JP2007097115A - パッチアンテナ - Google Patents

パッチアンテナ Download PDF

Info

Publication number
JP2007097115A
JP2007097115A JP2006021660A JP2006021660A JP2007097115A JP 2007097115 A JP2007097115 A JP 2007097115A JP 2006021660 A JP2006021660 A JP 2006021660A JP 2006021660 A JP2006021660 A JP 2006021660A JP 2007097115 A JP2007097115 A JP 2007097115A
Authority
JP
Japan
Prior art keywords
electrode
patch antenna
parasitic
radiation
peripheral portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006021660A
Other languages
English (en)
Inventor
Nobutaka Misawa
宣貴 三沢
Hisamatsu Nakano
久松 中野
Junji Yamauchi
潤治 山内
Hideaki Iwaoka
英明 岩岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006021660A priority Critical patent/JP2007097115A/ja
Publication of JP2007097115A publication Critical patent/JP2007097115A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】天頂方向に対して所定の角度への指向性が強いパッチアンテナを提供する。
【解決手段】グランド電極11上に設けられた放射電極12と、放射電極12を取り囲むようにグランド電極11上に設けられたリング状の無給電電極13とを備える。これにより、天頂方向への指向性が低下し、その分、天頂方向に対して所定の角度への指向性が向上する。無給電電極13は、接続電極14によってグランド電極11と接続されていることが好ましく、接続電極14は、無給電電極13の外周部に接続されていることが好ましい。このような接続電極14を設けることにより、周波数帯域を大幅に拡大することが可能となる。
【選択図】図1

Description

本発明はパッチアンテナに関し、特に、コニカルビームを形成可能なパッチアンテナに関する。
地上波を使用したラジオ放送は、テレビジョン放送の登場によって最近家庭ではあまり利用されなくなってきたものの、車載用のラジオでは現在でも広く利用されており、依然としてニュースや音楽を提供する主要な手段となっている。しかしながら、地上波ラジオ放送には、AM放送だけが行われていたときの音質と比較して、FM放送が一般的となった今日において改善されてはいるものの、CD(コンパクトディスク)等で提供されるディジタルオーディオと比較して音質の点で劣っているという問題点がある。また、地上波ラジオ放送には、自動車がビル影、山間部またはトンネル内に位置しているときに、信号を良好な状態で受信することができないという問題点もある。
このような問題を解決すべく、近年、放送衛星を使用したディジタルサテライトラジオ放送が開発され、主に自動車を対象として米国等で広く普及している。ディジタルサテライトラジオ受信機に設けられているアンテナ装置としては、特許文献1に記載されているように、誘電体ブロック(セラミック基板)と、その一方の面に形成された放射電極と、誘電体基板の他方の面に形成されたグランド電極と、誘電体ブロックの一方の面から他方の面に向かって貫通して配設された給電ピンとを備えた、いわゆるパッチアンテナが広く用いられている。よく知られているように、この種のアンテナは天頂方向への指向性が最も強いという特徴を有している。
特開2003−289219号公報 岩岡英明、山内潤治、中野久松,「コニカルビーム形成」2004年電子情報通信学会通信ソサイエティ大会,講演論文集B−1−66,p66 岩岡英明、山内潤治、中野久松,「コニカルビーム形成用リング装着パッチ」2005年電子情報通信学会総合大会,講演論文集B−1−69,p69
しかしながら、ディジタルサテライトラジオ放送を発信する放送衛星は主に赤道上に静止していることから、赤道に近い地域では放送衛星が天頂方向に位置するものの、それ以外の地域では、緯度に応じて放送衛星の位置が天頂方向に対し所定の角度を持つことになる。このため、従来のパッチアンテナでは、衛星の存在しない方向に対して最も強い指向性を発揮することになり、エネルギーのロスが大きいという問題があった。
しかも、ディジタルサテライトラジオ放送は、地上波ラジオ放送と比べて非常に多チャンネルであることから、これを受信するアンテナは広帯域であることが望まれる。しかしながら、従来のパッチアンテナは、受信可能な周波数帯域(比帯域)が数%程度であり、ディジタルサテライトラジオ放送の全周波数帯域をカバーすることは困難であった。
したがって、本発明は、天頂方向に対して所定の角度への指向性が強いパッチアンテナ、特に、コニカルビームを形成可能なパッチアンテナを提供することを目的とする。
また、このような問題点を解決すべく、本発明者らは、天頂方向に対して所定の角度への指向性が強いパッチアンテナを提案した(非特許文献1,2参照)。非特許文献1,2に記載されたパッチアンテナは、リング状の無給電電極を備えており、これによって、天頂方向に対して所定の角度への指向性が向上するという特徴を有している。また、非特許文献1に記載されたパッチアンテナは、従来のパッチアンテナに比べ、比較的広帯域であるという特徴も有している。
本発明は、このようなパッチアンテナをさらに改良し、より広帯域なパッチアンテナを提供することを他の目的とする。
本発明の一側面によるパッチアンテナは、グランド電極上に設けられた放射電極と、前記放射電極を取り囲むように前記グランド電極上に設けられたリング状の無給電電極とを備えることを特徴とする。本発明によるパッチアンテナは、リング状の無給電電極を備えていることから、天頂方向への指向性が低下し、その分、天頂方向に対して所定の角度への指向性が向上する。
本発明において、放射電極及び無給電電極は、グランド電極と平行な同一平面上に設けられていることが好ましい。この場合、放射電極及び無給電電極とグランド電極との垂直方向における距離は、中心周波数の波長をλとした場合、0.06λ〜0.12λに設定することが好ましい。
また、本発明によるパッチアンテナは、無給電電極とグランド電極とを接続する接続電極をさらに備えることが好ましい。このような接続電極を設けることにより、周波数帯域を大幅に拡大することが可能となる。このような接続電極は複数設けることが好ましく、この場合、無給電電極の外周部に沿った接続電極間の距離を均一とすることが好ましい。上記距離は、中心周波数の波長をλとした場合、約λ/4であることが好ましく、接続電極の数は4つであることが最も好ましい。
また、接続電極は、無給電電極側からグランド電極側に向けて内側に傾斜していることが好ましい。これによれば、グランド電極に対して垂直な接続電極を用いる場合と比べて、より広帯域化することが可能となるとともに、基板上における設置スペースを縮小することが可能となる。
本発明において、無給電電極の外周部に沿った長さは、中心周波数の波長をλとした場合、0.9λ〜1.1λに設定することが好ましく、無給電電極の内周部に沿った長さは、0.4λ〜0.6λに設定することが好ましい。また、無給電電極の外周部に沿った長さは、無給電電極の内周部に沿った長さの約2倍であることが好ましい。
本発明において、無給電電極は、放射電極の給電点を通る直線に対して対称形であることが好ましく、無給電電極の内周部の形状及び外周部の形状は、放射電極の平面形状に対して相似形であることが好ましい。
また、無給電電極の幅は実質的に均一であることが好ましく、放射電極の外周部と無給電電極の内周部との距離も実質的に均一であることが好ましい。
放射電極の平面形状、無給電電極の内周部及び無給電電極の外周部は、いずれも円形とすることができ、この場合、放射電極の外周部に沿った長さは、中心周波数の波長をλとした場合、0.1λ〜0.2λに設定することが好ましく、無給電電極の幅は0.05λ〜0.1λに設定することが好ましく、放射電極の外周部と無給電電極の内周部との距離は0.33λ〜0.67λに設定することが好ましい。換言すれば、無給電電極の幅は、放射電極の外周部に沿った長さの半分程度に設定することが好ましく、放射電極の外周部と無給電電極の内周部との距離は、放射電極の外周部に沿った長さの1/3程度に設定することが好ましい。
放射電極の平面形状、無給電電極の内周部及び無給電電極の外周部は、いずれも正方形とすることもでき、この場合、放射電極の外周部の一辺の長さ、並びに、無給電電極の平行部分における幅は、中心周波数の波長をλとした場合、いずれも0.04λ〜0.08λに設定することが好ましい。また、放射電極の外周部と無給電電極の内周部との平行部分における距離は、0.02λ〜0.04λに設定することが好ましい。換言すれば、無給電電極の平行部分における幅は、放射電極の外周部の一辺の長さとほぼ同じに設定することが好ましく、放射電極の外周部と無給電電極の内周部との平行部分における距離は、放射電極の外周部の一辺の長さの半分程度に設定することが好ましい。
本発明によるパッチアンテナは、放射電極と給電ラインとの間に設けられた整合素子をさらに備え、整合素子は、給電ライン側から放射電極側に向けて、放射電極と平行な方向における幅が増大する形状を有していることが好ましい。これによれば、整合素子によって放射電極と給電ラインとの間のインピーダンス整合が図られるとともに、上記の形状によって、相対的に面積の大きい放射電極と、相対的に面積の小さい給電ラインとの間における高周波電流の流れがスムーズとなる。これにより、帯域幅がいっそう拡大するとともに、利得を向上させることが可能となる。
本発明の他の側面によるパッチアンテナは、グランド電極上に設けられた放射電極と、前記放射電極と給電ラインとの間に設けられた整合素子とを備え、前記整合素子は、前記給電ライン側から前記放射電極側に向けて、前記放射電極と平行な方向における幅が増大する形状を有していることを特徴とする。本発明によれば、整合素子によって放射電極と給電ラインとの間のインピーダンス整合が図られるとともに、上記の形状によって、相対的に面積の大きい放射電極と、相対的に面積の小さい給電ラインとの間における高周波電流の流れがスムーズとなる。これにより、帯域幅がいっそう拡大するとともに、利得を向上させることが可能となる。
本発明において、整合素子は給電ライン側から放射電極側に向けて、前記方向における幅が連続的又は段階的に増大する板状導電部材を含んでいることが好ましい。この場合、整合素子は、板状導電部材を複数含み、複数の板状導電部材が互いに回転対称に配置されていることが好ましい。これによれば、より効果的にインピーダンス整合を行うことが可能となる。また、整合素子は、給電ライン側を頂点とする錐形状を有していても構わない。これによれば、よりいっそう効果的にインピーダンス整合を行うことが可能となる。
本発明によるパッチアンテナは、放射電極を取り囲むようにグランド電極上に設けられたリング状の無給電電極をさらに備えることが好ましい。これによれば、天頂方向への指向性が低下し、その分、天頂方向に対して所定の角度への指向性が向上する。
また、本発明によるパッチアンテナは、無給電電極とグランド電極とを接続する接続電極をさらに備えることが好ましい。このような接続電極を設けることにより、周波数帯域を大幅に拡大することが可能となる。このような接続電極は複数設けることが好ましく、この場合、無給電電極の外周部に沿った接続電極間の距離を均一とすることが好ましい。
また、接続電極による効果をより高めるためには、接続電極が帯状であることが好ましい。
放射電極の平面形状、無給電電極の内周部及び無給電電極の外周部は、いずれも円形としても構わないし、いずれも正方形としても構わない。後者の方が、より広い比帯域を得ることが可能となる。
また、本発明においても、接続電極は無給電電極側からグランド電極側に向けて内側に傾斜していることが好ましい。これによれば、上述の通り、グランド電極に対して垂直な接続電極を用いる場合と比べて、より広帯域化することが可能となるとともに、基板上における設置スペースを縮小することが可能となる。
このように、本発明の一側面によるパッチアンテナは、一般的なパッチアンテナとは異なり、天頂方向への指向性が低く、その分、天頂方向に対して所定の角度θへの指向性が高いことから、ディジタルサテライトラジオ放送を受信する地域が赤道から遠い地域であっても、放送衛星が位置する方向に対して高い指向性を発揮することができ、エネルギーロスを低減することが可能となる。しかも、本発明によるパッチアンテナは、十数%以上の比帯域を得ることが可能であり、このため、従来よりも多くのチャンネルを安定した状態で受信することが可能となる。
また、本発明の他の側面によるパッチアンテナは、一般的なパッチアンテナに比べて帯域幅が大幅に広く、具体的には100%以上の比帯域を得ることが可能である。このため、ディジタルサテライトラジオ放送の多くのチャンネルを安定した状態で受信することが可能となる。しかも、無給電電極を設けることによって、天頂方向への指向性を低く、その分、天頂方向に対して所定の角度θへの指向性を高くすることができることから、ディジタルサテライトラジオ放送を受信する地域が赤道から遠い地域であっても、放送衛星が位置する方向に対して高い指向性を発揮することができ、エネルギーロスを低減することが可能となる。
さらに、無給電電極側からグランド電極側に向けて接続電極を内側に傾斜させれば、より広い帯域幅を得ることが可能となるとともに、基板上における設置スペースを縮小することが可能となる。
以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
図1は、本発明の第1の実施形態によるパッチアンテナ10の基本構造を模式的に示す略斜視図であり、図2はその平面図である。
図1及び図2に示すように、本実施形態によるパッチアンテナ10は、グランド電極11と、グランド電極11上に設けられた放射電極12と、放射電極12を取り囲むようにグランド電極11上に設けられたリング状の無給電電極13とを備えている。
グランド電極11は所定のxy平面上に形成されており、その面積としては、少なくとも無給電電極13の外径以上である必要がある。グランド電極11の面積は大きいほど好ましく、理想的には無限大である。グランド電極11のうち、放射電極12の略中央部を覆う部分には、給電ライン12xが貫通する切り欠き11xが設けられており、これによってグランド電極11と放射電極12との短絡が防止されている。
放射電極12は、グランド電極11と平行なxy平面上に形成されており、その略中央部に位置する給電点12aには、給電ライン12xが接続されている。給電ライン12xはグランド電極11側に引き出されており、グランド電極11に設けられた切り欠き11xを貫通して、図示しないRF回路に接続されている。本実施形態では、放射電極12の平面形状は「円形」である。
特に限定されるものではないが、放射電極12とグランド電極11とのz軸方向における距離(垂直方向における距離)hは、中心周波数の波長をλとした場合、0.06λ〜0.12λに設定することが好ましく、本実施形態のように、放射電極12の平面形状が円形である場合には、0.1λ程度に設定することが特に好ましい。また、放射電極12の平面形状が円形である場合、放射電極12の外周部に沿った長さCptchは、0.1λ〜0.2λに設定することが好ましく、0.16λ程度に設定することが特に好ましい。
無給電電極13は、放射電極12を取り囲むよう、放射電極12と同一平面上に設けられている。無給電電極13は、50Ω線路に対して入力インピーダンスの整合を取りつつ、コニカルビームを形成するために必要な電極であり、これを設けることによって天頂方向(z軸方向)の指向性が低下し、その分、天頂方向に対して所定の角度θへの指向性が向上する。
本実施形態では、無給電電極13の内周部の形状及び外周部の形状とも、放射電極12と同じ「円形」である。すなわち、無給電電極13の内周部及び外周部の形状は、放射電極12の外周部の形状に対して相似形であり、また、無給電電極13の幅wは均一である。本実施形態のように、放射電極12の平面形状や無給電電極13の内周部及び外周部の形状が円形である場合には、無給電電極13の幅wは、放射電極12の外周部に沿った長さCptchの半分程度に設定することが好ましい。すなわち、無給電電極13の幅wは0.05λ〜0.1λに設定することが好ましく、したがって、放射電極12の外周部に沿った長さCptchが0.16λであれば、無給電電極13の幅wについては0.08λ程度に設定することが好ましい。
また、無給電電極13は、図2に示すように、放射電極12の給電点12aを通る直線Aに対して対称形であり、このため、放射電極12の外周部と無給電電極13の内周部との距離dについても均一である。本実施形態のように、放射電極12の平面形状や無給電電極13の内周部及び外周部の形状が円形である場合には、放射電極12の外周部と無給電電極13の内周部との距離dについては、放射電極12の外周部に沿った長さCptchの1/3程度に設定することが好ましい。すなわち、放射電極12の外周部と無給電電極13の内周部との距離dも0.33λ〜0.67λに設定することが好ましく、したがって、放射電極12の外周部に沿った長さCptchが0.16λであれば、放射電極12の外周部と無給電電極13の内周部との距離dについては0.053λ程度に設定することが好ましい。
図1及び図2に示すように、無給電電極13とグランド電極11は、接続電極14によって接続されている。無給電電極13をグランド電極11に接続すると、パッチアンテナ10の周波数帯域が拡大するという効果が得られる。特に限定されるものではないが、本実施形態では、接続電極14が無給電電極13の外周部に接続されている。ここで、無給電電極13の外周部に沿った長さCoutは、0.9λ〜1.1λに設定することが好ましく、本実施形態のように無給電電極13の外周部が円形である場合には、1.0λ程度に設定することが特に好ましい。また、無給電電極13の内周部に沿った長さCinは、0.4λ〜0.6λに設定することが好ましく、本実施形態のように無給電電極13の内周部が円形である場合には、0.5λ程度に設定することが特に好ましい。このように、無給電電極13の外周部に沿った長さCoutは、無給電電極13の内周部に沿った長さCinの約2倍に設定することが好ましい。これによれば、パッチアンテナ10の周波数帯域が効果的に拡大し、十数%の比帯域を得ることが可能となる。
また、本実施形態では接続電極14が4つ設けられており、無給電電極13の外周部に沿った接続電極14間の距離14aが均一とされている。したがって、無給電電極13の外周部に沿った長さCoutが1.0λであれば、接続電極14間の距離14aは0.25λとなる。このように、無給電電極13の外周部に沿った接続電極14の間隔は、λ/4程度に設定することが好ましい。
かかる構成を有する本実施形態によるパッチアンテナ10は、一般的なパッチアンテナとは異なり、天頂方向(z軸方向)の指向性が低く、その分、天頂方向に対して所定の角度θへの指向性が大幅に向上する。これにより、ディジタルサテライトラジオ放送を受信する地域が赤道から遠い地域であっても、放送衛星が位置する方向に対して高い指向性を発揮することができ、エネルギーロスを低減することが可能となる。しかも、本実施形態によるパッチアンテナ10は、十数%の比帯域を得ることが可能であり、このため、従来よりも多くのチャンネルを安定した状態で受信することが可能となる。
特に、上述した好ましい数値を満たせば、無給電電極13によって天頂方向(z軸方向)へのビームがほぼ完全に打ち消され、これにより所定の角度θへの指向性が大幅に向上するとともに、非常に広い帯域を得ることが可能となる。
また、本実施形態においては、無給電電極13の幅が均一であり、且つ、放射電極12の外周部と無給電電極13の内周部との距離についても均一であることから、無給電電極13によるコニカルビーム形成効果がいずれの方向についてもほぼ均一となり、その結果、特定の周波数において良好なコニカルビーム形成を形成することが可能となる。
図3は、第1の実施形態によるパッチアンテナ10の具体的な構成例であり、図4は、図3に示すB−B線に沿った略断面図である。
図3及び図4に示すように、パッチアンテナ10を実際に作製する場合、例えば円盤状の誘電体ブロック19を用い、その一方の主面に放射電極12及び無給電電極13を形成するとともに、他方の主面にグランド電極11を形成し、さらに、誘電体ブロック19の側面にグランド電極11と無給電電極13とを接続する接続電極14を形成すればよい。
誘電体ブロック19の材料としては、特に限定されるものではないが、Ba−Nd−Ti系材料(比誘電率80〜120)、Nd−Al−Ca−Ti系材料(比誘電率43〜46)、Li−Al−Sr−Ti(比誘電率38〜41)、Ba−Ti系材料(比誘電率34〜36)、Ba−Mg−W系材料(比誘電率20〜22)、Mg−Ca−Ti系材料(比誘電率19〜21)、サファイヤ(比誘電率9〜10)、アルミナセラミックス(比誘電率9〜10)、コージライトセラミックス(比誘電率4〜6)などを用いることができ、型枠を用いて焼成することによって作製することができる。誘電体を用いることにより、誘電体の誘電率によってパッチアンテナを小型化することが可能である。具体的には、使用する誘電体の比誘電率をεとすると、
1/√ε
のサイズに小型化することができる。
誘電体ブロック19の中央部には、その一方の主面から他方の主面に向けて貫通孔19xが形成され、この貫通孔19xに給電ライン12xとなるピンが挿入される。給電ライン12xとグランド電極11との接触は、グランド電極11に設けられた切り欠き11xによって防止される。
グランド電極11、放射電極12、無給電電極13及び接続電極14の材料としては、銀、銀−パラジウム、銀−白金、銅などを用いることができ、スクリーン印刷や転写などの方法によってこれら材料を含むペーストを塗布した後、所定の温度条件で焼付けを行うことにより形成することができる。
図5は、第1の実施形態によるパッチアンテナ10の別の具体的な構成例であり、図6は、図5に示すC−C線に沿った略断面図である。
図5及び図6に示す構成例は、無給電電極13とグランド電極11を接続する接続電極14として、接続ピン14yを用いている点において上記の構成例と異なる。この場合、誘電体ブロック19には、接続ピン14yを挿入するための貫通孔19yを設けておく必要がある。かかる構成例によれば、無給電電極13の外径よりもグランド電極11の外径を大きくすることができるので、より良好なアンテナ特性を得ることが可能となる。
尚、本実施形態において、誘電体ブロック19の他方の主面にグランド電極11を形成することは必須でなく、例えば、あらかじめグランドパターンが形成された基板上にパッチアンテナ10を載置するといった使用方法を想定すれば、グランド電極11を省略することも可能である。
次に、本発明の第2の実施形態について説明する。
図7は、本発明の第2の実施形態によるパッチアンテナ20の基本構造を模式的に示す略斜視図であり、図8はその平面図である。
図7及び図8に示すように、本実施形態によるパッチアンテナ20は、上述したパッチアンテナ10と同様、グランド電極11と、グランド電極11上に設けられた放射電極12と、放射電極12を取り囲むようにグランド電極11上に設けられたリング状の無給電電極13とを備えているが、放射電極12の平面形状、無給電電極13の内周部及び外周部がいずれも正方形である点において、上述したパッチアンテナ10と異なっている。その他の主な点については、上述したパッチアンテナ10と同様であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
上述のとおり、放射電極12とグランド電極11とのz軸方向における距離hは、中心周波数の波長をλとした場合、0.06λ〜0.12λに設定することが好ましく、本実施形態のように、放射電極12の平面形状が正方形である場合には、0.08λ程度に設定することが特に好ましい。また、放射電極12の平面形状が正方形である場合、放射電極12の一辺の長さSptchは、0.04λ〜0.08λに設定することが好ましく、0.06λ程度に設定することが特に好ましい。
図7及び図8に示すように、本実施形態では、接続電極14が無給電電極13の外周部の角部に接続されている。すなわち、本実施形態においても接続電極14は4つ設けられている。上述のとおり、無給電電極13の外周部に沿った長さは、0.9λ〜1.1λに設定することが好ましく、本実施形態のように無給電電極13の外周部が正方形である場合には、無給電電極13の外周部の一辺の長さSoutを0.24λ程度に設定することが特に好ましい。これによれば、無給電電極13の外周部に沿った接続電極14の間隔をλ/4程度とすることが可能となる。また、無給電電極13の内周部に沿った長さについても、上記実施形態と同様、0.4λ〜0.6λに設定することが好ましく、本実施形態のように無給電電極13の内周部が正方形である場合には、無給電電極13の内周部の一辺の長さSinを0.12λ程度に設定することが特に好ましい。これによれば、無給電電極13の外周部に沿った長さを、無給電電極13の内周部に沿った長さの約2倍に設定することができる。
本実施形態では、無給電電極13の内周部の形状及び外周部の形状とも、放射電極12と同じ「正方形」であることから、無給電電極13の内周部及び外周部の形状は、上記実施形態と同様、放射電極12の外周部の形状に対して相似形である。しかしながら、形状が正方形であるために、無給電電極13の幅wは均一ではなく角部においてやや広くなる(w<w')。また、無給電電極13は放射電極12の給電点12aを通る直線Dに対して対称形であるが、形状が正方形であることから、放射電極12の外周部と無給電電極13の内周部との距離dについては均一ではなく、やはり角部においてやや広くなる(d<d')。無給電電極13の幅wは、平行部分(角部ではない箇所)において、放射電極12の一辺の長さSptchとほぼ同じに設定することが好ましい。つまり、無給電電極13の平行部分における幅wは、0.04λ〜0.08λに設定することが好ましく、0.06λ程度に設定することが特に好ましい。一方、放射電極12の外周部と無給電電極13の内周部との距離dは、平行部分(角部ではない箇所)において、放射電極12の一辺の長さSptchの約半分に設定することが好ましい。つまり、放射電極12の外周部と無給電電極13の内周部との平行部分における距離dは、0.02λ〜0.04λに設定することが好ましく、0.03λ程度に設定することが特に好ましい。
かかる構成を有する本実施形態によるパッチアンテナ20は、上述したパッチアンテナ10と同様、天頂方向(z軸方向)の指向性が低く、その分、天頂方向に対して所定の角度θへの指向性が大幅に向上する。特に、上述した好ましい数値を満たせば、無給電電極13によって天頂方向(z軸方向)へのビームがほぼ完全に打ち消され、所定の角度θへの指向性が大幅に向上するとともに、非常に広い帯域を得ることが可能となる。
また、本実施形態においては、無給電電極13の幅が角部において広くなり、且つ、放射電極12の外周部と無給電電極13の内周部との距離についても角部において広くなることから、無給電電極13によるコニカルビーム形成効果がより広い周波数帯に及び、その結果、広帯域に亘って良好なコニカルビーム形成を形成することが可能となる。このため、本実施形態によるパッチアンテナ20では40%程度の比帯域を得ることが可能であり、より多くのチャンネルを安定した状態で受信することが可能となる。
図9は、第2の実施形態によるパッチアンテナ20の具体的な構成例である。図9に示すE−E線に沿った略断面図は、図4と同様であることから図示を省略する。
図9に示すように、パッチアンテナ20を実際に作製する場合には、誘電体ブロック19の形状を平板状とすればよい。そして、その一方の主面に放射電極12及び無給電電極13を形成し、他方の主面にグランド電極11を形成し、さらに、誘電体ブロック19の側面角部にグランド電極11と無給電電極13とを接続する接続電極14を形成すればよい。
図10は、第2の実施形態によるパッチアンテナ20の別の構成例である。図10に示すF−F線に沿った略断面図は、図6と同様であることから図示を省略する。
図10に示す構成例は、図5及び図6に示す構成例と同様、無給電電極13とグランド電極11を接続する接続電極14として、接続ピン14yを用いている点において、図9に示した構成例と異なる。この場合も、無給電電極13の外径よりもグランド電極11の外径を大きくすることができるので、より良好なアンテナ特性を得ることが可能となる。
本実施形態においても、誘電体ブロック19の他方の主面にグランド電極11を形成することは必須でなく、例えば、あらかじめグランドパターンが形成された基板上にパッチアンテナ20を載置するといった使用方法を想定すれば、グランド電極11を省略することも可能である。
次に、本発明の第3の実施形態について説明する。
図11は、本発明の第3の実施形態によるパッチアンテナ30の基本構造を模式的に示す略斜視図である。
図11に示すように、本実施形態によるパッチアンテナ30は、上述したパッチアンテナ20とほぼ同様の構成を有しているが、接続電極14が無給電電極13側からグランド電極11側に向けて内側に傾斜している点において、上述したパッチアンテナ20と異なる。その他の点については、上述したパッチアンテナ20と同様であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
接続電極14を無給電電極13側からグランド電極11側に向けて内側に傾斜させると、グランド電極に対して垂直な接続電極を用いる場合と比べて、帯域がより広くなるという効果を得ることが可能となる。傾斜角については特に限定されないが、グランド電極11に対して垂直な線と接続電極14とが成す角度を20°〜50°程度に設定することが好ましく、30°〜40°程度に設定することがより好ましい。これは、上記の角度が20°未満であると垂直に近くなることから傾斜させる効果が十分に得られないからであり、50°以上であると広帯域特性が得られないからである。
しかも、本実施形態によれば、基板上におけるパッチアンテナ30の設置スペースを縮小することができることから、実装密度を高めることも可能となる。また、接続電極14が内側に傾斜していることから、グランド電極11の面積を縮小することも可能となる。
尚、本実施形態によるパッチアンテナ30は、第2の実施形態によるパッチアンテナ20の接続電極14を内側に傾斜させた構造を有しているが、第1の実施形態によるパッチアンテナ10の接続電極14を内側に傾斜させることも可能である。この場合も、広帯域化及び設置スペース縮小などの効果を得ることが可能となる。
次に、本発明の第4の実施形態について説明する。
図12は、本発明の第4の実施形態によるパッチアンテナ40の基本構造を模式的に示す略斜視図であり、図13はその平面図である。
図12及び図13に示すように、本実施形態によるパッチアンテナ40は、グランド電極11と、グランド電極11上に設けられた放射電極12と、放射電極12を取り囲むようにグランド電極11上に設けられたリング状の無給電電極13と、放射電極12と給電ライン12xとの間に設けられた整合素子15とを備えている。つまり、第1の実施形態によるパッチアンテナ10に整合素子15を付加した構成を有している。
グランド電極11は所定のxy平面上に形成されており、その面積としては、少なくとも無給電電極13の外径以上である必要がある。グランド電極11の面積は大きいほど好ましく、理想的には無限大である。グランド電極11のうち、放射電極12の略中央部を覆う部分には、給電ライン12xが貫通する切り欠き11xが設けられており、これによってグランド電極11と給電ライン12xとの短絡が防止されている。
放射電極12は、グランド電極11と平行なxy平面上に形成されており、放射電極12と給電ライン12xとは、整合素子15によって接続されている。給電ライン12xはグランド電極11側に引き出されており、グランド電極11に設けられた切り欠き11xを貫通して、図示しないRF回路に接続されている。本実施形態では、放射電極12の平面形状は「円形」である。
整合素子15は、放射電極12と給電ライン12xとのインピーダンスを整合させるための素子であり、整合素子15を介してこれらを接続することにより、比帯域が拡大するとともに、利得が向上する。
図14は整合素子15の構造をより詳細に示す略斜視図であり、図15は整合素子15を放射電極12と給電ライン12xとの間に接続した状態における略側面図である。
図14及び図15に示すように、整合素子15は、4つの板状導電部材15a〜15dによって構成されており、これら4つの板状導電部材15a〜15dは、軸15zを対称軸として互いに回転対称に配置されている。これは、板状導電部材15a〜15dが信号に対して与える影響を均等とするためである。これら板状導電部材15a〜15dは、互いに同一の形状を有しており、いずれも給電ライン12x側から放射電極12側に向けて、放射電極12と平行な方向(xy平面と平行な方向)における幅が段階的に増大する形状を有している。
より具体的には、各板状導電部材15a〜15dは、放射電極12側に位置する幅広領域15wと給電ライン12x側に位置する幅細領域15nを有しており、xy平面と平行な方向における幅広領域15wの幅をWaとし、幅細領域15nの幅をWbとすると、
Wa>Wb
に設定されている。また、幅広領域15wの幅Waについては、放射電極12から整合素子15がはみ出さないよう、放射電極12の径Cdの半分以下に設定される。
このような形状を有する整合素子15を設けることにより、相対的に面積の大きい放射電極12と、相対的に面積の小さい給電ライン12xとの間における高周波電流の流れがスムーズとなり、比帯域の拡大効果や、利得向上効果を得ることができる。
尚、実際に整合素子15を作製する場合には、図16に示すように、略T字上の2枚の板状導電部材15ac,15bdを用意し、板状導電部材15acに設けられた切り欠き15iを板状導電部材15bdに設けられた切り欠き15jに嵌め込めばよい。このような方法によれば、簡単に整合素子15を作製することが可能となる。この場合、整合素子15は、2つの板状導電部材によって構成されていると考えることもできる。
図12及び図13に示すように、無給電電極13は、放射電極12を取り囲むよう、放射電極12と同一平面上に設けられている。無給電電極13は、50Ω線路に対して入力インピーダンスの整合を取りつつ、コニカルビームを形成するために設けられる電極である。本実施形態において無給電電極13を設けることは必須でないが、これを設けることによって天頂方向(z軸方向)の指向性が低下し、その分、天頂方向に対して所定の角度θへの指向性が向上する。このため、無給電電極13を設けることが極めて好ましい。
本実施形態では、無給電電極13の内周部の形状及び外周部の形状とも、放射電極12と同じ「円形」である。すなわち、無給電電極13の内周部及び外周部の形状は、放射電極12の外周部の形状に対して相似形であり、また、無給電電極13の幅13wは均一である。
また、無給電電極13は、図13に示すように、放射電極12の中心12aを通る直線Aに対して対称形であり、このため、放射電極12の外周部と無給電電極13の内周部との距離dについても均一である。本実施形態のように、放射電極12の平面形状や無給電電極13の内周部及び外周部の形状が円形である場合には、放射電極12の外周部と無給電電極13の内周部との距離dについては、放射電極12の外周部に沿った長さCptchの1/3程度に設定することが好ましい。
図12及び図13に示すように、無給電電極13とグランド電極11は、接続電極14によって接続されている。無給電電極13をグランド電極11に接続すると、パッチアンテナ40の周波数帯域が拡大するという効果が得られる。特に限定されるものではないが、本実施形態では、接続電極14が無給電電極13の外周部に接続されている。
また、本実施形態では接続電極14が4つ設けられており、無給電電極13の外周部に沿った接続電極14間の距離14aが均一とされている。
図17に示すように、接続電極14の形状は帯状であることが好ましい。接続電極14を帯状とする場合、接続電極14の幅wについては、0.01λ〜0.03λに設定することが好ましく、0.02λ程度に設定することが特に好ましい。
このような構成を有する本実施形態によるパッチアンテナ40は、整合素子15によって、放射電極12と給電ライン12xとのインピーダンス整合が図られていることから、数十%以上の比帯域を得ることが可能であり、このため、従来よりも多くのチャンネルを安定した状態で受信することが可能となる。
しかも、無給電電極13の効果により、天頂方向(z軸方向)の指向性が低く、その分、天頂方向に対して所定の角度θへの指向性が大幅に向上する。これにより、ディジタルサテライトラジオ放送を受信する地域が赤道から遠い地域であっても、放送衛星が位置する方向に対して高い指向性を発揮することができ、エネルギーロスを低減することが可能となる。
また、本実施形態においては、無給電電極13の幅13wが均一であり、且つ、放射電極12の外周部と無給電電極13の内周部との距離dについても均一であることから、無給電電極13によるコニカルビーム形成効果がいずれの方向についてもほぼ均一となり、その結果、特定の周波数において良好なコニカルビーム形成を形成することが可能となる。
尚、整合素子15の形状としては、軸15zに対して対称形であり、且つ、xy平面と平行な方向における幅が給電ライン12x側から放射電極12側に向けて増大する形状を有していれば、どのような形状であっても構わない。
したがって、図18に示すように、各板状導電部材15a〜15dの幅が、給電ライン12x側から放射電極12側に向けて多段階に増大する形状を有していても構わない。このように、給電ライン12x側から放射電極12側に向けて、幅が多段階に増大する形状とすれば、比帯域の拡大効果や、利得向上効果を高めることが可能となる。
また、図19に示すように、6つの板状導電部材15a〜15fによって整合素子15を構成しても構わない。このように、板状導電部材の数を増やした場合も、比帯域の拡大効果や、利得向上効果を高めることが可能となる。
また、図20及び図21に示すように、4つの板状導電部材15a〜15dの幅が、給電ライン12x側から放射電極12側に向けて連続的に増大する形状であっても構わない。図20に示す例は、板状導電部材15a〜15dの幅の増大が1次関数的である例を示しており、これは、図18に示した整合素子15において、段階数を無限大とした例と考えることもできる。したがって、この場合、比帯域の拡大効果や、利得向上効果をいっそう高めることが可能となる。図21に示す例は、板状導電部材15a〜15dの幅の増大が2次関数的である例を示している。図21に示す例のように、板状導電部材の幅を2次関数的に増大させれば、比帯域の拡大効果及び利得向上効果をよりいっそう高めることが可能となる。
さらに、図22に示すように、整合素子15の形状を、給電ライン12x側を頂点とする円錐形としても構わない。これは、図20に示した整合素子15において、板状導電部材の数を無限大とした例と考えることもできる。したがって、この場合、比帯域の拡大効果や、利得向上効果をよりいっそう高めることが可能となる。また、図23に示すように、円錐形である整合素子15の内部15xを空洞としても構わない。これは、高周波電流がほとんど導体の表面にしか流れない点に着目したものである。このように、円錐の内部を空洞とすれば、特性にほとんど影響を与えることなく、整合素子15の重量を低減することが可能となる。
尚、整合素子15を錐形状とする場合、円錐形だけでなく、三角錐、四角錐などの多角錐形であっても構わない。また、厳密には錐形状ではないが、図18に示す整合素子15の回転体のように、径が段階的に増大する形状としても構わない。
図24は、第4の実施形態によるパッチアンテナ40の具体的な構成例であり、図25は、図24に示すB−B線に沿った略断面図である。
図24及び図25に示すように、パッチアンテナ40を実際に作製する場合、例えば円盤状の誘電体ブロック19を用い、その一方の主面に放射電極12及び無給電電極13を形成するとともに、他方の主面にグランド電極11を形成し、さらに、誘電体ブロック19の側面にグランド電極11と無給電電極13とを接続する接続電極14を形成すればよい。
誘電体ブロック19の材料としては、特に限定されるものではないが、上述の通り、Ba−Nd−Ti系材料(比誘電率80〜120)、Nd−Al−Ca−Ti系材料(比誘電率43〜46)、Li−Al−Sr−Ti(比誘電率38〜41)、Ba−Ti系材料(比誘電率34〜36)、Ba−Mg−W系材料(比誘電率20〜22)、Mg−Ca−Ti系材料(比誘電率19〜21)、サファイヤ(比誘電率9〜10)、アルミナセラミックス(比誘電率9〜10)、コージライトセラミックス(比誘電率4〜6)などを用いることができ、型枠を用いて焼成することによって作製することができる。誘電体を用いることにより、誘電体の誘電率によってパッチアンテナを小型化することが可能である。具体的には、使用する誘電体の比誘電率をεとすると、
1/√ε
のサイズに小型化することができる。
誘電体ブロック19の中央部には、その一方の主面から他方の主面に向けて、整合素子15の形状に対応した貫通孔19xが形成され、この貫通孔19xに整合素子15が挿入される。整合素子15とグランド電極11との接触は、グランド電極11に設けられた切り欠き11xによって防止される。
グランド電極11、放射電極12、無給電電極13及び接続電極14の材料としては、銀、銀−パラジウム、銀−白金、銅などを用いることができ、スクリーン印刷や転写などの方法によってこれら材料を含むペーストを塗布した後、所定の温度条件で焼付けを行うことにより形成することができる。
図26は、第4の実施形態によるパッチアンテナ40の別の具体的な構成例であり、図27は、図26に示すC−C線に沿った略断面図である。
図26及び図27に示す構成例は、無給電電極13とグランド電極11を接続する接続電極14として、接続ピン14yを用いている点において上記の構成例と異なる。この場合、誘電体ブロック19には、接続ピン14yを挿入するための貫通孔19yを設けておく必要がある。かかる構成例によれば、無給電電極13の外径よりもグランド電極11の外径を大きくすることができるので、より良好なアンテナ特性を得ることが可能となる。
尚、本実施形態において、誘電体ブロック19の他方の主面にグランド電極11を形成することは必須でなく、例えば、あらかじめグランドパターンが形成された基板上にパッチアンテナ40を載置するといった使用方法を想定すれば、グランド電極11を省略することも可能である。
また、誘電体ブロック19の貫通孔19xに整合素子15を挿入するのではなく、整合素子15の形状に対応した貫通孔19xに導電性ペーストを流し込み、これを整合素子として用いることも可能である。このような方法によれば、別部品として整合素子15を作製する必要がなくなることから、製造コストを削減することが可能となる。
次に、本発明の第5の実施形態について説明する。
図28は、本発明の第5の実施形態によるパッチアンテナ50の基本構造を模式的に示す略斜視図であり、図29はその平面図である。
図28及び図29に示すように、本実施形態によるパッチアンテナ50は、上述したパッチアンテナ40と同様、グランド電極11と、グランド電極11上に設けられた放射電極12と、放射電極12を取り囲むようにグランド電極11上に設けられたリング状の無給電電極13と、放射電極12と給電ライン12xとの間に設けられた整合素子15とを備えているが、放射電極12の平面形状、無給電電極13の内周部及び外周部がいずれも正方形である点において、上述したパッチアンテナ40と異なっている。その他の主な点については、上述したパッチアンテナ40と同様であることから、同一の要素には同一の符号を付し、重複する説明は省略する。グランド電極11の平面形状については、円形であっても正方形であっても構わない。このように、本実施形態によるパッチアンテナ50は、第2の実施形態によるパッチアンテナ20に整合素子15を付加した構成を有している。
図28及び図29に示すように、本実施形態では、接続電極14が無給電電極13の外周部の角部に接続されている。すなわち、本実施形態においても接続電極14は4つ設けられている。
本実施形態では、無給電電極13の内周部の形状及び外周部の形状とも、放射電極12と同じ「正方形」であることから、無給電電極13の内周部及び外周部の形状は、上記実施形態と同様、放射電極12の外周部の形状に対して相似形である。しかしながら、形状が正方形であるために、無給電電極13の幅13wは均一ではなく角部においてやや広くなる(13w<13w')。また、無給電電極13は放射電極12の中心12aを通る直線Dに対して対称形であるが、形状が正方形であることから、放射電極12の外周部と無給電電極13の内周部との距離dについては均一ではなく、やはり角部においてやや広くなる(d<d')。無給電電極13の幅13wは、平行部分(角部ではない箇所)において、放射電極12の一辺の長さSptchとほぼ同じに設定することが好ましい。
このような構成を有する本実施形態によるパッチアンテナ50は、上述したパッチアンテナ40と同様、整合素子15によって、放射電極12と給電ライン12xとのインピーダンス整合が図られていることから、非常に広い帯域を得ることが可能である。また、天頂方向(z軸方向)の指向性が低く、その分、天頂方向に対して所定の角度θへの指向性が大幅に向上する。特に、上述した好ましい数値を満たせば、無給電電極13によって天頂方向(z軸方向)へのビームがほぼ完全に打ち消され、所定の角度θへの指向性が大幅に向上するとともに、非常に広い帯域を得ることが可能となる。
また、本実施形態においては、無給電電極13の幅が角部において広くなり、且つ、放射電極12の外周部と無給電電極13の内周部との距離についても角部において広くなることから、無給電電極13によるコニカルビーム形成効果がより広い周波数帯に及び、その結果、広帯域に亘って良好なコニカルビーム形成を形成することが可能となる。このため、本実施形態によるパッチアンテナ50では100%以上の比帯域を得ることが可能であり、より多くのチャンネルを安定した状態で受信することが可能となる。
図30は、第5の実施形態によるパッチアンテナ50の具体的な構成例である。図30に示すE−E線に沿った略断面図は、図25と同様であることから図示を省略する。
図30に示すように、パッチアンテナ50を実際に作製する場合には、誘電体ブロック19の形状を平板状とすればよい。そして、その一方の主面に放射電極12及び無給電電極13を形成し、他方の主面にグランド電極11を形成し、さらに、誘電体ブロック19の側面角部にグランド電極11と無給電電極13とを接続する接続電極14を形成すればよい。
図31は、第5の実施形態によるパッチアンテナ50の別の構成例である。図31に示すF−F線に沿った略断面図は、図27と同様であることから図示を省略する。
図31に示す構成例は、図26及び図27に示す構成例と同様、無給電電極13とグランド電極11を接続する接続電極14として、接続ピン14yを用いている点において、図30に示した構成例と異なる。この場合も、無給電電極13の外径よりもグランド電極11の外径を大きくすることができるので、より良好なアンテナ特性を得ることが可能となる。
本実施形態においても、誘電体ブロック19の他方の主面にグランド電極11を形成することは必須でなく、例えば、あらかじめグランドパターンが形成された基板上にパッチアンテナ50を載置するといった使用方法を想定すれば、グランド電極11を省略することも可能である。
次に、本発明の第6の実施形態について説明する。
図32は、本発明の第6の実施形態によるパッチアンテナ60の基本構造を模式的に示す略斜視図である。
図32に示すように、本実施形態によるパッチアンテナ60は、上述したパッチアンテナ50とほぼ同様の構成を有しているが、接続電極14が無給電電極13側からグランド電極11側に向けて内側に傾斜している点において、上述したパッチアンテナ50と異なる。その他の点については、上述したパッチアンテナ50と同様であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
既に説明したとおり、接続電極14を無給電電極13側からグランド電極11側に向けて内側に傾斜させると、グランド電極に対して垂直な接続電極を用いる場合と比べて、帯域がより広くなるとともに、基板上における設置スペースを縮小することが可能となる。
尚、本実施形態によるパッチアンテナ60は、第5の実施形態によるパッチアンテナ50の接続電極14を内側に傾斜させた構造を有しているが、第4の実施形態によるパッチアンテナ40の接続電極14を内側に傾斜させることも可能である。この場合も、広帯域化などの効果を得ることが可能となる。但し、図32に示すように、第5の実施形態によるパッチアンテナ50の接続電極14を内側に傾斜させた構造とすれば、最も優れた特性を得ることが可能となる。
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
例えば、放射電極12の平面形状としては、円形や正方形に限定されず、長方形、六角形や八角形など他の多角形であっても構わないし、楕円形であっても構わない。また、インピーダンス調整や帯域調整などを目的として、放射電極12の外周の一部を切り欠いたり、逆に、放射電極12の外周に突起部などを設けても構わない。同様に、無給電電極13の外周部や内周部の形状についても、多角形や楕円形など、他の形状であっても構わない。
また、上記各実施形態では、放射電極12の平面形状、無給電電極13の内周部及び外周部の形状が互いに相似形であるが、本発明がこれに限定されるものではなく、これらの一部又は全部が互いに非相似形であっても構わない。例えば、放射電極12の平面形状が円形であり、無給電電極13の内周部及び外周部の形状が正方形であっても構わないし、放射電極12の平面形状及び無給電電極13の内周部の形状が円形であり、無給電電極13の外周部の形状が正方形であっても構わない。但し、上記各実施形態のように、これらが互いに相似形である場合に、最も良好な特性を得ることが可能となる。
また、上記各実施形態では、接続電極14によって無給電電極13とグランド電極11とが接続されているが、本発明においてこのような接続電極を設けることは必須でなく、これを省略しても構わない。但し、接続電極を全て省略すると、50Ω線路に対して入力インピーダンスの整合を取ることが困難となることから、上記各実施形態のように、接続電極14を無給電電極13の外周部に接続することが好ましい。特に、接続電極14を無給電電極13の外周部に設け、その間隔をλ/4程度に設定すれば、50Ω線路に対する入力インピーダンスの整合を取ることが容易となり、また帯域幅も広くなる。また、接続電極14を内側に傾斜させた構造とすれば、より帯域幅が広くなる。
さらに、上記各実施形態では、放射電極12と無給電電極13が同一平面上に設けられているが、これらが完全に同一平面上に形成されていることは必須でなく、これらの形成面が互いにz軸方向にずれていても構わない。
以下、本発明の実施例について説明するが、本発明はこの実施例に何ら限定されるものではない。
[実施例1]
まず、図1及び図2に示したパッチアンテナ10と同様の構造を有するアンテナを想定し、FDTD法(Finite Difference Time Domain Method)により、試験周波数を1.9GHz(=λ1.9)とした場合の特性を解析した。条件としては、グランド電極11の外周部に沿った長さをCGD、放射電極12の外周部に沿った長さをCptch、無給電電極13の内周部に沿った長さ及び外周部に沿った長さをそれぞれCin、Coutとし、放射電極12とグランド電極11とのz軸方向における距離をh、放射電極12の外周部と無給電電極13の内周部との距離をdとした場合、これらを表1に示すとおりに設定した。
Figure 2007097115
かかる条件下で解析した放射パターンを図33に示す。図33において、(a)はz軸と平行な面の解析パターンを示し、(b)はz軸に対して30°傾いた面(θ=30°)の解析パターンを示している。図33に示すように、実施例1のパッチアンテナはz軸方向への放射エネルギーがほぼゼロであり、理想的なコニカルビームが得られていることが分かる。HPBW(半値電力帯域幅)は約66°であった。
図34は、実施例1のパッチアンテナのVSWR(電圧定在波比)の周波数特性を示すグラフである。図34に示すように、VSWRが2以下となる周波数帯域(比帯域)は約14%であり、一般的なパッチアンテナに比べて広い帯域幅が得られた。
[実施例2]
接続電極14を全て省略した他は、実施例1と同じ構造を有するアンテナを想定し、実施例1と同様の解析を行った。解析の結果を図35に示す。図35において、(a)はz軸と平行な面の解析パターンを示し、(b)はz軸に対して30°傾いた面(θ=30°)の解析パターンを示している。図35に示すように、実施例2のパッチアンテナの放射パターンは、実施例1のパッチアンテナの放射パターンとほぼ同じであり、理想的なコニカルビームが得られた。HPBW(半値電力帯域幅)も約66°であった。
[実施例3]
接続電極14の数を0〜18まで変化させた他は、実施例1と同じ構造を有するアンテナをそれぞれ想定し、1.9GHzでの入力インピーダンスを解析した。いずれのパッチアンテナも、接続電極14の位置は無給電電極13の外周部とし、接続電極間の距離14aは等間隔とした。
図36は、接続電極14の数と入力インピーダンスとの関係を示すグラフである。図36に示すように、接続電極14の数が4である場合(=実施例1のパッチアンテナ)に、50Ω線路に対して入力インピーダンスの整合が最も高かった。
[実施例4]
まず、図7及び図8に示したパッチアンテナ20と同様の構造を有するアンテナを想定し、FDTD法(Finite Difference Time Domain Method)により、試験周波数を6GHz(=λ)とした場合の特性を解析した。条件としては、グランド電極11の一辺の長さをSGD、放射電極12の一辺の長さをSptch、無給電電極13の内周部の一辺の長さ及び外周部の一辺の長さをそれぞれSin、Soutとし、放射電極12とグランド電極11とのz軸方向における距離をh、無給電電極13の平行部分における幅をw、放射電極12の外周部と無給電電極13の内周部との平行部分における距離をdとした場合、表2に示すとおりに設定した。
Figure 2007097115
図37は、実施例4のパッチアンテナのVSWR(電圧定在波比)の周波数特性を示すグラフである。図37に示すように、VSWR≦2となる周波数帯域の下端fは5.5GHz、VSWR≦2となる周波数帯域の上端fは8.25GHzであり、VSWRが2以下となる周波数帯域(比帯域)は約40%であった。すなわち、実施例4のパッチアンテナは、実施例1のパッチアンテナよりもさらに広帯域であった。
次に、VSWR≦2となる周波数帯域の下端f(=5.5GHz)における放射パターンを解析した。解析結果を図38に示す。図38において、(a)はz軸と平行な面の解析パターンを示し、(b)はz軸に対して60°傾いた面(θ=60°)の解析パターンを示している。図38(b)において、実線はEθを表し、破線はEφを示している。図38に示すように、VSWR≦2となる周波数帯域の下端f(=5.5GHz)においても、z軸方向への放射エネルギーはほぼゼロであり、理想的なコニカルビームが得られていることが分かる。
さらに、VSWR≦2となる周波数帯域の上端f(=8.25GHz)における放射パターンを解析した。解析結果を図39に示す。図39において、(a)はz軸と平行な面の解析パターンを示し、(b)はz軸に対して60°傾いた面(θ=60°)の解析パターンを示している。図39(b)において、実線はEθを表し、破線はEφを示している。図39に示すように、VSWR≦2となる周波数帯域の上端f(=8.25GHz)においても、z軸方向への放射エネルギーはほぼゼロであり、理想的なコニカルビームが得られていることが分かる。また、図38と図39を参照すれば、周波数変化による放射パターンの変化が少ないことも確認できる。
図40に、最大放射方向での利得の周波数特性を示す。図40に示すように、VSWR≦2となる周波数帯域内において、利得は約2dB以上であった。
[実施例5]
まず、図28及び図29に示したパッチアンテナ50と同様の構造を有するアンテナを想定し、FDTD法(Finite Difference Time Domain Method)により、VSWR(電圧定在波比)を解析した。条件としては、グランド電極11の直径をDGP、放射電極12の一辺の長さをSptch、無給電電極13の内周部の一辺の長さ及び外周部の一辺の長さをそれぞれSin、Soutとし、放射電極12とグランド電極11とのz軸方向における距離をh、接続電極14の幅をwとした場合、表3に示すとおりに設定した。表3には、周波数を1.2GHz(=λ1.2)とした場合におけるλとの関係についても併せて表示されている。
Figure 2007097115
また、整合素子15としては、図14に示した構造を有するものを用いた。より詳細には、幅広領域15wの幅Waとし、幅細領域15nの幅をWbとし、幅細領域15nの高さ(z方向における長さ)をWcとした場合、表4に示すとおりに設定した。
Figure 2007097115
VSWRの解析結果を図41に示す。図41に示すように、VSWR≦2となる周波数帯域の下端fは0.85GHz、VSWR≦2となる周波数帯域の上端fは3.5GHzであった。したがって、VSWRが2以下となる周波数帯域(比帯域)は約125%であり、一般的なパッチアンテナに比べて極めて広い帯域幅が得られた。
次に、VSWR≦2となる周波数帯域の下端f(=0.85GHz)における放射パターンを解析した。解析結果を図42に示す。図42において、(a)はz軸と平行な面の解析パターンを示し、(b)はz軸に対して45°傾いた面(θ=45°)の解析パターンを示し、(c)はz軸に対して60°傾いた面(θ=60°)の解析パターンを示している。図42に示すように、VSWR≦2となる周波数帯域の下端f(=0.85GHz)においても、z軸方向への放射エネルギーはほぼゼロであり、理想的なコニカルビームが得られていることが分かる。
さらに、VSWR≦2となる周波数帯域の上端f(=3.5GHz)における放射パターンを解析した。解析結果を図43に示す。図43において、(a)はz軸と平行な面の解析パターンを示し、(b)はz軸に対して45°傾いた面(θ=45°)の解析パターンを示し、(c)はz軸に対して60°傾いた面(θ=60°)の解析パターンを示している。図43(c)において、実線はEθを表し、破線はEφを示している。図43に示すように、VSWR≦2となる周波数帯域の上端f(=3.5GHz)においても、z軸方向への放射エネルギーはほぼゼロであり、理想的なコニカルビームが得られていることが分かる。また、図42と図43を参照すれば、周波数変化による放射パターンの変化が少ないことも確認できる。
図44に、θ=60°,φ=45°での利得の周波数特性を示す。図44に示すように、VSWR≦2となる周波数帯域内における利得の変動は少なく、安定した利得(1〜4dBi)が得られることが確認された。
[実施例6]
まず、図32に示したパッチアンテナ60と同様の構造を有するアンテナを想定し、FDTD法(Finite Difference Time Domain Method)により、VSWR(電圧定在波比)を解析した。条件としては、グランド電極11の直径をDGP、放射電極12の一辺の長さをSptch、無給電電極13の内周部の一辺の長さ及び外周部の一辺の長さをそれぞれSin、Soutとし、放射電極12とグランド電極11とのz軸方向における距離をh、接続電極14の幅をwとした場合、表5に示すとおりに設定した。表5には、周波数を1.2GHz(=λ1.2)とした場合におけるλとの関係についても併せて表示されている。
Figure 2007097115
表5に示すように、本実施例によるパッチアンテナは、無給電電極13の外径が実施例5のパッチアンテナと同じであるとともに、グランド電極11の直径が実施例5のパッチアンテナよりも小型化されている。整合素子15についても、実施例5にて使用したものと同じ構造・サイズを有するものを用いた。また、接続電極14については、グランド電極11に対して垂直な線と接続電極14とが成す角度を0°、20°、35°及び50°の4種類に設定した。
VSWRの解析結果を図45に示す。図45に示すように、接続電極14の傾斜角によって特性が変化していることが分かる。つまり、傾斜角が0°である場合と比べて、傾斜角が35°であるサンプルではより広い帯域が得られ、具体的には、VSWR≦2となる周波数帯域の下端fは0.95GHz、VSWR≦2となる周波数帯域の上端fは3.83GHzであった。したがって、VSWRが2以下となる周波数帯域(比帯域)は約120%であり、一般的なパッチアンテナに比べて極めて広い帯域幅が得られた。
一方、傾斜角が20°であるサンプルは、傾斜角が0°であるサンプルに比べれば良好な結果が得られたが、傾斜角が35°であるサンプルと比べると低周波領域における帯域が減少した。また、傾斜角が50°であるサンプルは良好な特性が得られなかった。
次に、実施例6のパッチアンテナ(傾斜角35°のサンプル)について、試験周波数を2.0GHz(=λ2.0)とした場合の放射パターンを解析した。また、比較のため、垂直な接続電極14(傾斜角0°のサンプル)を用いた場合の放射パターンについても解析した。前者についての解析結果を図46に示し、後者についての解析結果を図47に示す。図46及び図47において、(a)はz軸と平行な面の解析パターンを示し、(b)はz軸に対して30°傾いた面(θ=30°)の解析パターンを示している。図46(b)及び図47(b)においてにおいて、実線はEθを表し、破線はEφを示している。
図46及び図47に示すように、いずれのパッチアンテナも、z軸方向への放射エネルギーがほぼゼロであり、理想的なコニカルビームが得られていることが分かる。つまり、接続電極14を傾斜させることによる放射の影響は、ほとんど無いことが分かる。
尚、実施例6にて得られた特性は、実施例5にて得られた特性とほぼ同等であるが、上述の通り、実施例6のパッチアンテナは、無給電電極13の外径が実施例5のパッチアンテナと同じであるものの、実施例5と比べてグランド電極11のサイズが小型化されている。つまり、より小さなグランド電極11を用いて良好な特性が得られることが確認された。
本発明の第1の実施形態によるパッチアンテナ10の基本構造を模式的に示す略斜視図である。 第1の実施形態によるパッチアンテナ10の平面図である。 第1の実施形態によるパッチアンテナ10の具体的な構成例を示す略斜視図である。 図3に示すB−B線に沿った略断面図である。 第1の実施形態によるパッチアンテナ10の別の具体的な構成例を示す略斜視図である。 図5に示すC−C線に沿った略断面図である。 本発明の第2の実施形態によるパッチアンテナ20の基本構造を模式的に示す略斜視図である。 第2の実施形態によるパッチアンテナ20の平面図である。 第2の実施形態によるパッチアンテナ20の具体的な構成例を示す略斜視図である。 第2の実施形態によるパッチアンテナ20の別の具体的な構成例を示す略斜視図である。 本発明の第3の実施形態によるパッチアンテナ30の基本構造を模式的に示す略斜視図である。 本発明の第4の実施形態によるパッチアンテナ40の基本構造を模式的に示す略斜視図である。 第4の実施形態によるパッチアンテナ40の平面図である。 整合素子15の構造をより詳細に示す略斜視図である。 整合素子15を放射電極12と給電ライン12xとの間に接続した状態における略側面図である。 整合素子15の作製方法の一例を示す図である。 接続電極14を拡大して示す図である。 整合素子15の一変形例を示す略斜視図である。 整合素子15の他の変形例を示す略斜視図である。 整合素子15のさらに他の変形例を示す略斜視図である。 整合素子15のさらに他の変形例を示す略斜視図である。 整合素子15のさらに他の変形例を示す略斜視図である。 整合素子15のさらに他の変形例を示す略斜視図である。 第4の実施形態によるパッチアンテナ40の具体的な構成例を示す略斜視図である。 図24に示すB−B線に沿った略断面図である。 第4の実施形態によるパッチアンテナ40の別の具体的な構成例を示す略斜視図である。 図26に示すC−C線に沿った略断面図である。 本発明の第5の実施形態によるパッチアンテナ50の基本構造を模式的に示す略斜視図である。 第5の実施形態によるパッチアンテナ50の平面図である。 第5の実施形態によるパッチアンテナ50の具体的な構成例を示す略斜視図である。 第5の実施形態によるパッチアンテナ50の別の具体的な構成例を示す略斜視図である。 本発明の第6の実施形態によるパッチアンテナ60の基本構造を模式的に示す略斜視図である。 実施例1のパッチアンテナの放射パターンを示すグラフであり、(a)はz軸と平行な面の解析パターンを示し、(b)はz軸に対して30°傾いた面(θ=30°)の解析パターンを示す。 実施例1のアンテナのVSWR(電圧定在波比)の周波数特性を示すグラフである。 実施例2のパッチアンテナの放射パターンを示すグラフであり、(a)はz軸と平行な面の解析パターンを示し、(b)はz軸に対して30°傾いた面(θ=30°)の解析パターンを示す。 実施例3のパッチアンテナにおいて、接続電極14の数と入力インピーダンスとの関係を示すグラフである。 実施例4のアンテナのVSWR(電圧定在波比)の周波数特性を示すグラフである。 VSWR≦2となる周波数帯域の下端f(=5.5GHz)における実施例4のパッチアンテナの放射パターンを示すグラフであり、(a)はz軸と平行な面の解析パターンを示し、(b)はz軸に対して60°傾いた面(θ=60°)の解析パターンを示す。 VSWR≦2となる周波数帯域の上端f(=8.25GHz)における実施例4のパッチアンテナの放射パターンを示すグラフであり、(a)はz軸と平行な面の解析パターンを示し、(b)はz軸に対して60°傾いた面(θ=60°)の解析パターンを示す。 実施例4のパッチアンテナにおける最大放射方向での利得の周波数特性を示す。 実施例5によるパッチアンテナのVSWR(電圧定在波比)の周波数特性を示すグラフである。 VSWR≦2となる周波数帯域の下端f(=0.85GHz)における実施例5のパッチアンテナの放射パターンを示すグラフであり、(a)はz軸と平行な面の解析パターンを示し、(b)はz軸に対して45°傾いた面(θ=45°)の解析パターンを示し、(c)はz軸に対して60°傾いた面(θ=60°)の解析パターンを示す。 VSWR≦2となる周波数帯域の上端f(=3.5GHz)における実施例5のパッチアンテナの放射パターンを示すグラフであり、(a)はz軸と平行な面の解析パターンを示し、(b)はz軸に対して45°傾いた面(θ=45°)の解析パターンを示し、(c)はz軸に対して60°傾いた面(θ=60°)の解析パターンを示す。 実施例5のパッチアンテナにおけるθ=60°,φ=45°方向での利得の周波数特性を示すグラフである。 実施例6によるパッチアンテナのVSWR(電圧定在波比)の周波数特性を示すグラフである。 実施例6のパッチアンテナの放射パターンを示すグラフであり、(a)はz軸と平行な面の解析パターンを示し、(b)はz軸に対して30°傾いた面(θ=30°)の解析パターンを示す。 垂直な接続電極14を用いた他は実施例6と同じ構成を有するパッチアンテナの放射パターンを示すグラフであり、(a)はz軸と平行な面の解析パターンを示し、(b)はz軸に対して30°傾いた面(θ=30°)の解析パターンを示す。
符号の説明
10,20,30,40,50,60 パッチアンテナ
11 グランド電極
11x 切り欠き
12 放射電極
12a 給電点
12x 給電ライン
13 無給電電極
14 接続電極
14a 接続電極間の距離
14y 接続ピン
15 整合素子
15a〜15f,15ac,15bd 板状導電部材
15i,15j 切り欠き
15n 幅細領域
15w 幅広領域
15x 空洞
15z 回転軸
19 誘電体ブロック
19x,19y 貫通孔

Claims (28)

  1. グランド電極上に設けられた放射電極と、前記放射電極を取り囲むように前記グランド電極上に設けられたリング状の無給電電極とを備えることを特徴とするパッチアンテナ。
  2. 前記放射電極及び前記無給電電極は、前記グランド電極と平行な同一平面上に設けられていることを特徴とする請求項1に記載のパッチアンテナ。
  3. 前記放射電極及び前記無給電電極と前記グランド電極との垂直方向における距離は、中心周波数の波長をλとした場合、0.06λ〜0.12λに設定されていることを特徴とする請求項2に記載のパッチアンテナ。
  4. 前記無給電電極と前記グランド電極とを接続する接続電極をさらに備えることを特徴とする請求項1乃至3のいずれか一項に記載のパッチアンテナ。
  5. 前記接続電極は、前記無給電電極の外周部に接続されていることを特徴とする請求項4に記載のパッチアンテナ。
  6. 前記接続電極が複数設けられており、前記無給電電極の前記外周部に沿った接続電極間の距離が均一であることを特徴とする請求項5に記載のパッチアンテナ。
  7. 前記無給電電極の前記外周部に沿った接続電極間の距離は、中心周波数の波長をλとした場合、約λ/4であることを特徴とする請求項6に記載のパッチアンテナ。
  8. 前記接続電極の数が4つであることを特徴とする請求項6又は7に記載のパッチアンテナ。
  9. 前記接続電極は、前記無給電電極側から前記グランド電極側に向けて内側に傾斜していることを特徴とする請求項4乃至8のいずれか一項に記載のパッチアンテナ。
  10. 前記無給電電極の前記外周部に沿った長さは、中心周波数の波長をλとした場合、0.9λ〜1.1λに設定されていることを特徴とする請求項1乃至9のいずれか一項に記載のパッチアンテナ。
  11. 前記無給電電極の内周部に沿った長さは、中心周波数の波長をλとした場合、0.4λ〜0.6λに設定されていることを特徴とする請求項1乃至10のいずれか一項に記載のパッチアンテナ。
  12. 前記無給電電極の前記外周部に沿った長さは、前記無給電電極の前記内周部に沿った長さの約2倍であることを特徴とする請求項1乃至11のいずれか一項に記載のパッチアンテナ。
  13. 前記無給電電極は、前記放射電極の給電点を通る直線に対して対称形であることを特徴とする請求項1乃至12のいずれか一項に記載のパッチアンテナ。
  14. 前記放射電極の平面形状、前記無給電電極の内周部及び前記無給電電極の外周部は、いずれも円形であり、前記放射電極の外周部に沿った長さは、中心周波数の波長をλとした場合、0.1λ〜0.2λに設定されていることを特徴とする請求項1乃至13のいずれか一項に記載のパッチアンテナ。
  15. 前記無給電電極の幅は、中心周波数の波長をλとした場合、0.05λ〜0.1λに設定されていることを特徴とする請求項14に記載のパッチアンテナ。
  16. 前記放射電極の外周部と前記無給電電極の前記内周部との距離は、中心周波数の波長をλとした場合、0.33λ〜0.67λに設定されていることを特徴とする請求項14又は15に記載のパッチアンテナ。
  17. 前記放射電極の平面形状、前記無給電電極の内周部及び前記無給電電極の外周部は、いずれも正方形であり、前記放射電極の外周部の一辺の長さは、中心周波数の波長をλとした場合、0.04λ〜0.08λに設定されていることを特徴とする請求項1乃至13のいずれか一項に記載のパッチアンテナ。
  18. 前記無給電電極の平行部分における幅は、中心周波数の波長をλとした場合、0.04λ〜0.08λに設定されていることを特徴とする請求項17に記載のパッチアンテナ。
  19. 前記放射電極の外周部と前記無給電電極の前記内周部との平行部分における距離は、中心周波数の波長をλとした場合、0.02λ〜0.04λに設定されていることを特徴とする請求項17又は18に記載のパッチアンテナ。
  20. 前記放射電極と給電ラインとの間に設けられた整合素子をさらに備え、前記整合素子は、前記給電ライン側から前記放射電極側に向けて、前記放射電極と平行な方向における幅が増大する形状を有していることを特徴とする請求項1乃至19のいずれか一項に記載のパッチアンテナ。
  21. グランド電極上に設けられた放射電極と、前記放射電極と給電ラインとの間に設けられた整合素子とを備え、前記整合素子は、前記給電ライン側から前記放射電極側に向けて、前記放射電極と平行な方向における幅が増大する形状を有していることを特徴とするパッチアンテナ。
  22. 前記整合素子は、前記給電ライン側から前記放射電極側に向けて、前記方向における幅が連続的又は段階的に増大する板状導電部材を含んでいることを特徴とする請求項21に記載のパッチアンテナ。
  23. 前記整合素子は、前記板状導電部材を複数含み、前記複数の板状導電部材が互いに回転対称に配置されていることを特徴とする請求項22に記載のパッチアンテナ。
  24. 前記整合素子は、前記給電ライン側を頂点とする錐形状を有していることを特徴とする請求項21に記載のパッチアンテナ。
  25. 前記放射電極を取り囲むように前記グランド電極上に設けられたリング状の無給電電極をさらに備えることを特徴とする請求項21乃至24のいずれか一項に記載のパッチアンテナ。
  26. 前記無給電電極と前記グランド電極とを接続する接続電極をさらに備えることを特徴とする請求項25に記載のパッチアンテナ。
  27. 前記接続電極は、前記無給電電極の外周部に接続されていることを特徴とする請求項26に記載のパッチアンテナ。
  28. 前記接続電極は、前記無給電電極側から前記グランド電極側に向けて内側に傾斜していることを特徴とする請求項26又は27に記載のパッチアンテナ。
JP2006021660A 2005-02-25 2006-01-31 パッチアンテナ Withdrawn JP2007097115A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006021660A JP2007097115A (ja) 2005-02-25 2006-01-31 パッチアンテナ

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005051494 2005-02-25
JP2005251402 2005-08-31
JP2006021660A JP2007097115A (ja) 2005-02-25 2006-01-31 パッチアンテナ

Publications (1)

Publication Number Publication Date
JP2007097115A true JP2007097115A (ja) 2007-04-12

Family

ID=37982198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006021660A Withdrawn JP2007097115A (ja) 2005-02-25 2006-01-31 パッチアンテナ

Country Status (1)

Country Link
JP (1) JP2007097115A (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536403A (ja) * 2005-04-07 2008-09-04 トランスパシフィック・テクノロジーズ,リミテッド・ライアビリティ・カンパニー マルチバンドまたはワイドバンドアンテナ
WO2009110131A1 (ja) * 2008-03-03 2009-09-11 株式会社 日立国際電気 アンテナ装置
WO2010089819A1 (ja) 2009-02-05 2010-08-12 日本アンテナ株式会社 阻止帯域を有する広帯域アンテナ
JP2011004044A (ja) * 2009-06-17 2011-01-06 Nippon Soken Inc アンテナ装置
JP2011199350A (ja) * 2010-03-17 2011-10-06 Japan Radio Co Ltd アンテナ
JP2012019485A (ja) * 2010-07-09 2012-01-26 Toshiba Corp カプラ装置
CN102593558A (zh) * 2011-01-07 2012-07-18 日立电线精密技术株式会社 电磁耦合器及搭载了该电磁耦合器的信息通信设备
JP2012204916A (ja) * 2011-03-24 2012-10-22 Panasonic Corp 複共振型アンテナ装置
WO2012144247A1 (ja) * 2011-04-19 2012-10-26 原田工業株式会社 広帯域アンテナ
WO2015167843A1 (en) * 2014-04-28 2015-11-05 Tyco Electronics Corporation Monocone antenna
WO2016097362A1 (fr) * 2014-12-19 2016-06-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Antenne fil-plaque ayant un toit capacitif incorporant une fente entre la sonde d'alimentation et le fil de court-circuit
JP2016167680A (ja) * 2015-03-09 2016-09-15 株式会社日立国際八木ソリューションズ 広帯域無指向性アンテナ
JP2017056493A (ja) * 2015-09-14 2017-03-23 正雄 西木 研掃ブラシ
JP2017103709A (ja) * 2015-12-04 2017-06-08 株式会社Soken 衛星電波受信用アンテナ装置
JP2020043422A (ja) * 2018-09-07 2020-03-19 ムサシノ機器株式会社 横方向放射を抑制した円偏波平面型アンテナとアレイアンテナシステム
WO2021065819A1 (ja) * 2019-10-04 2021-04-08 ソニーセミコンダクタソリューションズ株式会社 アンテナ装置及び無線通信装置
US11165157B2 (en) 2016-02-26 2021-11-02 Denso Corporation Antenna device
US11223130B2 (en) * 2020-02-07 2022-01-11 Chilisin Electronics Corp. Antenna structure
WO2022207878A1 (en) * 2021-03-31 2022-10-06 Jaguar Land Rover Limited Vehicle antenna with shorted conductive structure around its radiator

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536403A (ja) * 2005-04-07 2008-09-04 トランスパシフィック・テクノロジーズ,リミテッド・ライアビリティ・カンパニー マルチバンドまたはワイドバンドアンテナ
WO2009110131A1 (ja) * 2008-03-03 2009-09-11 株式会社 日立国際電気 アンテナ装置
WO2010089819A1 (ja) 2009-02-05 2010-08-12 日本アンテナ株式会社 阻止帯域を有する広帯域アンテナ
JP2010183348A (ja) * 2009-02-05 2010-08-19 Nippon Antenna Co Ltd 阻止帯域を有する広帯域アンテナ
JP2011004044A (ja) * 2009-06-17 2011-01-06 Nippon Soken Inc アンテナ装置
JP2011199350A (ja) * 2010-03-17 2011-10-06 Japan Radio Co Ltd アンテナ
JP2012019485A (ja) * 2010-07-09 2012-01-26 Toshiba Corp カプラ装置
CN102593558A (zh) * 2011-01-07 2012-07-18 日立电线精密技术株式会社 电磁耦合器及搭载了该电磁耦合器的信息通信设备
JP2012147119A (ja) * 2011-01-07 2012-08-02 Hitachi Cable Fine Tech Ltd 電磁結合器及びそれを搭載した情報通信機器
JP2012204916A (ja) * 2011-03-24 2012-10-22 Panasonic Corp 複共振型アンテナ装置
WO2012144247A1 (ja) * 2011-04-19 2012-10-26 原田工業株式会社 広帯域アンテナ
WO2015167843A1 (en) * 2014-04-28 2015-11-05 Tyco Electronics Corporation Monocone antenna
US9692136B2 (en) 2014-04-28 2017-06-27 Te Connectivity Corporation Monocone antenna
WO2016097362A1 (fr) * 2014-12-19 2016-06-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Antenne fil-plaque ayant un toit capacitif incorporant une fente entre la sonde d'alimentation et le fil de court-circuit
FR3030909A1 (fr) * 2014-12-19 2016-06-24 Commissariat Energie Atomique Antenne fil-plaque ayant un toit capacitif incorporant une fente entre la sonde d'alimentation et le fil de court-circuit
US10547115B2 (en) 2014-12-19 2020-01-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Wire-plate antenna having a capacitive roof incorporating a slot between the feed probe and the short-circuit wire
JP2016167680A (ja) * 2015-03-09 2016-09-15 株式会社日立国際八木ソリューションズ 広帯域無指向性アンテナ
JP2017056493A (ja) * 2015-09-14 2017-03-23 正雄 西木 研掃ブラシ
JP2017103709A (ja) * 2015-12-04 2017-06-08 株式会社Soken 衛星電波受信用アンテナ装置
US11165157B2 (en) 2016-02-26 2021-11-02 Denso Corporation Antenna device
JP2020043422A (ja) * 2018-09-07 2020-03-19 ムサシノ機器株式会社 横方向放射を抑制した円偏波平面型アンテナとアレイアンテナシステム
JP7209152B2 (ja) 2018-09-07 2023-01-20 大学共同利用機関法人情報・システム研究機構 横方向放射を抑制したアンテナアレイ
WO2021065819A1 (ja) * 2019-10-04 2021-04-08 ソニーセミコンダクタソリューションズ株式会社 アンテナ装置及び無線通信装置
US11223130B2 (en) * 2020-02-07 2022-01-11 Chilisin Electronics Corp. Antenna structure
WO2022207878A1 (en) * 2021-03-31 2022-10-06 Jaguar Land Rover Limited Vehicle antenna with shorted conductive structure around its radiator

Similar Documents

Publication Publication Date Title
JP2007097115A (ja) パッチアンテナ
US7202818B2 (en) Multifrequency microstrip patch antenna with parasitic coupled elements
US6864853B2 (en) Combination directional/omnidirectional antenna
US7170461B2 (en) Conical dipole antenna and associated methods
US20150236421A1 (en) Wideband dual-polarized patch antenna array and methods useful in conjunction therewith
WO2004077604A2 (en) Wideband shorted tapered strip antenna
JP2004242306A (ja) 車輌用の複数の無線通信サービスの結合アンテナ装置
CN109216912A (zh) 一种加载六边形寄生枝节的花形馈源终端多频微带天线
CN109193136A (zh) 一种具有宽带及滤波器特性的高增益贴片天线
KR101859179B1 (ko) 소형 광대역 대수 주기 안테나
CZ2002628A3 (cs) ©těrbinová anténa
Sarva et al. A novel triple band planar microstrip patch antenna with defected ground structure
JP4287492B1 (ja) アンテナ装置
CN208723094U (zh) 一种加载六边形寄生枝节的花形馈源终端多频微带天线
CN1663075A (zh) 双极化双波段辐射装置
CN110797628A (zh) 一种应用于uav的顶部加载套筒天线
EP1653558A1 (en) Antenna
JP4199631B2 (ja) 広帯域アンテナ
KR100726025B1 (ko) 위성 디엠비용 차량 탑재 안테나
US9692134B2 (en) Broadband dual polarization omni-directional antenna with dual conductive antenna bodies and associated methods
Li et al. Multiband multimode arched bow-shaped fractal helix antenna
KR100757090B1 (ko) 다중대역 모노폴 안테나
KR101816018B1 (ko) 소형 광대역 대수 주기 안테나
KR100468201B1 (ko) 두 개의 스파이럴 라인을 이용한 마이크로스트립 스파이럴안테나
JP2003163533A (ja) アンテナ

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407