JP2007085782A - 画素駆動電流測定方法および装置 - Google Patents

画素駆動電流測定方法および装置 Download PDF

Info

Publication number
JP2007085782A
JP2007085782A JP2005272442A JP2005272442A JP2007085782A JP 2007085782 A JP2007085782 A JP 2007085782A JP 2005272442 A JP2005272442 A JP 2005272442A JP 2005272442 A JP2005272442 A JP 2005272442A JP 2007085782 A JP2007085782 A JP 2007085782A
Authority
JP
Japan
Prior art keywords
pixel
current
measurement
pixels
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005272442A
Other languages
English (en)
Inventor
Yasuhiro Miyake
泰弘 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agilent Technologies Inc
Original Assignee
Agilent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agilent Technologies Inc filed Critical Agilent Technologies Inc
Priority to JP2005272442A priority Critical patent/JP2007085782A/ja
Priority to TW095129573A priority patent/TW200713194A/zh
Priority to US11/506,140 priority patent/US20070063727A1/en
Priority to KR1020060091320A priority patent/KR20070032931A/ko
Priority to CNA2006101278039A priority patent/CN1936603A/zh
Publication of JP2007085782A publication Critical patent/JP2007085782A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

【課題】制御電圧の変化によって生じるオフセット電流の影響を排除し、精度の高い画素駆動電流測定が可能な測定方法および装置を提供することができる。
【解決手段】上述した課題は、複数の画素を全て非点灯状態に設定したときに、配線に流れるオフセット電流を測定する第1のステップと、複数の画素のうち所定の画素のみを点灯したときに配線に流れる電流と、オフセット電流との差分に基づいて、所定の画素の画素駆動電流を測定する第2のステップと、第2のステップを繰返して、複数の画素のうち所定数の画素の画素駆動電流を順次測定し、その後、複数の画素の全てを非点灯状態に再設定する第3のステップと、第1のステップから第3のステップを繰返して、表示装置の画素駆動電流を測定する第4のステップとを有することを特徴とする画素駆動電流測定方法等により解決することができる。
【選択図】図1

Description

本発明は、画素駆動電流測定方法および装置に関し、特に、複数の画素の画素駆動電流を共通の配線から分配して供給する構造を備えた表示装置の画素駆動電流の測定方法および装置に関する。
EL素子のような自己発光型の発光素子を利用した表示装置では、各発光素子の輝度を制御するアクティブマトリクス基板に発光素子を封入して表示パネルを作成する。自己発光型の発光素子は、一般に、素子に流れる電流(画素駆動電流)に応じた輝度で発光する。アクティブマトリクス基板は、各画素の画素駆動電流を制御することにより、発光輝度を制御する機能を有する。画素駆動電流の制御は、FETを用いて制御電圧により制御することが多い。すなわち、図6のようにトランジスタ64のドレイン端子に発光素子66を接続し、ドレイン・ソース間電流をゲート電圧により制御することにより、発光素子66に供給される電流を制御する。ゲート電圧を一定に保つため、ゲート端子に保持容量65を設けることが一般的である。また、基板内の配線数を少なくするために、ソース端子に供給する画素駆動電流は、一本の駆動電流供給用の配線62Aから各画素に分配して供給するようにレイアウトすることが多い。
アクティブマトリクス基板上の制御回路は、ガラス基板上にスパッタなどの比較的不安定な層形成工程を経て製造されるため、完成した表示装置を出荷する前に、基板上の各画素が所望の機能を有するか試験を行う必要がある。この試験項目のひとつに、画素駆動電流の測定がある。この測定は、次のような手順で実施される。まず、測定画素の保持容量65を所定の電圧に設定する。保持容量65は画素電流制御用トランジスタ64のゲート端子に接続されているから、ドレイン・ソース間には、設定された電圧、すなわち、ゲート電圧に応じた電流が流れる。このときに流れる画素駆動電流を測定する。測定結果が、所望の電流の範囲にあるか否かを判定することにより、測定画素の画素駆動電流制御用トランジスタ64が正常に動作しているか否かを判定することができる。このような測定および良否判定を、基板上の全ての画素に対して実施することにより、表示装置が所定の性能を備えているか否かを判定することができる。
この画素駆動電流の測定では、本来は各画素の画素駆動電流を単独で測定することが望ましいが、上述したように、画素駆動電流は、一本の駆動電流供給用の配線62Aから分配して供給される構造となっているため、特定の画素の電流のみを測定することはできない。従って、通常は、表示装置中の1つまたは複数の測定画素を点灯し、他の画素を非点灯状態にしたときに駆動電流供給用の配線に流れる電流を測定することにより、測定画素の画素駆動電流を求めることが一般的である。
ところで、アクティブマトリクス基板などのような半導体集積回路では、回路素子間で完全な絶縁をとることが難しく、微小な漏れ電流が存在する。上述したドレイン・ソース間の画素駆動電流も完全にゼロにすることはできず、非測定時にも微小な漏れ電流が流れている。このため、複数の画素に画素駆動電流を供給する駆動電流供給用の配線には、全画素が非点灯状態であっても、ある程度の電流が流れている状態となる。この電流をオフセット電流をとよぶ。
画素駆動電流の測定では、このオフセット電流による影響を排除するため、特許文献1に開示されている技術のように、測定画素点灯時に配線62Aに流れる電流からオフセット電流を差し引いて、画素駆動電流を求める。このとき、オフセット電流成分を差し引く方法として、オフセット電流を含んでいる測定値をディジタル値に変換し、情報処理によりオフセット電流量を差し引く方法がある。しかし、この方法では、オフセット電流分を含めた電流を測定する必要があるため、電流計の測定範囲を広くとる必要があり、精密な測定精度を得ることが難しい。このため、電流計と並列にオフセット電流をキャンセルする定電流回路を設けてハードウェア的にオフセット電流をキャンセルし、画素駆動電流のみを電流計で測定する方法がある。
特許3628014号公報
ところで、上述した漏れ電流は、ドレイン・ソース間だけでなく、保持容量65からも生じる。保持容量65からの漏れ電流は、保持容量の端子間電圧を変化させる。すると、ゲート電圧が変化し、ゲート電圧に応じてドレイン・ソース間に電流が流れる。つまり、ドレイン・ソース間の電流は、上述したドレイン・ソース間の絶縁特性に起因する漏れ電流だけではなく、保持容量65からの漏れ電流により生じたゲート電圧の変化によっても電流が発生する。このうち、絶縁特性に起因する漏れ電流は一定であるが、ゲート電圧の変化による電流は、配線62Aに画素駆動電圧を印加している時間が経過すると保持容量65の帯電量が増加するため、画素駆動電圧を印加している時間とともに増加する。しかも、p型MOSトランジスタ64は、図5のような電圧電流特性を有しているため、ゲート・ソース電圧Vgsの値が座標軸交点から左方向に移っていくと、ドレイン・ソース電流Idsの絶対値は非線形的に大きくなる。このため、駆動電流供給用の配線62Aから流れるオフセット電流は、時間の経過とともに飛躍的に大きくなる。なお、図5はp型MOSトランジスタの電圧電流特性の例を示したものであり、電流の方向や電圧極性はトランジスタの極性により変わる。
表示装置には例えば50万画素以上の多数の画素があるため(XGAの画素数は786,432)、表示装置全部の画素駆動電流を測定するためには相当の時間が必要となる。このため、ゲート電圧の変化によって生じるオフセット電流を放置しておくと、オフセット電流は増大してゆき、駆動電流供給用の配線62Aには測定量と比べて過大なオフセット電流が流れるようになる。このような大きなオフセット電流の条件下で測定を行おうとすると、大きな測定レンジで測定しなければならないので、精度の高い測定が困難となってしまう。また、配線62Aに画素駆動電圧を印加している時間の経過とともに変動するオフセット電流を正確にキャンセルできる機能がないと正確な測定ができない。そこで、ゲート電圧の変化によって生じるオフセット電流の影響を排除し、精度の高い画素駆動電流測定が可能な測定方法および装置が求められる。
特許文献1に開示された従来例は、電流計と並列にオフセット電流をキャンセルする定電流回路を設けてハードウェア的にオフセット電流をキャンセルし、画素駆動電流のみを電流計で測定することにより、測定電流のダイナミックレンジを狭めて、高精度の測定を行おうとするものである。しかしながら、多数の画素を順次測定し時間が経過してゆくと、図10に示すようにオフセット電流値41は、非線形的に増大率が高くなっていく。すなわち、その絶対値が、B1、B2、B3、B4と、次第に大きくなってゆき、また、B1からB2へ、B2からB3へ、B3からB4への変化率も次第に大きくなってゆく。このために、オフセット電流をキャンセルする定電流源に必要なダイナミックレンジも大きくなることから、高精度の電流値を供給することが困難となる。また、諸要因により、被測定画素に係るオフセット電流値が所期の値から外れる可能性も高くなる。したがって、被測定画素において測定しようとする駆動電流42のダイナミックレンジは、図10のAに示すようにほぼ一定であって電流計の精度を高く維持できたとしても、オフセット電流のキャンセルの精度が落ち、システム全体としての測定精度が落ちてしまう恐れがある。
上述した課題は、複数の画素に駆動電流を供給する配線を備えた表示装置の画素駆動電流を測定する方法であって、前記複数の画素を全て非点灯状態に設定したときに、前記配線に流れるオフセット電流を測定する第1のステップと、前記複数の画素のうち所定の画素のみを点灯したときに前記配線に流れる電流と、前記オフセット電流との差分から、前記所定の画素の前記画素駆動電流を測定する第2のステップと、前記第2のステップを繰返して、前記複数の画素のうち所定数の画素の前記画素駆動電流を順次測定し、その後、前記複数の画素の全てを非点灯状態に再設定する第3のステップと、前記第1のステップから前記第3のステップを繰返して、前記表示装置の前記画素駆動電流を測定する第4のステップとを有することを特徴とする測定方法等により解決することができる。
本発明により、制御電圧の変化によって生じるオフセット電流の影響を排除し、精度の高い画素駆動電流測定が可能な測定方法および装置を提供することができる。
以下、図面参照下に、本発明の代表的な実施例を示す。
図1は、本発明に係る画素駆動電流測定装置20の概略構成図である。測定装置20は、自己発光型表示素子であるEL表示装置10の画素の点灯状態を制御する画素制御装置22と、表示装置10の駆動電流供給用の配線に画素駆動電圧を印加する電源24と、電源24と駆動電流供給用の配線との間に配設された電流計23と、測定装置20の動作を制御する測定制御装置21により構成されている。
画素制御装置22は、表示装置10の測定画素を特定し、測定画素の点灯/非点灯の状態制御と、測定画素の発光輝度を制御する機能を有する。また、測定制御装置21は、情報処理手段であるMPU21Aとハードディスクのメモリ21Bを備え、メモリ21B内部に本発明にかかる測定制御方法を記述したプログラムが格納されている。
なお、測定対象となる表示装置は、EL表示装置10に限られず、素子に流れる駆動電流により輝度を制御する特性をもつ発光素子を、制御電圧により画素駆動電流を制御する機能を有するアクティブマトリクス基板を用いて駆動する表示装置であればよい。また、測定制御装置21の情報処理手段はMPUである必要はなく、DSPなどのデジタルデータの演算機能をもつデバイスであればよい。また、記憶手段(メモリ)は必ずしもハードディスクである必要はなく、フラッシュメモリやRAMなどのデジタルデータを格納できるデバイスであってもよい。
測定対象となるEL表示装置10の構成を図2に示す。EL表示素子10は、画素11がマトリクス状に配置され、各画素に対して画素駆動電流を供給する配線12A、保持容量15の共通線12B、データ線12C、画素駆動電流の共通線12D、ゲート線12Eが接続されている。このうち、配線12Aには、測定装置20の電流計23、電源24が接続されている。また、画素駆動電流の共通線12Dは、測定装置20の接地電位と同電位に設定されている。なお、以下の説明で言及する電圧は、特段の説明のない限り、共通線12Dの電圧との電位差で表す。
画素11は、制御対象となる測定画素を選択する画素選択用トランジスタ13と、画素駆動電流制御素子であるトランジスタ14と、画素駆動電流制御用トランジスタ14のゲート電圧を保持する保持容量15と、EL素子16により構成される。画素選択用トランジスタ13は、ゲート端子がゲート線12Eに、ソース端子がデータ線12Cに、ドレイン端子が画素駆動電流制御用トランジスタ14のゲート端子と保持容量15の一端に、それぞれ接続されている。画素駆動電流制御用トランジスタ14は、ゲート端子が画素選択用トランジスタ13のドレイン端子と保持容量15の一端に、ソース端子が配線12Aに、ドレイン端子がEL素子16の一端に接続されている。
保持容量15は、一端が画素選択用トランジスタ13のドレイン端子と画素駆動電流制御用トランジスタ14のゲート端子に接続され、他端が共通線12Bに接続されている。EL素子16は、一端が画素駆動電流制御用トランジスタ14のドレイン端子に、他端が共通線12Dに、それぞれ接続されている。なお、本実施例では、画素選択用トランジスタ13および画素駆動電流制御用トランジスタ14を、ともにp型MOSトランジスタで構成しているが、n型MOSトランジスタやMOS構造以外のトランジスタで構成してもよい。
次に画素11の動作を説明する。本明細書および特許請求の範囲において、「導通状態」とは、トランジスタのドレイン・ソース間のインピーダンスが低い状態をいう。本実施例の画素選択用トランジスタ13および画素駆動電流制御用トランジスタ14はともに、図5のような電圧電流特性をもつため、ゲート・ソース電圧が0V以下になるようにゲート電圧を制御した場合に導通状態となる。導通状態における、ゲート・ソース電圧と、ドレイン・ソース電流との、電圧電流特性は、図5に示すとおりである。画素駆動電流制御用トランジスタ14が導通状態のときには、EL素子16が発光状態となる。
他方、「非導通状態」とは、トランジスタのドレイン・ソース間のインピーダンスが高い状態をさす。図5で、ゲート・ソース電圧が0Vより高い場合に、非導通状態となる。画素駆動電流制御用トランジスタ14が非導通状態のときには、EL素子16が非発光状態となる。ただし、上述したように、非導通状態であってもドレイン・ソース間の電流は完全にゼロにはならず、絶縁特性に起因する漏れ電流が流れる。
画素11は、ゲート線12Eを0Vにすることにより選択される。ゲート線12Eは、通常10Vの電圧が印加されており、画素制御装置22により選択されたゲート線12Eのみが、0Vとなる。すると、画素選択用トランジスタ13が導通状態となり、データ線12Cの制御電圧が保持容量15に印加される。このときデータ線12Cには、画素制御装置22から制御電圧(発光輝度信号)が供給されている。制御電圧は5V以上のとき、EL素子16は非点灯状態となり、5V未満で点灯状態となる。点灯状態においては、制御電圧が小さくなるに従って輝度が次第に大きくなり、電圧が0Vのとき最大輝度で発光する。なお、共通線12Bには、常に5Vが印加されている。
制御電圧を保持する保持容量15は、画素駆動電流制御用トランジスタ14のゲート端子に接続されているため、トランジスタ14のドレイン・ソース間には、制御電圧に応じた画素駆動電流が流れる。画素駆動電流は、画素駆動電圧が印加されている配線12Aからトランジスタ14を経てEL素子16に供給される。
次に、画素駆動電流測定装置20の動作について述べる。図3は測定装置20の動作を示すフローチャートである。測定は、メモリ21B内部に表示パネル10の全画素の保持容量を非点灯状態に設定してから測定した画素数(測定画素数)とオフセット電流の関係を示すテーブルを作成する予備測定(ステップ30)と、本発明の測定方法に係る本測定(ステップ31〜36)の2つの測定から構成される。
前述したようにオフセット電流は、全画素の保持容量を非点灯状態に設定してから配線12Aに画素駆動電圧を印加している時間により変化する。このため、本来であれば、かかる時間とオフセット電流の関係を測定し、本測定時にも画素駆動電圧の印加時間を計時して、全画素の保持容量を非点灯状態に設定してから画素駆動電流測定時までの時間からオフセット電流を求める必要がある。しかし、画素駆動電流測定装置20では、一定のタイミングで画素駆動電流測定を行い、測定の間、画素駆動電圧を印加しつづけるため、画素駆動電圧印加時間と測定画素数は比例する。このため、予備測定では測定画素数を画素駆動電圧印加時間の代替値として採用している。従って、測定タイミングが不規則な画素駆動電流測定装置では、上述したように画素駆動電圧の印加時間とオフセット電流の関係を求める必要がある。
予備測定(ステップ30)では、まず表示パネル10の全画素の保持容量(すなわち画素駆動電流制御用トランジスタ14のゲート端子)を5V(非点灯状態)に設定して、配線12Aに流れる駆動電流を電流計23で測定する。このとき測定された電流値が測定画素数0のオフセット電流値である。次に、適当な画素の保持容量15(すなわち画素駆動電流制御用トランジスタ14のゲート端子)を3V(点灯状態)に設定してから、再び5V(非点灯状態)に設定した後の配線12Aの駆動電流を電流計23で測定する。このとき測定される電流が測定画素数1のときのオフセット電流である。このとき、制御電圧の設定動作は、ステップ31以下の本測定と同じタイミングで実施される。
同様に、本測定と同じタイミングで画素の点灯/非点灯動作を実行した後、オフセット電流測定を測定して、測定画素数2のときのオフセット電流を求める。予備測定で測定する画素の位置は、後述する本測定とできるだけ同じ状態となるように選択するのが最適であるが、条件によっては、それに限られるものではない。例えば、測定画素の数のみに意味がある場合には、測定画素数1のオフセット電流を求めた画素と同じ画素が含まれてもよく、全く異なる位置の画素であっても構わない。以上説明したように、画素の点灯/非点灯動作を繰返し、測定画素数とオフセット電流との関係をメモリ21B上のテーブルに記録する。
前述したように、画素の点灯/非点灯動作を行っている間に、表示装置10上の他の画素の保持容量15の電圧(トランジスタ14のゲート電圧)が漏れ電流により変化し、各画素のドレイン・ソース間電流が増加する。このため、測定画素数1のオフセット電流は、測定画素数0のときのオフセット電流と比べ、大きな値となる。さらに、測定画素数が増える(時間が経過する)と、オフセット電流は急激に変化してゆく。
なお、表示装置10のオフセット電流の変化が予めわかっている場合には、予備測定を行う必要はなく、テーブルをメモリ21Bに格納してから本測定を実施すればよい。また、本測定で、画素駆動電圧の印加時間とオフセット電流との関係を用いて、画素駆動電流を求める場合には、全画素を非点灯状態に設定してから、配線12Aに画素駆動電圧を印加し、所定時間間隔毎にオフセット電流の測定を行って、測定を行った時間とオフセット電流との関係をテーブルに記録すればよい。
次に、本発明の測定方法である本測定(ステップ31、32、34、38、35、36)の説明を行う。本測定では、まず、表示装置10の全画素の保持容量を5Vに設定する(ステップ31)。この工程で、全画素の画素駆動電流制御用トランジスタ14には、ドレイン・ソース間の漏れ電流以外の電流は流れない状態となる。つぎに、第1列第1行の測定画素11の保持容量15を3Vに設定する(ステップ32)。このとき設定する電圧は測定条件により任意に設定可能であるが、本実施例では一例として3Vを測定条件とした。
そして、電流計23により配線12Aに流れる電流を測定する(ステップ34)。
次に、メモリ21Bに格納されているオフセット電流値のテーブルにある測定画素数0のときのデータを用いて、測定値からオフセット電流値を引き、画素駆動電流の測定値を求める(ステップ38)。
測定した電流は、画素の位置(第1列第1行)とゲート電圧(3V)とともにメモリ21Bに格納される。最後に、測定画素11の保持容量15を5V(非点灯状態)に設定する。
次に、第1列第2行の測定画素17の画素駆動電流測定を行う。まず、測定画素17の保持容量を3Vに設定する(ステップ32)。その後、電流計23により配線12Aに流れる電流を測定する(ステップ34)。次に、メモリ21Bに格納されているオフセット電流値のテーブルにある測定画素数1のときのオフセット電流値データを用いて、電流計で測定した値からオフセット電流値を引いて、画素駆動電流値を求める(ステップ38)。求めた測定値は画素の位置(第1列第2行)とゲート電圧(3V)とともにメモリ21Bに格納される。このとき、メモリ21Bに格納されている測定値は、配線12Aに流れている電流値とオフセット電流値との差分となる。最後に、測定画素17の保持容量15を5V(非点灯状態)に設定する。同様な工程で、第1列の全ての画素の画素駆動電流を順次測定する。
第1列の全ての画素の測定が終了すると(ステップ35)、再び表示装置10の全画素の保持容量を5V(非点灯状態)に再設定する(ステップ31)。再設定により、全画素の画素駆動電流制御用トランジスタ14には、ドレイン・ソース間の漏れ電流以外の電流は流れない状態に戻る。その後、ステップ32、34、38の工程を繰返して第2列の各画素の画素駆動電流を順次測定する。このとき、ステップ38における測定値の算出は、再設定以降の測定画素数に応じたオフセット電流値をメモリ21Bから呼び出して、電流測定値との差分を取ることにより行われる。例えば、第2列第1行の画素の測定では、オフセット電流値を、測定画素数0のときの値に設定し、第2列第2行の画素の測定では、オフセット電流値を測定画素数1のときの値に設定する。
このようにして各列の測定を順次行って表示装置10上の全ての画素の測定が終了すると(ステップ36)、測定装置20は測定動作を終了する。その後、必要に応じてMPU21Aで、メモリ21B上に格納されている各画素の測定値が基準範囲内にあるか否かを判定して、表示装置10の良否判定を行う。
なお、画素駆動電圧の印加時間とオフセット電流との関係を利用して画素駆動電流の測定を行う場合には、複数の画素を全て非点灯状態に設定してから経過した時間を求め、メモリ21Bに格納されているテーブルから、求めた時間に対応するオフセット電流値を使用して、測定値の補正を行う。このとき、テーブルに経過時間に相当するオフセット電流値が記録されていない場合には、最も近い時間に対応するオフセット電流を採用するか、MPU21Aによりデータ補間してオフセット電流値を求めてもよい。
図4に、本発明実施例により測定動作の途中で保持容量15の電圧を非点灯状態に再設定したときのオフセット電流の変化(実線40)を、再設定を行わずに測定を続けた場合のオフセット電流の変化(破線41)と対比して示す。なお、実線40、破線41とも、作図の都合上、直線、曲線として描かれているが、現実のオフセット電流値は、上記のとおり予備測定により得られた物理量であって、厳密にはテーブルに記録された不連続な値である。また、同様に、駆動電流測定値を示す点線43は、階段状に描かれているが、被測定物の測定値であることを模式的に示しているだけで、図上の点の配列には特別な意味は無い。図から明らかなように、再設定によりオフセット電流値が定期的に初期値に戻るため、測定動作中のオフセット電流の増加を抑制し、オフセット電流のダイナミックレンジは図中Cで示した範囲に収めることができる。測定される駆動電流のダイナミックレンジは図中Aで示した範囲であり、電流計23に必要なダイナミックレンジは、A+C、すなわち、図中Dで示した範囲に収めることができる。このため、測定精度の低下することを防ぐことができる。また、1列測定するごとに、オフセット電流が初期値に戻るため、メモリ21Bのオフセット電流値のテーブルは、1列分の画素数分だけ確保すればよいことになる。このため、測定動作中のオフセット電流の変化を記録したテーブルが不要となり、テーブルの容量を小さくすることができる。
なお、本実施例では、測定動作の途中で保持容量15の電圧を非点灯状態に再設定する時期は、EL表示装置10の画素1列分の測定を終え、二列目の測定を開始する前であるものとして説明したが、これに限られるものではなく、例えば、一列目の測定途中であっても良いし、複数列の測定後であってもよい。あるいは、電流計23の測定レンジの範囲内におさまるように、予め定めても良い。さらに、また、電流計23の測定値を測定制御装置21により監視して、所定の値を越えた場合に再設定の動作をさせるように構成してもよい。
また、本実施例では、オフセット電流値は、予備測定により各画素ごとに求めるものとして説明したが、オフセット電流の時間変化が小さなデバイスの測定を行う場合には、配線12Aに流れる電流と測定画素数0(初期値)のときのオフセット電流との差分をとって画素駆動電流を求めてもよい。この場合には、予備測定が簡素化(測定画素数0のオフセット電流測定のみ)され、高速な測定が可能となる。さらに、大きなテーブルが不要となるため、メモリ21Bの記憶容量がさらに小さくてすむという利点がある。
次に、本発明の別実施例を、図面を参照しながら説明する。
図7は、本発明に係る画素駆動電流測定装置80の概略構成図である。測定装置80は、自己発光型表示素子であるEL表示装置70の画素の点灯状態を制御する画素制御装置82と、表示装置70の駆動電流供給用の配線に画素駆動電圧を印加する電源84と、電源84と駆動電流供給用の配線との間に配設された電流計83と、電流計83と並列に接続された定電流回路85と、測定装置80の動作を制御する測定制御装置81により構成されている。
画素制御装置82は、表示装置70の測定画素を特定し、測定画素の点灯/非点灯の状態制御と、測定画素の発光輝度を制御する機能を有する。また、測定制御装置81は、情報処理手段であるMPU81Aとハードディスクのメモリ81Bを備え、メモリ81B内部に本発明にかかる測定制御方法を記述したプログラムが格納されている。さらに、定電流回路85は、一定の電流を流す機能をもった回路であり、自ら所定の電流を発生させる回路(電流源)でもよいし、電源84からの電流を所定の電流だけ流す(残りの電流は電流計82を介して流れる)回路(電流制御回路)であってもよい。
なお、測定対象となる表示装置は、EL表示装置70に限られず、素子に流れる駆動電流により輝度を制御する特性をもつ発光素子を、制御電圧により画素駆動電流を制御する機能を有するアクティブマトリクス基板を用いて駆動する表示装置であればよい。また、測定制御装置81の情報処理手段はMPUである必要はなく、DSPなどのデジタルデータの演算機能をもつデバイスであればよい。また、記憶手段(メモリ)は必ずしもハードディスクである必要はなく、フラッシュメモリやRAMなどのデジタルデータを格納できるデバイスであってもよい。
測定対象となるEL表示装置70の構成を図8に示す。EL表示素子70は、画素71がマトリクス状に配置され、各画素に対して画素駆動電流を供給する配線72A、保持容量75の共通線72B、データ線72C、画素駆動電流の共通線72D、ゲート線72Eが接続されている。このうち、配線72Aには、測定装置80の電流計83、電源84、および定電流回路85が接続されている。また、画素駆動電流の共通線72Dは、測定装置80の接地電位と同電位に設定されている。なお、以下の説明で言及する電圧は、特段の説明のない限り、共通線72Dの電圧との電位差で表す。
画素71は、制御対象となる測定画素を選択する画素選択用トランジスタ73と、画素駆動電流制御素子であるトランジスタ74と、画素駆動電流制御用トランジスタ74のゲート電圧を保持する保持容量75と、EL素子76により構成される。画素選択用トランジスタ73は、ゲート端子がゲート線72Eに、ソース端子がデータ線72Cに、ドレイン端子が画素駆動電流制御用トランジスタ74のゲート端子と保持容量75の一端に、それぞれ接続されている。画素駆動電流制御用トランジスタ74は、ゲート端子が画素選択用トランジスタ73のドレイン端子と保持容量75の一端に、ソース端子が配線72Aに、ドレイン端子がEL素子76の一端に接続されている。
保持容量75は、一端が画素選択用トランジスタ73のドレイン端子と画素駆動電流制御用トランジスタ74のゲート端子に接続され、他端が共通線72Bに接続されている。EL素子76は、一端が画素駆動電流制御用トランジスタ74のドレイン端子に、他端が共通線72Dに、それぞれ接続されている。なお、本実施例では、画素選択用トランジスタ73および画素駆動電流制御用トランジスタ74を、ともにp型MOSトランジスタで構成しているが、n型MOSトランジスタやMOS構造以外のトランジスタで構成してもよい。
次に画素71の動作を説明する。本明細書および特許請求の範囲において、「導通状態」とは、トランジスタのドレイン・ソース間のインピーダンスが低い状態をいう。本実施例の画素選択用トランジスタ73および画素駆動電流制御用トランジスタ74はともに、図5のような電圧電流特性をもつため、ゲート・ソース電圧が0V以下の場合に導通状態となる。導通状態のときには、ドレイン・ソース電流は、図5の電圧電流特性に従ってゲート電圧により制御される。画素駆動電流制御用トランジスタ74が導通状態のときには、EL素子76が発光状態となる。
他方、「非導通状態」とは、トランジスタのドレイン・ソース間のインピーダンスが高い状態をさす。図5で、ゲート・ソース電圧が0Vより高い場合に、非導通状態となる。画素駆動電流制御用トランジスタ74が非導通状態のときには、EL素子76が非発光状態となる。ただし、上述したように、非導通状態であってもドレイン・ソース間の電流は完全にゼロにはならず、絶縁特性に起因する漏れ電流が流れる。
画素71は、ゲート線72Eを0Vにすることにより選択される。ゲート線72Eは、通常7Vの電圧が印加されており、画素制御装置82により選択されたゲート線72Eのみが、0Vとなる。すると、画素選択用トランジスタ73が導通状態となり、データ線72Cの制御電圧が保持容量75に印加される。このときデータ線72Cには、画素制御装置82から制御電圧(発光輝度信号)が供給されている。制御電圧は5V以上のとき、EL素子76は非点灯状態となり、5V未満で点灯状態となる。点灯状態においては、制御電圧が小さくなるに従って輝度が次第に大きくなり、電圧が0Vのとき最大輝度で発光する。なお、共通線72Bには、常に5Vが印加されている。
制御電圧を保持する保持容量75は、画素駆動電流制御用トランジスタ74のゲート端子に接続されているため、トランジスタ74のドレイン・ソース間には、制御電圧に応じた画素駆動電流が流れる。画素駆動電流は、画素駆動電圧が印加されている配線72Aからトランジスタ74を経てEL素子76に供給される。
次に、画素駆動電流測定装置80の動作について述べる。図9は測定装置80のフローチャートである。測定は、メモリ81B内部に表示パネル70の全画素の保持容量を非点灯状態に設定してから測定した画素数(測定画素数)とオフセット電流の関係を示すテーブルを作成する予備測定(ステップ90)と、本発明の測定方法に係る本測定(ステップ91〜96)の2つの測定から構成される。
前述したようにオフセット電流は、全画素の保持容量を非点灯状態に設定してから配線72Aに画素駆動電圧を印加している時間により変化する。このため、本来であれば、かかる時間とオフセット電流の関係を測定し、本測定時にも画素駆動電圧の印加時間を計時して、全画素の保持容量を非点灯状態に設定してから画素駆動電流測定時までの時間からオフセット電流を求める必要がある。しかし、画素駆動電流測定装置80では、一定のタイミングで画素駆動電流測定を行い、測定の間、画素駆動電圧を印加しつづけるため、画素駆動電圧印加時間と測定画素数は比例する。このため、予備測定では測定画素数を画素駆動電圧印加時間を代替値として採用している。従って、測定タイミングが不規則な画素駆動電流測定装置では、上述したように画素駆動電圧の印加時間とオフセット電流の関係を求める必要がある。
予備測定(ステップ90)では、まず表示パネル70の全画素の保持容量(すなわち画素駆動電流制御用トランジスタ74のゲート端子)を5V(非点灯状態)に設定して、配線72Aに流れる駆動電流を電流計82で測定する。このとき測定された電流が測定画素数0のオフセット電流である。次に、適当な画素の保持容量75(すなわち画素駆動電流制御用トランジスタ74のゲート端子)を3V(点灯状態)に設定してから、再び5V(非点灯状態)に設定した後の配線72Aの駆動電流を電流計82で測定する。このとき測定される電流が測定画素数1のときのオフセット電流である。このとき、制御電圧の設定動作は、ステップ91以下の本測定と同じタイミングで実施される。
同様に、本測定と同じタイミングで画素の点灯/非点灯動作を実行した後、オフセット電流測定を測定して、測定画素数2のときのオフセット電流を求める。このとき、測定する画素位置は、測定画素数1のオフセット電流を求めた画素と同じ画素であっても、異なる画素であっても構わない。同様に、画素の点灯/非点灯動作を繰返し、測定画素数とオフセット電流との関係をメモリ81B上のテーブルに記録する。
前述したように、画素の点灯/非点灯動作を行っている間に、表示装置70上の他の画素の保持容量75の電圧(トランジスタ74のゲート電圧)が漏れ電流により変化し、各画素のドレイン・ソース間電流が増加する。このため、測定画素数1のオフセット電流は、測定画素数0のときのオフセット電流と比べ、大きな値となる。さらに、測定画素数が増える(時間が経過する)と、オフセット電流は急激に変化してゆく。
なお、表示装置70のオフセット電流の変化が予めわかっている場合には、予備測定を行う必要はなく、テーブルをメモリ81Bに格納してから本測定を実施すればよい。また、本測定で、画素駆動電圧の印加時間とオフセット電流との関係を用いて、画素駆動電流を求める場合には、全画素を非点灯状態に設定してから、配線72Aに画素駆動電圧を印加し、所定時間間隔毎にオフセット電流の測定を行って、測定を行った時間とオフセット電流との関係をテーブルに記録すればよい。
次に、本発明の測定方法である本測定(ステップ91〜96)の説明を行う。本測定では、まず、表示装置70の全画素の保持容量を5Vに設定する(ステップ91)。この工程で、全画素の画素駆動電流制御用トランジスタ74には、ドレイン・ソース間の漏れ電流以外の電流は流れない状態となる。つぎに、第1列第1行の測定画素71の保持容量75を3Vに設定する(ステップ92)。このとき設定する電圧は測定条件により任意に設定可能であるが、本実施例では一例として3Vを測定条件とした。次に、メモリ81Bに格納されているテーブルから、定電流回路85の電流を測定画素数0のときのオフセット電流に設定する(ステップ93)。
そして、電流計83により配線72Aに流れる電流を測定する(ステップ94)。すると、配線72Aに流れる電流のうち、オフセット電流は電流計83を経ずに定電流回路85を通って配線72Aを流れるため、電流計83では、測定画素の画素駆動電流のみを測定できる。このため、画素駆動電流は小さな測定レンジで測定することが可能となり、高精度な測定が可能となる。測定した電流は、画素の位置(第1列第1行)とゲート電圧(3V)とともにメモリ81Bに格納される。最後に、測定画素71の保持容量75を5V(非点灯状態)に設定する。
次に、第1列第2行の測定画素77の画素駆動電流測定を行う。まず、測定画素77の保持容量を3Vに設定する(ステップ92)。次に、メモリ81Bに格納されているテーブルから、定電流回路85の電流を測定画素数1のときのオフセット電流に設定する(ステップ93)。その後、電流計83により配線72Aに流れる電流を測定する(ステップ94)。測定した電流は、画素の位置(第1列第2行)とゲート電圧(3V)とともにメモリ81Bに格納される。このとき、メモリ81Bに格納される測定値は、配線72Aに流れている電流からオフセット電流との差分となる。最後に、測定画素77の保持容量75を5V(非点灯状態)に設定する。同様な工程で、第1列の全ての画素の画素駆動電流を順次測定する。
第1列の全ての画素の測定が終了すると(ステップ95)、再び表示装置70の全画素の保持容量を5V(非点灯状態)に再設定する(ステップ91)。再設定により、全画素の画素駆動電流制御用トランジスタ74には、ドレイン・ソース間の漏れ電流以外の電流は流れない状態に戻る。その後、ステップ92からステップ94の工程を繰返して第2列の各画素の画素駆動電流を順次測定する。このとき、ステップ93で設定される定電流回路85の電流は、再設定以降の測定画素数に応じたオフセット電流をメモリ81Bから呼び出して設定する。例えば、第2列第1行の画素の測定では、定電流回路85の電流を測定画素数0のときのオフセット電流に設定し、第2列第2行の画素の測定では、定電流回路85の電流を測定画素数1のときのオフセット電流に設定する。
このようにして各列の測定を順次行って表示装置70上の全ての画素の測定が終了すると(ステップ96)、測定装置80は測定動作を終了する。その後、必要に応じてMPU81Aで、メモリ81B上に格納されている各画素の測定値が基準範囲内にあるか否かを判定して、表示装置70の良否判定を行う。
なお、画素駆動電圧の印加時間とオフセット電流との関係を利用して画素駆動電流の測定を行う場合には、ステップ93で定電流回路85の電流量を設定する際に、複数の画素を全て非点灯状態に設定してから経過した時間を求め、メモリ81Bに格納されているテーブルから、求めた時間に対応するオフセット電流を求めて、電流量を設定する。このとき、テーブルに経過時間に相当するオフセット電流が記録されていない場合には、最も近い時間に対応するオフセット電流を採用するか、MPU81Aによりデータ補間してオフセット電流を求めてもよい。
図4を再び参照して、この別実施例において、測定動作の途中で保持容量15の電圧を非点灯状態に再設定したときのオフセット電流の変化(実線40)を、再設定を行わずに測定を続けた場合のオフセット電流の変化(破線41)と対比して示す。図から明らかなように、再設定によりオフセット電流が定期的に初期値に戻るため、測定動作中のオフセット電流の増加が抑制され、オフセット電流を測定するのに必要なダイナミックレンジは図中のCで示した範囲に収めることができる。また、駆動電流の測定ダイナミックレンジは、測定電流が、オフセット電流値に設定された定電流回路85によってキャンセルされるため、電流計83に必要なダイナミックレンジは、図中Aで示した範囲に収めることができる。このため、測定精度を高めることが可能となる。また、1列測定するごとに、オフセット電流が初期値に戻るため、定電流回路85の電流を決定するためのメモリ81Bのテーブルは、1列分の画素数分だけ確保すればよいことになる。このため、測定動作中のオフセット電流の変化を記録したテーブルが不要となり、テーブルの容量を小さくすることができる。
なお、この別実施例においても、測定画素数(または配線72Aに画素駆動電圧を印加している時間)とオフセット電流との関係からオフセット電流の変化分をキャンセルして画素駆動電流を求めているが、再設定動作(ステップ91)を頻繁に行う場合や、オフセット電流の時間変化が小さなデバイスの測定を行う場合には、配線72Aに流れる電流と測定画素数0(初期値)のときのオフセット電流との差分をとって画素駆動電流を求めてもよい。この場合には、予備測定が簡素化(測定画素数0のオフセット電流測定のみ)され、定電流回路85の電流量も測定ごとに設定する必要がなくなるため、高速な測定が可能となる。さらに、テーブルが不要となるため、メモリ81Bの記憶容量がさらに小さくてすむという利点がある。
以上、本発明に係る技術的思想を特定の実施例を参照しつつ詳細にわたり説明したが、本発明の属する分野における当業者には、請求項の趣旨及び範囲から離れることなく様々な変更及び改変を加えることが出来ることは明らかである。例えば、画素駆動電流制御素子として本実施例ではFETを採用しているが、オペアンプ回路などの他の電流制御素子を用いた表示素子にも本発明は適用可能である。また、本実施例では、制御電圧の保持のために保持容量15、75を利用し、制御電圧を初期化(保持容量15、75の電圧の再設定)により、EL素子16、76を定期的に非点灯状態に再設定しているが、他の定電圧印加手段を用いて、当該印加手段の状態を初期化し、EL素子16、76を定期的に非点灯状態に再設定することによって、オフセット電流の増加を抑えてもよい。
また、非点灯状態に再設定するサイクルは、本実施例のように1列毎である必要はなく、オフセット電流の経時変化が大きいものであれば数画素毎、小さいものであれば数列毎に再設定動作を行ってもよい。このため、予備測定(ステップ30、90)終了後に、オフセット電流の変化量を勘案し、測定制御装置21、81で何画素毎に再設定動作を行うかを決定するようにしてもよい。また、再設定の対象とする画素も、本実施例のように表示装置の全画素である必要はなく、非点灯状態に設定されてから所定測定回数経過した画素のみを対象として再設定を行ってもよい。さらに、測定対象となる画素も、本実施例のように隣合う画素を順次測定するのではなく、数画素おきに測定してもよいし、ランダムに測定してもよい。
また、上記実施例では、EL表示装置10は、EL素子を形成した後のアクティブマトリクス基板を例に説明してきたが、EL素子を形成する前のマトリクス基板の開放電極にEL素子を代用する測定用の負荷(代用負荷)が設けられている回路、例えば、特開2004-294457号に記載されたような回路であっても適用可能である。この場合、本明細書において「点灯」とは、EL素子が掲載されていたとしたら点灯するような電流制御状態をいうものとする。図11は、このような代用負荷が設けられているアクティブマトリクス基板の回路の一部を示すもので、EL素子が形成されるべき箇所に置かれた電極18、その電極18と線路12Bとの間に接続された負荷19を備えている。負荷19には、図12に示すような、コンデンサ19A、ダイオード19B、トランジスタ19Cなどが使用できる。トランジスタ19Cを使用する場合、負荷の値を制御するための新たなゲート線をアクティブマトリクス基板に設けることになる。図11の回路のうち、図2に示した実施例と同じ構成部分には、同じ参照番号を付して、詳細な説明は省略する。なお、EL素子形成前の基板においてEL素子の代用負荷を用いた回路は、図8に示す実施例にも適用可能であることは、言うまでもない。
また、上記実施例では、オフセット電流値を予備測定を行ってテーブルに記憶させておくものとして説明した。このように、予備測定を行ってテーブルにオフセット電流値を記憶させておく方法は、測定速度の点で非常に有利である。しかし、これに限るものではなく、より高い精度の測定を必要とする場合、各画素毎にオフセット電流と画素駆動電流との測定を繰り返し行うようにしてもよい。この場合、まず、非点灯状態でオフセット電流を測定し、点灯状態にして画素駆動電流を測定し、それらの差分を結果として残し、非点灯状態に戻す。一列の測定が終了した場合だけでなく、画素測定数が一定数を超えた場合、あるいは、測定時間が一定時間を超えた場合、測定値が一定値を超えた場合など、適宜のタイミングで、画素のすべてを非点灯状態に再設定する動作を行うようにすることができる。
本発明の実施形態で説明する測定装置の概略構成図である。 本発明の実施形態に係る表示装置の内部回路の説明図である。 本発明の実施形態に係る測定装置の動作フローチャートである。 測定画素数とオフセット電流および測定電流の変化を示した図である。 画素内のトランジスタの電圧電流特性図である。 表示装置の内部回路の説明図である。 本発明の別の実施形態で説明する測定装置の概略構成図である。 本発明の別の実施形態に係る表示装置の内部回路の説明図である 本発明の別の実施形態に係る測定装置の動作フローチャートである。 従来例に係る測定画素数とオフセット電流および測定電流の変化を示した図である。 EL素子の代用負荷を用いたアクティブマトリクス基板に本発明を適用した実施形態を示す回路図である。 図11の負荷19を示す回路図である。
符号の説明
10、70表示装置
11、71、17、77 画素
12A、72A 配線
20、80 測定装置
21、81 測定制御装置
22、82 画素制御装置
23、83 電流計
24、84 電源


Claims (13)

  1. 複数の画素に駆動電流を供給する配線を備えた表示装置の画素駆動電流を測定する方法であって、
    前記複数の画素を全て非点灯状態に設定したときに、前記配線に流れるオフセット電流を測定する第1のステップと、
    前記複数の画素のうち所定の画素のみを点灯したときに前記配線に流れる電流と、前記オフセット電流との差分から、前記所定の画素の前記画素駆動電流を測定する第2のステップと、
    前記第2のステップを繰返して、前記複数の画素のうち所定数の画素の前記画素駆動電流を順次測定し、その後、前記複数の画素の全てを非点灯状態に再設定する第3のステップと、
    前記第1のステップから前記第3のステップを繰返して、前記表示装置の前記画素駆動電流を測定する第4のステップとを有することを特徴とする測定方法。
  2. 前記画素が、制御電圧に基づいて前記画素駆動電流を制御する前記画素駆動電流制御素子を備え、かつ、
    前記第3のステップが、前記制御電圧を前記が画素駆動電流制御素子が非導通状態となる電圧に再設定することにより、前記複数の画素の全てを非点灯状態に再設定することを特徴とする請求項1記載の測定方法。
  3. 前記配線に流れる電流と、前記オフセット電流との差分は、前記配線に流れる電流の測定値データと、当該画素に係るオフセット電流値のデータとから演算することにより求めることを特徴とする請求項1または2に記載の測定方法。
  4. 前記第1ステップが、前記配線に画素駆動電圧を印加している時間と前記オフセット電流との関係を測定するステップであり、かつ、
    前記第2ステップが、前記複数の画素を全て非点灯状態に設定してからの前記配線に画素駆動電圧を印加している時間と前記第1ステップで求めた関係とから、前記オフセット電流を求めるステップを含むことを特徴とする請求項1から3のいずれかに記載の測定方法。
  5. 前記第1ステップが、測定画素数と前記オフセット電流との関係を測定するステップであり、かつ、
    前記第2ステップが、前記複数の画素を全て非点灯状態に設定してからの測定画素数と前記第1ステップで求めた関係とから、前記オフセット電流を求めるステップを含むことを特徴とする請求項1から3のいずれかに記載の測定方法。
  6. 前記画素が、測定用の代用負荷であることを特徴とする請求項1から5のいずれかに記載の測定方法。
  7. 請求項1から6のいずれかに記載の測定方法をコンピュータで機能させるためのプログラム。
  8. 請求項7記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。
  9. 制御電圧に基づいて画素駆動電流を制御する画素駆動電流制御素子を備える複数の画素に、駆動電流を供給する配線を備えた表示装置の前記画素駆動電流を測定する測定装置であって、前記測定装置が、
    前記配線に前記駆動電流を供給する電源と、
    前記電源と前記配線との間に配設された電流計と、
    前記複数の画素の各画素の点灯状態を制御する信号を供給する画素制御装置と、
    情報処理手段および記憶手段を備え、a)前記複数の画素を全て非点灯状態に設定し、設定後に前記配線に流れるオフセット電流を測定する第1の工程と、b)前記複数の画素のうち所定数の各画素に対し順次、前記各画素を点灯したときに前記配線に流れる電流と前記オフセット電流との差分に基づいて、前記各画素の前記画素駆動電流を求める第2の工程と、c)前記第1の工程と前記第2の工程とを繰り返して前記表示装置の画素の前記画素駆動電流の測定を行う第3の工程を含む工程を実行する測定制御装置とを備えた測定装置。
  10. 前記画素駆動電流制御素子がトランジスタであることを特徴とする請求項9記載の測定装置。
  11. 前記測定装置が、さらに、前記電流計と並列に接続された定電流回路を備え、前記定電流回路に、前記オフセット電流と同量の電流を流すことを特徴とする請求項8または9記載の測定装置。
  12. 前記第1の工程が、前記画素制御装置により、前記制御電圧を前記画素駆動電流制御素子が非導通状態となる電圧に設定する工程を含むことを特徴とする請求項9から11のいずれかに記載の測定装置。
  13. 前記画素が、測定用の代用負荷であることを特徴とする請求項9から12のいずれかに記載の測定装置。
JP2005272442A 2005-09-20 2005-09-20 画素駆動電流測定方法および装置 Pending JP2007085782A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005272442A JP2007085782A (ja) 2005-09-20 2005-09-20 画素駆動電流測定方法および装置
TW095129573A TW200713194A (en) 2005-09-20 2006-08-11 An apparatus and method for measuring TFT pixel driving current
US11/506,140 US20070063727A1 (en) 2005-09-20 2006-08-17 Apparatus and method for measuring TFT pixel driving current
KR1020060091320A KR20070032931A (ko) 2005-09-20 2006-09-20 픽셀 구동 전류 측정 방법 및 장치와 기록 매체
CNA2006101278039A CN1936603A (zh) 2005-09-20 2006-09-20 像素驱动电流测量方法以及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005272442A JP2007085782A (ja) 2005-09-20 2005-09-20 画素駆動電流測定方法および装置

Publications (1)

Publication Number Publication Date
JP2007085782A true JP2007085782A (ja) 2007-04-05

Family

ID=37883439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005272442A Pending JP2007085782A (ja) 2005-09-20 2005-09-20 画素駆動電流測定方法および装置

Country Status (5)

Country Link
US (1) US20070063727A1 (ja)
JP (1) JP2007085782A (ja)
KR (1) KR20070032931A (ja)
CN (1) CN1936603A (ja)
TW (1) TW200713194A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015128921A1 (ja) * 2014-02-25 2015-09-03 株式会社Joled 表示装置の製造方法
WO2015190043A1 (ja) * 2014-06-13 2015-12-17 株式会社Joled 表示パネルの検査方法及び表示パネルの製造方法
WO2016125641A1 (ja) * 2015-02-03 2016-08-11 シャープ株式会社 表示装置およびその駆動方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102285392B1 (ko) 2015-02-03 2021-08-04 삼성디스플레이 주식회사 센싱 장치, 표시장치, 및 전기적 신호 센싱 방법
JP2017058522A (ja) * 2015-09-16 2017-03-23 双葉電子工業株式会社 表示駆動装置、表示装置、表示駆動方法
CN106093529B (zh) * 2016-07-19 2019-03-12 京东方科技集团股份有限公司 电流测量校准方法、电流测量方法及装置、显示装置
KR102595505B1 (ko) * 2016-10-27 2023-10-27 엘지디스플레이 주식회사 유기발광 표시장치와 그의 전기적 특성 센싱 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040074A (ja) * 2000-07-28 2002-02-06 Wintest Corp 有機elディスプレイの評価装置および評価方法
JP2004045648A (ja) * 2002-07-10 2004-02-12 Pioneer Electronic Corp 表示パネルの駆動装置及び駆動方法
JP2005115338A (ja) * 2003-09-19 2005-04-28 Wintest Corp 表示装置及びそれに用いるアクティブマトリクス基板の検査方法及び装置
JP2005148579A (ja) * 2003-11-18 2005-06-09 Agilent Technol Inc Tftアレイの駆動電流測定方法および装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040074A (ja) * 2000-07-28 2002-02-06 Wintest Corp 有機elディスプレイの評価装置および評価方法
JP2004045648A (ja) * 2002-07-10 2004-02-12 Pioneer Electronic Corp 表示パネルの駆動装置及び駆動方法
JP2005115338A (ja) * 2003-09-19 2005-04-28 Wintest Corp 表示装置及びそれに用いるアクティブマトリクス基板の検査方法及び装置
JP2005148579A (ja) * 2003-11-18 2005-06-09 Agilent Technol Inc Tftアレイの駆動電流測定方法および装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015128921A1 (ja) * 2014-02-25 2015-09-03 株式会社Joled 表示装置の製造方法
JPWO2015128921A1 (ja) * 2014-02-25 2017-03-30 株式会社Joled 表示装置の製造方法
US9964584B2 (en) 2014-02-25 2018-05-08 Joled Inc. Method for manufacturing display device
WO2015190043A1 (ja) * 2014-06-13 2015-12-17 株式会社Joled 表示パネルの検査方法及び表示パネルの製造方法
JPWO2015190043A1 (ja) * 2014-06-13 2017-04-20 株式会社Joled 表示パネルの検査方法及び表示パネルの製造方法
US10269275B2 (en) 2014-06-13 2019-04-23 Joled Inc. Display panel inspecting method and display panel fabricating method
WO2016125641A1 (ja) * 2015-02-03 2016-08-11 シャープ株式会社 表示装置およびその駆動方法
KR20170104512A (ko) * 2015-02-03 2017-09-15 샤프 가부시키가이샤 표시 장치 및 그 구동 방법
KR101978587B1 (ko) 2015-02-03 2019-05-14 샤프 가부시키가이샤 표시 장치 및 그 구동 방법

Also Published As

Publication number Publication date
TW200713194A (en) 2007-04-01
CN1936603A (zh) 2007-03-28
KR20070032931A (ko) 2007-03-23
US20070063727A1 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
US11030955B2 (en) Pixel circuits for AMOLED displays
US8089477B2 (en) Display device and method for controlling the same
US6815975B2 (en) Inspection method and inspection device for active matrix substrate, inspection program used therefor, and information storage medium
US9940861B2 (en) Display systems with compensation for line propagation delay
US9659527B2 (en) Pixel circuits for AMOLED displays
KR101574808B1 (ko) 표시 장치 및 그 제어 방법
US7106089B2 (en) Inspection device and inspection method for active matrix panel, and manufacturing method for active matrix organic light emitting diode panel
KR20180127961A (ko) 데이터 전압 보상 방법, 디스플레이 구동 방법 및 디스플레이 장치
US20140333680A1 (en) Pixel of an organic light emitting display device and organic light emitting display device
JP2007085782A (ja) 画素駆動電流測定方法および装置
JP2009526248A (ja) 発光デバイス表示器のための方法及びシステム
JP2008521033A (ja) アクティブマトリクス型発光デバイス表示器のためのシステム及び駆動方法
EP2531994B1 (en) Display device
JP2008052111A (ja) Tftアレイ基板、その検査方法および表示装置
KR20050088179A (ko) 능동 매트릭스형 표시 장치 및 그 검사 방법
US20160358548A1 (en) Thin-film transistor array device, el device, sensor device, method of driving thin-film transistor array device, method of driving el device, and method of driving sensor device
JP2005148579A (ja) Tftアレイの駆動電流測定方法および装置
JP2021128220A (ja) 表示装置
JP4091537B2 (ja) アクティブマトリクス基板の検査方法及び検査装置並びにそれに用いる検査用プログラム及び情報記録媒体
JP2013105159A (ja) マトリクス基板及びマトリクス基板の検査方法
JP2009300285A (ja) 温度検知方法及び有機el表示装置
CN117746755A (zh) 像素的检查方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111129