偏光ビームスプリッター3と、液晶デバイス4と、対物レンズ5と、アクチュエーター6と、集光レンズ7と、光検出器8とを有している。
光源1は、例えばレーザーダイオードで構成されており、光ディスクDに向けて光を出射する。本実施形態では、光源1は、複数波長のレーザー光を出射することが可能となっている。これにより、光ディスクDとして、CD、DVD、次世代DVD(Blu-ray Disc、HD(High Definition )DVD)の少なくともいずれかを用いることが可能となっている。
なお、図2では、1個の光源1で複数波長の光を出射するようにしているが、単一もしくは複数の波長の光を出射する光源を組み合わせて用いるようにしてもよい。複数個の光源を用いる場合は、例えば、各光源と偏光ビームスプリッター3との間の光路中にダイクロイックプリズムを配置して、各光源から出射されるレーザー光を偏光ビームスプリッター3に入射する手前で合成すればよい。
コリメーターレンズ2は、光源1からの光を集光して平行光にする。偏光ビームスプリッター3は、P偏光を透過させる一方、S偏光を反射させ、これらの光路を分離する。液晶デバイス4は、収差補正機能と1/4波長板としての機能を併せ持つデバイスであるが、その詳細については後述する。なお、液晶デバイス4は、後述する電圧印加手段40を含む概念であるが、以下の説明では、特に断らない限り、電圧印加手段40を除く部位を差すものとする。
対物レンズ5は、液晶デバイス4から出射される光を光ディスクDの記録面に集光させる。アクチュエーター6は、フォーカシング(入射光の光ディスクDの記録面への集光)やトラッキングを行うために、対物レンズ5を上下左右に駆動する。なお、対物レンズ5の光軸に対して液晶デバイス4がずれないようにするため、アクチュエーター6は、対物レンズ5と一体的に液晶デバイス4を保持している。
集光レンズ7は、偏光ビームスプリッター3にて反射される光ディスクDからの戻り光を光検出器8に導く。光検出器8は、光ディスクDからの戻り光を受光し、光ディスクDの記録再生時に、サーボ信号(フォーカスエラー信号、トラッキングエラー信号)、情報信号、収差信号等を検出する。
上記の構成において、光源1から出射される直線偏光(例えばP偏光)は、コリメーターレンズ2で略平行光となった後、偏光ビームスプリッター3を透過し、液晶デバイス4に入射する。液晶デバイス4は、1/4波長板としての機能を有しているので、液晶デバイス4に入射した直線偏光は円偏光に変換されて出射され、対物レンズ5によって光ディスクDに集光される。光ディスクDで反射された光は、再び対物レンズ5を介して液晶デバイス4に入射し、そこで円偏光から直線偏光(例えばS偏光)に変換されて出射され、偏光ビームスプリッター3にて反射される。そして、反射光は、集光レンズ7によって光検出器8に集光され、そこで電気信号に変換される。
(2.液晶デバイスの構成)
次に、液晶デバイス4の詳細について説明する。
図3は、液晶デバイス4の概略の構成を示す断面図である。同図に示すように、液晶デバイス4は、2枚の液晶パネルを重ね合わせたような構造となっている。
より具体的には、液晶デバイス4は、2枚の透明な基板11・12で液晶層21(第1の液晶層)を挟持し、2枚の透明な基板12・13で液晶層31(第2の液晶層)を挟持して構成されている。つまり、本実施形態では、基板12は、2つの液晶層21・31を挟持するための基板として共通して用いられている。この結果、液晶層21・31を挟持する基板の枚数は合計3枚となっている。
なお、液晶層21・31を挟持する基板として、基板12を共通の基板として用いずに、液晶層21・31をそれぞれ別々の基板で挟持し、一方の基板同士を貼り合せてもよい。つまり、液晶層21・31を挟持する基板の枚数は、合計4枚となっていてもよい。
基板11の液晶層21側には、透明な電極22aおよび配向膜23aがこの順で形成されている。また、基板12の液晶層21側には、透明な電極22bおよび配向膜23bがこの順で形成されている。そして、液晶層21は、シール材24によって基板11・12間でシールされている。
一方、基板12の液晶層31側には、透明な電極32aおよび配向膜33aがこの順で形成されている。また、基板13の液晶層31側には、透明な電極32bおよび配向膜33bがこの順で形成されている。そして、液晶層31は、シール材34によって基板12・13間でシールされている。
このように、液晶デバイス4は、2層の液晶層21・31と、液晶層21の両側に順に配置される配向膜23a・23bおよび電極22a・22bと、液晶層31の両側に順に配置される配向膜33a・33bおよび電極32a・32bとを少なくとも有して構成されている。
ここで、図4は、電極22a・32bの概略の構成を示す平面図である。同図に示すように、電極22a・32bは、同一形状であり、しかも、対物レンズ5の光軸が通る点を中心とする同心円状の複数の輪帯状電極にそれぞれ分割されている。一方、図示はしないが、他方の電極22b・32aは、基板12の両面全域を覆うように形成されている。これらの電極22a・22b・32a・32bには、電圧印加手段40(図2参照)によって電圧が印加される。これにより、各液晶層21・31の屈折率が変化し、各液晶層21・31を透過する光の位相を変化させることができる。
なお、液晶層21の両側に配置した電極22a・22bは、どちらが分割されてもよく、液晶層31の両側に配置した電極32a・32bは、どちらが分割されてもよい。つまり、電極22a・22bの一方と、電極32a・32bの一方とが、同じ形状で分割されればよい。また、本実施形態では、電極22a・32bを3つの領域に分割しているが、分割する数はこれに限定されるわけではない。
また、図5(a)は、配向膜23a・23bの配向方向を示す説明図であり、図5(b)は、配向膜33a・33bの配向方向を示す説明図である。これらの図に示すように、液晶層21の両側に配置した配向膜23a・23bの配向方向と、液晶層31の両側に配置した配向膜33a・33bの配向方向とは、互いに直交しており、かつ、光源1からの入射光の偏光方向に対してそれぞれ略±45°傾いている。
(3.液晶デバイスにおける収差補正について)
次に、上記構成の液晶デバイス4において、収差を補正できる原理について説明する。図6は、液晶デバイス4における液晶層21付近の構造を拡大して示す断面図である。なお、図6では、輪帯状に分割された電極22aを、内側(光軸側)から順に22a1、22a2、22a3と称している。
また、図7は、各電極22a1、22a2、22a3に印加される電圧(電圧パターン)の一例を示し、図8は、図7の電圧が各分割領域に印加されたときの、液晶層21の各分割領域ごとの屈折率(屈折率パターン)を示し、図9は、そのときの液晶層21の透過光の各分割領域ごとの位相(位相パターン)を示している。
なお、各分割領域とは、液晶層21における各電極22a1、22a2、22a3に対応する領域のことであり、具体的には、液晶層21における電極22a1と電極22bとで挟まれた領域、電極22a2と電極22bとで挟まれた領域、電極22a3と電極22bとで挟まれた領域を指すものとする。図7ないし図9では、液晶層21における各電極22a1、22a2、22a3に対応する分割領域を、それぞれA、B、Cで示している。
図7に示すように、電圧印加手段40が各電極22a1、22a2、22a3に異なる電圧を印加すると、電極22a2には最も高電圧がかかっているため、分割領域Bにおける液晶分子は電界方向に最も立ち上がっている(図6参照)。一方、電極22a1には、低電圧しかかかっていないため、分割領域Aにおける液晶分子はあまり立ち上がらず、基板11となす角は小さい(図6参照)。
したがって、液晶層21に垂直に入射する光源1からの光のうち、配向膜23aの配向方向と同じ偏光成分に対しては、図8に示すように、液晶分子があまり立ち上がっていない中央部(分割領域A)で屈折率が高く、液晶分子が立ち上がっている分割領域Bで屈折率が低くなる。なお、光源1からの光のうち、配向膜23aの配向方向に垂直方向の偏光成分の光は、液晶層21をそのまま透過する。
一方、液晶層31の両側の電極32a・32bにも、図7と同様のパターンの電圧(絶対値は異なるが、この点は後述する)を印加すると、液晶層31の液晶分子も液晶層21の液晶分子と同様にその配向状態が変化するため、光源1からの光のうち、配向膜23aの配向方向に垂直方向の偏光成分の光(配向膜33aの配向方向と同じ偏光方向の光)に対して、図8と同様の屈折率の変化を与える。
したがって、光源1からの光が液晶デバイス4に入射すると、その光(平面波)は、液晶デバイス4の分割領域Bを透過する光の位相が進み、分割領域Aを透過する光の位相が遅れた波面に変化する(図9参照)。これにより、光ピックアップにて、例えば対物レンズ5や光ディスクDのカバー層に起因して発生する球面収差を補正することができ、光ディスクDの記録面に収差のほとんどない状態で光を集光させることができる。
また、光ディスクDからの反射光についても、光ディスクDのカバー層や対物レンズ5の収差の影響を同様に受けるが、再度、液晶デバイス4に入射したときに、配向膜33aの配向方向と同じ偏光方向の成分に対しては液晶層31で、上記配向方向と垂直な偏光方向の成分に対しては液晶層21で、上記と同様に収差補正され、平面波となって偏光ビームスプリッター3で反射された後、集光レンズ7を介して光検出器8に導かれる。したがって、光ディスクDからの反射光についても、光検出器8にて特性の良好な信号を検出することができる。
以上のように、本実施形態では、電圧印加手段40が、液晶層21・31のそれぞれにおいて各分割領域A・B・C間で透過光に位相差が生じるように、液晶層21・31の各電極22a・22b・32a・32bに電圧を印加するので、光学系にて発生する収差(例えば球面収差)を補正することができる。しかも、液晶層21の両側に配置した配向膜23a・23bの配向方向と、液晶層31の両側に配置した配向膜33a・33bの配向方向とは、互いに直交しており、かつ、光源1からの入射光の偏光方向に対してそれぞれ略±45°傾いているので、往復の光路で発生する収差を補正することができる。
(4.液晶デバイスにおける偏光状態の制御について)
次に、液晶デバイス4における偏光状態の制御について説明する。
図1(a)は、本実施形態における液晶層21・31の分割領域ごとの屈折率(屈折率パターン)を示し、図1(b)は、そのときの液晶層21・31の透過光の各分割領域ごとの位相(位相パターン)を示している。
本実施形態では、単独の1/4波長板が光路中にないので、液晶層21・31に同じパターンの電圧を印加したのでは、液晶デバイス4を介して光ディスクDに照射される光は円偏光にならず、また、光ディスクDからの反射光も入射光と同じ方向の直線偏光のために偏光ビームスプリッター3で分離することができない。そこで、本実施形態では、液晶層21・31に印加する電圧のパターン(絶対値)を互いに異ならせることで、液晶デバイス4に収差補正機能のみならず、1/4波長板としての機能も持たせている。
より具体的には、液晶層21・31の層厚を同じt(μm)とした場合、液晶層21・31への印加電圧と屈折率との関係から、液晶層21の屈折率が液晶層31の屈折率に対して、開口(光軸に垂直な方向(半径方向))の全域にわたって一定量(Δn)だけシフトするような印加電圧パターンが選ばれている(図1(a)参照)。そして、液晶層31への印加電圧を液晶層21への印加電圧よりも若干高めに設定し、その値はΔnとtとの積が使用波長の1/4波長に相当するようになっている(図1(b)参照)。
液晶層21・31の間で透過光に1/4波長の位相差がつくように、電圧印加手段40が各電極22a・22b・32a・32bに電圧を印加することにより、光源1からの入射光のうち、液晶層21の両側の配向膜23a・23bの配向方向と同じ偏光成分の光は、その直交方向の偏光成分に比べて1/4波長遅れることになる。この結果、入射光は直線偏光から円偏光に変換される。
一方、光ディスクDからの反射光は、再度液晶デバイス4を透過する際に、液晶層31の両側の配向膜33a・33bの配向方向と同じ偏光成分の光が、その直交方向の偏光成分に比べて1/4波長だけさらに遅れる。この結果、上記反射光は、円偏光から入射時とは直交する方向の直線偏光に変換される。したがって、液晶デバイス4に1/4波長板としての機能を持たせることが可能となる。
以上のように、本実施形態では、電圧印加手段40が、それぞれの分割領域A・B・Cにおいて、液晶層21・31の間で透過光に位相差が生じるように、液晶層21・31の各電極22a・22b・32a・32bに電圧を印加するので、上記位相差を入射光の1/4波長とすることで、入射光の偏光状態を直線偏光から円偏光、または円偏光から直線偏光に変えることができる。したがって、上記の収差補正機能のみならず、1/4波長板としての機能を液晶デバイス4に持たせることができる。つまり、往復の光路での収差補正機能と1/4波長板の機能とを両方併せ持つデバイスを、たった2層の液晶層21・31を用いて実現することができる。その結果、デバイスの軽量化、コンパクト化およびコスト低減を図ることができる。
(5.液晶デバイスの他の構成例について)
ところで、上述した液晶デバイス4は、以下の構成であってもよい。図10(a)(b)は、液晶デバイス4の他の構成例を示すとともに、一方の液晶層21付近の構造を拡大して示す断面図である。なお、他方の液晶層31付近の構造についても、これと同様とする。
この液晶デバイス4では、透明な基板12と所定厚さの絶縁体14とで液晶層21が挟持されている。基板12における液晶層21側には、基板12の表面全面を覆う電極22bが形成されており、さらにその液晶層21側に配向膜23bが形成されている。また、絶縁体14における液晶層21とは反対側には、円形の開口を設けた電極22cが形成されている一方、絶縁体14における液晶層21側には、配向膜23aが形成されている。液晶層21は、基板12と絶縁体14との間でシール材24によってシールされている。
電極22b・22c間への電圧印加前は、液晶分子が図10(a)のような配向状態になっているとすると、電極22b・22c間への電圧印加後は、液晶分子は図10(b)のような配向状態になる。すなわち、液晶デバイス4の電極22b・22c間に電圧を印加すると、周辺部(光軸より離れた部位)には強い電界がかかり、中央部(光軸に近い部位)には弱い電界がかかる。なお、図10(b)中の破線は、電気力線を示す。これにより、周辺部から中央部にかけて滑らかな屈折率変化が得られる。
したがって、図4で示した輪帯状の電極22aに代えて、開口を有する電極22cを用いることにより、滑らかな収差補正を行うことができる。また、屈折率変化の度合いの制御は、電極22b・22cに印加する電圧を変化させること以外にも、例えば絶縁体14の厚さを変化させることでも行うことができる。
(6.波長および温度に応じた印加電圧の制御について)
ところで、使用メディアの種類(CD、DVD、次世代DVD)によっては、光ディスクDの記録面上に形成されるカバー層の厚さや対物レンズ5のNA(開口数)が異なるため、球面収差の補正パターンは、使用メディアによって変化する。すなわち、収差補正で要求される、図9に示した波面(位相パターン)の形状は、使用メディアごとに異なる。また、液晶層21・31における印加電圧と屈折率との関係は厳密には直線的ではなく、環境温度や使用波長(785nm、660nm、405nm)によっても変化する。
そこで、使用メディアや環境温度ごとに収差補正パターンを異ならせることにより、使用メディアや環境温度に応じた最適な収差補正を行うことができる。以下、このような収差補正を行うための構成について説明する。
図11は、光ピックアップの他の構成例を示す説明図である。なお、説明の便宜上、図2と全く同様の構成については、その図示を省略している。この光ピックアップにおいては、液晶デバイス4は、さらに、使用メディア検出手段41と、温度検出手段42と、収差補正パターン記憶手段43と、テーブル記憶手段44と、電圧設定手段45とを有している。
使用メディア検出手段41は、使用メディアを検出するものであり、温度検出手段42は、環境温度を検出する。収差補正パターン記憶手段43は、使用メディアに照射される光の波長ごとおよび環境温度ごとに設定され、収差を補正可能な、一方の液晶層(例えば液晶層21)における透過光の位相パターンを収差補正パターンとして記憶している。より具体的には、収差補正パターン記憶手段43は、例えば図9に示したような、収差補正可能な位相パターンを、使用メディアごと(使用メディアに照射される光の波長ごと)および環境温度ごとに記憶している。
テーブル記憶手段44は、使用メディアに照射される光の波長ごとおよび環境温度ごとに設定され、液晶層21・31の各電極22a・22b・32a・32bに印加される電圧と、液晶層21・31の屈折率との関係を示すテーブルを記憶している。例えば、図12は、使用メディアがCD(使用波長が例えば785nm)である場合の、環境温度T1(℃)およびT2(℃)における液晶層21の屈折率(n)と印加電圧(V)との関係を示すグラフである。なお、T1≠T2である。このグラフでは、例えば温度T1では、液晶層21・31への印加電圧がVo(またはVi)のときの液晶層21・31の屈折率は、それぞれn0(またはni)であることを示している。このように、テーブル記憶手段44は、図12のような屈折率−電圧特性をテーブルの形で使用波長ごとおよび環境温度ごとに記憶している。
電圧設定手段45は、使用メディア検出手段41および温度検出手段42での検知結果に基づいて、液晶層21・31の各電極22a・22b・32a・32bに印加する電圧を設定するものであり、例えばマイクロコンピューターで構成されている。
次に、上記構成の光ピックアップにおける動作について説明する。
まず、使用メディア検出手段41にて、現在使用されているメディアがCD、DVD、次世代DVDのいずれであるかが検出され、温度検出手段42により、現在の環境温度が検出される。すると、電圧設定手段45は、使用メディア検出手段41で検出された使用メディアに照射される光の波長と温度検出手段42にて検出された環境温度とに応じた収差補正パターンを収差補正パターン記憶手段43から読み出し、液晶デバイス4の一方の液晶層21における透過光の位相パターンを決定する。次に、電圧設定手段45は、上記位相パターンに対して1/4波長分進んだ位相パターンを他方の液晶層31における透過光の位相パターンに決定する。
続いて、電圧設定手段45は、各位相パターンと各液晶層21・31の層厚とに基づいて、各液晶層21・31の屈折率を各分割領域ごとに算出し、テーブル記憶手段44に記憶されたテーブルから上記屈折率に応じた電圧を各分割領域ごとに求める。
つまり、読み出した位相パターンから、各液晶層21・31の各分割領域間で発生すべき位相差が求まると、各分割領域間の屈折率差は、その位相差を各液晶層21・31の層厚tで除して求まる。したがって、例えば、最も屈折率の高い必要のある部分(液晶層21の中央部(分割領域A))を基準にして、その屈折率n0を決めると、残りの分割領域(例えば分割領域BまたはC)の屈折率niが決まる。電圧設定手段45は、そのときの温度、使用波長から適切な屈折率−電圧特性をテーブル記憶手段44から読み出し、各分割領域の屈折率から各分割領域に印加すべき電圧を決定する。
このようにして、液晶層21・31の各分割領域に印加すべき電圧が電圧設定手段45によって設定されると、電圧印加手段40は、電圧設定手段45にて求められた各分割領域ごとの電圧を、液晶層21・31の各電極22a・22b・32a・32bに印加する。したがって、液晶デバイス4において、収差補正および1/4波長板の機能を実現するのに必要な電圧として、使用波長および環境温度の両方に応じた電圧が液晶層21・31の各電極22a・22b・32a・32bに印加されるので、使用波長および環境温度ごとに良好な特性の液晶デバイス4を実現することができる。
なお、以上では、使用波長および環境温度の両方に応じた電圧を液晶層21・31の各電極22a・22b・32a・32bに印加する例について説明したが、使用波長または環境温度のどちらかに応じた電圧を液晶層21・31の各電極22a・22b・32a・32bに印加するようにしてもよい。この場合は、使用波長または環境温度ごとに良好な特性の液晶デバイス4を実現することができる。
(a)は、本発明の実施の一形態に係る光ピックアップに用いられる液晶デバイスの各液晶層の分割領域ごとの屈折率パターンを示す説明図であり、(b)は、そのときの各液晶層の透過光の各分割領域ごとの位相パターンを示す説明図である。 上記光ピックアップの概略の構成を示す説明図である。 上記液晶デバイスの概略の構成を示す断面図である。 上記液晶デバイスが有する電極の概略の構成を示す平面図である。 (a)は、上記液晶デバイスが有する一方の液晶層の両側に配置される配向膜の配向方向を示す説明図であり、(b)は、他方の液晶層の両側に配置される配向膜の配向方向を示す説明図である。 上記液晶デバイスにおける一方の液晶層付近の構造を拡大して示す断面図である。 一方の液晶層の各電極に印加される電圧のパターンの一例を示す説明図である。 一方の液晶層の各分割領域ごとの屈折率パターンを示す説明図である。 一方の液晶層の透過光の各分割領域ごとの位相パターンを示す説明図である。 (a)および(b)は、上記液晶デバイスの他の構成例を示すものであって、(a)は、一方の液晶層の電極に電圧を印加する前の液晶分子の状態を示す断面図であり、(b)は、一方の液晶層の電極に電圧を印加した後の液晶分子の状態を示す断面図である。 上記光ピックアップの他の構成例を示す説明図である。 使用メディアがCDである場合の、所定の環境温度における液晶層の屈折率と印加電圧との関係を示すグラフである。 従来の光ピックアップの概略の構成を示す説明図である。 (a)は、上記光ピックアップに用いられる収差補正デバイスの一方の液晶層の両側に配置される配向膜の配向方向を示し、(b)は、他方の液晶層の両側に配置される配向膜の配向方向を示す説明図である。 上記光ピックアップに用いられる1/4波長板の遅相軸および進相軸と入射光の偏光方向との関係を模式的に示す説明図である。
符号の説明
4 液晶デバイス
21 液晶層(第1の液晶層)
22a 電極
22b 電極
23a 配向膜
23b 配向膜
31 液晶層(第2の液晶層)
32a 電極
32b 電極
33a 配向膜
33b 配向膜
40 電圧印加手段
41 使用メディア検出手段
42 温度検出手段
43 収差補正パターン記憶手段
44 テーブル記憶手段
45 電圧設定手段
A 分割領域
B 分割領域
C 分割領域

Claims (6)

  1. 2層の液晶層と、
    各液晶層の両側に順に配置される配向膜および電極と、
    上記電極に電圧を印加して各液晶層の屈折率を変化させることで、各液晶層を透過する光の位相を変化させる電圧印加手段とを備え、
    各液晶層を第1の液晶層および第2の液晶層とすると、
    第1の液晶層の両側に配置した配向膜の配向方向と、第2の液晶層の両側に配置した配向膜の配向方向とは、互いに直交しており、かつ、入射光の偏光方向に対してそれぞれ略±45°傾いており、
    第1の液晶層の両側に配置した電極の一方と、第2の液晶層の両側に配置した電極の一方とは、同じ形状で分割されており、
    上記電圧印加手段は、第1の液晶層および第2の液晶層のそれぞれにおいて、分割領域間で透過光に位相差が生じ、かつ、同じ分割領域において第1の液晶層と第2の液晶層とで透過光に位相差が生じるように、第1の液晶層および第2の液晶層の各電極に電圧を印加することを特徴とする液晶デバイス。
  2. 上記電圧印加手段は、同じ分割領域において第1の液晶層と第2の液晶層とで、透過光に1/4波長の位相差が生じるように、第1の液晶層および第2の液晶層の各電極に電圧を印加することを特徴とする請求項1に記載の液晶デバイス。
  3. 使用メディアを検出する使用メディア検出手段と、
    使用メディアに照射される光の波長ごとに設定され、収差を補正可能な、一方の液晶層における透過光の位相パターンを収差補正パターンとして記憶する収差補正パターン記憶手段と、
    使用メディアに照射される光の波長ごとに設定され、第1の液晶層および第2の液晶層の各電極に印加される電圧と、第1の液晶層および第2の液晶層の屈折率との関係を示すテーブルを記憶するテーブル記憶手段と、
    第1の液晶層および第2の液晶層の各電極に印加する電圧を設定する電圧設定手段とをさらに備え、
    上記電圧設定手段は、上記使用メディア検出手段で検出された使用メディアに照射される光の波長に応じた収差補正パターンを上記収差補正パターン記憶手段から読み出し、一方の液晶層における透過光の位相パターンを決定する一方、上記位相パターンに対して1/4波長分進んだ位相パターンを他方の液晶層における透過光の位相パターンに決定し、各位相パターンと各液晶層の層厚とに基づいて各液晶層の屈折率を各分割領域ごとに算出し、上記テーブル記憶手段に記憶されたテーブルから上記屈折率に応じた電圧を各分割領域ごとに求め、
    上記電圧印加手段は、上記電圧設定手段にて求められた各分割領域ごとの電圧を、第1の液晶層および第2の液晶層の各電極に印加することを特徴とする請求項1または2に記載の液晶デバイス。
  4. 環境温度を検出する温度検出手段と、
    環境温度ごとに設定され、収差を補正可能な、一方の液晶層における透過光の位相パターンを収差補正パターンとして記憶する収差補正パターン記憶手段と、
    環境温度ごとに設定され、第1の液晶層および第2の液晶層の各電極に印加される電圧と、第1の液晶層および第2の液晶層の屈折率との関係を示すテーブルを記憶するテーブル記憶手段と、
    第1の液晶層および第2の液晶層の各電極に印加する電圧を設定する電圧設定手段とをさらに備え、
    上記電圧設定手段は、上記温度検出手段で検出された環境温度に応じた収差補正パターンを上記収差補正パターン記憶手段から読み出し、一方の液晶層における透過光の位相パターンを決定する一方、上記位相パターンに対して1/4波長分進んだ位相パターンを他方の液晶層における透過光の位相パターンに決定し、各位相パターンと各液晶層の層厚とに基づいて各液晶層の屈折率を各分割領域ごとに算出し、上記テーブル記憶手段に記憶されたテーブルから上記屈折率に応じた電圧を各分割領域ごとに求め、
    上記電圧印加手段は、上記電圧設定手段にて求められた各分割領域ごとの電圧を、第1の液晶層および第2の液晶層の各電極に印加することを特徴とする請求項1または2に記載の液晶デバイス。
  5. 使用メディアを検出する使用メディア検出手段と、
    環境温度を検出する温度検出手段と、
    使用メディアに照射される光の波長ごとおよび環境温度ごとに設定され、収差を補正可能な、一方の液晶層における透過光の位相パターンを収差補正パターンとして記憶する収差補正パターン記憶手段と、
    使用メディアに照射される光の波長ごとおよび環境温度ごとに設定され、第1の液晶層および第2の液晶層の各電極に印加される電圧と、第1の液晶層および第2の液晶層の屈折率との関係を示すテーブルを記憶するテーブル記憶手段と、
    第1の液晶層および第2の液晶層の各電極に印加する電圧を設定する電圧設定手段とをさらに備え、
    上記電圧設定手段は、上記使用メディア検出手段で検出された使用メディアに照射される光の波長と上記温度検出手段にて検出された環境温度とに応じた収差補正パターンを上記収差補正パターン記憶手段から読み出し、一方の液晶層における透過光の位相パターンを決定する一方、上記位相パターンに対して1/4波長分進んだ位相パターンを他方の液晶層における透過光の位相パターンに決定し、各位相パターンと各液晶層の層厚とに基づいて各液晶層の屈折率を各分割領域ごとに算出し、上記テーブル記憶手段に記憶されたテーブルから上記屈折率に応じた電圧を各分割領域ごとに求め、
    上記電圧印加手段は、上記電圧設定手段にて求められた各分割領域ごとの電圧を、第1の液晶層および第2の液晶層の各電極に印加することを特徴とする請求項1または2に記載の液晶デバイス。
  6. 請求項1から5のいずれかに記載の液晶デバイスを備えていることを特徴とする光ピックアップ。
JP2005302595A 2005-10-18 2005-10-18 液晶デバイスおよび光ピックアップ Expired - Fee Related JP4792910B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005302595A JP4792910B2 (ja) 2005-10-18 2005-10-18 液晶デバイスおよび光ピックアップ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005302595A JP4792910B2 (ja) 2005-10-18 2005-10-18 液晶デバイスおよび光ピックアップ

Publications (2)

Publication Number Publication Date
JP2007114248A true JP2007114248A (ja) 2007-05-10
JP4792910B2 JP4792910B2 (ja) 2011-10-12

Family

ID=38096543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005302595A Expired - Fee Related JP4792910B2 (ja) 2005-10-18 2005-10-18 液晶デバイスおよび光ピックアップ

Country Status (1)

Country Link
JP (1) JP4792910B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134023A (ja) * 2005-11-14 2007-05-31 Konica Minolta Holdings Inc 液晶デバイスおよび光ピックアップ
CN102221763A (zh) * 2010-04-16 2011-10-19 点晶科技股份有限公司 双层液晶透镜装置
JP2011209687A (ja) * 2010-03-26 2011-10-20 Silicon Touch Technology Inc 二重層液晶レンズ装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09106566A (ja) * 1995-08-04 1997-04-22 Pioneer Electron Corp 光ピックアップ
JP2001100174A (ja) * 1999-07-07 2001-04-13 Matsushita Electric Ind Co Ltd 光学素子、光ヘッド及び光記録再生装置
JP2001331963A (ja) * 2000-05-24 2001-11-30 Pioneer Electronic Corp 収差補正ユニット、光ピックアップ装置及び記録再生装置
JP2002109776A (ja) * 2000-07-24 2002-04-12 Matsushita Electric Ind Co Ltd 光学素子と光ヘッドと光記録再生装置と光記録再生方法
JP2002269797A (ja) * 2001-03-07 2002-09-20 Sony Corp 光ピックアップ及び波長板
JP2004093750A (ja) * 2002-08-30 2004-03-25 Casio Comput Co Ltd 光スイッチ
JP2004138900A (ja) * 2002-10-18 2004-05-13 Pioneer Electronic Corp 収差補正素子、収差補正装置、情報記録再生装置及び収差補正方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09106566A (ja) * 1995-08-04 1997-04-22 Pioneer Electron Corp 光ピックアップ
JP2001100174A (ja) * 1999-07-07 2001-04-13 Matsushita Electric Ind Co Ltd 光学素子、光ヘッド及び光記録再生装置
JP2001331963A (ja) * 2000-05-24 2001-11-30 Pioneer Electronic Corp 収差補正ユニット、光ピックアップ装置及び記録再生装置
JP2002109776A (ja) * 2000-07-24 2002-04-12 Matsushita Electric Ind Co Ltd 光学素子と光ヘッドと光記録再生装置と光記録再生方法
JP2002269797A (ja) * 2001-03-07 2002-09-20 Sony Corp 光ピックアップ及び波長板
JP2004093750A (ja) * 2002-08-30 2004-03-25 Casio Comput Co Ltd 光スイッチ
JP2004138900A (ja) * 2002-10-18 2004-05-13 Pioneer Electronic Corp 収差補正素子、収差補正装置、情報記録再生装置及び収差補正方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134023A (ja) * 2005-11-14 2007-05-31 Konica Minolta Holdings Inc 液晶デバイスおよび光ピックアップ
JP4581969B2 (ja) * 2005-11-14 2010-11-17 コニカミノルタホールディングス株式会社 液晶デバイスおよび光ピックアップ
JP2011209687A (ja) * 2010-03-26 2011-10-20 Silicon Touch Technology Inc 二重層液晶レンズ装置
CN102221763A (zh) * 2010-04-16 2011-10-19 点晶科技股份有限公司 双层液晶透镜装置

Also Published As

Publication number Publication date
JP4792910B2 (ja) 2011-10-12

Similar Documents

Publication Publication Date Title
KR101109944B1 (ko) 광 정보장치 및 광 정보장치의 제어방법
JP2007115299A (ja) 光ピックアップ用液晶デバイスおよび光ピックアップ
JP5042352B2 (ja) 光記録再生装置用光ヘッド
JP2009015935A (ja) 光ピックアップ及び光ピックアップの収差補正方式
JP4733868B2 (ja) 光ヘッドと光記録再生装置
US7595472B2 (en) Optical head device
JP2002251774A (ja) 光ピックアップ及びその波面収差補正装置
JP5291906B2 (ja) 対物光学素子及び光ヘッド装置
JP4792910B2 (ja) 液晶デバイスおよび光ピックアップ
US20080074963A1 (en) Optical pickup device and optical disk device
JP2005512254A (ja) 光走査装置
US7254107B2 (en) Optical head and optical recording and reproducing apparatus
JP4490842B2 (ja) 光ピックアップ装置
JP2008010130A (ja) 光ピックアップ装置
JP4568653B2 (ja) 光ピックアップおよび光情報処理装置
JP4581969B2 (ja) 液晶デバイスおよび光ピックアップ
JPWO2008108138A1 (ja) 光ヘッド装置および光学式情報記録再生装置ならびに光学式情報記録再生方法
JP2004327012A (ja) 光ヘッド及びそれを備えた光記録再生装置
JP2011227944A (ja) 光ヘッド装置
JP2009070533A (ja) 光ピックアップ装置
JP2005141839A (ja) 光ヘッド装置
JP2009211772A (ja) 光ピックアップ装置
JP2008047199A (ja) 光ピックアップ装置
JP2008016082A (ja) 光ピックアップ及び光ディスク装置
JP2002352470A (ja) 光記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees