JP2007093742A - 光変調器 - Google Patents

光変調器 Download PDF

Info

Publication number
JP2007093742A
JP2007093742A JP2005280036A JP2005280036A JP2007093742A JP 2007093742 A JP2007093742 A JP 2007093742A JP 2005280036 A JP2005280036 A JP 2005280036A JP 2005280036 A JP2005280036 A JP 2005280036A JP 2007093742 A JP2007093742 A JP 2007093742A
Authority
JP
Japan
Prior art keywords
substrate
electric signal
bias voltage
applying
optical modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005280036A
Other languages
English (en)
Inventor
Kenji Kono
健治 河野
Masaya Nanami
雅也 名波
Yuji Sato
勇治 佐藤
Yasuji Uchida
靖二 内田
Nobuhiro Igarashi
信弘 五十嵐
Hiroaki Senda
宏明 仙田
Takeshi Hondo
武 本藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2005280036A priority Critical patent/JP2007093742A/ja
Publication of JP2007093742A publication Critical patent/JP2007093742A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 高速で駆動電圧が低く、かつDCバイアス電圧が小さい光変調器を提供する。
【解決手段】 電気光学効果を有する基板1と、基板1に形成された光を導波するための光導波路3と、基板1の一方の面側に形成され、光を変調する高周波電気信号を印加するための高周波電気信号とバイアス電圧を印加する中心導体4a及び接地導体4b、4cからなる進行波電極4と、中心導体4aに外部電気回路から高周波電気信号を印加するための芯線7を具備するコネクタ部6とを有し、進行波電極4に高周波電気信号とバイアスを印加することにより光導波路3を伝搬する光の位相を変調する領域である相互作用部25が具備されている光変調器において、少なくとも中心導体21aを形成した展開基板20を高周波電気信号が入力されるコネクタ部6の芯線7の近傍に設け、光の位相を変調するための相互作用部25の長さを、展開基板20を用いない場合より長くする。
【選択図】 図1

Description

本発明は高速で駆動電圧が低く、かつDCバイアス電圧が小さく、製作の歩留まりの良い光変調器の分野に属する。
リチウムナイオベート(LiNbO)のように電界を印加することにより屈折率が変化する、いわゆる電気光学効果を有する基板(以下、リチウムナイオベート基板をLN基板と略す)に光導波路と進行波電極を形成した進行波電極型リチウムナイオベート光変調器(以下、LN光変調器と略す)は、その優れたチャーピング特性から2.5Gbit/s、10Gbit/sの大容量光伝送システムに適用されている。最近はさらに40Gbit/sの超大容量光伝送システムにも適用が検討されており、キーデバイスとして期待されている。
[第1の従来技術]
このLN光変調器にはz−カット基板を使用するタイプとx−カット基板(あるいはy−カット基板)を使用するタイプがある。ここでは、第1の従来技術としてx−カットLN基板とコプレーナウェーブガイド(CPW)進行波電極を使用したx−カット基板LN光変調器をとり上げ、その斜視図を図4に示す。図5は図4のA−A’における断面図である。なお、以下の議論はz−カット基板でも同様に成り立つ。
図中、1はx−カットLN基板、2は1.3μm、あるいは1.55μmなど光通信において使用する波長領域では透明な200nmから1μm程度の厚みのSiOバッファ層、3はx−カットLN基板1にTiを蒸着後、1050℃で約10時間熱拡散して形成した光導波路であり、マッハツェンダ干渉系(あるいは、マッハツェンダ光導波路)を構成している。なお、3a、3bは電気信号と光が相互作用する部位(相互作用部と言う)における光導波路(あるいは、相互作用光導波路)、つまりマッハツェンダ光導波路の2本のアームである。CPW進行波電極4は中心導体4a、接地導体4b、4cからなっている。
この第1の従来技術では、中心導体4aと接地導体4b、4c間にバイアス電圧(通常はDCバイアス電圧)と高周波電気信号(RF電気信号とも言う)を重畳して印加するので、相互作用光導波路においてはRF電気信号のみならず、DCバイアス電圧も光の位相を変える。また、バッファ層2は電気信号のマイクロ波実効屈折率nを光導波路3a、3bを伝搬する光の実効屈折率nに近づけることにより、光変調帯域を拡大するという重要な働きをしている。
次に、このように構成されるLN光変調器の動作について説明する。このLN光変調器を動作させるには、中心導体4aと接地導体4b、4c間にDCバイアス電圧とRF電気信号とを印加する必要がある。
図6に示す電圧−光出力特性はある状態でのLN光変調器の電圧−光出力特性であり、Vbはその際のDCバイアス電圧である。この図6に示すように、通常、DCバイアス電圧Vbは光出力特性の山と底の中点に設定される。
図7には第1の従来技術の光変調器について実際の実装形態と電気的な接続について詳しく示している。ここで、5は金属からなる筐体、6はRF電気信号であるマイクロ波を外部電気回路からLN光変調器に入力するためのRF電気信号入力用のコネクタ、7はRF電気信号入力用のコネクタ6の芯線、8はRF電気信号を取り出すためのRF電気信号出力用のコネクタ、9はRF電気信号出力用のコネクタ8の芯線である。また、10は電気信号源11に内蔵しているDC成分をカットするコンデンサーである。12は電気的な終端、13はDC成分をカットするコンデンサー、14はDCバイアス電圧を印加するためのDC電源である。2つのコンデンサー10と13があるために、DC電源14からのDC成分は電流として流れることはない。
なお、通常は、小型化とコスト低減のために、終端12、コンデンサー13は筐体5に内蔵するとともに、DC電源14からのDCバイアス電圧は、RF電気信号出力用のコネクタ8の代わりに簡単なピンやワイヤーを介して供給されることが多い。
さて、ここで重要なことがある。光通信においてLN光変調器はトランスポンダという送受信装置の中で使用されるが、そのトランスポンダには多くの機器が搭載されているため、LN光変調器とその他の機器との相対位置は決まっている。換言すると、LN光変調器にRF電気信号を入力するためのコネクタ6の位置は筐体5に対して任意に設定することはできず、ほぼ一義的に決まってしまう。一方、筐体5内におけるx−カットLN基板1の位置もほぼ決まる。
つまり、RF電気信号を入力するために使用するコネクタ6の芯線7の位置はx−カットLN基板1において図7にBとして示した位置にほぼ一義的に決定されることになる。
この第1の従来技術に係る光変調器の上面から見た模式図を図8に示す。前述のように、LN光変調器では、x−カットLN基板1においてRF電気信号を入力するために使用するコネクタ6の芯線7を固定する位置は図中のBの位置としてほぼ自動的に決まる。従って、進行波電極4の中心導体4aと接地導体4b、4cに印加されたRF電気信号とDCバイアス電圧が光と相互作用する相互作用部15の長さLも自動的に決まることになる。
なお、RF電気信号を入力するために使用するコネクタ6の芯線7の位置Bから光とRF電気信号の相互作用部までの電極(図7と図8に示す領域部40で、フィードスルー部と呼ばれる)は、通常、構造を簡単化するためにx−カットLN基板1の長手方向の側面に対してほぼ垂直に設定する。そのため、マッハツェンダ光導波路の2本の光導波路3a、3bにおいては、芯線7の位置Bから光入力側にある領域は通常光の位相を変えることには使用されていない。
さらに、この第1の従来技術では、長さLの相互作用部15には図5に示したようにSiOバッファ層2があり、このSiOバッファ層2にDCバイアス電圧Vbが印加される。ところが、一般にこのSiOバッファ層2は電気的抵抗が高いので、ここでの電圧降下により、いわゆるDCドリフトが発生し易いことが知られている。あるいは、SiOバッファ層2内に高いDC電界が印加されると、SiOバッファ層2内のキャリアが動くことによってもDCドリフトが生じる。このDCドリフトはLN光変調器の信頼性に大きな悪い影響を与える。
[第2の従来技術]
第1の従来技術におけるDCドリフトの問題を解決しようとする試みの上面から見た模式図を図9に第2の従来技術として示す。
前述のように、第1の従来技術における大きな問題、即ちDCドリフトは第1の従来技術のSiOバッファ層2に生じるDC電圧の降下や、高いDC電界によるSiOバッファ層2におけるキャリアの移動により引き起こされた。そこで、この第2の従来技術では、まず、RF電気信号が印加される長さLのRF電気信号用相互作用部17と、DCバイアス電圧が印加される長さLの中心導体16aと接地導体16b、16cからなるバイアス電極を有するバイアス電圧用相互作用部18を具備することにより、RF電気信号を印加する領域(17)とDCバイアス電圧を印加する領域(18)とを分離する。さらに、図9のC−C’における断面図として示した図10からわかるように、バイアス電圧用相互作用部18には第1の従来技術として示した図5に存在したSiOバッファ層2がない。
従って、この第2の従来技術ではSiOバッファ層2に起因するDCドリフトが存在せず、LN光変調器の信頼性向上に有力な手段として採用されてきた。
ところが、図9に示した第2の従来技術の場合であっても、不図示のRF電気信号を入力するために使用するコネクタ6の芯線7の位置Bは図8に示した第1の従来技術の場合と同じである。
つまり、RF電気信号が印加されるRF電気信号用相互作用部17の長さLとDCバイアス電圧が印加されるバイアス電圧用相互作用部18の長さLは、第1の従来技術として示した図8におけるRF電気信号とDCバイアス電圧が光と相互作用する相互作用部15の長さLを分割して構成することになる。そのため、RF電気信号が印加されるRF電気信号用相互作用部17の長さLを長くするとDCバイアス電圧が印加されるバイアス電圧用相互作用部18の長さLが短くなり、逆にバイアス電圧用相互作用部18の長さLを長くすると、今度はRF電気信号用相互作用部17の長さLが短くなってしまう。
バイアス電圧用相互作用部18の長さLが短いと、バイアス電圧用相互作用部18の中心導体16aと接地導体16b、16cに印加するDCバイアス電圧を高くする必要がある。そうすると、中心導体16aと接地導体16b、16cの間における電界強度が高くなり、LN基板1の中の高い内部電界強度に起因するLN基板の内でのDCドリフトが生じてしまう。
一方、RF電気信号用相互作用部17の長さLが短いとRF駆動電圧が高くなる。これを避けるためには、RF電気信号用相互作用部17におけるSiOバッファ層2の厚みを薄く設定せざるを得ず、RF電気信号と光との速度整合、および特性インピーダンスの観点から不利となってしまう。
なお、第2の従来技術においても、RF電気信号を入力するために使用する不図示のコネクタ6の芯線7の位置Bから光とRF電気信号の相互作用部(RF電気信号用相互作用部17)までの、フィードスルー部の電極(図9に示す領域部41)は、通常、RF電気信号の反射を抑えるためにx−カットLN基板1の長手方向の側面に対してほぼ垂直に設定する。そのため、第2の従来技術でも、マッハツェンダ光導波路の2本の光導波路3a、3bにおいて、位置Bから光入力側にある領域は光の位相を変えることには使用されていない。
以上のように、第1の従来技術ではRF電気信号が光と相互作用する相互作用部にDC電圧も印加していたので、SiOバッファ層に起因するDCドリフトが生じ易いという問題があった。一方、第1の従来技術の問題を避けるために考案された第2の従来技術では、RF電気信号用相互作用部とは独立に設けたバイアス電圧用相互作用部にDCバイアス電圧のみを印加するが、LN光変調器ではRF信号を供給するために使用するコネクタの芯線の位置がLN基板に対して決まってしまっている。そのため、光をRF的、及びDC的に変調できる長さ、即ちRF電気信号用相互作用部の長さとバイアス電圧用相互作用部の長さの和も決まっている。その結果、バイアス電圧用相互作用部の長さ、もしくはRF電気信号用相互作用部の長さを充分にとることができないため、LN基板内での高い内部電界強度に起因する信頼性が劣化する、あるいはLN光変調器としてのRF変調性能が劣化するなどの問題があった。
上記課題を解決するために、本発明の請求項1の光変調器は、電気光学効果を有する基板と、該基板に形成された光を導波するための光導波路と、前記基板の一方の面側に形成され、前記光を変調する高周波電気信号を印加するための高周波電気信号とバイアス電圧を印加する中心導体及び接地導体からなる進行波電極と、前記中心導体に外部電気回路から高周波電気信号を印加するための芯線を具備するコネクタ部とを有し、前記進行波電極に前記高周波電気信号と前記バイアスを印加することにより前記光導波路を伝搬する前記光の位相を変調する領域である相互作用部が具備されている光変調器において、少なくとも中心導体を形成した展開基板を前記高周波電気信号が入力される前記コネクタ部の芯線の近傍に設け、前記光の位相を変調するための前記相互作用部の長さを、前記展開基板を用いない場合より長くしたことを特徴とする。
本発明の請求項2の光変調器は、電気光学効果を有する基板と、該基板に形成された光を導波するための光導波路と、前記基板の一方の面側に形成され、前記光を変調する高周波電気信号を印加するための中心導体及び接地導体からなる高周波電気信号用進行波電極と、バイアス電圧を印加するための中心導体及び接地導体からなるバイアス電圧用電極と、高周波電気信号用進行波電極の前記中心導体に外部電気回路から高周波電気信号を印加するための芯線を具備するコネクタ部とを有し、前記進行波電極に前記高周波電気信号を印加することにより前記光導波路を伝搬する前記光の位相を変調する領域である高周波電気信号用相互作用部と、前記バイアス電圧用電極に前記バイアス電圧を印加することにより前記光導波路を伝搬する前記光の位相を変える領域であるバイアス電圧用相互作用部が具備されている光変調器において、少なくとも中心導体を形成した展開基板を前記高周波電気信号が入力される前記コネクタ部の芯線の近傍に設け、前記高周波電気信号用相互作用部の長さと、前記バイアス電圧用相互作用部の長さの和を、前記展開基板を用いない場合より長くしたことを特徴とする。
本発明の請求項1は相互作用部にRF電気信号とDCバイアスを同時に印加する光変調器について適用され、展開基板を用いることにより、RF電気信号とDCバイアス電圧を同時に印加する相互作用部の長さを長くすることが可能となる。その結果、光変調器としての変調帯域やRF駆動電圧などの高周波特性を向上させることができるし、同時にDCバイアス電圧を低減できるので、DCドリフト特性を改善することが可能となる。
本発明の請求項2はRF電気信号を印加するためのRF電気信号用相互作用部とDCバイアスを印加するためのバイアス電圧用相互作用部を各々有する光変調器について適用され、展開基板を用いることにより、RF電気信号用相互作用部とバイアス電圧用相互作用部の長さの和を長くすることが可能となる。その結果、光変調器としての変調帯域やRF駆動電圧などの高周波特性を向上させることができるし、同時にDCバイアス電圧を低減できるので、DCドリフト特性を改善することが可能となる。
以下、本発明の実施形態について説明するが、図4から図10に示した従来の実施形態と同一番号は同一機能部に対応しているため、ここでは同一番号を持つ機能部の説明を省略する。
[第1の実施形態]
図1に本発明に係る第1の実施形態の光変調器を示す。図7に示した第1の従来技術と異なり、この第1の実施形態ではアルミナなどからなるRF電気信号入力用展開基板20を設けるとともに、その基板表面に形成したCPW電極の中心導体21a、接地導体21b、21cとCPW進行波電極4の中心導体4a、接地導体4b、4cを金ワイヤー(あるいは金リボン)22により電気的に接続している。
これをわかりやすくするために、図1の上面図の模式図を図2に示す。この図において相互作用部25の長さLは図8に示した第1の従来技術における相互作用部15の長さLよりも極めて長いことがわかる。なお、図をわかりやすくするために、RF電気信号入力用展開基板20においては接地導体21b、21cを、RF電気信号出力用展開基板23においては接地導体24b、24cを省略している。
このように、RF電気信号入力用展開基板20を用いることにより、RF電気信号を入力するために使用するコネクタ6の芯線7の位置BとCPW進行波電極4のフィードスルー部42の位置を相互作用光導波路3a、3bの長手方向において位置的にずらすことができるので、RF電気信号入力用展開基板20を用いていない図4から図7に示した第1の従来技術と比較して光の位相を変調するための相互作用部25の実効的な長さを大幅に長くすることが可能となる。
なお、本実施形態では、RF電気信号の出力側についても、アルミナなどからなるRF電気信号出力用展開基板23を設けるとともに、その基板表面に形成したCPW電極の中心導体24a、接地導体24b、24cとCPW進行波電極4の中心導体4a、接地導体4b、4cを金ワイヤー(あるいは金リボン)22により電気的に接続することにより、相互作用部25の実効的な長さをさらに長くしている。
なお、RF電気信号の出力側にRF電気信号出力用展開基板23を用いているが、その代わりに(図には示さないが)電気的な終端を内蔵し、CPW進行波電極4の中心導体4a、接地導体4b、4cと電気的な終端を接続することによりコネクタ8とその芯線9を省略することができる。
前述のように、一般に、RF電気信号が印加される相互作用部の長さを長くできれば、進行波電極4の直下に形成するバッファ層の厚みを厚くすることが可能となる。従って、マイクロ波と光の速度を近づけるとともに特性インピーダンスをドライバーのインピーダンスに近づけることができ、変調性能が向上する。また、印加すべきDCバイアス電圧が低いので、SiOバッファ層2やx−カットLN基板1内の電界強度も下げることができるので、SiOバッファ層2やx−カットLN基板1内におけるDCドリフトを低減することが可能となる。
以上のように本発明ではこれまで使用されていなかった領域を相互作用部として活用できるので、LN光変調器の特性を改善することが可能となる。
また、RF電気信号入力用展開基板20の上に形成するCPW電極の中心導体21aの幅は広く設定できる。従って、RF電気信号がRF電気信号入力用展開基板20を伝搬する際の伝搬損失は小さくて済み、光変調器としての変調帯域に与える影響は極めて少ない。
光変調器に使用するx−カットLN基板1は高価であるとともに、Tiを熱拡散して製作する相互作用光導波路3a、3bや光とRF電気信号との速度を近づけるために20μm以上の厚みを必要とする進行波電極4を形成するには長いプロセスが要求されるので製作の人件費も高い。一方、RF電気信号入力用展開基板20やRF電気信号出力用展開基板23はアルミナなどの安価な基板に簡単に形成することが可能であり、材料費も人件費も安い。従って、RF電気信号入力用展開基板20やRF電気信号出力用展開基板23をx−カットLN基板1とは別体で製作することにより、1枚のx−カットLN基板1から多くの光変調器を製作することが可能となり、光変調器のコスト低減が可能となる。
但し、材料費をいとわないのであれば、x−カットLN基板1にRF電気信号入力用展開基板20やRF電気信号出力用展開基板23に形成した中心導体21a、24aや接地導体21b、21c、24b、24cを作りつけることも可能である。言わば、光変調器とRF電気信号入力用展開基板20(及びRF電気信号出力用展開基板23)を同時に形成することができる。なお、このことは本発明の全ての実施形態について言える。
[第2の実施形態]
図3には本発明における第2の実施形態の光変調器についての上面図の模式図を示す。本実施形態では、RF電気信号が印加される長さLのRF電気信号用相互作用部26と、DCバイアスが印加される長さLの中心導体16a、接地導体16b、16cからなるバイアス電極を有するバイアス電圧用相互作用部27を具備している。
なお、図をわかりやすくするために、図3においてはRF電気信号入力用展開基板20において、接地導体21b、21cを省略した。
図1と図2に示した本発明の第1の実施形態と同様にこの実施形態においても、RF電気信号入力用展開基板20を用いることにより、RF電気信号を入力するために使用するコネクタ6の芯線7の位置BとCPW進行波電極4のフィードスルー部42の位置を相互作用光導波路3a、3bの長手方向において位置的にずらすことができるので、光の位相を変調するための相互作用部の実効的な長さを大幅に長くすることも可能となる。
図9に示した第2の従来技術に係る光変調器ではRF電気信号用相互作用部17とバイアス電圧用相互作用部18の合計の長さはL+Lであった。一方、図3に示した本発明の第2の実施形態では従来使用されていなかった領域の光導波路を活用するので、RF電気信号用相互作用部26とバイアス電圧用相互作用部27の合計の長さがL+Lと第2の従来技術の場合と比較して大幅に長くできる。
従って本発明のRF電気信号用相互作用部26の長さLを第2の従来技術のRF電気信号用相互作用部17の長さLよりも長くすることができるし、同時に本実施形態におけるバイアス電圧用相互作用部27の長さLを第2の従来技術におけるバイアス電圧用相互作用部18の長さLよりも長くすることができる。
前述のように、一般に、RF電気信号用相互作用部の長さを長くできれば、進行波電極4の直下に形成するバッファ層2の厚みを厚くすることが可能となる。従って、マイクロ波と光の速度を近づけるとともに特性インピーダンスをドライバーのインピーダンスに近づけることができ、変調性能が向上する。また、バイアス電極を具備するバイアス電圧用相互作用部27の長さが長くなれば、x−カットLN基板1内のDC電界強度を低くすることができるので、x−カットLN基板1におけるDCドリフトを低減することが可能となる。
なお、x−カットLN基板1の代わりにz−カットLN基板を使用する際には、バイアス電圧用相互作用部において光導波路の直上にバッファ層が必要となる。本発明ではバイアス電圧用相互作用部の長さを長くとれるので、DCバイアス電圧を低く設定できる。つまり、バッファ層内の電界強度も下げることができるので、z−カットLN基板内におけるDCドリフトのみならず、バッファ層に起因するDCドリフトも低減することが可能となる。なお、このことは本発明の第1の実施形態についても言える。
また、RF電気信号入力用展開基板20の上に形成するCPW電極の中心導体21aの幅は広く設定できる。従って、RF電気信号がRF電気信号入力用展開基板20を伝搬する際の伝搬損失は小さくて済み、光変調器としての変調帯域に与える影響は少ない。
[各実施形態について]
以上においては、進行波電極としてはCPW電極を例にとり説明したが、非対称コプレーナストリップ(ACPS)や対称コプレーナストリップ(CPS)などの各種進行波電極、あるいは集中定数型の電極でも良いことは言うまでもない。また、光導波路としてはマッハツェンダ型光導波路の他に、方向性結合器や直線など、その他の光導波路でも良いことは言うまでもない。
また、RF電気信号入力用あるいはRF電気信号出力用展開基板としてはアルミナ基板の他に、サファイヤ基板、半導体基板、あるいはLN基板など各種の基板を使用することが可能である。また、これらの展開基板の上に形成する電極としてはCPW電極としたが、マイクロストリップ電極などその他の電極を使用することが可能である。
RF電気信号入力用展開基板やRF電気信号出力用展開基板にコンデンサー、抵抗、ローパスフィルター、ハイパスフィルター、あるいはバンドパスフィルターなどを搭載することにより、光変調以外の他の機能を付加することが可能である。
なお、バイアス電圧用相互作用部にはRF電界は印加されないので、バイアス電圧用相互作用部の特性インピーダンスは考える必要はなく、バイアス電圧用相互作用部の中心導体の幅はRF電気信号用相互作用部の中心導体の幅よりも広くする、あるいはバイアス電圧用相互作用部における中心導体と接地導体の間のギャップをRF電気信号用相互作用部における中心導体と接地導体の間のギャップよりも狭くすることが可能であることは言うまでもない。
上記の実施形態では、1つの相互作用部にRF電気信号とDCバイアスを印加する構造(第1の実施形態)とRF電気信号のみを印加するRF電気信号用相互作用部とDCバイアスのみを印加するバイアス電圧用相互作用部を別個に持つ構造(第2の実施形態)として説明した。しかしながら第2の実施形態において、本願出願人による特願2005−216034のように、RF電気信号用相互作用部とバイアス電圧用相互作用部の双方にDCバイアスを印加することにより、DCバイアス電圧を大幅に低減でき、信頼性をさらに向上できることは言うまでもない。そして、こうした構造にも本願発明を適用できる。つまり、展開基板を用いることにより2つの相互作用部の長さの和をより長くすることが可能となる。
また、以上の実施形態においては、x−カット、y−カットもしくはz−カットの面方位、即ち、基板表面(カット面)に対して垂直な方向に結晶のx軸、y軸もしくはz軸を持つ基板でも良いし、以上に述べた各実施形態での面方位を主たる面方位とし、これらに他の面方位が副たる面方位として混在しても良いし、LN基板のみでなく、リチウムタンタレートなどその他の基板でも良いことは言うまでもない。
さらには、RF電気信号入力用及びRF電気信号出力用展開基板はLN基板とは別体の基板を用いるとして説明したが、相互作用光導波路3a、3bと進行波電極4(あるいは、中心導体16a、接地導体16b、16cからなるDCバイアス電極)を形成した同一のLN基板上に図1から図3の本実施形態の中で示した中心導体21a、接地導体21b、21cや中心導体24a、接地導体24b、24cの一方もしくはその両方を形成しても良い。
以上のように、本発明に係る光変調器は、RF変調性能とDCドリフト特性について大幅に改善することができるという効果を有し、高速で駆動電圧が低く、かつDCバイアス電圧が小さく、製作の歩留まりの良い光変調器として有用である。
本発明の第1の実施形態における光変調器の上面図 本発明の第1の実施形態における光変調器の模式的な上面図 本発明の第2の実施形態における光変調器の模式的な上面図 第1の従来技術に係る光変調器の斜視図 第1の従来技術のA−A’線における断面図 第1の従来技術に係る光変調器の動作を説明する図 第1の従来技術に係る光変調器の詳しい実装状態と電気的構成 第1の従来技術に係る光変調器の模式的な上面図 第2の従来技術に係る光変調器の模式的な上面図 第2の従来技術のC−C’線における断面図
符号の説明
1:x−カットLN基板(基板)
2:SiOバッファ層(バッファ層)
3:光導波路
3a、3b:相互作用部の光導波路(光導波路)
4:進行波電極
4a:中心導体
4b、4c:接地導体
5:筐体
6:RF電気信号入力用のコネクタ(コネクタ部)
7:RF電気信号入力用のコネクタ6の芯線
8:RF電気信号出力用のコネクタ
9:RF電気信号出力用のコネクタ8の芯線
10:コンデンサー
11:電気信号源
12:電気的な終端(終端)
13:コンデンサー
14:DC電源
15:相互作用部
16a:中心導体
16b、16c:接地導体
17:RF電気信号用相互作用部
18:バイアス電圧用相互作用部
20:RF電気信号入力用展開基板
21a:中心導体
21b、21c:接地導体
22:金ワイヤー(あるいは金リボン)
23:RF電気信号出力用展開基板
24a:中心導体
24b、24c:接地導体
25:相互作用部
26:RF電気信号用相互作用部
27:バイアス電圧用相互作用部
40、41、42:フィードスルー部(領域部)
B:RF電気信号を入力するために使用するコネクタ6の芯線7の位置

Claims (2)

  1. 電気光学効果を有する基板と、該基板に形成された光を導波するための光導波路と、前記基板の一方の面側に形成され、前記光を変調する高周波電気信号を印加するための高周波電気信号とバイアス電圧を印加する中心導体及び接地導体からなる進行波電極と、前記中心導体に外部電気回路から高周波電気信号を印加するための芯線を具備するコネクタ部とを有し、
    前記進行波電極に前記高周波電気信号と前記バイアスを印加することにより前記光導波路を伝搬する前記光の位相を変調する領域である相互作用部が具備されている光変調器において、
    少なくとも中心導体を形成した展開基板を前記高周波電気信号が入力される前記コネクタ部の芯線の近傍に設け、前記光の位相を変調するための前記相互作用部の長さを、前記展開基板を用いない場合より長くしたことを特徴とする光変調器。
  2. 電気光学効果を有する基板と、該基板に形成された光を導波するための光導波路と、前記基板の一方の面側に形成され、前記光を変調する高周波電気信号を印加するための中心導体及び接地導体からなる高周波電気信号用進行波電極と、バイアス電圧を印加するための中心導体及び接地導体からなるバイアス電圧用電極と、高周波電気信号用進行波電極の前記中心導体に外部電気回路から高周波電気信号を印加するための芯線を具備するコネクタ部とを有し、
    前記進行波電極に前記高周波電気信号を印加することにより前記光導波路を伝搬する前記光の位相を変調する領域である高周波電気信号用相互作用部と、前記バイアス電圧用電極に前記バイアス電圧を印加することにより前記光導波路を伝搬する前記光の位相を変える領域であるバイアス電圧用相互作用部が具備されている光変調器において、
    少なくとも中心導体を形成した展開基板を前記高周波電気信号が入力される前記コネクタ部の芯線の近傍に設け、前記高周波電気信号用相互作用部の長さと、前記バイアス電圧用相互作用部の長さの和を、前記展開基板を用いない場合より長くしたことを特徴とする光変調器。
JP2005280036A 2005-09-27 2005-09-27 光変調器 Pending JP2007093742A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005280036A JP2007093742A (ja) 2005-09-27 2005-09-27 光変調器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005280036A JP2007093742A (ja) 2005-09-27 2005-09-27 光変調器

Publications (1)

Publication Number Publication Date
JP2007093742A true JP2007093742A (ja) 2007-04-12

Family

ID=37979592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005280036A Pending JP2007093742A (ja) 2005-09-27 2005-09-27 光変調器

Country Status (1)

Country Link
JP (1) JP2007093742A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012128007A (ja) * 2010-12-13 2012-07-05 Anritsu Corp 光変調器
JP2012155046A (ja) * 2011-01-25 2012-08-16 Anritsu Corp 光変調器
JP2015108678A (ja) * 2013-12-03 2015-06-11 日本電信電話株式会社 半導体マッハツェンダ変調装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012128007A (ja) * 2010-12-13 2012-07-05 Anritsu Corp 光変調器
JP2012155046A (ja) * 2011-01-25 2012-08-16 Anritsu Corp 光変調器
JP2015108678A (ja) * 2013-12-03 2015-06-11 日本電信電話株式会社 半導体マッハツェンダ変調装置

Similar Documents

Publication Publication Date Title
JP4234117B2 (ja) 光変調器
US8135242B2 (en) Optical modulator
EP1335238B1 (en) Optical phase modulator with electrode arrangement having a wideband transmission response
JP4956296B2 (ja) 光変調器
WO2015151978A1 (ja) 光制御素子
US20100158428A1 (en) Optical modulator
JP5050003B2 (ja) 光変調器
JP2006317550A (ja) 光変調器
JP2007079249A (ja) 光変調器
JP4926423B2 (ja) 光変調器
JP2007093742A (ja) 光変調器
JP5023110B2 (ja) 光変調器モジュール
US6768570B2 (en) Optical modulator
JP4920212B2 (ja) 光変調器
JP2007072369A (ja) 光変調器
JP2013054134A (ja) 光変調器モジュール
JP2008139554A (ja) 光変調器
JP5244943B2 (ja) 光変調器モジュール
JP4754608B2 (ja) 光変調器
JP5421963B2 (ja) 光変調器モジュール
JP2008152206A (ja) 光変調器
JP5416658B2 (ja) 光変調器および光変調器モジュール
JP2010044197A (ja) 光変調器
JP4914908B2 (ja) 光変調器モジュール
JP2008052103A (ja) 光変調器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201