JP2007104572A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2007104572A
JP2007104572A JP2005295165A JP2005295165A JP2007104572A JP 2007104572 A JP2007104572 A JP 2007104572A JP 2005295165 A JP2005295165 A JP 2005295165A JP 2005295165 A JP2005295165 A JP 2005295165A JP 2007104572 A JP2007104572 A JP 2007104572A
Authority
JP
Japan
Prior art keywords
circuit block
substrate bias
semiconductor switch
semiconductor
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005295165A
Other languages
English (en)
Inventor
Koichiro Tada
幸一郎 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005295165A priority Critical patent/JP2007104572A/ja
Publication of JP2007104572A publication Critical patent/JP2007104572A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

【課題】給電経路に挿入される半導体スイッチの特性が全体の動作に及ぼす影響とのバランスを図りながら、リーク電流を効果的に削減できる半導体装置を提供する。
【解決手段】回路ブロック1の動作状態に応じて、その給電経路に挿入される半導体スイッチSW1,SW2のリーク電流に係わる特性が制御される。例えば、スリープモードにおいて半導体スイッチSW1,SW2のリーク電流が小さくなり、アクティブモードにおいて半導体スイッチSW1,SW2の導通抵抗が低くなるように基板バイアス電圧Vn_well,Vp_wellを制御する。これにより、半導体スイッチSW1,SW2の導通抵抗に起因するアクティブモード時の電源電圧変動を抑制しつつ、スリープモード時のリーク電流を効果的に低減することができる。
【選択図】図1

Description

本発明は、回路素子のリーク電流に起因する消費電力の低減を図った半導体装置に関するものである。
半導体製造技術の進展に伴って回路が微細化すると、半導体装置の電源電圧はスケーリング則に応じて低下させる必要がある。また、携帯機器において電池の寿命を延ばすために半導体装置の低消費電力化が必要であり、そのためには電源電圧を下げることが好ましい。
電源電圧の低下により信号振幅が小さくなると、トランジスタのしきい値が信号振幅に対して相対的に高くなるため、トランジスタのオン電流が減少し、遅延が増大する。そのため、トランジスタのしきい値も電源電圧に応じて低下させる必要がある。しかしながら、トランジスタのしきい値を低下させると、オフ状態におけるリーク電流が増えるため、低消費電力化が阻害されるという不利益が生じる。
上述のようなリーク電流の増大に対処するため、従来の半導体装置では、一般に、未使用回路の電源をスイッチによってオフする方法が採用されている(例えば特許文献1を参照)。すなわち、特定の機能を果たす回路ブロックごとに、その給電経路に高しきい値のトランジスタがスイッチとして挿入される。ある機能が未使用になると、その機能を担う回路ブロックの給電経路に挿入されたトランジスタがオフに設定され、回路ブロックへの給電が停止される。給電を停止された回路ブロックは、高しきい値のトランジスタによって給電経路が遮断されるため、リーク電流がほとんど流れなくなる。
特開2005−86805号公報
しかしながら、電源スイッチとして用いるトランジスタ等の半導体スイッチは理想的なスイッチでないため、その特性は半導体装置の動作に影響を与える。
例えば、半導体スイッチのスイッチング速度が遅いと、回路ブロックの復帰時間が長くなるため、特に回路ブロックの使用頻度が高い場合には、復帰時間による無駄な遅延が発生し、半導体装置の処理が滞ってしまう。
また、電源スイッチのオン抵抗があまり高いと、回路ブロックに供給される電源電圧の降下が顕著になるため、特に電源電圧が低い場合には、電源電圧の降下による半導体装置の動作の不安定化が深刻になる。
他方、上述したスイッチング速度とオン抵抗の特性を改善するために、例えば電源スイッチのトランジスタのしきい値を低くすると、トランジスタ自体のリーク電流が大きくなってしまうため、リーク電流削減の観点で望ましくない。
本発明はかかる事情に鑑みてなされたものであり、その目的は、給電経路に挿入される半導体スイッチの特性が全体の動作に及ぼす影響とのバランスを図りながら、リーク電流を効果的に削減できる半導体装置を提供することにある。
上記の目的を達成するため、本発明の半導体装置は、給電経路を通じて電力が供給される回路ブロックと、前記給電経路に挿入される半導体スイッチと、前記回路ブロックの動作状態に応じて前記半導体スイッチのリーク電流に係わる特性を制御する制御部とを有する。
好適には、前記制御部は、前記回路ブロックの動作状態に応じて前記半導体スイッチの基板バイアス電圧を制御する。
前記制御部は、前記半導体スイッチがオフのときに前記半導体スイッチのリーク電流が小さくなり、前記半導体スイッチがオンのときに前記半導体スイッチの導通抵抗が低くなるように前記半導体スイッチの基板バイアス電圧を制御しても良い。
また、前記制御部は、前記半導体スイッチがオフのときに前記半導体スイッチのリーク電流が小さくなり、前記半導体スイッチがスイッチングするときにスイッチング速度が速くなるように前記半導体スイッチの基板バイアス電圧を制御しても良い。
また、前記制御部は、前記回路ブロックに供給される電源電圧や動作スピードを示す信号に応じて、前記半導体スイッチの基板バイアス電圧を制御しても良い。
また、前記半導体装置は、前記回路ブロック及び/又は前記半導体スイッチの特性を測定する測定部を有しても良い。この場合、前記制御部は、前記測定部の測定結果に応じて前記半導体スイッチのリーク電流に係わる特性を制御しても良い。前記測定部は、例えば、前記回路ブロックの消費電流、前記回路ブロックに供給される電源電圧、前記回路ブロックに含まれる所定の回路素子の特性、前記回路ブロックの温度、前記半導体スイッチの導通抵抗、前記半導体スイッチのリーク電流、及び前記半導体スイッチのスイッチング速度の少なくとも1つを測定する。
また、前記半導体装置は、前記半導体スイッチ及び前記回路ブロックは、各々の基板バイアス電圧を独立に制御可能であっても良く、前記回路ブロックの動作状態に応じて前記回路ブロックの基板バイアス電圧を制御する第2の制御部を更に有しても良い。
本発明によると、回路ブロックの給電経路に挿入される半導体スイッチのリーク電流に係わる特性が、当該回路ブロックの動作状態に応じて制御されるため、半導体スイッチの当該特性が全体の動作に及ぼす影響とのバランスを図りながら、リーク電流を効果的に削減することができる。
<第1の実施形態>
図1は、本発明の第1の実施形態に係る半導体装置の構成の一例を示す図である。
図1に示す半導体装置は、回路ブロック1と、基板バイアス制御部2と、スイッチ制御部3と、半導体スイッチSW1及びSW2とを有する。
なお、回路ブロック1は、本発明の回路ブロックの一実施形態である。
半導体スイッチSW1及びSW2は、それぞれ本発明の半導体スイッチの一実施形態である。
基板バイアス制御部2は、本発明の制御部の一実施形態である。
回路ブロック1は、電源電圧VDDの電源線(以下、VDD線と呼ぶ)及び基準電位VSSの電源線(以下、VSS線と呼ぶ)から供給される電力に基づいて動作する。本実施形態において回路ブロック1の機能や構成は任意であり、例えば所定の機能を有するロジック回路や、SRAM(static random access memory)等のメモリ、入出力回路、アナログ回路などが含まれる。
回路ブロック1の給電経路には、半導体スイッチSW1及びSW2が挿入される。
半導体スイッチSW1は、VDD線と回路ブロック1とを接続する経路に挿入されており、スイッチ制御部3の制御に従ってオン又はオフする。スイッチSW1は、例えば図1に示すように、p型MOSトランジスタQ1によって構成される。
半導体スイッチSW2は、VSS線と回路ブロック1とを接続する経路に挿入されており、スイッチ制御部3の制御に従ってオン又はオフする。スイッチSW2は、例えば図1に示すように、n型MOSトランジスタQ2によって構成される。
半導体スイッチSW1及びSW2は、回路ブロック1と独立に基板バイアス電圧(body bias)を制御することが可能となるように、各々の素子形成領域が回路ブロック1から電気的に分離されている。
図2は、半導体基板に形成されるトランジスタQ1及びQ2の構造例を示す図であり、半導体基板の平面に対して垂直な断面を示している。
図2の例において、p型の半導体基板BS1上にはn型ウェルWn1及びWn2が形成され、n型ウェルWn2上には更にP型ウェルWp2が形成される。半導体スイッチSW1のp型MOSトランジスタQ1は、n型ウェルWn1に形成される。半導体スイッチSW2のn型MOSトランジスタは、p型ウェルWn2に形成される。
n型ウェルWn1は、回路ブロック1のp型MOSトランジスタが形成されるn型ウェル(不図示)から電気的に分離されている。そのため、p型MOSトランジスタQ1の基板バイアス電圧Vn_wellは、回路ブロック1のp型MOSトランジスタの基板バイアス電圧に対して独立に制御可能である。
また、p型ウェルWpは、n型ウェルWn2上に形成されており、回路ブロック1のn型MOSトランジスタが形成されるp型ウェル(図2の‘Wp3’)から電気的に分離されている。そのため、n型MOSトランジスタQ2の基板バイアス電圧Vp_wellは、回路ブロック1のn型MOSトランジスタの基板バイアス電圧に対して独立に制御可能である。
基板バイアス制御部2は、回路ブロック1の動作状態に応じて、半導体スイッチSW1,SW2の基板バイアス電圧Vn_well,Vp_wellを制御する。
すなわち、半導体スイッチSW1,SW2をオフする動作モード(以下、スリープモードと呼ぶ)において各半導体スイッチのリーク電流が小さくなり、半導体スイッチSW1,SW2をオンする動作モード(以下、アクティブモードと呼ぶ)において各半導体スイッチの導通抵抗が低くなるように、基板バイアス電圧Vn_well,Vp_wellを制御する。
p型MOSトランジスタは、基板バイアス電圧を高くするとしきい値が高くなる。また、n型MOSトランジスタは、基板バイアス電圧を低くするとしきい値が高くなる。
しきい値が高くなるとリーク電流は小さくなるが、導通抵抗が高くなり、スイッチング速度が遅くなるといった不利益も生じる。したがって、スリープモードにおけるリーク電流を減らすためにしきい値を高くした場合、そのままのしきい値でアクティブモードに移行してしまうと、導通抵抗やスイッチング速度などの特性が劣化し、半導体装置の動作に好ましくない影響を与える。
そこで、基板バイアス制御部2は、リーク電流を抑える必要があるスリープモードにおいてp型MOSトランジスタQ1及びn型MOSトランジスタQ2のしきい値が高くなり、導通抵抗を抑える必要があるアクティブモードにおいてこれらのしきい値が低くなるように、基板バイアス電圧Vn_well,Vp_wellを制御する。具体的には、基板バイアス電圧Vn_wellをスリープモードにおいて高くし、アクティブモードにおいて低くする。また、基板バイアス電圧Vp_wellをスリープモードにおいて低くし、アクティブモードにおいて高くする。
また、基板バイアス制御部2は、回路ブロック1の動作モードが切り替わるとき(すなわち、半導体スイッチSW1,SW2のオンとオフが切り替わるとき)に、これらの半導体スイッチのスイッチング速度が高速化するように、基板バイアス電圧Vn_well,Vp_wellを制御する。
すなわち、スリープモードからアクティブモードに切り替わる場合は、p型MOSトランジスタQ1及びn型MOSトランジスタQ2のオフからオンへの切り替えが行われる前に、基板バイアス電圧Vn_wellを低くし、基板バイアス電圧Vp_wellを高くする。アクティブモードからスリープモードに切り替わる場合は、p型MOSトランジスタQ1及びn型MOSトランジスタQ2のオンからオフへの切り替えが行われた後に、基板バイアス電圧Vn_wellを高くし、基板バイアス電圧Vp_wellを低くする。
基板バイアス制御部2は、例えば図1に示すように、回路ブロック1の動作モードの切り替えタイミングを示す信号Pcnt2に基づいて、基板バイアス電圧の上述した制御タイミングを決定する。
信号Pcnt2は、半導体装置の内部や外部に設けられた図示しないコントローラにおいて動作モードの切り替え制御用に生成される信号である。信号Pcnt2は、例えば、スリープモードからアクティブモードへの切り替えタイミングに対して所定時間だけ前のタイミング、並びに、アクティブモードからスリープモードへの切り替えタイミングに対して所定時間だけ後のタイミングを基板バイアス制御部2に通知する。
基板バイアス制御部2は、信号Pcnt2によって通知されるタイミングにおいて基板バイアス電圧Vn_well,Vp_wellを変更する。
スイッチ制御部3は、回路ブロック1の動作モードの切り替えタイミングを示す信号Pcnt1に基づいて、半導体スイッチSW1,SW2のオンとオフを制御する。すなわちアクティブモードにおいて、p型MOSトランジスタQ1のゲートにローレベル(基準電位VSS)、n型MOSトランジスタQ2のゲートにハイレベル(電源電圧VDD)の電圧を印加し、スリープモードにおいてp型MOSトランジスタQ1のゲートにハイレベル、n型MOSトランジスタQ2のゲートにローレベル電圧を印加する。
信号Pcnt1は、半導体装置の内部や外部に設けられた図示しないコントローラにおいて動作モードの切り替え制御用に生成される信号である。信号Pcnt1は、例えば、スリープモードからアクティブモードへの切り替えタイミング、並びに、アクティブモードからスリープモードへの切り替えタイミングを基板バイアス制御部2に通知する。スイッチ制御部3は、信号Pcnt1によって通知されたタイミングにおいて、p型MOSトランジスタQ1及びn型MOSトランジスタQ2のゲート電圧を反転する。
ここで、図1に示す半導体装置において回路ブロック1の動作モードが切り替わる場合の動作について、図3のフローチャートを参照しながら説明する。
スリープモードからアクティブモードへの動作モードの変更が発生すると(ステップST100,ST101)、先ず基板バイアス制御部2が、n型ウェルWn1に印加する基板バイアス電圧Vn_wellを低下させるとともに、p型ウェルWp1に印加する基板バイアス電圧Vp_wellを上昇させる(ステップST102)。
例えば、基板バイアス制御部2は、図2(A)に示すように基板バイアス電圧Vn_wellを基準値の1.2Vより0.3Vだけ低い0.9Vに設定し、基板バイアス電圧Vp_wellを基準値の0Vより0.3Vだけ高い0.3Vに設定する。
基板バイアス制御部2によって基板バイアス電圧が変更されると、次にスイッチ制御部3は、p型MOSトランジスタQ1及びn型MOSトランジスタQ2をそれぞれオフからオンへ切り替える(ステップST103)。このとき、p型MOSトランジスタQ1及びn型MOSトランジスタQ2のしきい値は、ステップST102における基板バイアス電圧の制御によって低くなっている。そのため、これらのトランジスタのスイッチング速度は、基板バイアス電圧の制御を行わない場合に比べて高速化する。
スイッチ制御部3によってp型MOSトランジスタQ1及びn型MOSトランジスタQ2がオンに設定されると、これらのトランジスタを介して回路ブロック1に電力が供給され、動作モードがアクティブモードに移行する。
上述したステップST102の基板バイアス電圧の制御によって、アクティブモードにおけるp型MOSトランジスタQ1及びn型MOSトランジスタQ2のしきい値は低くなっている。そのため、これらのトランジスタの導通抵抗は、基板バイアス電圧の制御を行わない場合に比べて低くなる。導通抵抗が低いと、p型MOSトランジスタQ1及びn型MOSトランジスタQ2に発生する電圧降下が小さくなるため、回路ブロック1の電源電圧の変動が小さくなる。
次に、アクティブモードからスリープモードへの動作モードの変更が発生すると(ステップST100,ST101)、先ずスイッチ制御部3は、p型MOSトランジスタQ1及びn型MOSトランジスタQ2をそれぞれオンからオフへ切り替える(ステップST104)。このとき、p型MOSトランジスタQ1及びn型MOSトランジスタQ2のしきい値は、ステップST102における基板バイアス電圧の制御によって低くなっている。そのため、これらのトランジスタのスイッチング速度は、ステップST102の基板バイアス制御を行わない場合に比べて高速化する。
スイッチ制御部3によってp型MOSトランジスタQ1及びn型MOSトランジスタQ2がオフに設定されると、これらのトランジスタを介した回路ブロック1への給電が停止され、動作モードがスリープモードに移行する。
動作モードがスリープモードに移行すると、基板バイアス制御部2は、n型ウェルWn1に印加する基板バイアス電圧Vn_wellを上昇させるとともに、p型ウェルWp1に印加する基板バイアス電圧Vp_wellを低下させる(ステップST105)。
例えば、基板バイアス制御部2は、図2(B)に示すように基板バイアス電圧Vn_wellを基準値の1.2Vより0.3Vだけ高い1.5Vに設定し、基板バイアス電圧Vp_wellを基準値の0Vより0.3Vだけ低い−0.3Vに設定する。
上述のような基板バイアス電圧の制御によって、p型MOSトランジスタQ1及びn型MOSトランジスタQ2のしきい値は高くなる。そのため、これらのトランジスタに流れるリーク電流が減少し、スリープモード時の消費電力が小さくなる。
以上説明したように、本実施形態に係る半導体装置によれば、回路ブロック1の動作状態に応じて、その給電経路に挿入される半導体スイッチSW1,SW2のリーク電流に係わる特性が制御される。これにより、導通抵抗やスイッチング速度など、リーク電流特性とトレードオフの関係にある半導体スイッチSW1,SW2の特性が半導体装置の全体の動作に及ぼす影響とのバランスを図りながら、リーク電流を効果的に削減することができる。
例えば、スリープモードにおいて半導体スイッチSW1,SW2のリーク電流が小さくなり、アクティブモードにおいて半導体スイッチSW1,SW2の導通抵抗が低くなるように基板バイアス電圧Vn_well,Vp_wellを制御することにより、半導体スイッチSW1,SW2の導通抵抗に起因するアクティブモード時の電源電圧変動を抑制しつつ、スリープモード時のリーク電流を効果的に低減することができる。
また、例えば、スリープモードとアクティブモードとの間で動作モードが切り替わるときに、半導体スイッチSW1,SW2のスイッチング速度が速くなるように基板バイアス電圧Vn_well,Vp_wellを制御することにより、動作モードの切り替えに伴う遅延時間を短縮できる。すなわち、切り替えに伴う無駄な待ち時間が短くなる。これにより、半導体装置の全体の処理を円滑にすることができる。また、動作モードの切り替え時間が短くなると、僅かな休止期間でも動作モードをスリープモードに切り替えることが可能になるため、リーク電流をより効果的に削減することができる。
<第2の実施形態>
次に、本発明の第2の実施形態について説明する。
第2の実施形態に係る半導体装置では、回路ブロックに供給される電源電圧や回路ブロックの動作スピードに応じて、回路ブロックの給電経路に挿入される半導体スイッチの基板バイアス電圧が制御される。
図4は、本発明の第2の実施形態に係る半導体装置の構成の一例を示す図であり、図1と図4の同一符号は同一の構成要素を示す。
図4に示す半導体装置は、図1に示す半導体装置における基板バイアス制御部2を次に述べる基板バイアス制御部2Aに置き換えたものであり、他の構成要素は図1に示す半導体装置と同じである。
基板バイアス制御部2Aは、回路ブロック1の動作モードを示す信号Pcnt2に応じて半導体スイッチSW1,SW2の基板バイアス電圧を制御するとともに、回路ブロック1の電源電圧や動作スピードを示す信号に応じて基板バイアス電圧を制御する。
すなわち、基板バイアス制御部2Aは、回路ブロック1に供給される電源電圧を示す信号Vmodに応じて、電源電圧が低くなると半導体スイッチSW1,SW2の導通抵抗が低くなり、電源電圧が高くなるとこの導通抵抗が高くなるように、基板バイアス電圧Vn_well,Wp_wellを制御する。すなわち、電源電圧が低くなることによって電源電圧変動のマージンが相対的に小さくなったとき、半導体スイッチSW1,SW2の導通抵抗を下げることによって、この導通抵抗に生じる電圧降下を小さくする。逆に、電源電圧が高くなることによって電源電圧変動のマージンが相対的に大きくなったときは、半導体スイッチSW1,SW2の導通抵抗を上げ、リーク電流を小さくする。
また、基板バイアス制御部2Aは、回路ブロック1の動作スピードを示す信号Smodに応じて、動作スピードが速くなると半導体スイッチSW1,SW2の導通抵抗が低くなり、動作スピードが遅くなるとこの導通抵抗が高くなるように、基板バイアス電圧Vn_well,Wp_wellを制御する。すなわち、回路ブロック1の動作が高速化して消費電流が増大したとき、半導体スイッチSW1,SW2の導通抵抗を下げることによって、この導通抵抗に生じる電圧降下の増大を抑制する。逆に、回路ブロック1の動作が低速化して消費電流が減少したときは、半導体スイッチSW1,SW2の導通抵抗を上げ、リーク電流を小さくする。
ここで、図4に示す半導体装置において回路ブロック1の動作モードが切り替わる場合の動作について、図5のフローチャートを参照しながら説明する。
スリープモードからアクティブモードへの動作モードの変更が発生すると(ステップST100,ST101)、基板バイアス制御部2Aは、電源電圧を示す信号Vmod及び動作スピードを示す信号Smodに応じて、基板バイアス電圧Vn_well,Wp_wellの設定値を決定する。
ここでは例として、電源電圧を2段階(低電圧/高電圧)、動作スピードを2段階(高速/低速)にそれぞれ設定できるものとする。信号Vmod及びSmodは、半導体装置の内部や外部に設けられた図示しないコントローラにおいて電源電圧や動作スピードの制御用に生成される信号であり、電源電圧及び動作スピードの各々が上記の2段階のどちらに設定されているかを基板バイアス制御部2Aに通知する。
電源電圧が‘低電圧’、動作スピードが‘高速’の場合(ステップST110,ST111)、回路ブロック1の電源電圧変動のマージンが最も小さくなり、かつ、回路ブロック1の消費電流が最も大きくなる。この場合、基板バイアス制御部2Aは、p型MOSトランジスタQ1及びn型MOSトランジスタQ2の導通抵抗が最も低くなるように(すなわちしきい値が最も低くなるように)、基板バイアス電圧Vn_well及びVp_wellを設定する。
図5の例では、基板バイアス電圧Vn_wellを基準値(例えば1.2V)より0.3Vだけ低く設定し、基板バイアス電圧Vp_wellを基準値(例えば0V)より0.3Vだけ高く設定する。
電源電圧が‘低電圧’、動作スピードが‘低速’の場合(ステップST110,ST111)、回路ブロック1の電源電圧変動のマージンは最も小さくなる一方で、回路ブロック1の消費電流は‘高速’の場合より小さくなる。この場合、基板バイアス制御部2Aは、p型MOSトランジスタQ1及びn型MOSトランジスタQ2の導通抵抗が3番目に低くなるように(すなわちしきい値が3番目に低くなるように)、基板バイアス電圧Vn_well及びVp_wellを設定する。
図5の例では、基板バイアス電圧Vn_wellを基準値より0.15Vだけ高く設定し、基板バイアス電圧Vp_wellを基準値より0.15Vだけ低く設定する。
電源電圧が‘高電圧’、動作スピードが‘高速’の場合(ステップST110,ST112)、回路ブロック1の電源電圧変動のマージンは‘低電圧’の場合より大きくなる一方で、回路ブロック1の消費電流は最も大きくなる。この場合、基板バイアス制御部2Aは、p型MOSトランジスタQ1及びn型MOSトランジスタQ2の導通抵抗が2番目に低くなるように(すなわちしきい値が2番目に低くなるように)、基板バイアス電圧Vn_well及びVp_wellを設定する。
図5の例では、基板バイアス電圧Vn_wellを基準値より0.15Vだけ低く設定し、基板バイアス電圧Vp_wellを基準値より0.15Vだけ高く設定する。
電源電圧が‘高電圧’、動作スピードが‘低速’の場合(ステップST110,ST112)、回路ブロック1の電源電圧変動のマージンは最も大きくなり、かつ、回路ブロック1の消費電流は最も小さくなる。この場合、基板バイアス制御部2Aは、p型MOSトランジスタQ1及びn型MOSトランジスタQ2の導通抵抗が最も高くなるように(すなわちしきい値が最も高くなるように)、基板バイアス電圧Vn_well及びVp_wellを設定する。
図5の例では、基板バイアス電圧Vn_wellを基準値より0.3Vだけ高く設定し、基板バイアス電圧Vp_wellを基準値より0.3Vだけ低く設定する。
基板バイアス制御部2Aによって上記のように基板バイアス電圧が設定されると、次にスイッチ制御部3は、p型MOSトランジスタQ1及びn型MOSトランジスタQ2をそれぞれオフからオンへ切り替える(ステップST103)。スイッチ制御部3によってp型MOSトランジスタQ1及びn型MOSトランジスタQ2がオンに設定されると、これらのトランジスタを介して回路ブロック1に電力が供給され、動作モードがアクティブモードに移行する。
アクティブモードでは、上述の基板バイアス電圧の設定に応じた導通抵抗を持つトランジスタ(Q1,Q2)を通じて、回路ブロック1に電力が供給される。
アクティブモードからスリープモードへの動作モードの変更が発生した場合、その動作は、先に説明した図3に示すフローチャートと同じである。すなわち、先ずスイッチ制御部3が、p型MOSトランジスタQ1及びn型MOSトランジスタQ2をそれぞれオンからオフへ切り替える(ステップST104)。次いで基板バイアス制御部2が、p型MOSトランジスタQ1及びn型MOSトランジスタQ2のしきい値が高くなるように、基板バイアス電圧Vn_wellを上昇させ、基板バイアス電圧Vp_wellを低下させる(ステップST105)。例えば、基板バイアス電圧Vn_wellを基準値より0.3Vだけ高く設定し、基板バイアス電圧Vp_wellを基準値より0.3Vだけ低く設定する。
上述のような基板バイアス電圧の制御によって、p型MOSトランジスタQ1及びn型MOSトランジスタQ2のしきい値は高くなる。そのため、これらのトランジスタに流れるリーク電流が減少し、スリープモード時の消費電力が小さくなる。
以上説明したように、本実施形態に係る半導体装置によれば、回路ブロック1に供給される電源電圧に応じて、半導体スイッチSW1,SW2の基板バイアス電圧が制御される。すなわち、電源電圧が低い場合には導通抵抗が低くなり、電源電圧が高い場合には導通抵抗が高くなるように、基板バイアス電圧が制御される。これにより、電源電圧変動のマージンが相対的に小さくなる低電源電圧時において、半導体スイッチSW1,SW2の電圧降下に起因する電源電圧の変動成分を抑制できるとともに、電源電圧変動のマージンが相対的に大きくなる高電源電圧時には、半導体スイッチSW1,SW2のリーク電流を削減することができる。すなわち、回路ブロック1に供給される電源電圧が変更される場合でも、電源電圧変動を適正な範囲に収めつつ、半導体スイッチSW1,SW2のリーク電流を効果的に削減することができる。
また、本実施形態に係る半導体装置によれば、回路ブロック1の動作スピードに応じて、半導体スイッチSW1,SW2の基板バイアス電圧が制御される。すなわち、動作スピードが速い場合には導通抵抗が低くなり、動作スピードが遅い場合には導通抵抗が高くなるように、基板バイアス電圧が制御される。これにより、消費電流が相対的に大きくなる回路ブロック1の高速動作時において、半導体スイッチSW1,SW2の導通抵抗を低くすることにより電源電圧変動の増大を抑制できるとともに、消費電流が相対的に小さくなる低速動作時においては、リーク電流を削減することができる。すなわち、回路ブロック1の動作スピードが変更される場合でも、電源電圧変動を許容範囲内に収めつつ、半導体スイッチSW1,SW2のリーク電流を効果的に削減することができる。
<第3の実施形態>
次に、本発明の第3の実施形態について説明する。
第3の実施形態に係る半導体装置では、回路ブロックの動作状態を測定した結果に応じて、回路ブロックの給電経路に挿入される半導体スイッチの基板バイアス電圧が制御される。
図6は、本発明の第3の実施形態に係る半導体装置の構成の一例を示す図であり、図4と図6の同一符号は同一の構成要素を示す。
図6に示す半導体装置は、図4に示す半導体装置において測定部4を設け、かつ、基板バイアス制御部2Aを次に述べる基板バイアス制御部2Bに置き換えたものであり、他の構成要素は図4に示す半導体装置と同じである。
測定部4は、回路ブロック1及び/又は半導体スイッチSW1,SW2の特性を測定する。
例えば測定部4は、回路ブロック1の特性として、回路ブロック1の消費電流や、回路ブロック1に供給される電源電圧、回路ブロック1に含まれる回路素子の特性(遅延特性、抵抗値など)、回路ブロック1の温度を測定する。また半導体スイッチSW1の特性として、アクティブモードにおける導通抵抗や、スリープモードにおけるリーク電流、スイッチング速度などの特性を測定しても良い。
回路ブロック1がメモリの場合は、回路ブロック1のメモリセルに含まれるトランジスタ(例えばSRAMセルの駆動トランジスタなど)の特性を測定しても良い。
基板バイアス制御部2Bは、先に説明した基板バイアス制御部2Aと同様に、回路ブロック1の動作状態を示す信号(Pcnt2,Vmod,Smod)に応じて半導体スイッチSW1,SW2の基板バイアス電圧を制御するとともに、更に測定部4の測定結果に応じて基板バイアス電圧を制御する。
半導体スイッチSW1,SW2や回路ブロック1の特性は、製造プロセス、印加電圧、温度などの要因でばらつきを生じる。このばらつきがあまり大きくなると、基板バイアスの制御を行った際に電源電圧変動が許容限度を超えてしまうなどの不都合を生じる。ばらつきに対するマージンを予想して基板バイアスの制御範囲を制限することも考えられるが、そうするとリーク電流の削減効果が小さくなってしまう。
そこで、本実施形態に係る半導体装置では、例えばスリープモード時のリーク電流やアクティブモード時の電源電圧など、回路ブロック1や半導体スイッチSW1,SW2の特性を測定し、その測定結果が所定の許容範囲に収まるように半導体スイッチSW1,SW2の基板バイアス電圧を制御する。
これにより、回路ブロック1や半導体スイッチSW1,SW2の特性にばらつきが生じても、装置の動作特性や性能を所定の許容範囲に保ちつつ、リーク電流を効果的に削減することができる。
<第4の実施形態>
次に、本発明の第4の実施形態について説明する。
図7は、本発明の第4の実施形態に係る半導体装置の構成の一例を示す図であり、図6と図7の同一符号は同一の構成要素を示す。
図7に示す半導体装置は、図6に示す半導体装置と同様の構成を有するとともに、基板バイアス制御部5を更に有する。
基板バイアス制御部5は、回路ブロック1の動作状態に応じて回路ブロック1の基板バイアス電圧を制御する。
例えば、測定部4において測定された回路ブロック1のリーク電流と動作スピード(回路素子の遅延時間など)に応じて、動作スピードを所定の範囲に保ちつつリーク電流が最小となるように、基板バイアス電圧を制御しても良い。あるいは、リーク電流を所定の範囲に保ちつつ動作速度が最も速くなるように、基板バイアス電圧を制御しても良い。
このように、回路ブロック1の基板バイアス電圧と半導体スイッチSW1,SW2の基板バイアス電圧を各々独立に制御することによって、両方を共通に制御する場合に比べて、リーク電流や動作スピードなどの特性を最適化し易くすることができる。
以上、本発明の幾つかの実施形態について説明したが、本発明は上記の形態にのみ限定されるものではなく、種々のバリエーションを含んでいる。
例えば、上述の実施形態ではトランジスタ等の半導体スイッチの基板バイアス電圧を制御することによって給電経路の半導体スイッチのリーク電流に係わる特性を制御しているが、本発明はこれに限定されない。例えば、半導体スイッチとして用いられるトランジスタのゲートに印加する電圧を制御することによって、そのリーク電流特性を制御することも可能である。
例えば、スイッチ用トランジスタに流れるリーク電流を測定し、その測定値が所定の範囲内に収まるように、スイッチ用トランジスタのオフ時のゲート電圧を制御しても良い。
本発明の第1の実施形態に係る半導体装置の構成の一例を示す図である。 半導体基板に形成される給電経路のスイッチ用トランジスタの構造例を示す図である。 図1に示す半導体装置において回路ブロックの動作モードが切り替わる場合の動作の一例を示すフローチャートである。 本発明の第2の実施形態に係る半導体装置の構成の一例を示す図である。 図4に示す半導体装置において回路ブロックの動作モードが切り替わる場合の動作の一例を示すフローチャートである。 本発明の第3の実施形態に係る半導体装置の構成の一例を示す図である。 本発明の第4の実施形態に係る半導体装置の構成の一例を示す図である。
符号の説明
1…回路ブロック、2,2A,2B,5…基板バイアス制御部、4…測定部、SW1,SW2…半導体スイッチ、Q1…p型MOSトランジスタ、Q2…n型MOSトランジスタ

Claims (9)

  1. 給電経路を通じて電力が供給される回路ブロックと、
    前記給電経路に挿入される半導体スイッチと、
    前記回路ブロックの動作状態に応じて前記半導体スイッチのリーク電流に係わる特性を制御する制御部と
    を有する半導体装置。
  2. 前記制御部は、前記回路ブロックの動作状態に応じて前記半導体スイッチの基板バイアス電圧を制御する、
    請求項1に記載の半導体装置。
  3. 前記制御部は、前記半導体スイッチがオフのときに前記半導体スイッチのリーク電流が小さくなり、前記半導体スイッチがオンのときに前記半導体スイッチの導通抵抗が低くなるように前記半導体スイッチの基板バイアス電圧を制御する、
    請求項2に記載の半導体装置。
  4. 前記制御部は、前記半導体スイッチがオフのときに前記半導体スイッチのリーク電流が小さくなり、前記半導体スイッチがスイッチングするときにスイッチング速度が速くなるように前記半導体スイッチの基板バイアス電圧を制御する、
    請求項2に記載の半導体装置。
  5. 前記制御部は、前記回路ブロックに供給される電源電圧を示す信号に応じて前記半導体スイッチの基板バイアス電圧を制御する、
    請求項2に記載の半導体装置。
  6. 前記制御部は、前記回路ブロックの動作スピードを示す信号に応じて前記半導体スイッチの基板バイアス電圧を制御する、
    請求項2に記載の半導体装置。
  7. 前記回路ブロック及び/又は前記半導体スイッチの特性を測定する測定部を有し、
    前記制御部は、前記測定部の測定結果に応じて前記半導体スイッチのリーク電流に係わる特性を制御する、
    請求項1に記載の半導体装置。
  8. 前記測定部は、前記回路ブロックの消費電流、前記回路ブロックに供給される電源電圧、前記回路ブロックに含まれる所定の回路素子の特性、前記回路ブロックの温度、前記半導体スイッチの導通抵抗、前記半導体スイッチのリーク電流、及び前記半導体スイッチのスイッチング速度の少なくとも1つを測定する、
    請求項7に記載の半導体装置。
  9. 前記半導体スイッチ及び前記回路ブロックは、各々の基板バイアス電圧を独立に制御可能であり、
    前記回路ブロックの動作状態に応じて前記回路ブロックの基板バイアス電圧を制御する第2の制御部を更に有する、
    請求項2に記載の半導体装置。
JP2005295165A 2005-10-07 2005-10-07 半導体装置 Pending JP2007104572A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005295165A JP2007104572A (ja) 2005-10-07 2005-10-07 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005295165A JP2007104572A (ja) 2005-10-07 2005-10-07 半導体装置

Publications (1)

Publication Number Publication Date
JP2007104572A true JP2007104572A (ja) 2007-04-19

Family

ID=38031028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005295165A Pending JP2007104572A (ja) 2005-10-07 2005-10-07 半導体装置

Country Status (1)

Country Link
JP (1) JP2007104572A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012065070A (ja) * 2010-09-15 2012-03-29 Fujitsu Ltd 半導体集積回路
JP2013528300A (ja) * 2010-05-25 2013-07-08 フリースケール セミコンダクター インコーポレイテッド 複数の低電力モードを有するデータプロセッサ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032481A (ja) * 1996-07-17 1998-02-03 Nippon Telegr & Teleph Corp <Ntt> 論理回路
JP2000059200A (ja) * 1998-08-14 2000-02-25 Nec Corp 半導体装置及び半導体装置の駆動方法
JP2001053599A (ja) * 1999-08-12 2001-02-23 Nec Corp 半導体集積回路
JP2002319852A (ja) * 2001-04-20 2002-10-31 Sharp Corp 論理回路装置
JP2003124794A (ja) * 2001-10-10 2003-04-25 Sharp Corp 半導体集積回路およびそれを用いた半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032481A (ja) * 1996-07-17 1998-02-03 Nippon Telegr & Teleph Corp <Ntt> 論理回路
JP2000059200A (ja) * 1998-08-14 2000-02-25 Nec Corp 半導体装置及び半導体装置の駆動方法
JP2001053599A (ja) * 1999-08-12 2001-02-23 Nec Corp 半導体集積回路
JP2002319852A (ja) * 2001-04-20 2002-10-31 Sharp Corp 論理回路装置
JP2003124794A (ja) * 2001-10-10 2003-04-25 Sharp Corp 半導体集積回路およびそれを用いた半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528300A (ja) * 2010-05-25 2013-07-08 フリースケール セミコンダクター インコーポレイテッド 複数の低電力モードを有するデータプロセッサ
JP2012065070A (ja) * 2010-09-15 2012-03-29 Fujitsu Ltd 半導体集積回路

Similar Documents

Publication Publication Date Title
US7042245B2 (en) Low power consumption MIS semiconductor device
US7292061B2 (en) Semiconductor integrated circuit having current leakage reduction scheme
US20120126879A1 (en) Apparatus and method for controlling power gating in an integrated circuit
KR100728950B1 (ko) 내부전압 발생장치
JP2010028352A (ja) インバータ回路
JP2006133935A (ja) 電源装置、及び携帯機器
JP2008085571A (ja) 半導体集積回路
US7109758B2 (en) System and method for reducing short circuit current in a buffer
JP4237221B2 (ja) 半導体装置
JP2010010920A (ja) 半導体集積回路
US7777548B2 (en) Level shifter
JP2007104572A (ja) 半導体装置
KR20100013591A (ko) 파워게이팅 회로 및 방법
US11599185B2 (en) Internet of things (IoT) power and performance management technique and circuit methodology
JP2004103941A (ja) 電圧発生装置
US8111561B2 (en) Bulk bias voltage generating device and semiconductor memory apparatus including the same
JP5338840B2 (ja) 半導体集積回路
US20120087196A1 (en) Gate oxide breakdown-withstanding power switch structure
JP2005164357A (ja) 電圧検出回路
JP5308943B2 (ja) 電源回路
US7319357B2 (en) System for controlling switch transistor performance
JP2011182056A (ja) 半導体集積回路
JP2007259588A (ja) 消費電力削減回路
JP2011014575A (ja) 半導体集積回路
JP2009199124A (ja) 基板電位制御回路、オフリーク電流モニタ回路、及び動作電流モニタ回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405