JP2007103492A - 半導体装置の製造方法及び半導体装置 - Google Patents

半導体装置の製造方法及び半導体装置 Download PDF

Info

Publication number
JP2007103492A
JP2007103492A JP2005288879A JP2005288879A JP2007103492A JP 2007103492 A JP2007103492 A JP 2007103492A JP 2005288879 A JP2005288879 A JP 2005288879A JP 2005288879 A JP2005288879 A JP 2005288879A JP 2007103492 A JP2007103492 A JP 2007103492A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
element isolation
diffusion
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005288879A
Other languages
English (en)
Other versions
JP5428121B2 (ja
Inventor
Teruo Takizawa
照夫 瀧澤
Hirokazu Hisamatsu
裕和 久松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005288879A priority Critical patent/JP5428121B2/ja
Publication of JP2007103492A publication Critical patent/JP2007103492A/ja
Application granted granted Critical
Publication of JP5428121B2 publication Critical patent/JP5428121B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 シリコン層の厚さが極薄膜化した場合でも、チャネル領域の端部での寄生チャネル形成を防止できるようにした半導体装置の製造方法及び半導体装置を提供する。
【解決手段】 SOI基板10にLOCOS層15を形成し、LOCOS15で囲まれた素子領域にn型のSOIトランジスタ100を形成する際に、チャネル領域端部30に寄生チャネル防止用のボロン(B)を導入する工程と、チャネル領域端部30に、Bの拡散を抑制する拡散抑制原子としてフッ素(F)又は炭素(C)を導入する工程と、シリコン層5を熱酸化してゲート絶縁膜21を形成する工程と、を含み、Bを導入する工程と、拡散抑制原子を導入する工程は、ゲート絶縁膜21を形成する工程の前までにそれぞれ行う。
【選択図】 図4

Description

本発明は、半導体装置の製造方法及び半導体装置に関し、特に、シリコン層の厚さが極薄膜化した場合でも、チャネル領域の端部での寄生チャネル形成を防止できるようにしたものである。
図5(A)及び(B)は、従来例1に係るMOSトランジスタ200の構成例を示す平面図と、a5−a´5矢視拡大断面図である。図5(A)及び(B)に示すように、このMOSトランジスタ200はn型(nch)であり、シリコン基板201に形成されたウェル拡散層(P−)203と、このウェル拡散層203上に形成されたゲート絶縁膜205と、ゲート絶縁膜205上に形成されたゲート電極207と、ゲート電極207の両側に形成されたソース又はドレイン(以下、「S/D」という。)209と、を含んだ構成となっている。シリコン基板201はp型のバルクであり、その不純物原子B(ボロン)の濃度は1×10−15[cm−3]程度である。また、ウェル拡散層203のB濃度は1×10−17[cm−3]程度である。
このようなMOSトランジスタ200では、シリコン基板201はウェル拡散層203よりもそのB濃度が低い。そのため、S/D209に挟まれたチャネル領域のLOCOS層211側の端部(以下、「チャネル領域端部」という。)221には、ウェル拡散層203よりもn型に反転し易い寄生チャネルが形成され、この寄生チャネルを介してS/D209間でリーク電流の増大が起こりやすい。
そこで、このような寄生チャネルによるリーク電流の増大を防ぐために、チャネル領域端部221からLOCOS層211下にかけての領域にチャネルストッパを形成する技術が知られている。
図6(A)は、従来例2に係るMOSトランジスタ300の構成例を示す拡大断面図である。このMOSトランジスタ200は、図5(A)及び(B)に示したMOSトランジスタ200において、チャネル領域端部221からLOCOS層211下にかけての領域にチャネルストッパ(P)層301を追加した構成となっている。このチャネルストッパ層301は、LOCOS層211の形成前にその形成領域及びその近傍のシリコン基板201にBをイオン注入し、その後、熱処理することによって形成する。このような構成であれば、チャネルストッパ層301はウェル拡散層203よりもn型に反転しにくいので寄生チャネルの形成が防止され、リーク電流の増大が防がれる。
また、現在の半導体分野では、集積回路の低消費電力化のためシリコン・オン・インシュレータ(SOI)技術の開発が盛んである。SOI基板を用いたデバイスでは、トランジスタが持つ寄生容量を大幅に削減できるため、従来のデバイスより高速で且つ低消費電力の特性が得られることが知られている(例えば、特許文献1参照。)。
図6(B)は、従来例3に係るSOIトランジスタ400の構成例を示す拡大断面図である。図6(B)に示すように、このSOIトランジスタ400は、MOSトランジスタ300において、その基板がシリコン基板401と、埋め込み酸化層(以下、「BOX層」ともいう。)403と、シリコン層(以下、「SOI層」ともいう。)405とからなるSOI基板410となっている。このSOIトランジスタ400も、図6(A)に示したMOSトランジスタ300と同様に、チャネル領域端部221からLOCOS層211下にかけての領域にチャネルストッパ層301を有することによって、寄生チャネルの形成を防止するようになっている。
特開2001−257354号公報 特開平7−106594号公報
ところで、本発明者は、図6(B)に示したSOIトランジスタ400の形成過程で、ゲート電極205下のSOI層405におけるB濃度の分布がどのように変化するかをシミュレーションで調べてみた。そして、そのシミュレーション結果から、SOI層405の厚さが0.08[μm]程度と極めて薄い(即ち、SOI層405とLOCOS層211との界面と、SOI層211とBOX層403との界面が近接している)場合には、チャネル領域端部221のB濃度が、チャネル領域中央のSOI層のB濃度よりも低くなってしまうことがある、ということに気が付いた。チャネル領域端部221のB濃度が、他の部分のB濃度よりも低くなっている場合には、チャネル領域端部221に寄生チャネルが形成されてしまう(問題点)。
図7(A)〜(D)は本発明者が行ったシミュレーションの結果を示す図である。図7(A)〜(D)は、図6(B)に示したSOIトランジスタ400の各形成工程における、SOI層405内のB濃度分布を示している。SOI層405内のハッチングの疎密はB濃度の分布を示し、ハッチングが密であるほどB濃度が高いことを意味している。
詳しく説明すると、図7(A)は、LOCOS形成用の窒化膜パターン430をマスクにして、寄生チャネル防止用のBをSOI層405にイオン注入した後の断面図である。また、図7(B)はLOCOS形成の初期段階である「ドライ酸化」を行った直後の断面図である。初期段階であるため、LOCOS層はまだ形成されていない。図7(C)は、LOCOS層211を形成した直後の断面図である。そして、図7(C)は、ゲート絶縁膜205上にポリシリコン膜を形成し、このポリシリコン膜を電極形状にパターニング(即ち、ポリエッチ)してゲート電極207を形成した後の断面図である。
図7(A)及び図7(B)から分かるように、SOI層にイオン注入されたボロンは、LOCOS形成の初期段階(ドライ酸化)で既にチャネル領域中央の側へ広く拡散している。また、図7(C)から分かるように、LOCOS形成直後には、チャネル領域端部からチャネル領域中央の側にかけて、SOI層405のB濃度は均一になっている。さらに、図7(D)から分かるように、ポリエッチ後には、チャネル領域端部のB濃度がチャネル領域中央の側よりも低くなっている。
本発明は、このようなSOI層(即ち、SOI基板のシリコン層)の極薄化によって顕在化した問題点に鑑みてなされたものであって、シリコン層の厚さが極薄膜化した場合でも、チャネル領域の端部での寄生チャネル形成を防止できるようにした半導体装置の製造方法及び半導体装置の提供を目的とする。
〔発明1〕 上記目的を達成するために、発明1の半導体装置の製造方法は、半導体基板と、前記半導体基板上に設けられた絶縁層と、前記絶縁層上に設けられた半導体層とからなるSOI基板に素子分離層を形成し、前記素子分離層で囲まれた素子領域にn型のトランジスタを形成する半導体装置の製造方法であって、前記トランジスタのソースとドレインとによって挟まれるチャネル領域の前記素子分離層側の端部の前記半導体層にボロンを導入する工程と、前記端部の前記半導体層に前記ボロンの拡散を抑制する拡散抑制原子を導入する工程と、前記半導体層を熱酸化してゲート絶縁膜を形成する工程と、を含み、前記ボロンを導入する工程と、前記拡散抑制原子を導入する工程は、前記ゲート絶縁膜を形成する工程の前までにそれぞれ行うことを特徴とするものである。
ここで、「半導体基板」は例えばシリコン基板であり、「絶縁層」は例えば酸化シリコン膜であり、「半導体層」は例えばエピタキシャル成長法によって形成されたシリコン層である。また、「ゲート絶縁膜」は例えば酸化シリコン膜、酸窒化シリコン膜、又は高誘電率絶縁膜である。さらに、「拡散抑制原子」としては、例えばフッ素(F)又は炭素(C)が挙げられる。
発明1の半導体装置の製造方法によれば、ゲート絶縁膜の形成工程、及びそれ以降の熱工程において、上記端部の半導体層におけるボロン(B)の拡散が抑制されるので、上記端部の半導体層のB濃度の低下を抑えることができる。従って、n型に反転しやすい寄生チャネルの形成を抑制することができるので、リーク電流が低く、高速で動作し、且つ低消費電力特性の半導体装置を提供することができる。
〔発明2〕 発明2の半導体装置の製造方法は、半導体基板と、前記半導体基板上に設けられた絶縁層と、前記絶縁層上に設けられた半導体層とからなるSOI基板に素子分離層を形成し、前記素子分離層で囲まれた素子領域にn型のトランジスタを形成する半導体装置の製造方法であって、前記トランジスタのソースとドレインとによって挟まれるチャネル領域の前記素子分離層側の端部の前記半導体層にボロンを導入する工程と、前記端部と隣接する前記素子分離層に前記ボロンの拡散を抑制する拡散抑制原子を導入する工程と、前記半導体層を熱酸化してゲート絶縁膜を形成する工程と、を含み、前記ボロンを導入する工程と、前記拡散抑制原子を導入する工程は、前記ゲート絶縁膜を形成する工程の前までにそれぞれ行うことを特徴とするものである。
このような構成であれば、ゲート絶縁膜の形成工程、及びそれ以降の熱工程において、素子分離層におけるボロン(B)の拡散が抑制されるので、上記端部の半導体層から素子分離層内側へのボロンの拡散を抑制することができ、上記端部の半導体層のB濃度の低下を抑えることができる。従って、n型に反転しやすい寄生チャネルの形成を抑制することができるので、リーク電流が低く、高速で動作し、且つ低消費電力特性の半導体装置を提供することができる。
〔発明3〕 発明3の半導体装置の製造方法は、半導体基板と、前記半導体基板上に設けられた絶縁層と、前記絶縁層上に設けられた半導体層とからなるSOI基板に素子分離層を形成し、前記素子分離層で囲まれた素子領域にn型のトランジスタを形成する半導体装置の製造方法であって、前記トランジスタのソースとドレインとによって挟まれるチャネル領域の前記素子分離層側の端部の前記半導体層にボロンを導入する工程と、前記端部の下方の前記絶縁層に前記ボロンの拡散を抑制する拡散抑制原子を導入する工程と、前記半導体層を熱酸化してゲート絶縁膜を形成する工程と、を含み、前記ボロンを導入する工程と、前記拡散抑制原子を導入する工程は、前記ゲート絶縁膜を形成する工程の前までにそれぞれ行うことを特徴とするものである。
このような構成であれば、ゲート絶縁膜の形成工程、及びそれ以降の熱工程において、絶縁層におけるボロン(B)の拡散が抑制されるので、上記端部の半導体層から絶縁層内側へのボロンの拡散を抑制することができ、上記端部の半導体層のB濃度の低下を抑えることができる。従って、n型に反転しやすい寄生チャネルの形成を抑制することができるので、リーク電流が低く、高速で動作し、且つ低消費電力特性の半導体装置を提供することができる。
〔発明4〕 発明4の半導体装置の製造方法は、発明1から発明3の何れか一の半導体装置の製造方法において、前記拡散抑制原子を導入する工程では、前記チャネル領域の中央の前記半導体層には前記拡散抑制原子を導入しないことを特徴とするものである。
このような構成であれば、チャネル領域中央の半導体層ではボロン(B)の拡散が抑制されないので、チャネル領域中央から上記端部へのBの拡散(供給)を妨げないようにすることができる。
〔発明5〕 発明5の半導体装置の製造方法は、発明1から発明4の何れか一の半導体装置の製造方法において、前記素子分離層はLOCOS法を用いて形成し、前記ボロンを導入する工程と、前記拡散抑制原子を導入する工程は、前記素子分離層を形成する工程の前までにそれぞれ行うことを特徴とするものである。
ここで、LOCOS(local oxidation of silicon)法とは、耐酸化性の膜(例えば、Si3N4膜)からなるマスクパターンで半導体層の表面を部分的に覆い、この状態で基板を熱酸化することによって、マスクパターンで覆われていない部分の半導体層に熱酸化膜を形成する方法のことである。LOCOS法による素子分離層の形成は、ゲート絶縁膜の形成よりも前に行うことが普通である。
発明5の半導体装置の製造方法によれば、素子分離層の形成工程、及びそれ以降の熱工程において、チャネル領域の上記端部の半導体層でのボロン(B)の拡散を抑制することができるので、寄生チャネルの形成をよりいっそう抑制することができる。
〔発明6、7〕 発明6の半導体装置の製造方法は、発明1から発明5の何れか一の半導体装置の製造方法において、前記拡散抑制原子は、炭素又はフッ素であることを特徴とするものである。
ここで、ボロン(B)は通常、格子間原子(即ち、Bからみてエネルギーの低い所)を介して熱拡散する傾向がある。また、炭素(C)やフッ素(F)には、格子間原子を捕獲し易いという性質がある。
発明7の半導体装置の製造方法は、発明6の半導体装置の製造方法において、前記炭素又は前記フッ素の濃度を、その導入部位の格子間濃度に合わせて、1×1019[cm−3]以上、1×1020[cm−3]以下の範囲内で設定することを特徴とするものである。
ここで、「導入部位」とは、チャネル領域の素子分離層側の端部の半導体層、上記端部と隣接する素子分離層、又は、上記端部の下方の絶縁層のことである。また、「格子間原子濃度に合わせて」とは、格子間原子濃度の大小の傾向に合わせて、ということである。この発明7は、格子間原子濃度の大小の傾向に合わせて、炭素又はフッ素の濃度を上記範囲内で大きく又は小さく設定するものであり、必ずしも、格子間原子濃度とC又はFの濃度とを一致させるものではない。
発明6、7の半導体装置の製造方法によれば、炭素(C)又はフッ素(F)によって格子間原子は減少するので、Bの拡散を効率良く抑制することができる。
〔発明8〜10〕 発明8の半導体装置は、半導体基板と、前記半導体基板上に設けられた絶縁層と、前記絶縁層上に設けられた半導体層とからなるSOI基板に素子分離層を有し、前記素子分離層で囲まれた素子領域にn型のトランジスタを有する半導体装置であって、前記トランジスタのソースとドレインとによって挟まれるチャネル領域の前記素子分離層側の端部の前記半導体層に、寄生チャネル防止用のボロンと、前記ボロンの拡散を抑制する拡散抑制原子と、を含むことを特徴とするものである。
発明9の半導体装置は、半導体基板と、前記半導体基板上に設けられた絶縁層と、前記絶縁層上に設けられた半導体層とからなるSOI基板に素子分離層を有し、前記素子分離層で囲まれた素子領域にn型のトランジスタを有する半導体装置であって、前記トランジスタのソースとドレインとによって挟まれるチャネル領域の前記素子分離層側の端部の前記半導体層に寄生チャネル防止用のボロンを含み、且つ、前記端部と隣接する前記素子分離層に前記ボロンの拡散を抑制する拡散抑制原子を含むことを特徴とするものである。
発明10の半導体装置は、半導体基板と、前記半導体基板上に設けられた絶縁層と、前記絶縁層上に設けられた半導体層とからなるSOI基板に素子分離層を有し、前記素子分離層で囲まれた素子領域にn型のトランジスタを有する半導体装置であって、前記トランジスタのソースとドレインとによって挟まれるチャネル領域の前記素子分離層側の端部の前記半導体層に寄生チャネル防止用のボロンを含み、且つ、前記端部の下方の前記絶縁層に前記ボロンの拡散を抑制する拡散抑制原子を含むことを特徴とするものである。
発明8〜10の半導体装置によれば、拡散抑制原子によって、n型に反転しやすい寄生チャネルの形成が抑制されるので、リーク電流が低く、高速で動作し、且つ低消費電力特性の半導体装置を提供することができる。
以下、本発明の実施の形態を図面を参照しながら説明する。
図1(A)及び(B)は、本発明の実施の形態に係る半導体装置の製造方法を示す平面図と、A1−A´1矢視断面図である。また、図2(A)〜図3(B)は、A1−A´1矢視断面において、図1(B)以降の製造方法を示す工程図である。この実施の形態では、nchのSOIトランジスタ100をSOI基板に形成する場合について説明する。
まず始めに、図1(B)に示すようなSOI基板10を用意する。このSOI基板10は、シリコン基板1と、このシリコン基板1上に設けられた埋め込み酸化層(BOX層)3と、BOX層3上に設けられたシリコン層(SOI層)5とから構成されている。
SOI層5の初期膜厚は、例えば0.1〜0.2[μm]程度である(但し、製造工程後の最終的なSOI層5の厚さは0.001〜0.2[μm]の範囲で調整される。)。また、BOX層3は、例えば酸化シリコン膜であり、その厚さは0.2〜0.4[μm]程度である。このようなSOI基板10は、SIMOX(separation by implant oxygen)法、或いは貼り合わせ法などにより作成される。
次に、このSOI基板10のSOI層5表面を薄く酸化して、図1(A)及び(B)に示すように、酸化シリコン膜11を形成する。この酸化シリコン膜11は、SOI層5表面をエッチング雰囲気やイオン注入等から保護するための膜である。
次に、酸化シリコン膜11上に窒化シリコン膜をCVD法にて堆積させる。そして、フォトリソグラフィ法及びドライエッチング法により、この窒化シリコン膜をパターニングする。これにより、素子領域全体を覆い、且つ素子分離領域を露出させる窒化膜パターン13を形成する。
次に、図2(A)の実線矢印で示すように、この窒化膜パターン13をマスクにして、SOI層5に寄生チャネル防止用のボロン(B)をイオン注入する。これにより、BはLOCOS形成領域(即ち、素子分離領域)に注入される。また、図2(A)の破線矢印で示すように、イオン注入の角度を変更し、Bを斜めにイオン注入する。この斜めイオン注入の垂線(即ち、基板表面と垂直に交わる直線)に対する傾斜角度θは、例えば7〜11°である。このような斜めイオン注入によって、Bは素子分離領域だけでなく素子領域にも僅かに注入される。
このBのイオン注入工程では、B分布のピークが、例えば深さ方向で30〜60[nm]となるようにその注入エネルギーを調整する。また、このイオン注入工程では、その導入部位でのB濃度が例えば1×1016〜1×1018[cm−3]程度となるようにそのドーズ量を調整する。なお、図7(A)〜(C)で示したように、素子分離領域にイオン注入されたBは、LOCOS層の形成工程で、素子領域側へある程度拡散する。
次に、図2(B)の実線矢印で示すように、窒化膜パターン13をマスクにしてSOI層5にB拡散抑制原子(例えばフッ素(F)又は炭素(C)をイオン注入する。これにより、F又はCは素子分離領域に注入される。また、図2(B)の破線矢印で示すように、イオン注入の角度を変更し、F又はCを斜めにイオン注入する。この斜めイオン注入の垂線に対する傾斜角度θは、例えば7〜45°である。このような斜めイオン注入によって、F又はCは素子分離領域だけでなく素子領域にも僅かに注入される。
このF又はCのイオン注入工程では、F又はCの分布のピークが、例えば深さ方向で30〜60[nm]となるようにその注入エネルギーを調整する。また、このイオン注入工程では、導入部位でのF濃度又はC濃度が、格子間原子濃度の大小の傾向に合わせて例えば1×1019〜1020[cm−3]程度となるように、そのドーズ量を調整する。
次に、図2(C)に示すように、窒化膜パターン13をマスクにしてSOI層5を熱酸化し、LOCOS層15を形成する。図2(C)に示すように、LOCOS層15はその下側の部分がBOX層3と接している。このようなLOCOS層15によって、各々の素子領域は他の素子領域から電気的に分離された状態となる。また、このLOCOS層15の形成によって発生するストレスは、最表面の酸化シリコン膜11によって緩和される。
次に、窒化膜パターン13を熱リン酸にて除去する。そして、図3(A)に示すように、SOIトランジスタ100の閾値調整のために、SOI層5に不純物注入を行う。この実施の形態では、nchの閾値設定のために、Bを例えば1×1012[cm−2]程度注入する。
次に、最表面の酸化シリコン膜11を例えば希フッ酸(HF)を用いたウエットエッチングにより除去する。そして、図3(B)に示すように、ゲート絶縁膜21を形成する。このゲート絶縁膜21は酸化シリコン膜であっても良いし、酸窒化シリコン膜、或いは高誘電率絶縁膜であっても良い。
次に、SOI基板10の上方全面にリン又はボロン等の不純物を含むポリシリコン膜を形成する。そして、フォトリソグラフィ技術及びドライエッチング技術とによって、ポリシリコン膜をパターニングしてゲート電極23を形成する。その後、このゲート電極23をマスクにしてSOI5にS/Dを形成するための不純物(例えば、リン、ヒ素等)をイオン注入する。さらに、SOI基板10をアニールして、図4(A)に示すように、ゲート電極23の両側のSOI層5にS/D27を形成する。
このような半導体装置の製造方法によれば、図4(A)及び(B)に示すように、S/D27に挟まれたチャネル領域29のLOCOS側の端部(即ち、チャネル領域端部)30に、チャネルストッパ(P)層28が形成される。また、チャネル領域端部30とLOCOS層15には、B拡散抑制原子としてF又はCが導入される。F又はCのイオン注入のタイミングは、LOCOS層15の形成工程前である。
従って、LOCOS形成工程や、ゲート絶縁膜21の形成工程、及びそれ以降の熱工程(活性化アニール等)において、チャネル領域端部30におけるBの拡散が抑制され、チャネル領域端部30のB濃度の低下を抑えることができる。これにより、n型に反転しやすい寄生チャネルの形成を抑制することができるので、リーク電流が低く、高速で動作し、且つ低消費電力特性の半導体装置を提供することができる。
また、この半導体装置の製造方法では、チャネル領域29の中央のSOI層5には寄生チャネル防止用のボロン(B)と、B拡散抑制原子とをイオン注入しないようにした。チャネル領域中央のSOI層5にBをイオン注入しないことによって、逆短チャネル効果やSOIのキンク効果等を積極的に防ぐことができる。また、チャネル領域中央のSOI層5にB拡散抑制原子をイオン注入しないことによって、チャネル領域中央から上記端部へのBの拡散(供給)を妨げないようにすることができる。
この実施の形態では、シリコン基板1が本発明の「半導体基板」に対応し、BOX層3が本発明の「絶縁層」に対応し、SOI層5が本発明の「半導体層」に対応している。また、LOCOS層15が本発明の「素子分離層」に対応し、LOCOS層15で素子分離されたSOI層5が本発明の「素子領域」に対応している。さらに、チャネル領域端部30が本発明の「チャネル領域の素子分離層側の端部の半導体層」に対応している。
なお、この実施の形態では、図4(A)及び(B)に示したように、LOCOS層15及び、チャネル領域端部30にB拡散抑制原子を導入する場合について説明した。しかしながら、B拡散抑制原子の導入部位はこれに限られることはない。例えば、B拡散抑制原子の導入部位は、LOCOS層15だけ、若しくはチャネル領域端部30だけでも良い。或いは、上記導入部位は、チャネル領域端部30と深さ方向で隣接するBOX層3だけでも良い。さらに、上記導入部位が、LOCOS層15とBOX層3の両方、又は、BOX層3とチャネル領域端部30の両方でも良い。
LOCOS層15にB拡散抑制原子を導入した場合は、LOCOS層15におけるBの拡散が抑制されるので、チャネル領域端部30からLOCOS層15内側へのBの拡散を抑制することができ、チャネル領域端部30のB濃度の低下を抑えることができる。また、BOX層3にB拡散抑制原子を導入した場合は、BOX層3におけるBの拡散が抑制されるので、チャネル領域端部30からBOX層3内側へのBの拡散を抑制することができ、チャネル領域端部30のB濃度の低下を抑えることができる。何れの場合も、n型に反転しやすい寄生チャネルの形成を抑制することができるので、リーク電流が低く、高速で動作し、且つ低消費電力特性の半導体装置を提供することができる。
また、この実施の形態では、LOCOS層15の形成前にB拡散抑制原子をイオン注入する場合について説明したが、B拡散抑制原子のイオン注入のタイミングは、これに限られることはない。上記タイミングはゲート絶縁膜21の形成前であれば良い。図7(C)及び(D)に示したように、シミュレーション結果では、ポリエッチ後に、チャネル領域端部のB濃度がチャネル領域中央の側よりも低くなるので、ゲート絶縁膜21の形成前までにB拡散抑制原子をイオン注入しておくことで、寄生チャネルの形成を十分に防止することができる。
本発明の実施の形態に係る半導体装置の製造方法を示す図(その1)。 本発明の実施の形態に係る半導体装置の製造方法を示す図(その2)。 本発明の実施の形態に係る半導体装置の製造方法を示す図(その3)。 SOIトランジスタ100の構成例を示す平面図と、a4−a´4矢視拡大断面図。 従来例1の構成例を示す図。 従来例2及び3の構成例を示す図。 シミュレーション結果を示す図。
符号の説明
1 半導体基板、3 埋め込み酸化層(BOX層)、5 シリコン層(SOI層)、10 SOI基板、11 酸化シリコン膜、13 窒化膜パターン、15 LOCOS層、21 ゲート絶縁膜、23 ゲート電極、27 S/D、29 チャネル領域、30 チャネル領域端部

Claims (10)

  1. 半導体基板と、前記半導体基板上に設けられた絶縁層と、前記絶縁層上に設けられた半導体層とからなるSOI基板に素子分離層を形成し、前記素子分離層で囲まれた素子領域にn型のトランジスタを形成する半導体装置の製造方法であって、
    前記トランジスタのソースとドレインとによって挟まれるチャネル領域の前記素子分離層側の端部の前記半導体層にボロンを導入する工程と、
    前記端部の前記半導体層に前記ボロンの拡散を抑制する拡散抑制原子を導入する工程と、
    前記半導体層を熱酸化してゲート絶縁膜を形成する工程と、を含み、
    前記ボロンを導入する工程と、前記拡散抑制原子を導入する工程は、前記ゲート絶縁膜を形成する工程の前までにそれぞれ行うことを特徴とする半導体装置の製造方法。
  2. 半導体基板と、前記半導体基板上に設けられた絶縁層と、前記絶縁層上に設けられた半導体層とからなるSOI基板に素子分離層を形成し、前記素子分離層で囲まれた素子領域にn型のトランジスタを形成する半導体装置の製造方法であって、
    前記トランジスタのソースとドレインとによって挟まれるチャネル領域の前記素子分離層側の端部の前記半導体層にボロンを導入する工程と、
    前記端部と隣接する前記素子分離層に前記ボロンの拡散を抑制する拡散抑制原子を導入する工程と、
    前記半導体層を熱酸化してゲート絶縁膜を形成する工程と、を含み、
    前記ボロンを導入する工程と、前記拡散抑制原子を導入する工程は、前記ゲート絶縁膜を形成する工程の前までにそれぞれ行うことを特徴とする半導体装置の製造方法。
  3. 半導体基板と、前記半導体基板上に設けられた絶縁層と、前記絶縁層上に設けられた半導体層とからなるSOI基板に素子分離層を形成し、前記素子分離層で囲まれた素子領域にn型のトランジスタを形成する半導体装置の製造方法であって、
    前記トランジスタのソースとドレインとによって挟まれるチャネル領域の前記素子分離層側の端部の前記半導体層にボロンを導入する工程と、
    前記端部の下方の前記絶縁層に前記ボロンの拡散を抑制する拡散抑制原子を導入する工程と、
    前記半導体層を熱酸化してゲート絶縁膜を形成する工程と、を含み、
    前記ボロンを導入する工程と、前記拡散抑制原子を導入する工程は、前記ゲート絶縁膜を形成する工程の前までにそれぞれ行うことを特徴とする半導体装置の製造方法。
  4. 前記拡散抑制原子を導入する工程では、
    前記チャネル領域の中央の前記半導体層には前記拡散抑制原子を導入しないことを特徴とする請求項1から請求項3の何れか一項に記載の半導体装置の製造方法。
  5. 前記素子分離層はLOCOS法を用いて形成し、
    前記ボロンを導入する工程と、前記拡散抑制原子を導入する工程は、前記素子分離層を形成する工程の前までにそれぞれ行うことを特徴とする請求項1から請求項4の何れか一項に記載の半導体装置の製造方法。
  6. 前記拡散抑制原子は、炭素又はフッ素であることを特徴とする請求項1から請求項5の何れか一項に記載の半導体装置の製造方法。
  7. 前記炭素又は前記フッ素の濃度を、その導入部位の格子間濃度に合わせて、1×1019[cm−3]以上、1×1020[cm−3]以下の範囲内で設定することを特徴とする請求項6に記載の半導体装置の製造方法。
  8. 半導体基板と、前記半導体基板上に設けられた絶縁層と、前記絶縁層上に設けられた半導体層とからなるSOI基板に素子分離層を有し、前記素子分離層で囲まれた素子領域にn型のトランジスタを有する半導体装置であって、
    前記トランジスタのソースとドレインとによって挟まれるチャネル領域の前記素子分離層側の端部の前記半導体層に、寄生チャネル防止用のボロンと、前記ボロンの拡散を抑制する拡散抑制原子と、を含むことを特徴とする半導体装置。
  9. 半導体基板と、前記半導体基板上に設けられた絶縁層と、前記絶縁層上に設けられた半導体層とからなるSOI基板に素子分離層を有し、前記素子分離層で囲まれた素子領域にn型のトランジスタを有する半導体装置であって、
    前記トランジスタのソースとドレインとによって挟まれるチャネル領域の前記素子分離層側の端部の前記半導体層に寄生チャネル防止用のボロンを含み、且つ、
    前記端部と隣接する前記素子分離層に前記ボロンの拡散を抑制する拡散抑制原子を含むことを特徴とする半導体装置。
  10. 半導体基板と、前記半導体基板上に設けられた絶縁層と、前記絶縁層上に設けられた半導体層とからなるSOI基板に素子分離層を有し、前記素子分離層で囲まれた素子領域にn型のトランジスタを有する半導体装置であって、
    前記トランジスタのソースとドレインとによって挟まれるチャネル領域の前記素子分離層側の端部の前記半導体層に寄生チャネル防止用のボロンを含み、且つ、
    前記端部の下方の前記絶縁層に前記ボロンの拡散を抑制する拡散抑制原子を含むことを特徴とする半導体装置。
JP2005288879A 2005-09-30 2005-09-30 半導体装置の製造方法 Expired - Fee Related JP5428121B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005288879A JP5428121B2 (ja) 2005-09-30 2005-09-30 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005288879A JP5428121B2 (ja) 2005-09-30 2005-09-30 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2007103492A true JP2007103492A (ja) 2007-04-19
JP5428121B2 JP5428121B2 (ja) 2014-02-26

Family

ID=38030165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005288879A Expired - Fee Related JP5428121B2 (ja) 2005-09-30 2005-09-30 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP5428121B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251146A (ja) * 2006-02-20 2007-09-27 Seiko Instruments Inc 半導体装置
US9263346B2 (en) 2013-01-18 2016-02-16 Renesas Electronics Corporation Semiconductor device with silicon layer containing carbon
US10651094B2 (en) 2014-11-13 2020-05-12 Renesas Electronics Corporation Semiconductor device and method of manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137730A (ja) * 1990-09-28 1992-05-12 Kawasaki Steel Corp 半導体装置の製造方法
WO1997048136A1 (fr) * 1996-06-14 1997-12-18 Mitsubishi Denki Kabushiki Kaisha Composant a semi-conducteurs ayant une structure silicium sur isolant et procede de fabrication de ce composant
JPH10242468A (ja) * 1997-02-26 1998-09-11 Mitsubishi Electric Corp 半導体装置およびその製造方法
JPH11502675A (ja) * 1995-03-21 1999-03-02 ペラグリン セミコンダクター コーポレイション 絶縁体上の半導体からなる複合基板の製造方法
JP2002231957A (ja) * 2001-02-01 2002-08-16 Sony Corp 半導体装置及びその製造方法
JP2004289152A (ja) * 2003-03-20 2004-10-14 Texas Instr Inc <Ti> 炭素含有領域を有するウエハの炭素外方拡散を防止するための半導体デバイスの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137730A (ja) * 1990-09-28 1992-05-12 Kawasaki Steel Corp 半導体装置の製造方法
JPH11502675A (ja) * 1995-03-21 1999-03-02 ペラグリン セミコンダクター コーポレイション 絶縁体上の半導体からなる複合基板の製造方法
WO1997048136A1 (fr) * 1996-06-14 1997-12-18 Mitsubishi Denki Kabushiki Kaisha Composant a semi-conducteurs ayant une structure silicium sur isolant et procede de fabrication de ce composant
JPH10242468A (ja) * 1997-02-26 1998-09-11 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2002231957A (ja) * 2001-02-01 2002-08-16 Sony Corp 半導体装置及びその製造方法
JP2004289152A (ja) * 2003-03-20 2004-10-14 Texas Instr Inc <Ti> 炭素含有領域を有するウエハの炭素外方拡散を防止するための半導体デバイスの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251146A (ja) * 2006-02-20 2007-09-27 Seiko Instruments Inc 半導体装置
US9263346B2 (en) 2013-01-18 2016-02-16 Renesas Electronics Corporation Semiconductor device with silicon layer containing carbon
US9722044B2 (en) 2013-01-18 2017-08-01 Renesas Electronics Corporation Manufacturing method of semiconductor device with silicon layer containing carbon
US10411112B2 (en) 2013-01-18 2019-09-10 Renesas Electronics Corporation Semiconductor device with silicon layer containing carbon
US10651094B2 (en) 2014-11-13 2020-05-12 Renesas Electronics Corporation Semiconductor device and method of manufacturing same

Also Published As

Publication number Publication date
JP5428121B2 (ja) 2014-02-26

Similar Documents

Publication Publication Date Title
JP4027447B2 (ja) 半導体装置の製造方法
JP2000260987A (ja) 半導体装置とその製造方法
US7098099B1 (en) Semiconductor device having optimized shallow junction geometries and method for fabrication thereof
KR100763333B1 (ko) 반도체 소자의 소자 분리막 형성 방법
JP2004327493A (ja) 半導体装置及びその製造方法
JP2006245338A (ja) 電界効果型トランジスタの製造方法
JP2005019892A (ja) 半導体装置及びその製造方法
JP5428121B2 (ja) 半導体装置の製造方法
JP2000208762A (ja) 絶縁ゲ―ト電界効果トランジスタおよびその製造方法
JP2007123439A (ja) 半導体装置及びその製造方法
JP4054557B2 (ja) 半導体素子の製造方法
JP2000138177A (ja) 半導体装置の製造方法
JP2009267027A (ja) 半導体装置及びその製造方法
KR100304503B1 (ko) 반도체장치의 제조방법
JPH10214888A (ja) 半導体装置の製造方法
JP2006156954A (ja) 半導体装置の製造方法
JP4039854B2 (ja) 半導体装置の製造方法
JP2004319988A (ja) 半導体装置および半導体装置の製造方法
JP2007123519A (ja) 半導体装置の製造方法及び半導体装置
JP2007288051A (ja) 半導体装置及びその製造方法
JP2005311390A (ja) 半導体装置
KR20150097946A (ko) 반도체 소자의 제조 방법
JP4532857B2 (ja) シャロートレンチ分離構造を有する半導体装置の製造方法
KR100950756B1 (ko) Soi 소자 및 그의 제조방법
KR100260366B1 (ko) 반도체 소자의 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130925

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5428121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees