JP2007095897A - 半導体装置とその製造方法 - Google Patents

半導体装置とその製造方法 Download PDF

Info

Publication number
JP2007095897A
JP2007095897A JP2005281683A JP2005281683A JP2007095897A JP 2007095897 A JP2007095897 A JP 2007095897A JP 2005281683 A JP2005281683 A JP 2005281683A JP 2005281683 A JP2005281683 A JP 2005281683A JP 2007095897 A JP2007095897 A JP 2007095897A
Authority
JP
Japan
Prior art keywords
thermoelectric material
type
type thermoelectric
insulating film
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005281683A
Other languages
English (en)
Inventor
Hiromi Hayashi
裕美 林
Takakimi Usui
孝公 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005281683A priority Critical patent/JP2007095897A/ja
Publication of JP2007095897A publication Critical patent/JP2007095897A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

【課題】外部からの力に強く、酸化及び結露などによる劣化が起こりにくく、少ない消費電力で対象物を冷却する冷却素子または対象物から発生する熱を用いて発電を行う発電素子として働く熱電素子を含む半導体装置及びその製造方法を提供する。
【解決手段】半導体基板11上には絶縁膜12が形成され、絶縁膜12上には下部電極13が形成されている。第1下部電極13上にはN型熱電材料15Bが形成されている。第2下部電極13上にはP型熱電材料15AとN型熱電材料15Bが形成されている。第1下部電極13上のN型熱電材料15B上、及び第2下部電極13上のP型熱電材料15A上には第1上部電極16が形成され、第2下部電極13上のN型熱電材料15B上には第2上部電極16が形成されている。
【選択図】 図1

Description

この発明は、半導体基板上に形成された熱電素子を含む半導体装置とその製造方法に関するものであり、例えば、大規模集積回路(LSI)が形成されたシリコン基板の裏面に作成した熱電素子とその製造方法に関するものである。
一般的な熱電素子として、P型熱電材料とN型熱電材料の一端を上部電極(接合端)でつなぎ、P型熱電材料とN型熱電材料の他端にそれぞれ下部電極(分岐端)をつないだ場合、上部電極(接合端)と下部電極(分岐端)に温度差をつけると、熱エネルギーを電気エネルギーに変換することのできる発電素子として使用することができる。一方で、この回路に電流を流すことで上部電極と下部電極に温度差が生じ、電気エネルギーを熱エネルギー(冷却作用)に変換する冷却素子(Peltier素子)として使用することができる。
熱電素子は通常、P型熱電材料(P型エレメント)とN型熱電材料(N型エレメント)からなる対をチェーン状に複数並べて組み立てる。これは、熱電素子からの発生電圧を向上させるための対策である。現在、電子・電気機器に実用されている熱電素子の中で小さいものは、底辺の一辺が100[μm]程度、高さが500[μm]程度の各P型、N型エレメントを、2〜3[mm]程度の素子サイズとなるように50〜100対チェーン状につないだものである。
このような熱電素子は、あらかじめ切断しておいた各P型、N型エレメントのいずれか一方を基盤上の電極にはんだ付けし、その後、はんだ付けしたエレメントの間の電極に他方のエレメントをはんだ付けするといった方法で作成する。この場合、各エレメント間は空洞になっており、素子は外部からの力に弱い。また、エレメントが直接外気に触れることから、高温使用では酸化、低温使用では結露などによる劣化が起こりうる。
作成した熱電モジュールは、電子・電気機器に取り付けて使用する。しかし、熱電モジュールを取り付けると、電子・電気機器本来の形状を変えてしまうことになり、機器の作成は複雑化し、コスト面も悪化が懸念される。
また、LSIは年々、高集積化、高性能化が進み、それに伴う消費電力、発熱量の増加が問題となっている。発熱によるLSIの温度上昇は性能の劣化と信頼性低下の原因となる可能性がある。対策としてファンやヒートシンクなどの放熱装置が取り付けられている。現在、熱電素子を冷却素子としてLSI上に取り付けたCPU冷却が発案されているが、消費電力がファンなどよりも大きいことなどからCPU冷却の主流になりえていないのが現状である。
なお、本発明に関する従来技術として、半導体材料の表面または内部に、半導体材料または金属材料で作製されたペルチェ素子またはゼーベック素子からなる熱電素子を配置した構成が提案されている(例えば、特許文献1参照)。
特開2003−243731号公報
この発明は、外部からの力に強く、酸化及び結露などによる劣化が起こりにくく、少ない消費電力で対象物を冷却する冷却素子または対象物から発生する熱を用いて発電を行う発電素子として働く熱電素子を含む半導体装置及びその製造方法を提供する。
この発明の第1の態様の半導体装置は、半導体基板上に形成された絶縁膜と、前記絶縁膜上に離隔して形成された第1、第2下部電極と、前記1下部電極上に形成された第1導電型の半導体材料からなる第1熱電材料と、前記2下部電極上に形成された第2導電型の半導体材料からなる第2熱電材料と、前記2下部電極上に前記第2熱電材料と離隔して形成された第1導電型の半導体材料からなる第3熱電材料と、前記第1熱電材料上及び前記第2熱電材料上に形成された第1上部電極と、前記第3熱電材料上に前記第1上部電極と離隔して形成された第2上部電極とを具備することを特徴とする。
また、この発明の第2の態様の半導体装置は、半導体基板上に形成された第1絶縁膜と、前記第1絶縁膜上に離隔して形成された第1、第2下部電極と、前記第1下部電極上に形成された第1導電型の半導体材料からなる第1熱電材料と、前記第2下部電極上に形成された第2導電型の半導体材料からなる第2熱電材料と、前記第1熱電材料上及び前記第2熱電材料上に形成された第1上部電極と、前記第1上部電極上に形成された第2絶縁膜と、前記第2絶縁膜上に離隔して形成された第3、第4下部電極と、前記第3下部電極上に形成され、前記第2熱電材料と異なる第2導電型の半導体材料からなる第3熱電材料と、前記第4下部電極上に形成され、前記第1熱電材料と異なる第1導電型の半導体材料からなる第4熱電材料と、前記第3熱電材料上及び前記第4熱電材料上に形成された第2上部電極とを具備することを特徴とする。
また、この発明の第3の態様の半導体装置は、半導体基板上に形成された第1絶縁膜と、前記第1絶縁膜上に形成された断熱膜と、前記断熱膜上に形成された第1導電型の半導体材料からなる複数の第1熱電材料と、前記断熱膜上に形成された第2導電型の半導体材料からなる複数の第2熱電材料と、前記第1熱電材料と前記第2熱電材料との間に形成され、その一部が前記第1絶縁膜に接触した複数の第1電極と、前記第1熱電材料と前記第2熱電材料との間の前記断熱膜上に形成された複数の第2電極とを具備し、前記第1熱電材料と前記第2熱電材料とが交互に直線状に配置され、前記第1電極と前記第2電極とが前記第1熱電材料と前記第2熱電材料との間に交互にそれぞれ配置されていることを特徴とする。
また、この発明の第4の態様の半導体装置は、第1主面と前記第1主面の反対側の第2主面を有する半導体基板と、前記半導体基板の前記第1主面上に形成された集積回路と、前記半導体基板の前記第2主面上に形成された第1絶縁膜と、前記第1絶縁膜上に離隔して形成された第1、第2下部電極と、前記第1下部電極上に形成された第1導電型の半導体材料からなる第1熱電材料と、前記第2下部電極上に形成された第2導電型の半導体材料からなる第2熱電材料と、前記第2下部電極上に前記第2熱電材料と離隔して形成された第1導電型の半導体材料からなる第3熱電材料と、前記第1熱電材料上及び前記第2熱電材料上に形成された第1上部電極と、前記第3熱電材料上に前記第1上部電極と離隔して形成された第2上部電極とを具備することを特徴とする。
この発明は、外部からの力に強く、酸化及び結露などによる劣化が起こりにくく、少ない消費電力で対象物を冷却する冷却素子または対象物から発生する熱を用いて発電を行う発電素子として働く熱電素子を含む半導体装置及びその製造方法を提供する。
以下、図面を参照してこの発明の実施形態について説明する。説明に際し、全図にわたり、共通する部分には共通する参照符号を付す。
[第1の実施形態]
まず、この発明の第1の実施形態の熱電素子を含む半導体装置及びその製造方法について説明する。
図1は、第1の実施形態の熱電素子の構造を示す断面図であり、シリコン基板上に作成した熱電素子の断面を示している。
図1に示すように、シリコン半導体基板11上には絶縁膜12が形成され、この絶縁膜12上には複数の下部電極13が離隔して形成されている。下部電極13上及び絶縁膜12上には層間絶縁膜14が形成され、下部電極13上の層間絶縁膜14に形成された穴には、P型熱電材料15AとN型熱電材料15Bがそれぞれ埋め込まれている。さらに、P型熱電材料15A上及びN型熱電材料15B上には、上部電極16が形成されている。そして、これら下部電極13、P型熱電材料15A、N型熱電材料15B、及び上部電極16は、図1に示すようにチェーン状に接続されている。すなわち、下部電極13、N型熱電材料15B、上部電極16、P型熱電材料15A、下部電極13は、この順序で電気的に接続されており、チェーン状熱電素子を構成している。
言い換えると、第1の下部電極13上にはN型熱電材料15Bが形成され、第1の下部電極13に隣接する第2の下部電極13上にはP型熱電材料15A、及びN型熱電材料15Bが形成されている。第1の下部電極13上のN型熱電材料15B上と、第2の下部電極13上のP型熱電材料15A上には、第1の上部電極16が形成されている。さらに、第2の下部電極13上のN型熱電材料15B上には、第2の上部電極16が形成されている。また、第1、第2の上部電極16上には、絶縁膜17が形成されている。
熱電素子を半導体のプロセスと同様の方法でシリコン基板上に作成すると、各エレメント(熱電材料)の一辺は10[μm]以下まで微小化できる。これは、従来の熱電素子に使われているエレメントの10分の1から100分の1程度のサイズである。
図2はP型熱電材料15A及びN型熱電材料15Bからなる1つのエレメント対の斜視図であり、図3はシリコン基板上にエレメント対が複数配列された熱電素子を示す斜視図である。図2に示すように、P型熱電材料15A及びN型熱電材料15Bの縦、横、高さのサイズはともに数μm程度である。また、図3に示すように、シリコン基板上の熱電素子の縦、横のサイズはともに、例えば1mm以下であり、このシリコン基板上にP型熱電材料15A及びN型熱電材料15Bからなるエレメント対が多段に積層された熱電素子の高さは例えば100μm以下となる。なお、図3には1段目のエレメント対のみを示した。また、エレメント間(P型熱電材料15AとN型熱電材料15B間)、及びエレメントの周囲はすべて絶縁膜で満たされているが、図3ではその絶縁膜を省略している。
エレメントが微小化すると、微小な電子デバイスにも使用でき、また従来通りの素子サイズであるならばエレメント数が増加し、発生電圧の向上につながるといった利点がある。例えば、断面積が1×1[μm]のエレメントでP型とN型の対を作成し、シリコン基板底面が1×1[mm]だとすると、その中に10個程度の対が直列につながっていることになる。
各P型、N型エレメントの形状は従来通りの直方体でも、または円柱状にしても良いが、P型エレメントとN型エレメントの断面積比、及び高さ比がエネルギー変換効率に影響を及ぼす。熱電素子は各P型、N型エレメントの形状が式(1)の関係を満たすとき、エネルギー変換効率が最大となる。
Figure 2007095897
なお、Ap[m]はP型熱電材料の断面積を示し、An[m]はN型熱電材料の断面積を示す。また、hp[m]はP型熱電材料の高さを示し、hn[m]はN型熱電材料の高さを示す。ρ[Ω/m]はP型熱電材料の電気抵抗率を示し、ρ[Ω/m]はN型熱電材料の電気抵抗率を示す。κ[W/Km]はP型熱電材料の熱伝導度を示し、κ[W/Km]はN型熱電材料の熱伝導度を示す。
図1に示すような熱電素子は各エレメントの高さが一定であるので、断面積比が式(1)を満たす形状をとるように形成する。例えば、鉛(Pb)をドーピングしたBiTeをP型熱電材料として、CuIをドーピングしたBiTeをN型熱電材料として用いた場合には、断面積比はAp:An=1:0.9〜1.2程度が最適である。同様に、Ag(P型)とSb(N型)をそれぞれドーピングしたMg2Si0.6Ge0.4ではAp:An=1:0.4〜0.7程度が最適であり、B(P型)とP(N型)をそれぞれドーピングしたSiGeではAp:An=1:0.8〜1.0程度が最適となる。
前述した断面積Ap、Anを求めるために用いた物性値は以下の通りである(300K〜400K付近)。BiTeのn型では、ρ=1.4×10−5Ω/m程度、κ=1.2W/Km程度であり、p型ではρ=1.2×10−5Ω/m程度、κ=1.0W/Km程度である。MgSi0.6Ge0.4のn型では、ρ=1.4×10−5Ω/m程度、κ=2.1W/Km程度であり、p型ではρ=5.6×10−5Ω/m程度、κ=2.3W/Km程度である。SiGeのn型では、ρ=0.8×10−5Ω/m程度、κ=5.0W/Km程度であり、p型ではρ=1.0×10−5Ω/m程度、κ=5.8W/Km程度である。
一対のP型エレメントとN型エレメントからなる熱電素子を発電素子として使用した場合に発生する電力を見積もると以下のようになる。計算では、熱電材料としてB(P型)とP(N型)をそれぞれドーピングしたSiGeの熱電特性(ゼーベック係数[V/K]、電気抵抗率[Ω/m]、熱伝導度[W/Km])を文献より引用した。
ここで、P型、N型エレメントはそれぞれ1×1×1[μm]の立方体であり、外部抵抗と内部抵抗の比は変換効率が最大となるような値をとると仮定した。その結果、室温付近(300K〜400K)で高温部(上部接合電極)と低温部(下部分岐電極)の温度差を数十℃程度と設定した場合、10[mA]程度の電流が発生する。また、図1に示したように、エレメント対を数千対チェーン状につないだ場合、数[V]程度の電圧が発生する。
また、P型、N型エレメントはそれぞれ100×100×100[nm]の立方体であり、外部抵抗と内部抵抗の比は変換効率が最大となるような値をとると仮定した。その結果、室温付近(300K〜400K)で高温部と低温部の温度差を数十℃程度と設定した場合、1[mA]程度の電流が発生する。また、図1に示したように、エレメント対を数万対チェーン状につないだ場合、数十[V]程度の電圧が発生する。
なお、熱電素子の素子形状を最適化することで、さらに高い発生電力を得ることが可能である。
次に、この発明の第1の実施形態の熱電素子の製造方法について説明する。
図4〜図11は、第1の実施形態の熱電素子の製造方法を示す各工程の断面図である。
まず、図4に示すように、シリコン基板11上に、絶縁膜(例えば、シリコン酸化膜(SiO))12を熱酸化法またはCVD法により成膜する。後述するTiN/Tiとのエッチング選択比を考慮すると、絶縁膜12の膜厚は10nm程度まで減らすことができ、また熱の伝え易さを考慮すると、絶縁膜12の膜厚は薄いほうがよい。このため、絶縁膜12の膜厚は10nm程度とする。
次に、絶縁膜12上に、CVD法またはスパッタ法によりTiN/Tiなどの高融点金属を堆積する。そして、図5に示すように、リソグラフィ法により高融点金属を所定領域毎に形成して、下部電極13を形成する。下部電極13の膜厚は数十nm程度とする。
図5に示した構造上に、図6に示すように、CVD法により絶縁膜(例えば、シリコン酸化膜(SiO))14を成膜する。そして、図7に示すように、熱電材料が形成される領域に、穴(ホール)14A、14Bをリソグラフィ法によって形成する。ここで、P型熱電材料15Aが形成される領域とN型熱電材料15Bが形成される領域の形状が式(1)を満たすように、穴14Aと14Bは2回に分けて2通りのサイズで形成する。続いて、図8に示すように、穴14A、14B内及び層間絶縁膜14上に、熱電材料15、例えばSiGe膜を形成する。その後、図9に示すように、CMP法などを用いた平坦化処理により、層間絶縁膜14上の熱電材料15を研磨し、余分な熱電材料15を除去する。
次に、穴14A、14Bに埋め込まれた熱電材料15に、図10に示すように、ボロン(B)またはリン(P)をイオン注入し、それぞれP型またはN型特性を示すように熱活性化して、P型熱電材料15AとN型熱電材料15Bを形成する。その後、図11に示すように、P型熱電材料15AとN型熱電材料15Bとがチェーン状に接続されるように、P型熱電材料15A上及びN型熱電材料15B上に上部電極16を形成する。さらに、上部電極16上及び層間絶縁膜14上に、絶縁膜17を成膜する。
このような製造方法により製造された熱電素子の場合、エレメント間(P型熱電材料15AとN型熱電材料15B間)、及びエレメントの周囲はすべて層間絶縁膜14で満たされており、従来のチェーン状の熱電素子に比べて、外部からの圧力に対する強度が強くなると共に、酸化や結露が起こり難くなる、すなわち強度、耐酸化、耐結露といった面が改善される。
熱電材料はその種類により変換効率が最大となる温度領域が異なるため、素子の使用温度で材料を使い分けるのが一般的である。しかし、変換効率が最大となる温度領域以外でも熱電特性がまったく期待できないということはなく、変換効率が最大となる温度領域以外でも合金化のし易さ、コストなどの条件を考慮した上で材料を選択するのが良い。その一方で、熱電素子を作成する際には、耐熱、耐酸化、耐応力といった観点からP型熱電材料とN型熱電材料が同じ系の材料であることが重要である。同じ系とは主に同じ結晶構造を持つことを意味し、P型とN型はまったく別の元素から構成されていても良い。
現在、研究されている熱電材料は3元系、4元系といった複雑な化合物であり、これらを用いるのはドーピングをすることなく、P型またはN型の特性を示すからである。しかし、この実施形態では、上記のようにドーパントを注入するまではP型領域とN型領域を同時に成膜するため、P型熱電材料とN型熱電材料が同じ材料を母材にしていなければならない。上記の方法で作成できる熱電材料とそのドーパントの例を表1に示す。
Figure 2007095897
第1の実施形態の熱電素子では、熱電素子をシリコン基板上に作成することにより、各P型、N型エレメントを従来の10分の1から100分の1程度まで微小化できる。エレメントの微小化は熱電素子の微小化につながり、さらに広い分野での使用が期待できる。すなわち、微細な熱電素子を形成することができ、さらに熱電素子を微細化できれば、電子・電気機器等の対象物の形成を変えずに熱電素子を対象物に取り付けできるという利点がある。
また、エレメントの微小化により素子を構成するエレメント数が増えることは、発生電圧の向上につながる。シリコン基板上であっても、従来通りカスケード型、セグメント型といった複雑な熱電素子の形成が可能である。本実施形態では半導体プロセスの成膜方法で熱電素子を作成するため、複雑な形状の素子の作成が容易になる。また、LSIの裏面に微小で複雑な構造の熱電素子を取り付けることにより、熱電変換効率の向上が望める。
また、本実施形態では、シリコン基板上に熱電素子を作成するため、シリコン基板内に銅(Cu)のプラグを容易に作成できる。このため、熱電素子と電源や負荷とをつなぐ配線には銅(Cu)のプラグを用いれば良く、熱電素子と電源や負荷とをつなぐ配線の作成が容易である。
[第2の実施形態]
次に、この発明の第2の実施形態の熱電素子を含む半導体装置及びその製造方法について説明する。前記第1の実施形態における構成と同様の部分には同じ符号を付してその説明は省略する。
熱電素子を発電素子として用いた場合、高温接合部と低温接合部の温度差が大きい時には、図1に示したチェーン状の熱電素子を2段以上に重ねたカスケード型熱電素子が効果的である。
図12は、第2の実施形態の熱電素子の構造を示す断面図であり、カスケード型熱電素子をシリコン基板上に作成したものである。
第1の実施形態と同様に、シリコン半導体基板11上には、P型熱電材料15AとN型熱電材料15Bがチェーン状に接続されている。すなわち、下部電極13、N型熱電材料15B、上部電極16、P型熱電材料15A、下部電極13は、この順序で電気的に接続されており、チェーン状熱電素子を構成している。上部電極16上には絶縁膜17が形成され、絶縁膜17上には複数の下部電極18が離隔して形成されている。
下部電極18上及び絶縁膜17上には、層間絶縁膜19が形成され、下部電極18上の層間絶縁膜19に形成された穴には、P型熱電材料20AとN型熱電材料20Bがそれぞれ埋め込まれている。P型熱電材料20A上及びN型熱電材料20B上には、上部電極21がそれぞれ形成されている。これら下部電極18、P型熱電材料20A、N型熱電材料20B、及び上部電極21は、図12に示すようにチェーン状に接続されている。すなわち、上部電極21、N型熱電材料20B、下部電極18、P型熱電材料20A、上部電極21は、この順序で電気的に接続されており、チェーン状熱電素子を構成している。
言い換えると、第1の下部電極18上にはN型熱電材料20B、及びP型熱電材料20Aが形成され、第1の下部電極18に隣接する第2の下部電極18上にもN型熱電材料20B、及びP型熱電材料20Aが形成されている。第1の下部電極18上のN型熱電材料20B上には第1の上部電極21が形成されている。第1の下部電極18上のP型熱電材料20A上と、第2の下部電極18上のN型熱電材料20B上には第2の上部電極21が形成されている。さらに、第2の下部電極18上のP型熱電材料20A上には第3の上部電極21が形成されている。また、第1、第2の上部電極21上には、絶縁膜22が形成されている。なお、絶縁膜22が高温部であり、シリコン基板11が低温部であってもよいし、あるいは絶縁膜22が低温部であり、シリコン基板11が高温部であってもよい。
第1の実施形態で述べたように、熱電材料はその種類により熱電変換効率が最大となる温度領域が異なるため、素子の温度勾配に応じて熱電材料の種類を選択する。例えば、図12に示す素子では、絶縁膜22が高温部、シリコン基板11が低温部とした場合、高温となる上段に配置されたP型熱電材料20AとN型熱電材料20Bには高温で高い性能を示す熱電材料を用い、低温となる下段に配置されたP型熱電材料15AとN型熱電材料15Bには低温で高い性能を示す熱電材料を用いる。例えば、表1に示したように、P型熱電材料20Aにはボロン(B)が導入されたSiまたはSiGe1−Xを、N型熱電材料20Bにはリン(P)あるいはヒ素(As)が導入されたSiまたはSiGe1−Xを用い、P型熱電材料15Aには鉛(Pb)が導入されたBiTeまたはナトリウム(Na)が導入されたPbTeを、N型熱電材料15BにはCulが導入されたBiTeまたはPbIが導入されたPbTeを用いる。また、このとき、各エレメントは熱電変換効率が最大となるような形状を持つ(式(1)を満たす)。
また、熱電素子を冷却素子として用いた場合では、多段の冷却素子が効果的である。シリコン基板上に作成した多段冷却素子を図13に示す。この多段冷却素子は、シリコン基板上の1段目に4対の熱電冷却素子が形成され、2段目に2対の熱電冷却素子が形成され、さらに3段目に1対の熱電冷却素子が形成されている。
図13に示す多段冷却素子は以下のような構造を有する。図12に示した熱電素子と同様に、シリコン基板11上には、P型熱電材料15AとN型熱電材料15Bがチェーン状に接続されている。すなわち、下部電極13、N型熱電材料15B、上部電極16、P型熱電材料15A、下部電極13は、この順序で電気的に接続されており、チェーン状冷却素子を構成している。
上部電極16上には、絶縁膜17が形成されている。絶縁膜17上には、複数の下部電極18が離隔して形成されている。下部電極18上及び絶縁膜17上には層間絶縁膜19が形成され、下部電極18上の層間絶縁膜19に形成された穴には、P型熱電材料20AとN型熱電材料20Bがそれぞれ埋め込まれている。P型熱電材料20A上及びN型熱電材料20B上には、上部電極21が形成されている。P型熱電材料20AとN型熱電材料20Bはチェーン状に接続されている。すなわち、下部電極18、P型熱電材料20A、上部電極21、N型熱電材料20B、及び下部電極18は、この順序で電気的に接続されており、チェーン状冷却素子を構成している。
上部電極21上には、絶縁膜22が形成されている。絶縁膜22上には、2つの下部電極23が離隔して形成されている。下部電極23上及び絶縁膜22上には層間絶縁膜24が形成され、下部電極23上の層間絶縁膜24に形成された穴には、P型熱電材料25AとN型熱電材料25Bがそれぞれ埋め込まれている。P型熱電材料25A上及びN型熱電材料25B上には、上部電極26が形成されている。P型熱電材料25AとN型熱電材料25Bはチェーン状に接続されている。すなわち、下部電極23、P型熱電材料25A、上部電極26、N型熱電材料25B、及び下部電極23は、この順序で電気的に接続されており、チェーン状冷却素子を構成している。また、上部電極26上には、絶縁膜27が形成されている。なお、絶縁膜27が吸熱部であり、シリコン基板11が放熱部である。
1段目の一端側に配置された第1のN型熱電材料15Bには第1の下部電極13が接続され、この第1の下部電極13は電源POの正電極に接続されている。第1のN型熱電材料15Bは、第1の上部電極16を介して第1のP型熱電材料15Aに接続され、この第1のP型熱電材料15Aは第2の下部電極13を介して第2のN型熱電材料15Bに接続されており、N型熱電材料15BとP型熱電材料15Aとがチェーン状に接続されている。
1段目の他端側に配置されたP型熱電材料15Aに接続された下部電極13は、2段目の他端側に配置された第1の下部電極18に接続されている。第1の下部電極18には、第1のP型熱電材料20Aが接続されている。第1のP型熱電材料20Aは、第1の上部電極21を介して第1のN型熱電材料20Bに接続され、この第1のN型熱電材料20Bは第2の下部電極13を介して第2のP型熱電材料20Aに接続されており、P型熱電材料20AとN型熱電材料20Bとがチェーン状に接続されている。
2段目の一端側に配置されたN型熱電材料20Bに接続された下部電極18は、3段目の一端側に配置された第1の下部電極23に接続されている。第1の下部電極23には、P型熱電材料25Aが接続されている。このP型熱電材料25Aは、上部電極26を介してN型熱電材料25Bに接続され、N型熱電材料25Bは他端側に配置された第2の下部電極23に接続されている。そして、3段目の第2の下部電極23は、電源POの負電極に接続されている。
一段の熱電冷却素子で達成できる吸熱部と放熱部間の最大温度差には限界があり、図13に示すように、多段にすることによってさらに大きな温度差が達成できる。すなわち、一段の熱電冷却素子で冷却できる温度には限界があり、図13に示すように、多段にすることによってさらに高温のものを冷却することができる。この場合、上段の冷却素子が絶縁膜27に接触している外部の物質から吸収した熱量と、上下段の接合部で電流によって発生するジュール熱を下段の冷却素子が吸収しなければならないので、図13に示したような階段状となる。
また、図13には冷却すべき部位が絶縁膜27上にある場合の多段冷却素子を示したが、冷却すべき部位がシリコン基板上にある場合、階段状の多段冷却素子は、図14に示すように、シリコン基板に近いほど、エレメント(素子)対数が減る形状としてもよい。この多段冷却素子は、図14に示すように、シリコン基板11上の1段目に1対の熱電冷却素子が形成され、2段目に2対の熱電冷却素子が形成され、さらに3段目に4対の熱電冷却素子が形成されている。なお、シリコン基板11が吸熱部であり、絶縁膜27が放熱部である。
[第3の実施形態]
次に、この発明の第3の実施形態の熱電素子を含む半導体装置について説明する。前記第1の実施形態における構成と同様の部分には同じ符号を付してその説明は省略する。この第3の実施形態では、セグメント型の熱電素子を示す。
図15は、第3の実施形態の熱電素子の構造を示す断面図である。
下部電極13A上にはP型熱電材料15A−1が形成され、このP型熱電材料15A−1上にはP型熱電材料15A−2が形成されている。下部電極13B上にはN型熱電材料15B−1が形成され、このN型熱電材料15B−1上にはN型熱電材料15B−2が形成されている。P型熱電材料15A−2上とN型熱電材料15B−2上には、上部電極16が形成されている。そして、下部電極13Aと下部電極13Bとの間には、負荷Rが接続されている。
熱電素子を発電素子として用いた場合には、図15に示すようなセグメント型熱電素子も効果的である。この場合も、素子の温度勾配を考慮し、使用温度に適したP型、N型熱電材料を選択する。例えば、上部電極(接合端)16が高温、下部電極13A、13B(分岐端)が低温である場合、P型熱電材料15A−2とN型熱電材料15B−2は高温で高い性能を示す材料を用い、P型熱電材料15A−1とN型熱電材料15B−1は低温で高い性能を示す材料を用いる。そして、選択した2種類以上の各P型、N型熱電材料を、図15に示すようにそれぞれを直列につなぐ。通常のセグメント型熱電素子は、各P型、N型熱電材料を2種類以上直列につないで用いる。しかし、シリコン基板上では図15示すx−y方向(シリコン基板面方向)に大きい素子が形状面からも作成方法の観点からも適当であるため、図15示したセグメント型熱電素子も、図16示すようにチェーン状に並べて、発生電圧を向上させる効果を狙う。
図16示すように、シリコン半導体基板11上には絶縁膜12が形成され、この絶縁膜12上には複数の下部電極13が離隔して形成されている。下部電極13上及び絶縁膜12上には、層間絶縁膜14Aが形成されている。下部電極13上の層間絶縁膜14Aに形成された穴には、P型熱電材料15A−1とN型熱電材料15B−1がそれぞれ埋め込まれている。また、層間絶縁膜14A上には層間絶縁膜14Bが形成されている。P型熱電材料15A−1上の層間絶縁膜14Bに形成された穴にはP型熱電材料15A−2が埋め込まれ、P型熱電材料15B−1上の層間絶縁膜14Bに形成された穴には、N型熱電材料15B−2が埋め込まれている。
P型熱電材料15A−2上及びN型熱電材料15B−2上には、上部電極16が形成されている。そして、これら下部電極13、P型熱電材料15A−1、15A−2、N型熱電材料15B−1、15B−2、及び上部電極16は、図16に示すようにチェーン状に接続されている。すなわち、下部電極13、N型熱電材料15B−1、15B−2、上部電極16、P型熱電材料15A−2、15A−1、下部電極13は、この順序で電気的に接続されており、チェーン状熱電素子を構成している。
言い換えると、第1の下部電極13上にはN型熱電材料15B−1、15B−2が形成され、第1の下部電極13に隣接する第2の下部電極13上にはP型熱電材料15A−1、15A−2、及びN型熱電材料15B−1、15B−2が形成されている。第1の下部電極13上のN型熱電材料15B−2と、第2の下部電極13上のP型熱電材料15A−2上には第1の上部電極16が形成されている。第2の下部電極13上のN型熱電材料15B−2上には、第2の上部電極16が形成されている。また、第1、第2の上部電極16上には、絶縁膜17が形成されている。
各エレメントの形状は、ここでも式(1)を満たすように設定すべきである。通常のセグメント型は、図15に示すように、P型、N型エレメントのそれぞれにおいて一定の断面積をとり、熱電変換効率が最大となるようにP型とN型が独立して各材料の長さを決める。つまり、図16においても、P型熱電材料15A−1と15A−2は同じ断面積を持ち、N型熱電材料15B−1と15B−2も同じ断面積を持つ。しかし、シリコン基板上にこのような素子を作成する場合、P型エレメントとN型エレメントが独立して15A−1と15A−2あるいは15B−1と15B−2の長さを決めることは困難であり、P型熱電材料15A−1とN型熱電材料15B−1、P型熱電材料15A−2とN型熱電材料15B−2が同じ長さとなってしまう。このような場合、各エレメントが式(1)を満たすことは難しくなる。
そこで、図16に示したセグメント型熱電素子を、図17に示すような構造に応用する。このセグメント型熱電素子は、P型熱電材料15A−1とN型熱電材料15B−1の長さが同じであり、またP型熱電材料15A−2とN型熱電材料15B−2の長さが同じである。さらに、P型熱電材料及びN型熱電材料の断面積が式(1)を満たすように設定されている。
図17に示したセグメント型熱電素子はシリコン基板上に作成されるため、P型熱電材料15A−1とP型熱電材料15A−2が異なる断面積を持つように、またN型熱電材料15B−1とN型熱電材料15B−2とが異なる断面積を持つように作成できる。
図18〜図22に、図17に示したセグメント型熱電素子の製造方法を示す。図18は、図4〜図10に示したのと同様の手順で作成したものである。その後、図18に示した構造上に、図19に示すように、絶縁膜(例えば、SiO)14Bを成膜する。さらに、図20に示すように、リソグラフィ法により、層間絶縁膜14BのP型熱電材料15A−2及びN型熱電材料15B−2が形成される領域に穴を作成する。このとき、作成される穴の断面積は、使用するエレメントが式(1)を満たすように設定される。この穴に熱電材料膜を形成し、各ドーパントをイオン注入する。その後、熱活性化して、図21に示すように、P型熱電材料15A−2、N型熱電材料15B−2を形成する。
最後に、図22に示すように、P型熱電材料15A−2とN型熱電材料15B−2とがチェーン状に接続されるように、P型熱電材料15A−2上及びN型熱電材料15B−2上に上部電極16を作成する。さらに、上部電極16上に絶縁膜17を成膜する。以上により、図17に示したセグメント型熱電素子が製造できる。
[第4の実施形態]
次に、この発明の第4の実施形態の熱電素子を含む半導体装置について説明する。前記第1の実施形態における構成と同様の部分には同じ符号を付してその説明は省略する。
図23は、第4の実施形態の熱電素子の構造を示す断面図であり、シリコン基板上に形成した横型熱電素子を示している。
熱電素子を高温のシリコン基板上で発電素子として用いる場合、直方体または円柱状の各エレメントを横に倒し、シリコン基板上に線状につないだ構造としても、熱電素子から発電効果が得られる。第3の実施形態でも述べたように、シリコン基板上では図23に示すx−y方向(シリコン基板面方向)に大きく、z方向(シリコン基板面に直交する方向)に小さい素子が適当であるため、この横型発電素子はより有効である。
シリコン基板11上にはシリコン窒化膜31が形成され、このシリコン窒化膜31上には、絶縁膜である断熱膜32が形成されている。断熱膜32には、シリコン酸化膜(SiO)より熱伝導度が一桁程度低い低誘電率絶縁膜(Low-k膜)、例えば、SiOC、SiOF、Si-(CH)などを使用する。断熱膜32上には、P型熱電材料33AとN型熱電材料33Bとが交互に線状に配置されている。交互に配置されたP型熱電材料33AとN型熱電材料33Bとの間には電極34A、34Bが交互にそれぞれ挿入されている。電極34A、34Bのうち、その半数に当たる電極34Bは断熱膜(低誘電率絶縁膜)32を突き抜け、高温となるシリコン窒化膜31と接している。残り半数の電極34Aは、断熱膜32に接しているが、断熱膜32を突き抜けておらず、シリコン窒化膜31と接していない。
シリコン窒化膜31と接する電極34Bは、シリコン窒化膜31が高温となったとき、シリコン窒化膜31から熱を受け取り高温となる。一方、シリコン窒化膜31と接しない電極34Aはシリコン窒化膜31との間に断熱膜32を挟むため、外部とほぼ同じ温度となる。このようにして、P型熱電材料33AとN型熱電材料33Bとの接合部に温度差をつける。この温度差から熱電変換が起こり、電力が発生する。
この構造において、P型熱電材料33AとN型熱電材料33Bの断面積は一定である。そこで、式(1)を満たすように、各熱電材料の長さを調節する。すなわち、挿入する電極34A、34Bの位置を調節して、P型熱電材料33AとN型熱電材料33Bの長さを調節する。例えば、PbをドーピングしたBiTeをP型熱電材料として用い、CuIをドーピングしたBiTeをN型熱電材料として用いた場合には、長さ比はhp:hn=1:0.8〜1.1程度が最適である。hpはP型熱電材料の長さを示し、hnはN型熱電材料の長さを示す。同様に、Ag(P型)とSb(N型)をそれぞれドーピングしたMgSi0.6Ge0.4ではhp:hn=1:1.3〜3.0程度が最適となり、B(P型)とP(N型)をそれぞれドーピングしたSiGeではAp:An=1:1.0〜1.2程度が最適となる。
図23に示した線状に配列された横型発電素子を、図24に示すように、シリコン基板上に平行に複数形成する。これら線状の横型発電素子を電気的に並列に接続すると、さらに高い熱電変換効果を得ることができる。
次に、図24に示した横型発電素子の製造方法について説明する。以下に、横型発電素子の2通りの製造方法を、図25〜図31と図32〜図40に示す。
図25〜図31に示す第1の製造方法は以下の通りである。まず、図25に示すように、シリコン基板11上にシリコン窒化膜31と断熱膜(低誘電率絶縁膜)32を成膜する。続いて、電極34Bをシリコン窒化膜31と接触させるために、図26に示すように、電極34B用の穴を断熱膜32にリソグラフィ法によって作成する。
図26に示した構造上に、図27に示すように、熱電材料膜33を成膜する。続いて、図28に示すように、電極が形成される領域となる溝34を線状に作成する。半数の電極34Bはシリコン窒化膜31と接し、残り半数の電極34Aはシリコン窒化膜31と接しないことから、溝の深さは2通りである。また、P型熱電材料33AとN型熱電材料33Bとの長さ比が式(1)を満たすように、シリコン窒化膜31と接しない電極34A用の溝の位置を設定する。
図28に示した構造上に、電極用材料を成膜し、CMPなどによって平坦化処理を施して、図29に示すように、電極用溝内に電極34A、34Bを形成する。次に、熱電素子を線状に形成するため、図30に示すように、リソグラフィ法により熱電材料膜33及び電極34A、34Bを加工し、熱電素子の形を整える。最後に、図31に示すように、熱電材料膜33にP型とN型のドーパントをそれぞれイオン注入し、熱活性化して、P型熱電材料33AとN型熱電材料33Bを形成する。以上により、図24に示した横型発電素子が製造できる。
次に、図32〜図40に示す第2の製造方法について説明する。図32と図33に示す工程は、図25と図26に示した工程と同様である。その後、図34に示すように、断熱膜32上に絶縁膜(例えば、SiO)35を成膜する。続いて、図35に示すように、熱電材料が形成される領域となる線状の溝をリソグラフィ法により形成する。図35に示した構造上に、図36に示すように熱電材料膜33を成膜する。そして、成膜した熱電材料膜33をCMPで平坦化して、図37に示すように、線状の溝に熱電材料33を形成する。
その後、図38に示すように、電極が形成される領域となる溝34を形成する。このとき、溝34の深さは、電極34A用と電極34B用の2通りである。P型熱電材料33AとN型熱電材料33Bとの長さ比は熱電変換効率が最大となる値をとるように設定する。このとき、電極34B用の溝を等間隔で配置し、電極34A用の溝の位置を電極34B間で調整することにより、P型熱電材料33AとN型熱電材料33Bとの長さ比を調整する。続いて、図39に示すように、溝34に電極用材料を形成する。その後、図40に示すように、熱電材料膜33にP型とN型のドーパントをそれぞれイオン注入し、熱活性化して、P型熱電材料33AとN型熱電材料33Bを形成する。以上により、図24に示した横型発電素子が製造できる。
[第5の実施形態]
次に、この発明の第5の実施形態の熱電素子を含む半導体装置について説明する。前記第4の実施形態における構成と同様の部分には同じ符号を付してその説明は省略する。図24に示した横型発電素子は、図41に示すように、二段に重ねた構造(横型二段発電素子)を取ることも可能である。
図41は、第5の実施形態の横型二段発電素子の構造を示す斜視図である。
図24に示した構造上には、絶縁膜36が形成されている。この絶縁膜36上には、P型熱電材料37AとN型熱電材料37Bとが交互に線状に配置されている。線状のP型熱電材料37A及びN型熱電材料37Bは、一段目の線状のP型熱電材料33A及びN型熱電材料33Bに対して直交する方向に形成されている。交互に配置されたP型熱電材料37AとN型熱電材料37Bとの間には電極38A、38Bが交互にそれぞれ挿入されている。電極38A、38Bのうち、その半数に当たる電極38Bは断熱膜(低誘電率絶縁膜)32を突き抜け、高温となるシリコン窒化膜31と接している。残り半数の電極38Aは、絶縁膜36に接しているが、絶縁膜36を突き抜けておらず、シリコン窒化膜31と接していない。
このように、横型発電素子を二段に重ねることによって、さらに高い電力を得ることができる。その際、一段目の横型発電素子と二段目の横型発電素子との間には絶縁膜36があり、一段目と二段目は電気的に独立である。
図41に示した発電素子のa面で切った断面図を図42に示す。二段目の高温電極用としてあらかじめ一段目の絶縁膜35中にシリコン窒化膜31と接する電極34Bを作成しておき、図42に示したように電極を通して二段目まで熱が運ばれるようにする。高温電極は途中で絶縁膜を挟むが、熱的には連続である。
図43、図44は、図41に示した横型二段発電素子の製造方法を示す斜視図である。
一段目の作成方法は、図25〜図31、または図32〜図40で示した工程とほぼ同様である。途中、図26または図33に示したように、断熱膜32に電極34B用の穴を作成する際、図43に示すように、二段目の高温電極(電極38B)に高温を伝達するための電極34B用の穴も作成しておく必要がある。図25〜図31に示した第1の製造方法では、図31に示した工程の後、図44に示すように、各熱電素子間に絶縁膜を成膜し、平坦化処理を施した後、一段目と同様の方法で二段目を形成する。図32〜図40に示した第2の製造方法では、図40に示した工程の後、図44に示すように、絶縁膜を成膜し、その上に二段目の横型発電素子を作成する。以上により、図41に示した横型2段式発電素子が製造できる。
[第6の実施形態]
次に、この発明の第6の実施形態の熱電素子を含む半導体装置について説明する。前記第1の実施形態における構成と同様の部分には同じ符号を付してその説明は省略する。
本実施形態では、熱電素子はすべてシリコン基板上に作成されることから、集積回路が形成されたシリコン基板の裏面、すなわちLSIの裏面に作成することも可能である。よって、ここからはLSIの裏面に作成された熱電変換装置を備えた半導体装置について述べる。なお、LSIの裏面とは、シリコン基板の集積回路が形成された主面と反対側の主面をさす。
図45は、第6の実施形態の熱電素子の構造を示す断面図であり、図1に示したような熱電素子をLSIの裏面に作成した例を示す。
シリコン半導体基板11の第1主面には大規模集積回路(LSI)が形成されている。第1主面の反対側の第2主面上には、図45に示すように、P型熱電材料15AとN型熱電材料15Bとがチェーン状に接続された熱電素子が形成されている。
LSIは動作時に発熱があり、この発熱に対し、LSIの裏面に熱電素子を形成することにより、二通りの効果を得ることができる。
まず、一つ目はLSIからの発熱を冷却する冷却効果である。冷却素子はファンなどよりも消費電力が大きいため、冷却素子自体の低消費電力化が必要である。そこで、第1の実施形態から第5の実施形態で述べたような微小で複雑な構造を持つ冷却素子をLSIの裏面に作ることにより、低消費電力型の冷却素子が実現できる。
二つ目は、LSIからの発熱を利用した発電効果である。LSIの裏面に発電素子を作成することで、LSIから発生した熱を電力に変換する。その電力を利用することにより、低消費電力化に貢献する。
また、微小な素子では、冷却素子で使用する電力や発電素子で発生した電力を運ぶ配線の作成が困難である。しかし、本実施形態では、シリコン基板上に熱電素子(発電素子または冷却素子)を作成するため、シリコン基板内に銅(Cu)のプラグを容易に通すことができる。このため、銅のプラグを使用して電力の輸送を容易に行える。ゆえに、微細な素子における電力輸送といった点からもシリコン基板上の熱電素子は有効である。
また、LSIの裏面に作成した場合でも、図1に示した熱電素子、図12に示したカスケード型発電素子、図13に示した多段冷却素子、図17に示したセグメント型熱電素子、図24に示した横型発電素子、図41に示した横型二段発電素子といった複雑な熱電素子の作成が可能である。
LSIの裏面に、それぞれ図1に示した熱電素子を形成した例を図46に、図12に示したカスケード型発電素子を形成した例を図47に、図13に示した多段冷却素子を形成した例を図48に、図17に示したセグメント型熱電素子を形成した例を図49に、図24に示した横型発電素子を形成した例を図50に、図41に示した横型二段発電素子を形成した例を図51に示す。このように、LSIの裏面にこれらのような微細で複雑な構造を持つ熱電素子を作成することにより、LSIのさらに高い性能を引き出すことができる。
従来のLSI用の熱電素子では、熱電素子を組み立てた後、使用部位にその熱電素子を取り付けるといった方法が一般的であり、熱電素子を取り付けることで微小なLSIを大きくしてしまうことになる。しかし、本実施形態ではシリコン基板上(LSIの裏面上)に直接、熱電素子を作成するため、LSIのサイズに影響はない、すなわちLSIを大きくしてしまうことはない。よって、LSIのパッケージには従来のものを使用することができる。
次に、LSIの裏面に作成する熱電素子に適した熱電材料について説明する。LSIから発生する熱は数十℃程度であり、表1から低温領域のTe系化合物が最適であることがわかる。しかし、Te系化合物はトランジスタなどに悪影響を及ぼす可能性がある。また、中温領域で使用されるMgSi0.6Ge0.4やFeSiは半導体プロセスには不適である。そこで、SiGeまたはSiが適切であると考えられる。第5の実施形態で述べたように、SiGeを熱電材料に用いれば、100℃以下でも、高温部と低温部に数十℃程度の温度差を付ければ、数[mA]程度の電流と数[V]〜数十[V]の電圧を得ることができる。
[第7の実施形態]
次に、この発明の第7の実施形態の熱電素子を含む半導体装置について説明する。前記第1の実施形態における構成と同様の部分には同じ符号を付してその説明は省略する。
LSIではその部位により発熱量が異なる。発熱量が大きい部位では、LSIの裏面に熱電素子を作成することで熱が外部に逃げにくくなり、LSI自体の温度を上昇させてしまう可能性がある。そこで、LSIの裏面で発熱量が大きい部位、たとえばCPU直下では熱電素子を冷却素子として用いる。一方、LSIの裏面で通常の発熱が起こる部位では熱電素子を発電素子として用いる。このように、LSIの各部位の特性に応じて、熱電素子の用途を分けて作成する。
図52は、第7の実施形態の熱電素子を含む半導体装置の構造を示す断面図である。図52に示すように、発熱量が大きい領域Aには冷却素子として働く熱電素子を形成し、発熱量が小さい領域Bには発電素子として働く熱電素子を形成する。この場合、前述した製造方法によって、冷却素子と発電素子を同時に作成し、配線方法によって冷却素子と発電素子を作り分ける。このように、LSI上に発電素子と冷却素子を組み合わせて形成した場合、発電素子で発生した電力を冷却素子に必要な電力の一部として使用することもできる。
[第8の実施形態]
次に、この発明の第8の実施形態の熱電素子を含む半導体装置について説明する。前記第1の実施形態における構成と同様の部分には同じ符号を付してその説明は省略する。
熱電素子はシリコン基板上に作り込むため、配線の作成が容易である。LSIの廃熱を用いて発電素子により生成した電力は、シリコン基板中を通り、シリコン基板表面のLSI動作部へ持っていくことができる。第1の実施形態で述べたように、SiGeを用いた発電素子を数十℃程度で使用すると、数[mA]程度の電流と数[V]〜数十[V]の電圧が発生する。ゆえに、発生する電力は数[mW]程度になる。そこで、図53に示すように、集積回路が形成されるシリコン基板表面側にキャパシタンスを設け、発電素子から発生した電力をこのキャパシタンスに蓄積するなどの用途が考えられる。
図53は、第8の実施形態の発電素子を含む半導体装置の構造を示す断面図である。シリコン半導体基板11の第1主面には集積回路が形成されている。集積回路はキャパシタンスC備え、キャパシタンスCの一方の電極には第1電極51Aが接続され、キャパシタンスCの他方の電極には第2電極51Bが接続されている。第1主面の反対側の第2主面上には、図1に示したようなチェーン状に接続されたP型熱電材料15A及びN型熱電材料15Bから構成された発電素子が形成されている。発電素子の一端の上部電極16AはプラグP1、P2を含む複数のプラグ、及び配線を介して第1電極51Aに接続されている。さらに、発電素子の他端の上部電極16BはプラグP3、P4を含む複数のプラグ、及び配線を介して第2電極51Bに接続されている。なお、プラグP1、P2、P3、P4は、例えばタングステン、ポリシリコンから形成される。
このような構造を持つ半導体装置では、LSIに形成されたキャパシタンスに、発電素子から発生した電力をシリコン基板に形成されたプラグ及び配線を介して蓄積することができる。
また、前述した各実施形態はそれぞれ、単独で実施できるばかりでなく、適宜組み合わせて実施することも可能である。さらに、前述した各実施形態には種々の段階の発明が含まれており、各実施形態において開示した複数の構成要件の適宜な組み合わせにより、種々の段階の発明を抽出することも可能である。
この発明の第1の実施形態の熱電素子の構造を示す断面図である。 第1の実施形態におけるP型熱電材料及びN型熱電材料からなる1つのエレメント対の斜視図である。 第1の実施形態のシリコン基板上にエレメント対が複数配列された熱電素子を示す斜視図である。 第1の実施形態の熱電素子の製造方法を示す第1工程の断面図である。 第1の実施形態の熱電素子の製造方法を示す第2工程の断面図である。 第1の実施形態の熱電素子の製造方法を示す第3工程の断面図である。 第1の実施形態の熱電素子の製造方法を示す第4工程の断面図である。 第1の実施形態の熱電素子の製造方法を示す第5工程の断面図である。 第1の実施形態の熱電素子の製造方法を示す第6工程の断面図である。 第1の実施形態の熱電素子の製造方法を示す第7工程の断面図である。 第1の実施形態の熱電素子の製造方法を示す第8工程の断面図である。 この発明の第2の実施形態の熱電素子の構造を示す断面図である。 第2の実施形態の変形例の多段冷却素子の構造を示す断面図である。 第2の実施形態の他の変形例の多段冷却素子の構造を示す断面図である。 この発明の第3の実施形態の熱電素子の構造を示す断面図である。 第3の実施形態のセグメント型熱電素子の構造を示す断面図である。 第3の実施形態の応用例のセグメント型熱電素子の構造を示す断面図である。 図17に示したセグメント型熱電素子の製造方法を示す第1工程の断面図である。 図17に示したセグメント型熱電素子の製造方法を示す第2工程の断面図である。 図17に示したセグメント型熱電素子の製造方法を示す第3工程の断面図である。 図17に示したセグメント型熱電素子の製造方法を示す第4工程の断面図である。 図17に示したセグメント型熱電素子の製造方法を示す第5工程の断面図である。 この発明の第4の実施形態の横型熱電素子の構造を示す断面図である。 第4の実施形態の応用例の横型熱電素子の構造を示す断面図である。 図24に示した横型熱電素子の第1製造方法を示す第1工程の断面図である。 図24に示した横型熱電素子の第1製造方法を示す第2工程の断面図である。 図24に示した横型熱電素子の第1製造方法を示す第3工程の断面図である。 図24に示した横型熱電素子の第1製造方法を示す第4工程の断面図である。 図24に示した横型熱電素子の第1製造方法を示す第5工程の断面図である。 図24に示した横型熱電素子の第1製造方法を示す第6工程の断面図である。 図24に示した横型熱電素子の第1製造方法を示す第7工程の断面図である。 図24に示した横型熱電素子の第2製造方法を示す第1工程の断面図である。 図24に示した横型熱電素子の第2製造方法を示す第2工程の断面図である。 図24に示した横型熱電素子の第2製造方法を示す第3工程の断面図である。 図24に示した横型熱電素子の第2製造方法を示す第4工程の断面図である。 図24に示した横型熱電素子の第2製造方法を示す第5工程の断面図である。 図24に示した横型熱電素子の第2製造方法を示す第6工程の断面図である。 図24に示した横型熱電素子の第2製造方法を示す第7工程の断面図である。 図24に示した横型熱電素子の第2製造方法を示す第8工程の断面図である。 図24に示した横型熱電素子の第2製造方法を示す第9工程の断面図である。 この発明の第5の実施形態の横型二段発電素子の構造を示す斜視図である。 第5の実施形態の横型二段発電素子の構造を示す断面図である。 図42に示した横型二段発電素子の製造方法を示す第1工程の断面図である。 図42に示した横型二段発電素子の製造方法を示す第2工程の断面図である。 この発明の第6の実施形態の熱電素子の構造を示す断面図である。 第6の実施形態の前記熱電素子(LSIを含む)の構造を示す断面図である。 第6の実施形態のカスケード型発電素子の構造を示す断面図である。 第6の実施形態の多段冷却素子の構造を示す断面図である。 第6の実施形態のセグメント型熱電素子の構造を示す断面図である。 第6の実施形態の横型発電素子の構造を示す断面図である。 第6の実施形態の横型二段発電素子の構造を示す断面図である。 この発明の第7の実施形態の熱電素子を含む半導体装置の構造を示す断面図である。 この発明の第8の実施形態の発電素子を含む半導体装置の構造を示す断面図である。
符号の説明
11…シリコン半導体基板、12…絶縁膜、13、13A、13B…下部電極、14、14A、14B…層間絶縁膜、15…熱電材料、15A、15A−1、15A−2…P型熱電材料、15B、15B−1、15B−2……N型熱電材料、16、16A、16B…上部電極、17…絶縁膜、18…下部電極、19…層間絶縁膜、20A…P型熱電材料、20B…N型熱電材料、21…上部電極、22…絶縁膜、23…下部電極、24…層間絶縁膜、25A…P型熱電材料、25B…N型熱電材料、26…上部電極、27…絶縁膜、31…シリコン窒化膜、32…断熱膜、33A…P型熱電材料、33B…N型熱電材料、34…溝、34A、34B…電極、35…絶縁膜、36…絶縁膜、37A…P型熱電材料、37B…N型熱電材料、38A、38B…電極、PO…電源、R…負荷。

Claims (5)

  1. 半導体基板上に形成された絶縁膜と、
    前記絶縁膜上に離隔して形成された第1、第2下部電極と、
    前記1下部電極上に形成された第1導電型の半導体材料からなる第1熱電材料と、
    前記2下部電極上に形成された第2導電型の半導体材料からなる第2熱電材料と、
    前記2下部電極上に前記第2熱電材料と離隔して形成された第1導電型の半導体材料からなる第3熱電材料と、
    前記第1熱電材料上及び前記第2熱電材料上に形成された第1上部電極と、
    前記第3熱電材料上に前記第1上部電極と離隔して形成された第2上部電極と、
    を具備することを特徴とする半導体装置。
  2. 前記第1熱電材料は前記第1下部電極と前記第1上部電極との間に直列に接続された第1の複数の材料から構成され、前記第2熱電材料は前記第2下部電極と前記第1上部電極との間に直列に接続された第2の複数の材料から構成され、前記第3熱電材料は前記第2下部電極と前記第2上部電極との間に直列に接続された前記第1の複数の材料から構成されていることを特徴とする請求項1に記載の半導体装置。
  3. 半導体基板上に形成された第1絶縁膜と、
    前記第1絶縁膜上に離隔して形成された第1、第2下部電極と、
    前記第1下部電極上に形成された第1導電型の半導体材料からなる第1熱電材料と、
    前記第2下部電極上に形成された第2導電型の半導体材料からなる第2熱電材料と、
    前記第1熱電材料上及び前記第2熱電材料上に形成された第1上部電極と、
    前記第1上部電極上に形成された第2絶縁膜と、
    前記第2絶縁膜上に離隔して形成された第3、第4下部電極と、
    前記第3下部電極上に形成され、前記第2熱電材料と異なる第2導電型の半導体材料からなる第3熱電材料と、
    前記第4下部電極上に形成され、前記第1熱電材料と異なる第1導電型の半導体材料からなる第4熱電材料と、
    前記第3熱電材料上及び前記第4熱電材料上に形成された第2上部電極と、
    を具備することを特徴とする半導体装置。
  4. 半導体基板上に形成された第1絶縁膜と、
    前記第1絶縁膜上に形成された断熱膜と、
    前記断熱膜上に形成された第1導電型の半導体材料からなる複数の第1熱電材料と、
    前記断熱膜上に形成された第2導電型の半導体材料からなる複数の第2熱電材料と、
    前記第1熱電材料と前記第2熱電材料との間に形成され、その一部が前記第1絶縁膜に接触した複数の第1電極と、
    前記第1熱電材料と前記第2熱電材料との間の前記断熱膜上に形成された複数の第2電極とを具備し、
    前記第1熱電材料と前記第2熱電材料とが交互に直線状に配置され、前記第1電極と前記第2電極とが前記第1熱電材料と前記第2熱電材料との間に交互にそれぞれ配置されていることを特徴とする半導体装置。
  5. 第1主面と前記第1主面の反対側の第2主面を有する半導体基板と、
    前記半導体基板の前記第1主面上に形成された集積回路と、
    前記半導体基板の前記第2主面上に形成された第1絶縁膜と、
    前記第1絶縁膜上に離隔して形成された第1、第2下部電極と、
    前記第1下部電極上に形成された第1導電型の半導体材料からなる第1熱電材料と、
    前記第2下部電極上に形成された第2導電型の半導体材料からなる第2熱電材料と、
    前記第2下部電極上に前記第2熱電材料と離隔して形成された第1導電型の半導体材料からなる第3熱電材料と、
    前記第1熱電材料上及び前記第2熱電材料上に形成された第1上部電極と、
    前記第3熱電材料上に前記第1上部電極と離隔して形成された第2上部電極と、
    を具備することを特徴とする半導体装置。
JP2005281683A 2005-09-28 2005-09-28 半導体装置とその製造方法 Pending JP2007095897A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005281683A JP2007095897A (ja) 2005-09-28 2005-09-28 半導体装置とその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281683A JP2007095897A (ja) 2005-09-28 2005-09-28 半導体装置とその製造方法

Publications (1)

Publication Number Publication Date
JP2007095897A true JP2007095897A (ja) 2007-04-12

Family

ID=37981244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281683A Pending JP2007095897A (ja) 2005-09-28 2005-09-28 半導体装置とその製造方法

Country Status (1)

Country Link
JP (1) JP2007095897A (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288565A (ja) * 2007-05-16 2008-11-27 Ind Technol Res Inst 相変化メモリ素子
WO2009022698A1 (ja) * 2007-08-13 2009-02-19 National Institute Of Advanced Industrial Science And Technology 微細熱電素子の製造方法、該微細熱電素子及び該微細熱電素子を用いた製品
WO2009028337A1 (ja) * 2007-08-27 2009-03-05 Murata Manufacturing Co., Ltd. 熱電変換モジュールおよびその製造方法
JP2009206201A (ja) * 2008-02-26 2009-09-10 Kyocera Corp セグメント型熱電素子、熱電モジュール、発電装置および温度調節装置
WO2010055754A1 (ja) * 2008-11-12 2010-05-20 ミツミ電機株式会社 熱電変換モジュール及び熱電変換装置
JP2010245541A (ja) * 2009-04-09 2010-10-28 Carl Zeiss Smt Ag 光線束を案内するためのミラー
WO2012124394A1 (ja) 2011-03-17 2012-09-20 富士フイルム株式会社 熱電発電装置及び携帯型電子機器
JP2013110157A (ja) * 2011-11-17 2013-06-06 Kitagawa Ind Co Ltd 熱電変換モジュール
JP2014086541A (ja) * 2012-10-23 2014-05-12 Toyota Motor Corp ナノコンポジット熱電変換材料およびその製造方法
JP2014179372A (ja) * 2013-03-13 2014-09-25 Kitagawa Kogyo Co Ltd 熱電変換モジュール
KR20160049832A (ko) * 2014-10-28 2016-05-10 현대자동차주식회사 열전 모듈 구조
JP2017525135A (ja) * 2014-06-02 2017-08-31 ハット テクノロジ アノニム シルケット 冷却アレイを有している集積回路
US20170287977A1 (en) * 2016-04-04 2017-10-05 Synopsys, Inc. Power harvesting for integrated circuits
JP2017212389A (ja) * 2016-05-27 2017-11-30 株式会社デンソー 熱電変換装置およびその製造方法
WO2018168568A1 (ja) * 2017-03-13 2018-09-20 国立研究開発法人産業技術総合研究所 セグメント型熱電発電モジュール
WO2020116803A1 (ko) * 2018-12-07 2020-06-11 서울대학교산학협력단 냉각 및 가열이 가능한 신축성 유연 웨어러블 열전소자
JP2021072382A (ja) * 2019-10-31 2021-05-06 Tdk株式会社 熱電変換素子及びこれを備える熱電変換デバイス
JP2021118263A (ja) * 2020-01-27 2021-08-10 株式会社日立製作所 熱電変換モジュール

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288565A (ja) * 2007-05-16 2008-11-27 Ind Technol Res Inst 相変化メモリ素子
WO2009022698A1 (ja) * 2007-08-13 2009-02-19 National Institute Of Advanced Industrial Science And Technology 微細熱電素子の製造方法、該微細熱電素子及び該微細熱電素子を用いた製品
JP2009049050A (ja) * 2007-08-13 2009-03-05 National Institute Of Advanced Industrial & Technology 微細熱電素子の製造方法、該微細熱電素子及び該微細熱電素子を用いた製品
WO2009028337A1 (ja) * 2007-08-27 2009-03-05 Murata Manufacturing Co., Ltd. 熱電変換モジュールおよびその製造方法
JP2009206201A (ja) * 2008-02-26 2009-09-10 Kyocera Corp セグメント型熱電素子、熱電モジュール、発電装置および温度調節装置
WO2010055754A1 (ja) * 2008-11-12 2010-05-20 ミツミ電機株式会社 熱電変換モジュール及び熱電変換装置
US8717531B2 (en) 2009-04-09 2014-05-06 Carl Zeiss Smt Gmbh Mirror for guiding a radiation bundle
JP2010245541A (ja) * 2009-04-09 2010-10-28 Carl Zeiss Smt Ag 光線束を案内するためのミラー
WO2012124394A1 (ja) 2011-03-17 2012-09-20 富士フイルム株式会社 熱電発電装置及び携帯型電子機器
JP2013110157A (ja) * 2011-11-17 2013-06-06 Kitagawa Ind Co Ltd 熱電変換モジュール
JP2014086541A (ja) * 2012-10-23 2014-05-12 Toyota Motor Corp ナノコンポジット熱電変換材料およびその製造方法
JP2014179372A (ja) * 2013-03-13 2014-09-25 Kitagawa Kogyo Co Ltd 熱電変換モジュール
JP2017525135A (ja) * 2014-06-02 2017-08-31 ハット テクノロジ アノニム シルケット 冷却アレイを有している集積回路
KR20160049832A (ko) * 2014-10-28 2016-05-10 현대자동차주식회사 열전 모듈 구조
KR101646366B1 (ko) 2014-10-28 2016-08-05 현대자동차주식회사 열전 모듈 구조
US20170287977A1 (en) * 2016-04-04 2017-10-05 Synopsys, Inc. Power harvesting for integrated circuits
US11177317B2 (en) * 2016-04-04 2021-11-16 Synopsys, Inc. Power harvesting for integrated circuits
US11937507B2 (en) 2016-04-04 2024-03-19 Synopsys, Inc. Power harvesting for integrated circuits
JP2017212389A (ja) * 2016-05-27 2017-11-30 株式会社デンソー 熱電変換装置およびその製造方法
US10622535B2 (en) * 2016-05-27 2020-04-14 Denso Corporation Thermoelectric conversion device and method of manufacturing the same
WO2017204275A1 (ja) * 2016-05-27 2017-11-30 株式会社デンソー 熱電変換装置およびその製造方法
WO2018168568A1 (ja) * 2017-03-13 2018-09-20 国立研究開発法人産業技術総合研究所 セグメント型熱電発電モジュール
JP2018152464A (ja) * 2017-03-13 2018-09-27 国立研究開発法人産業技術総合研究所 セグメント型熱電発電モジュール
WO2020116803A1 (ko) * 2018-12-07 2020-06-11 서울대학교산학협력단 냉각 및 가열이 가능한 신축성 유연 웨어러블 열전소자
KR20200069735A (ko) * 2018-12-07 2020-06-17 서울대학교산학협력단 냉각 및 가열이 가능한 신축성 유연 웨어러블 열전소자
KR102152642B1 (ko) * 2018-12-07 2020-09-08 서울대학교산학협력단 냉각 및 가열이 가능한 신축성 유연 웨어러블 열전소자
US11839157B2 (en) 2018-12-07 2023-12-05 Seoul National University R&Db Foundation Bidirectional stretchable and flexible wearable thermoelectric module
WO2021085039A1 (ja) * 2019-10-31 2021-05-06 Tdk株式会社 熱電変換素子及びこれを備える熱電変換デバイス
JP7342623B2 (ja) 2019-10-31 2023-09-12 Tdk株式会社 熱電変換素子及びこれを備える熱電変換デバイス
JP2021072382A (ja) * 2019-10-31 2021-05-06 Tdk株式会社 熱電変換素子及びこれを備える熱電変換デバイス
US11963449B2 (en) 2019-10-31 2024-04-16 Tdk Corporation Thermoelectric conversion element and thermoelectric conversion device having the same
JP2021118263A (ja) * 2020-01-27 2021-08-10 株式会社日立製作所 熱電変換モジュール

Similar Documents

Publication Publication Date Title
JP2007095897A (ja) 半導体装置とその製造方法
US7893529B2 (en) Thermoelectric 3D cooling
US6278049B1 (en) Thermoelectric devices and methods for making the same
KR101026618B1 (ko) 마이크로전자 패키지 및 그것의 상호접속 피쳐 냉각 방법
US20070095381A1 (en) Stacked thermoelectric device for power generation
JP5078908B2 (ja) 熱電トンネル装置
US10446734B2 (en) Vertical thermoelectric structures
US20060076046A1 (en) Thermoelectric device structure and apparatus incorporating same
US20050045702A1 (en) Thermoelectric modules and methods of manufacture
CN100592542C (zh) 一种多级半导体复叠制冷元件及制冷热电堆
CN102947960B (zh) 热电元件
KR20160021752A (ko) 집적된 열전 냉각
CN102856278A (zh) 转接板结构及其制造方法
US20130192654A1 (en) Thermoelectric module comprising thermoelectric element doped with nanoparticles and manufacturing method of the same
US20160056363A1 (en) Freestanding Thermoelectric Energy Conversion Device
JP2003092435A (ja) 熱電モジュール及びその製造方法
JP2011029606A (ja) 集積回路の動作中に集積回路中で電気エネルギーを生成する方法、その方法に対応する集積回路及びその製法方法
CN113574688A (zh) 热电转换模块
CN100461385C (zh) 降低热传递的驱动激光二极管的集成电路设备及其制造方法
CN113488435A (zh) 半导体元件及其形成方法
CN110366785B (zh) 热电装置
JP2015076607A (ja) 半導体チップ構造
CN103794581A (zh) 一种热电散热装置
US20140360549A1 (en) Thermoelectric Module and Method of Making Same
KR102455200B1 (ko) 반도체 디바이스의 방열