JP2007083307A - アルミニウム合金鋳造方法 - Google Patents

アルミニウム合金鋳造方法 Download PDF

Info

Publication number
JP2007083307A
JP2007083307A JP2006248816A JP2006248816A JP2007083307A JP 2007083307 A JP2007083307 A JP 2007083307A JP 2006248816 A JP2006248816 A JP 2006248816A JP 2006248816 A JP2006248816 A JP 2006248816A JP 2007083307 A JP2007083307 A JP 2007083307A
Authority
JP
Japan
Prior art keywords
aluminum alloy
rare earth
earth element
nickel
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006248816A
Other languages
English (en)
Inventor
Shihong G Song
ゲーリー ソング シホン
Raymond C Benn
シー.ベン レイモンド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of JP2007083307A publication Critical patent/JP2007083307A/ja
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D30/00Cooling castings, not restricted to casting processes covered by a single main group

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Continuous Casting (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

【課題】 複雑な鋳造部品の高温での実用を可能にするように組成設計と凝固速度制御とを組み合わせた、従来技術の欠陥を克服するアルミニウム合金の鋳造方法を提供する。
【解決手段】 一実施例のアルミニウム合金はイッテルビウムおよびガドリニウムから選択される約1.0〜20.0%(重量%)の希土類元素と、ガドリニウム、イッテルビウム、イットリウム、エルビウム、およびセリウムから選択される約0.1〜10.0%(重量%)の少なくとも一つの第2の希土類元素、および微量合金元素を含んでなる。組成設計と凝固制御との組み合わせにより共晶希土類含有不溶性分散質の構造的な改良や均一な分布がつくり出される。また、構造上の改良と均一な共晶相の分布により従来のアルミニウム合金に比べてより優れた耐腐食性を提供する。
【選択図】なし

Description

本発明は概ねアルミニウム合金性能を向上させるように組成設計および凝固速度の制御を組み合わせた凝固制御による、高温応用例に適したアルミニウム合金の製造方法に関する。
ガスタービンエンジンのコンポーネントは一般的にチタン、鉄、コバルト、およびニッケルをベースとする合金でつくられる。運転中、ガスタービンエンジンの多くのコンポーネントは高温にさらされる。例えばアルミニウム、マグネシウム、およびこれらの合金といった軽量金属は、性能を向上させエンジンコンポーネント重量を軽減するように一部のコンポーネントでよく使用される。通常のアルミニウム合金の使用における欠点は、これらの合金の強度が150℃より高い温度で急速に降下し、特定の高温応用例で不適となることである。鍛錬加工であれ鋳造であれ、現行のアルミニウム合金はT6状態(溶体化処理し、急冷し、人工熟成した)で約180℃(355°F)を下回る温度での応用を対象としている。
幾つかの高温アルミニウム合金が開発されているが、その重量にメリットがあるにもかかわらず製品の応用例はほとんどない。これは部分的には航空宇宙産業において新しい合金の受け入れが遅いためではあるが、高温アルミニウム合金には製品用途への採用を妨げる可能性のある製造上の限界があるためでもある。高温合金が使用される可能性のある潜在的な部品の多くは溶接、ろう付け、もしくは鋳造を用いて製造される。鍛錬用高温アルミニウム合金を用いるこれらの部品の製造(粉末冶金手段を含む)が考えられるが、往々にして費用が極端に高く、また製品が非常に単純な部品に限られる。逆に言えば、通常の鋳造や一番安い工程により複雑な形状に加工されたアルミニウム合金の高温特性の改良を進めることは困難である。
最近、例えばD−357といったアルミニウム−ケイ素ベースの合金のような、アルミニウム合金の鋳造技術に改良が見られる。こうした改良は一方向/単結晶超合金の液体金属冷却により達成される改良に類似した、アルミニウム−ケイ素合金の「制御凝固」を可能にした。これにより結晶粒や析出物の形態学における著しい改良や均一性の提供が可能となり鋳造を通して一貫した複合強度および延性を向上させる。これによりD−357のような現在の合金組成に部品の設計者が要求するような特性に強固な品質を提供する。しかしながらこうした合金はより高温な応用例に必要とされる特性のレベルを満たしていない。高温性能を著しく向上するように凝固制御技術と相乗的に複合する新しい組成設計が必要とされる。
したがって、組成設計と凝固速度制御とを組み合わせ、すなわち複雑な鋳造部品の高温での実用(例えば、ガスタービンおよび自動車機関の部品および構造)を相乗的に可能にするように設計され、従来技術の欠陥や障害を克服する、凝固制御によるアルミニウム合金の製造方法技術が必要である。
ガスタービンエンジンの特定の部品は高温アルミニウム−希土類元素合金で作られうる。一例のアルミニウム合金は、イッテルビウム、ガドリニウム、イットリウム、エルビウム、およびセリウムのうち一つもしくは複数の組み合わせを含む、約1.0〜20.0%(重量%)の希土類元素を含む。またアルミニウム合金は、銅、ニッケル、亜鉛、銀、マグネシウム、ストロンチウム、マンガン、スズ、カルシウム、コバルト、およびチタンのうち一つもしくは複数の組み合わせを含む、約0.1〜15%(重量%)の微量合金元素を含む。合金組成の残部はアルミニウムである。
凝固中、アルミニウムマトリックスはこのマトリックスから希土類元素を排除して、アルミニウムマトリックスを強化する共晶希土類含有不溶性分散質を形成する。アルミニウム合金の最適組成や凝固速度は、異なる組成や凝固条件でのアルミニウム合金における結果として生じる構造や機械的特性を分析することにより決定される。凝固制御は、高温での使用に適した構造を相乗的に生み出すようにアルミニウム合金の組成設計と凝固速度制御とを複合させる。その後アルミニウム合金はインベストメント鋳造、ダイカスト、あるいは砂型鋳造を含む鋳造により所望の形状に成形される。
一実施例では、複雑な形状はインベストメント鋳造により細部にわたり鋳造することができる。所望の組成を有する熔融アルミニウム合金はインベストメント鋳造シェル内に鋳湯される。その後インベストメント鋳造シェルは、この熔融アルミニウム合金を急冷するように急冷剤、例えば約100℃に加熱した水と水溶性物質との水溶液中に入れられる。凝固速度はインベストメント鋳造シェルを急冷剤内に入れる速度を調整することにより制御することができる。アルミニウム合金はインベストメント鋳造シェルの底部で最初に冷却が始まる。アルミニウム合金が冷却されるに従い、凝固したアルミニウム合金はこの冷却凝固された合金の上にある熔融アルミニウム合金から熱を抽出する役割を果たし、熔融アルミニウム合金から迅速かつ均一に熱を抽出する。この凝固は熔融アルミニウム合金が完全に凝固するまでこのインベストメント鋳造シェルの上部へと垂直方向に広がる。
図1は発電もしくは推進に用いられるガスタービンエンジン10を概略的に示す。ガスタービンエンジン10は中心軸12をもち、ファン14、コンプレッサ16、燃焼セクション18、およびタービン20を含んでなる。コンプレッサ16で圧縮された空気が燃料と混合され、燃焼セクション18で燃焼されてタービン20で膨張される。コンプレッサ16で圧縮された空気やタービン20で膨張された燃料混合物は双方とも熱ガス流28と呼ばれる。タービン20のロータ22はこの膨張に反応して回転し、コンプレッサ16およびファン14を駆動させる。またタービン20は、ロータ上の回転エアフォイルすなわちブレード24と、静止エアフォイルすなわちベーン26と、が交互に並ぶ列を備える。
ガスタービンエンジン10の特定の部品はアルミニウム−希土類元素合金でつくることができる。一実施例のアルミニウム合金は、イッテルビウム(Yb)、ガドリニウム(Gd)、イットリウム(Y)、エルビウム(Er)、およびセリウム(Ce)のうち一つもしくは複数の組み合わせを含む、約1.0〜20.0%(重量%)の希土類元素を含む。またアルミニウム合金は、銅、ニッケル、亜鉛、銀、マグネシウム、ストロンチウム、マンガン、スズ、カルシウム、コバルト、およびチタンのうち一つもしくは複数の組み合わせを含む、約0.1〜15%(重量%)の微量合金元素を含む。合金組成の残部はアルミニウムである。
凝固中、アルミニウムマトリックスは希土類元素を排除して、アルミニウム合金の高温強度に貢献する共晶希土類含有不溶性分散質を形成する。微量合金元素は一次共晶に異なる機能を提供する。亜鉛、マグネシウム、そしてそれほどではないにせよニッケル、銅、および銀が約180℃までのアルミニウム合金の析出硬化に貢献する。析出物は約260℃で再溶解し、固溶体硬化以外には高温強度にほとんど貢献しない。ストロンチウムやカルシウムは共晶の化学修飾のために添加されるが、より高い凝固速度で得られる効果的な物理的改良処理によって効力をなくすことができる。
一実施例では、アルミニウム合金はイッテルビウムおよびガドリニウムから選択される約1.0〜20.0%(重量%)の希土類元素と、ガドリニウム、イッテルビウム、イットリウム、エルビウム、およびセリウムから選択される約0.1〜10.0%(重量%)の少なくとも一つの第2の希土類元素と、を含んでなる。望ましくは、アルミニウム合金は約12.5〜15.0%(重量%)のイッテルビウムと約3.0〜5.0%のイットリウムとを含んでなる。さらに望ましくは、アルミニウム合金は約12.9〜13.2%(重量%)のイッテルビウムと約3.0〜4.0%のイットリウムとを含む。
別の実施例では、アルミニウム合金は、約0.5〜5.0%(重量%)の銅(Cu)と、約0.1〜4.5%のニッケル(Ni)と、約0.1〜5.0%の亜鉛(Zi)と、約0.1〜2.0%のマグネシウム(Mg)と、約0.1〜1.5%の銀(Ag)と、約0.01〜1.0%のストロンチウム(Sr)と、0〜約0.05%のマンガン(Mg)と、0〜約0.05%のカルシウム(Ca)と、を含んでなる微量合金元素を含む。望ましくは、アルミニウム合金は、約1.0〜3.0%(重量%)の銅と、約0.5〜1.5%のニッケルと、約2.0〜3.0%の亜鉛と、約0.5〜1.5%のマグネシウムと、約0.5〜1.0%の銀と、約0.02〜0.05%のストロンチウムと、を含む。
一実施例のアルミニウム合金は、約2.5〜15.0%(重量%)のイッテルビウムと、約3.0〜5.0%のイットリウムと、約0.5〜5.0%の銅と、約0.1〜4.5%のニッケルと、約0.1〜5.0%の亜鉛と、約0.1〜2.0%のマグネシウムと、約0.1〜1.5%の銀と、約0.01〜1.0%のストロンチウムと、0〜約0.05%のマンガンと、0〜約0.05%のカルシウムと、を含んでなる。さらに望ましくは、アルミニウム合金は、約1.0〜3.0%(重量%)の銅と、約0.5〜1.5%のニッケルと、約2.0〜3.0%の亜鉛と、約0.5〜1.5%のマグネシウムと、約0.5〜1.0%の金と、約0.02〜0.05%のストロンチウムと、を含む。
アルミニウム合金の可鋳性は主にこのアルミニウム合金の組成および凝固速度に関係する。組成および凝固速度の選択的制御はアルミニウム合金鋳造における微細で均一な共晶構造の形成を最大化する。最適な構造および特性は、砂型鋳造、インベストメント鋳造、永久型鋳造、およびダイカストを含む、いくつかの鋳造条件により得ることができる。より優れた高温性能を有する複雑な鋳造を成形する可鋳性高温アルミニウム(CHTA)合金が提供されうる。
特定の応用例におけるアルミニウム合金の最適組成は、異なる凝固条件でのアルミニウム合金における結果として生じる構造および機械的特性を分析することにより決定される。第一に、アルミニウム合金における特定の組成の機械的特性が、凝固速度が固定された状態で測定される。アルミニウム合金の組成を変化させ、その機械的特性が、最適な機械的特性をもつ組成が得られるまで測定される。いったん最適組成が得られると、アルミニウム合金の凝固速度がこのアルミニウム合金の機械的特性がさらに向上するまで変えられる。これによりアルミニウム合金組成の最適凝固速度が決定される。これらの二つの特性から、強固な高温アルミニウム合金の相乗効果を最大限に発揮するようにさらに組成や凝固速度の微調整が行われる。
またアルミニウム合金の組成は、鋳造に一般的な特定の凝固条件に調整される。例えば銅やニッケルのような遷移金属が増量された本質的により高品質(rich)な組成は、高凝固速度(例えば、インベストメント鋳造やダイカストで一般的な速度)で強度特性を最大化するように用いられうる。きめの粗い構造におけるマトリックス強度の損失を補填するように銅やニッケルのような遷移金属が減少したより低品質(lean)の組成は、低凝固速度(砂型鋳造で一般的な速度)で用いられうる。
その後所望の組成のアルミニウム合金が所望の凝固速度で鋳造される。例えばアルミニウム合金は砂型鋳造(約5〜50℃/分)、インベストメント鋳造(約50〜200℃/分)、あるいはダイカスト(約5,000〜50,000℃/分)により鋳造される。
アルミニウム合金の制御された凝固は、適切に設計されたアルミニウム合金の構造および特性に微細構造の均一性、改良(refine)および相乗的改善を提供する。アルミニウム合金の性能、多用性、耐熱性および強度は現在のアルミニウム合金のレベルを超えて約375℃までの広範囲に及ぶ高温応用例に拡張される。アルミニウム合金鋳造は性能を拡張させ、重量、および現行の材料(アルミニウム、チタン、鉄、ニッケルベースの合金などを含む)から通常製造される部品のコストを軽減することができる。組成設計と鋳造工程制御との組み合わせにより共晶希土類含有不溶性分散質の構造的な改良や均一な分布がつくり出される。この相乗作用は応力が集中する構造上の特徴のレベルを減少させ、改良された延性および切欠き感度を提供する。したがって、改良された耐クリープ性や構造安定性の基盤が形成される。同様に、構造上の改良(refine)と均一な共晶相の分布により腐食作用をアルミニウム合金表面にわたってより均一に分散させ、これにより従来のアルミニウム合金に比べてより優れた耐腐食性を提供する。
一実施例では、アルミニウム合金の最適組成と凝固速度が決定された後、このアルミニウム合金は凝固制御の工程を用いてインベストメント鋳造される。インベストメント鋳造により約50〜100℃/分の比較的早い凝固速度で細部にわたり複雑な形状が鋳造され、所望の構造上の改良が生み出される。インベストメント鋳造では、最終部品の形状を持つろう型が最初につくられる。その後セラミックのコーティング、例えばスラリーやスタッコ、がこのろう型に適用される。セラミック層の数は必要なセラミックの厚さに依り、どの程度の数の層が用いられるかは当業者にとって理解できよう。その後セラミックコーティングされたろう型は炉内で加熱されてこのろう型を溶解して除去し、セラミックインベストメント鋳造シェルが残される。
インベストメント鋳造シェルは加熱され、この加熱されたインベストメント鋳造シェル内に熔融アルミニウム合金が注入される。その後インベストメント鋳造シェルはこの熔融アルミニウム合金を急冷するように急冷剤、例えば約100℃に加熱された水と水溶性物質(例えばポリエチレングリコール)との水溶液中に入れられる。凝固速度はインベストメント鋳造シェルを急冷剤内に入れる割合を調整することにより制御される。インベストメント鋳造シェルを急冷剤にゆっくり入れるほど、凝固速度はますます遅くなる。インベストメント鋳造シェルを急冷剤に早く入れるほど、凝固速度はますます速くなる。
熔融アルミニウム合金はインベストメント鋳造シェルの底部で最初に冷却され始める。上部の熔融アルミニウム合金の下方にあってこれと接触する冷却された凝固合金はこの熔融アルミニウム合金から熱を抽出するように役立つ。シェルが溶液中に浸漬されるに従い、熔融アルミニウム合金から熱を迅速かつ均一に抽出するようにこの熔融合金が完全に凝固するまでインベストメント鋳造シェルの上部に向かって垂直方向に凝固が広がる。水と水溶性物質の水溶液は、熔融アルミニウム合金を空気中で冷却するよりも、より急速にアルミニウム合金から熱を抽出する。
インベストメント鋳造はエンジンのハウジングの製造や複雑な形状を有するその他の部品に利用が可能で、さらに設計上の自由度を向上させる。金型やシェルモールド工程のために比較的費用がかかるが、インベストメント鋳造は複雑な形状をもつエンジン部品の製造にとって有利であり、部品がより優れた精度と複雑性をもつよう鋳造させる。
インベストメント鋳造について述べてきたが、あらゆる種類の鋳造が用いられることを理解されたい。例えば、アルミニウム合金の部品はダイカストもしくは砂型鋳造により成形することができる。どのような種類の鋳造が使用できるかは当業者にとって理解されよう。
鋳造中、所望の共晶ベースの微細構造を促進し高温性能を提供するように凝固条件が制御される。またこうした特徴は凝固する合金の成長前線(growth front)(アルミニウム合金が凝固するにつれての液体と固体との界面の移動)の種類と関係する。溶質を多く含む領域は進行する凝固前線の前方に発達し、凝固に伴う溶質の排除のために組成的な熔融物の過冷がもたらされる。組成的過冷は比率G/Rにより計算され、ここでGは前線の前方の液体の温度勾配であり、Rは前線の成長速度である。液相における急な温度勾配により分散距離が短くなって平面的な凝固前線となるように助長され、本質的な過冷の度合いが抑制されるが、これは成長条件の安定度を測定し成長前線の種類を制御する主な要素である。
急な温度勾配により急速な凝固がもたらされ、結果として生じる部品の結晶粒の大きさや樹枝状晶間隔(dendrite arm spacing)を小さくする。樹枝状晶間隔もしくは相粒子間隔(λ)と凝固速度(R)との間には、等式 λ2R=一定 の関係がある。凝固速度が増加するに従い、希土類分散相の粒子間隔は指数関数的に減少し、構造改良と所望の機械的特性の改善がもたらされる。急な温度勾配は樹枝状晶間微小空洞の形成を減少させるが、これは一般的な高温合金組成における高い収縮比を想定すれば有益である。
合金が共晶組成からずれているとき、凝固が十分急な温度勾配で、もしくは十分緩やかな速度で実行される場合は、共晶のような微細構造を維持するのはまだ可能である。したがって複雑な高温共晶合金を発達させるべく相の化学的性質や体積分率を修正するように合金元素を添加することができる。三元合金の高次構造の共晶では、共晶相の全体積分率は概ね増加して、結果として生じる共晶組成における微細な構造がもたらされる。これらの構造が凝固制御と組み合わされると、構造と特性との相乗的な改善は可能である。
図2は砂型鋳造可鋳性高温アルミニウム合金(CHTA)の微細構造を示す倍率200倍の顕微鏡写真を示し、これは凝固制御のもとで鋳造されていない。砂型鋳造に一般的なより遅い凝固速度(約10℃/分)のもとでは、αAl−Al3(希土類元素(REM))合金、例えばαAl−Al3(Yb,Y)合金の形態は一般的に薄片状で角張っている。αAl相とAl3(希土類元素)相との樹枝状晶間隔や相粒子間隔は相対的に目が粗く、ほとんどのAl3(希土類元素)粒子は連結して連続している。Al3(Yb,Y)相の形態は熱的に安定しているが、この形態は分散強化には最適化されていない。
図3は凝固制御のもとでインベストメント鋳造された、図2と同じアルミニウム合金のαAl−Al3(希土類元素)の一次共晶粒の微細構造を示す倍率200倍の顕微鏡写真を示す。図4は、図3の鋳造アルミニウム合金のαAl−Al3(希土類元素)一次共晶粒の微細構造を示す倍率500倍の顕微鏡写真を示す。微細構造は構造組成(refine)に特有の水準を持つ。インベストメント鋳造工程における凝固条件を制御することにより、比較的速い冷却速度(約100℃/分)が可能であり、Al3(Yb,Y)相をよりよく分散させるようにAl3(Yb,Y)相の核生成や「改良処理(modification)」を向上させる。共晶合金の樹枝状晶間隔および粒子間隔の双方において著しい改良および縮小がみられる。
本発明のアルミニウム合金は第1の共晶構造(αAl−Al3(希土類元素))と、別の第2の共晶構造(αAl−CuAl2/Cu3NiAl6)を有する。第2の共晶構造は第1の共晶樹枝状結晶枝部の周りあるいは間で最後に凝固する。適切な組成では、凝固した構造は完全に共晶である。凝固中に残余の樹枝状晶間液体が凝固するに従い、凝固制御による鋳造工程と第2の共晶合金合成との間にいくつかの有益な相乗効果が見られ、CuAl2ベースの相の大きさや形態の改良、および改良された分布をつくりだす。第2の共晶は図2、図3および図4における第1の共晶粒の間の黒い筆跡のような構造体として示されている。
本発明では、通常の砂型鋳造で観察される、共晶における応力の集中する構造的な特徴や非共晶合金(特に過共晶の第1のAl3(希土類元素)相)に存在する相対的に粗い角張った形態が減少し、延性や切欠き感度への有害な影響が緩和される。相乗効果により図5に示されるファンハウジングのような複雑な鋳造が可能であり、鋳型内の厚さ約0.03インチ(0.08cm)のガイドベーンや鋭いコーナ部が良好に鋳造される。
また分散した共晶粒子やアルミニウム合金の構造的な改良はアルミニウム合金の疲労特性に対して著しく有益な効果をもつ。特定の試験温度における、疲れ限度比(すなわち、107回のサイクルにおける疲労強度(疲れ限度)を最大引張り強さで割った値)は疲労性能の測定規準である。
図6はアルミニウム合金の一般的な高サイクル疲労特性を示し、室温および400°Fでの疲れ限度は各々、20ksi(キップ/平方インチ)(約1406kg/cm2)以上および15ksi(約1055kg/cm2)以上と推定される。対応する最大引張り強さの各々の値、約36ksi(約2531kg/cm2)(室温)および約30ksi(約2109kg/cm2)(400°F)における、疲れ限度比は各々、約0.6および約0.5である。通常のアルミニウム合金(疲れ限度比は通常0.3以下)と比較すると、本発明のアルミニウム合金は高い疲労強度を有し、アルミニウム複合材料や酸化物分散強化鍛錬用合金のようにふるまう。しかしながら、本発明のアルミニウム合金はアルミニウム複合材料中の(あらゆる使用温度でも割れやすい状態にある)セラミック粒子によって制限されず、また鍛錬用合金のような部品の複雑性に対する制限も受けない。
260℃のような高温では、アルミニウム合金における亜鉛−マグネシウムベースの析出物は再溶解し、銅およびニッケルベースの共晶(約538℃)と、イッテルビウム/イットリウムベースの共晶(約632℃)とが第一の補強相として残る。ニッケルは銅ベースの共晶に高温強度および安定性を提供して、析出物を時間/温度効果的に強化し、膨張係数を減少させる。これは、収縮観測では比較的高い。アルミニウム内におけるニッケルの固体溶解度の上限は約0.04%で、これを上回る値では不溶性合金を形成する。しかしながら、ニッケルは銅内においては完全な固体溶解度をもち、CuAl2共晶相と合金をつくりこれを強化してCu3NiAl6ベースの共晶相を形成する。銅格子内における原子的なニッケルの置換は銅ベースの共晶の高温強度を効果的に向上させる。各々の溶解度のレベルやCuAl2格子内の原子的置換によって決定される、これらの分子の相互依存性が見られる。
ある量の銅およびニッケルによりアルミニウム合金の微細構造に影響がもたらされる。図7には銅のニッケルに対する比率(銅/ニッケル比)とアルミニウム合金の微細構造における銅+ニッケルの総和(%)の影響を示す。約10〜100℃/分の凝固制御による冷却速度を用いてつくられた、17のインベストメント鋳造アルミニウム合金の鋳放し+ホットアイソスタティック成形された微細構造を、改良された均一構造および有害な相の存在(例えば、不均一もしくは旋盤状(lathe−like)のもの)の度合いにより、合格、限界、不合格として評価した。微細構造を銅/ニッケル比および銅+ニッケルの総和(%)のパラメータで比較し、これはアルミニウム合金の微細構造と、特定の凝固速度における銅およびニッケルの割合との相関関係を示した。またアルミニウム合金の機械的特性(硬さ、室温での引張り、260℃での引張り)は銅/ニッケル比や銅+ニッケルの総和(%)関係に対する微細構造と相関関係がある。
表1は合金Aおよび合金Bの銅/ニッケル比と、銅+ニッケルの総和(%)の影響を示す。合金A,Bは銅およびニッケルの割合を除き本質的に同じ組成である。合金Aの強度/延性や微細構造は合金Bよりも望ましい。インベストメント鋳造(約50〜200℃/分、例えば約100℃/分)およびダイカスト(約5,000〜50,000℃/分、例えば約10,000℃/分)に一般的なより高い凝固速度のもとでのアルミニウム合金鋳造では、アルミニウム合金の銅/ニッケル比のパラメータは約1.0よりも大きくすべきであり、アルミニウム合金の銅+ニッケルの総和のパラメータは約4.5%未満とすべきである。さらに望ましくは、銅/ニッケル比のパラメータは約1.5よりも大きく、銅+ニッケルの総和のパラメータは約4.0%未満である。
砂型鋳造(約5〜50℃/分、例えば約10℃/分)のような、遅い凝固速度のもとでのアルミニウム合金鋳造では、銅/ニッケル比のパラメータは約1.0よりも大きくすべきであり、銅+ニッケルの総和のパラメータは約4.0%未満とすべきである。望ましくは、銅/ニッケル比のパラメータは約2.0よりも大きく、銅+ニッケルの総和のパラメータは約3.5%未満である。
図8は異なる種類の鋳造による、特定のアルミニウム合金の微細構造における凝固速度の影響を示す一連の顕微鏡写真である。このアルミニウム合金における銅/ニッケル比(0.5)および銅+ニッケルの総和(3%)は、急冷剤内での凝固制御による砂型鋳造(約10℃/分)もしくはインベストメント鋳造(約100℃/分)に一般的な凝固速度には最適化されていない。ダイカスト(約10,000℃/分)は高い凝固速度を有し、例えばより暗い旋盤(lathe)状のニッケルを多く含む析出物といった、有害な相の形成を抑制し改善することができるため望ましい。
低温での亜鉛ベースの析出物および銅ベースの共晶の高温露出によるニッケル強化の影響が表2および図9に示されている。合金Cは合金Dに比べてより高い亜鉛含有量を有し、これは室温から中間温度を通して亜鉛−マグネシウムベースの析出硬化により合金強度を概ね増加させる。これらの析出物は約400°Fを上回る温度で完全に再溶解してほとんど強化をもたらさない。低亜鉛合金Dおよび高亜鉛合金Cの強度は約500°Fでほぼ等しい。各温度条件下で1000時間処理された後高温環境から取り出された引張り試験片(開いた正方形で示す)は特性が相対的にわずかしか減少していない。
ニッケルは中間温度では亜鉛ベースの析出物に比べてさらに少ない程度に合金を強化するが、これはより高い温度/時間の組み合わせで再溶解に対する抵抗を増大させることにより、銅ベースの共晶を強化することを目的としている。これは第2の(すなわち銅ベースの)共晶の安定性を本質的に延ばし第1の(すなわちイッテルビウム/イットリウムベースの)共晶粒から得られる主な安定効果に貢献する。高温で長期的な強度を維持する合金が設計される。
また凝固制御のもとでのアルミニウム合金鋳造は向上した耐ピッティング性を有する。本発明のアルミニウム合金(CおよびD)および数個の市販用合金(1,2および3)が腐食度を測定するように標準電位力学的分極テスト(standard potentiodynamic polarization test)(3.5%NaCl水溶液中、室温でASTM G3−89およびG102−89を用いて)にかけられた。同様の合金のサンプルが3.5%NaCl+0.35%(NH42SO4の試験液を用いた、スプレー、湿潤および乾燥サイクルの組み合わせを含む、拡張された加速ソルトスプレーテストにかけられた。サンプルは630時間までの時間間隔で試験が行われその後ピッティング深さの測定のために切断された。
表3は凝固制御を用いたインベストメント鋳造によるアルミニウム合金CおよびDの一般的な腐食度が市販の合金1,2および3に比べてやや高いことを示している。しかしながら、最大ピッティング深さは減少している。市販の合金におけるピッティング作用は結晶粒の境界内への浸透により発生し、このピッティング作用が腐食疲労および応力腐食割れによる構造上の欠陥の主な原因である。一般的に、析出物の密度は結晶粒内部に比較して高く、析出物とαAlマトリックスとの間の電食作用を悪化させる。本発明により作られたアルミニウム合金では、共晶相のαAlと隣接するAl3(Yb,Y)もしくは(Cu,Ni)Al2とが緻密に交互に並ぶ配列をとり、第1の共晶粒もしくは粒子間の第2の共晶内のいずれか一方で均一に分散される。構造上の改良や均一な共晶相の分布の正味の影響により腐食作用がアルミニウム合金にわたり均一に分散する。アルミニウム合金の耐腐食性を向上させるように陽極処理が一般的に用いられる。アルミニウム合金の予備試験により腐食に対する抵抗力が陽極処理によって改善されることが実証された。
本発明の可鋳性高温アルミニウム合金を取り入れたガスタービンエンジンを概略的に示す図。 凝固制御のもとで鋳造されていない可鋳性高温アルミニウム合金の砂型鋳造微細構造を示す倍率200倍の顕微鏡写真。 可鋳性高温アルミニウム合金における凝固制御されたインベストメント鋳造の微細構造を示す倍率200倍の顕微鏡写真。 図3の可鋳性高温アルミニウム合金の微細構造を示す倍率500倍の顕微鏡写真。 「凝固制御」工程を用いた可鋳性高温アルミニウム合金のインベストメント鋳造による鋳造物の写真。 特定のアルミニウム合金の破断周期対応力振幅のグラフを示す図。 3つの例示された顕微鏡写真の特性を分析することにより作成された微細構造の変化における傾向を示す、一連の合金組成の銅/ニッケル比に対する銅+ニッケルの総和のグラフを示す図。 アルミニウム合金の微細構造における増加凝固速度の影響を示す一連の顕微鏡写真。 アルミニウム合金の引張り特性における亜鉛およびニッケルの増加含有量の影響を示す図。

Claims (24)

  1. アルミニウムと、イッテルビウム、ガドリニウム、イットリウム、エルビウム、およびセリウムよりなるグループから選択された少なくとも一つの希土類元素と、銅、ニッケル、亜鉛、銀、マグネシウム、ストロンチウム、マンガン、スズ、カルシウム、コバルト、およびチタンよりなるグループから選択された少なくとも一つの微量合金元素と、を含んでなるアルミニウム合金を形成するステップと、
    急冷剤中でアルミニウム合金の凝固を制御するステップと、
    を備えてなるアルミニウム合金鋳造方法。
  2. 前記凝固を制御するステップが、さらに前記少なくとも一つの希土類元素をもつ複数の不溶性粒子を形成することを特徴とする請求項1に記載のアルミニウム合金鋳造方法。
  3. 前記少なくとも一つの希土類元素を添加するステップが、約1.0〜20.0%(重量%)の前記少なくとも一つの希土類元素を添加することを特徴とする請求項1に記載のアルミニウム合金鋳造方法。
  4. 前記少なくとも一つの微量合金元素を添加するステップが、約0.1〜15.0%(重量%)の前記少なくとも一つの微量合金元素を添加することを特徴とする請求項1に記載のアルミニウム合金鋳造方法。
  5. 前記少なくとも一つの希土類元素を添加するステップが、
    イッテルビウムおよびガドリニウムよりなるグループから選択された約1.0〜20.0%(重量%)の第1の希土類金属元素と、
    前記第1の希土類元素がイッテルビウムの場合はガドリニウム、エルビウム、イットリウム、およびセリウムよりなるグループから選択され、前記第1の希土類元素がガドリニウムの場合はイッテルビウム、エルビウム、イットリウムおよびセリウムよりなるグループから選択された約0.1〜10.0%(重量%)の第2の希土類元素と、
    を添加することを特徴とする請求項1に記載のアルミニウム合金鋳造方法。
  6. 前記第1の希土類元素が約12.5〜15.0%(重量%)のイッテルビウムを備え、前記第2の希土類元素が約3.0〜5.0%のイットリウムを備えることを特徴とする請求項5に記載のアルミニウム合金鋳造方法。
  7. 前記第1の希土類元素が約12.9〜13.2%(重量%)のイッテルビウムを備え、前記第2の希土類元素が約3.0〜4.0%のイットリウムを備えることを特徴とする請求項6に記載のアルミニウム合金鋳造方法。
  8. 前記少なくとも一つの微量合金元素が、約0.5〜5.0%(重量%)の銅と、約0.1〜4.5%のニッケルと、約0.1〜5.0%の亜鉛と、約0.1〜2.0%のマグネシウムと、約0.1〜1.5%の銀と、約0.01〜1.0%のストロンチウムと、0〜約0.05%のマンガンと、0〜約0.05%のカルシウムと、を含んでなることを特徴とする請求項1に記載のアルミニウム合金鋳造方法。
  9. 前記アルミニウム合金の最適組成を決定するステップと、前記アルミニウム合金の凝固速度を制御するステップをさらに含んでなることを特徴とする請求項1に記載のアルミニウム合金鋳造方法。
  10. 前記急冷剤を約100℃に加熱するステップをさらに含んでなることを特徴とする請求項1に記載のアルミニウム合金鋳造方法。
  11. 前記急冷剤が、水と水溶性物質とを備えてなることを特徴とする請求項1に記載のアルミニウム合金鋳造方法。
  12. 前記アルミニウム合金をインベストメント鋳造シェル内に鋳湯するステップをさらに備えるとともに、前記凝固を制御するステップが、始めに前記アルミニウム合金を前記インベストメント鋳造シェルの底部で冷却し、その後前記凝固を前記インベストメント鋳造シェルの上部へと進行させることを特徴とする請求項1に記載のアルミニウム合金鋳造方法。
  13. 前記アルミニウム合金が、ある量のニッケルとある量の銅を含むとともに、前記ある量の銅と前記ある量のニッケルとの総和が約4.0%(重量%)未満であって、前記ある量の銅の、前記ある量のニッケルに対する比率が約1.5より大きいことを特徴とする請求項1に記載のアルミニウム合金鋳造方法。
  14. 前記凝固を制御するステップが、前記アルミニウム合金を前記急冷剤に所望の速度で浸漬することを特徴とする請求項1に記載のアルミニウム合金鋳造方法。
  15. アルミニウムと、イッテルビウム、ガドリニウム、イットリウム、エルビウム、およびセリウムよりなるグループから選択された少なくとも一つの希土類元素と、銅、ニッケル、亜鉛、銀、マグネシウム、ストロンチウム、マンガン、スズ、カルシウム、コバルト、およびチタンよりなるグループから選択された少なくとも一つの微量合金元素と、を含んでなるアルミニウム合金を形成するステップと、
    前記アルミニウム合金をインベストメント鋳造シェル内に鋳湯するステップと、
    前記アルミニウム合金が鋳湯された前記インベストメント鋳造シェルを、急冷剤に所望の速度で浸漬することにより前記急冷剤中で前記アルミニウム合金の凝固を制御するステップと、
    を備えてなるアルミニウム合金鋳造方法。
  16. 前記凝固を制御するステップが、前記少なくとも一つの希土類元素をもつ複数の不溶性粒子を形成することを特徴とする請求項15に記載のアルミニウム合金鋳造方法。
  17. 前記少なくとも一つの希土類元素を添加するステップが、約1.0〜20.0%(重量%)の前記少なくとも一つの希土類元素を添加することを特徴とする請求項15に記載のアルミニウム合金鋳造方法。
  18. 前記少なくとも一つの微量合金元素を添加するステップが、約0.1〜15.0%(重量%)の前記少なくとも一つの微量合金元素を添加することを特徴とする請求項15に記載のアルミニウム合金鋳造方法。
  19. 前記少なくとも一つの希土類元素を添加するステップが、
    イッテルビウムおよびガドリニウムよりなるグループから選択された約1.0〜20.0%(重量%)の第1の希土類金属元素と、
    前記第1の希土類元素がイッテルビウムの場合はガドリニウム、エルビウム、およびイットリウムよりなるグループから選択され、前記第1の希土類元素がガドリニウムの場合はイッテルビウム、エルビウム、およびイットリウムよりなるグループから選択された約0.1〜10.0%(重量%)の第2の希土類元素と、
    を添加することを特徴とする請求項15に記載のアルミニウム合金鋳造方法。
  20. 前記少なくとも一つの微量合金元素が、約0.5〜5.0%(重量%)の銅と、約0.1〜4.5%のニッケルと、約0.1〜5.0%の亜鉛と、約0.1〜2.0%のマグネシウムと、約0.1〜1.5%の銀と、約0.01〜1.0%のストロンチウムと、0〜約0.05%のマンガンと、0〜約0.05%のカルシウムと、を含んでなることを特徴とする請求項15に記載のアルミニウム合金鋳造方法。
  21. 前記急冷剤を約100℃に加熱するステップをさらに含んでなることを特徴とする請求項15に記載のアルミニウム合金鋳造方法。
  22. 前記アルミニウム合金が、ある量のニッケルとある量の銅を含むとともに、前記ある量の銅と前記ある量のニッケルとの総和が約4.0%(重量%)未満であって、前記ある量の銅の、前記ある量のニッケルに対する比率が約1.5より大きいことを特徴とする請求項15に記載のアルミニウム合金鋳造方法。
  23. 前記急冷剤が、水と水溶性物質とを備えてなることを特徴とする請求項15に記載のアルミニウム合金鋳造方法。
  24. 前記凝固を制御するステップが、始めに前記アルミニウム合金を前記インベストメント鋳造シェルの底部で冷却し、その後前記凝固を前記インベストメント鋳造シェルの上部へと進行させることを特徴とする請求項15に記載のアルミニウム合金鋳造方法。
JP2006248816A 2005-09-21 2006-09-14 アルミニウム合金鋳造方法 Pending JP2007083307A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/231,479 US7584778B2 (en) 2005-09-21 2005-09-21 Method of producing a castable high temperature aluminum alloy by controlled solidification

Publications (1)

Publication Number Publication Date
JP2007083307A true JP2007083307A (ja) 2007-04-05

Family

ID=37684079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006248816A Pending JP2007083307A (ja) 2005-09-21 2006-09-14 アルミニウム合金鋳造方法

Country Status (6)

Country Link
US (2) US7584778B2 (ja)
EP (1) EP1767292B1 (ja)
JP (1) JP2007083307A (ja)
CN (1) CN1936038A (ja)
AT (1) ATE504373T1 (ja)
DE (1) DE602006021112D1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180422A (ja) * 2009-01-06 2010-08-19 Nippon Light Metal Co Ltd アルミニウム合金の製造方法
JP2014525839A (ja) * 2011-08-19 2014-10-02 インスティチュート オドレウニクトワ インベストメント鋳造の製造方法
JP2016068099A (ja) * 2014-09-29 2016-05-09 日立金属株式会社 鋳物およびその製造方法
JP2019108579A (ja) * 2017-12-18 2019-07-04 昭和電工株式会社 アルミニウム合金材およびアルミニウム合金製品の製造方法
JP2021134413A (ja) * 2020-02-28 2021-09-13 株式会社豊田自動織機 アルミニウム合金材、その製造方法及びインペラ

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100451150C (zh) * 2007-04-29 2009-01-14 中南大学 镱微合金化的铝铜镁银锰系高强变形耐热铝合金及其制备方法
CN102268559A (zh) 2007-05-21 2011-12-07 奥贝特勘探Vspa有限公司 从铝土矿石中提取铝的工艺
US20090263273A1 (en) * 2008-04-18 2009-10-22 United Technologies Corporation High strength L12 aluminum alloys
US7875133B2 (en) * 2008-04-18 2011-01-25 United Technologies Corporation Heat treatable L12 aluminum alloys
US7871477B2 (en) * 2008-04-18 2011-01-18 United Technologies Corporation High strength L12 aluminum alloys
US8017072B2 (en) * 2008-04-18 2011-09-13 United Technologies Corporation Dispersion strengthened L12 aluminum alloys
US7811395B2 (en) * 2008-04-18 2010-10-12 United Technologies Corporation High strength L12 aluminum alloys
US8409373B2 (en) * 2008-04-18 2013-04-02 United Technologies Corporation L12 aluminum alloys with bimodal and trimodal distribution
US20090260724A1 (en) * 2008-04-18 2009-10-22 United Technologies Corporation Heat treatable L12 aluminum alloys
US8002912B2 (en) * 2008-04-18 2011-08-23 United Technologies Corporation High strength L12 aluminum alloys
US7879162B2 (en) * 2008-04-18 2011-02-01 United Technologies Corporation High strength aluminum alloys with L12 precipitates
US7875131B2 (en) * 2008-04-18 2011-01-25 United Technologies Corporation L12 strengthened amorphous aluminum alloys
US8778099B2 (en) * 2008-12-09 2014-07-15 United Technologies Corporation Conversion process for heat treatable L12 aluminum alloys
US8778098B2 (en) 2008-12-09 2014-07-15 United Technologies Corporation Method for producing high strength aluminum alloy powder containing L12 intermetallic dispersoids
US20100143177A1 (en) * 2008-12-09 2010-06-10 United Technologies Corporation Method for forming high strength aluminum alloys containing L12 intermetallic dispersoids
US8349462B2 (en) 2009-01-16 2013-01-08 Alcoa Inc. Aluminum alloys, aluminum alloy products and methods for making the same
US20100226817A1 (en) * 2009-03-05 2010-09-09 United Technologies Corporation High strength l12 aluminum alloys produced by cryomilling
US20100254850A1 (en) * 2009-04-07 2010-10-07 United Technologies Corporation Ceracon forging of l12 aluminum alloys
US20100252148A1 (en) * 2009-04-07 2010-10-07 United Technologies Corporation Heat treatable l12 aluminum alloys
US9611522B2 (en) * 2009-05-06 2017-04-04 United Technologies Corporation Spray deposition of L12 aluminum alloys
US9127334B2 (en) * 2009-05-07 2015-09-08 United Technologies Corporation Direct forging and rolling of L12 aluminum alloys for armor applications
US20110044844A1 (en) * 2009-08-19 2011-02-24 United Technologies Corporation Hot compaction and extrusion of l12 aluminum alloys
US8728389B2 (en) * 2009-09-01 2014-05-20 United Technologies Corporation Fabrication of L12 aluminum alloy tanks and other vessels by roll forming, spin forming, and friction stir welding
US8409496B2 (en) * 2009-09-14 2013-04-02 United Technologies Corporation Superplastic forming high strength L12 aluminum alloys
US20110064599A1 (en) * 2009-09-15 2011-03-17 United Technologies Corporation Direct extrusion of shapes with l12 aluminum alloys
US9194027B2 (en) * 2009-10-14 2015-11-24 United Technologies Corporation Method of forming high strength aluminum alloy parts containing L12 intermetallic dispersoids by ring rolling
US8409497B2 (en) * 2009-10-16 2013-04-02 United Technologies Corporation Hot and cold rolling high strength L12 aluminum alloys
US20110091346A1 (en) * 2009-10-16 2011-04-21 United Technologies Corporation Forging deformation of L12 aluminum alloys
US20110091345A1 (en) * 2009-10-16 2011-04-21 United Technologies Corporation Method for fabrication of tubes using rolling and extrusion
AU2012231686B2 (en) 2011-03-18 2015-08-27 Orbite Aluminae Inc. Processes for recovering rare earth elements from aluminum-bearing materials
EP3141621A1 (en) 2011-05-04 2017-03-15 Orbite Aluminae Inc. Processes for recovering rare earth elements from various ores
CN103842296B (zh) 2011-06-03 2016-08-24 奥贝特科技有限公司 用于制备赤铁矿的方法
EP2755918A4 (en) 2011-09-16 2015-07-01 Orbite Aluminae Inc PROCESS FOR PRODUCING TONERDE AND VARIOUS OTHER PRODUCTS
US8714235B2 (en) 2011-12-30 2014-05-06 United Technologies Corporation High temperature directionally solidified and single crystal die casting
US9023301B2 (en) 2012-01-10 2015-05-05 Orbite Aluminae Inc. Processes for treating red mud
US9233414B2 (en) * 2012-01-31 2016-01-12 United Technologies Corporation Aluminum airfoil
AU2013203808B2 (en) 2012-03-29 2016-07-28 Orbite Aluminae Inc. Processes for treating fly ashes
RU2597096C2 (ru) 2012-07-12 2016-09-10 Орбит Алюминэ Инк. Способы получения оксида титана и различных других продуктов
BR112015006536A2 (pt) 2012-09-26 2017-08-08 Orbite Aluminae Inc processos para preparar alumina e cloreto de magnésio por lixiviação com hcl de vários materiais.
CA2891427C (en) 2012-11-14 2016-09-20 Orbite Aluminae Inc. Methods for purifying aluminium ions
CN103849839A (zh) * 2012-12-04 2014-06-11 光洋应用材料科技股份有限公司 铝钛合金溅镀靶材及其制作方法
US9109271B2 (en) * 2013-03-14 2015-08-18 Brunswick Corporation Nickel containing hypereutectic aluminum-silicon sand cast alloy
KR101601551B1 (ko) * 2014-12-02 2016-03-09 현대자동차주식회사 알루미늄 합금
CN104694791B (zh) * 2015-03-23 2017-01-04 苏州劲元油压机械有限公司 一种含过共晶硅超硬铝合金材料及其处理工艺
CN104911410B (zh) * 2015-07-02 2016-09-28 黑龙江科技大学 铝合金细化剂中间合金及其制备方法
US9963770B2 (en) 2015-07-09 2018-05-08 Ut-Battelle, Llc Castable high-temperature Ce-modified Al alloys
CN105401003A (zh) * 2015-11-16 2016-03-16 简淦欢 用于生产低成本超高速导热的led压铸铝散热器的配方
WO2018156651A1 (en) * 2017-02-22 2018-08-30 Ut-Battelle, Llc Rapidly solidified aluminum-rare earth element alloy and method of making the same
US11192188B2 (en) 2017-05-26 2021-12-07 Hamilton Sundstrand Corporation Method of manufacturing aluminum alloy articles
US11185923B2 (en) 2017-05-26 2021-11-30 Hamilton Sundstrand Corporation Method of manufacturing aluminum alloy articles
CN107574337B (zh) * 2017-08-03 2019-07-23 上海交通大学 一种Ni-Al-RE三元共晶合金及其制备方法
WO2019055872A1 (en) 2017-09-15 2019-03-21 Orlando Rios ALUMINUM ALLOYS HAVING IMPROVED PROPERTIES OF INTERGRANULAR CORROSION RESISTANCE AND METHODS OF MAKING AND USING SAME
CN111020320A (zh) * 2019-09-23 2020-04-17 山东南山铝业股份有限公司 一种高强度铝合金及其生产方法
US11986904B2 (en) 2019-10-30 2024-05-21 Ut-Battelle, Llc Aluminum-cerium-nickel alloys for additive manufacturing
US11608546B2 (en) 2020-01-10 2023-03-21 Ut-Battelle Llc Aluminum-cerium-manganese alloy embodiments for metal additive manufacturing
CN113388765A (zh) * 2021-06-21 2021-09-14 南通众福新材料科技有限公司 一种高导电新能源车用铝合金材料及方法
CN114717450B (zh) * 2022-04-12 2023-05-09 上海交通大学包头材料研究院 一种高导热多元共晶铸造铝合金及其制备方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807969A (en) 1970-07-13 1974-04-30 Southwire Co Aluminum alloy electrical conductor
US3807016A (en) 1970-07-13 1974-04-30 Southwire Co Aluminum base alloy electrical conductor
US3811846A (en) 1970-12-01 1974-05-21 Southwire Co Aluminum alloy electrical conductor
US3830635A (en) 1971-05-26 1974-08-20 Southwire Co Aluminum nickel alloy electrical conductor and method for making same
US4836982A (en) 1984-10-19 1989-06-06 Martin Marietta Corporation Rapid solidification of metal-second phase composites
DE3669541D1 (de) * 1985-10-25 1990-04-19 Kobe Steel Ltd Aluminiumlegierung mit besserer absorptionsfaehigkeit fuer thermische neutronen.
US5055257A (en) 1986-03-20 1991-10-08 Aluminum Company Of America Superplastic aluminum products and alloys
US4874440A (en) * 1986-03-20 1989-10-17 Aluminum Company Of America Superplastic aluminum products and alloys
DE3706016A1 (de) 1987-02-25 1988-11-17 Basf Ag Mit funktionalisierten polymeren schlagzaeh modifizierte thermoplaste und deren verwendung zur herstellung von formteilen
JPH01283335A (ja) 1988-05-10 1989-11-14 Showa Alum Corp 真空用アルミニウム合金
US5087301A (en) 1988-12-22 1992-02-11 Angers Lynette M Alloys for high temperature applications
US5037608A (en) 1988-12-29 1991-08-06 Aluminum Company Of America Method for making a light metal-rare earth metal alloy
US4851193A (en) 1989-02-13 1989-07-25 The United States Of America As Represented By The Secretary Of The Air Force High temperature aluminum-base alloy
US4983358A (en) 1989-09-13 1991-01-08 Sverdrup Technology, Inc. Niobium-aluminum base alloys having improved, high temperature oxidation resistance
US5045278A (en) 1989-11-09 1991-09-03 Allied-Signal Inc. Dual processing of aluminum base metal matrix composites
GB2272451B (en) 1989-12-29 1994-08-17 Honda Motor Co Ltd High strength amorphous aluminium-based alloy and process for producing amorphous aluminium-based alloy structural member
JP2915488B2 (ja) 1990-05-02 1999-07-05 古河電気工業株式会社 耐応力腐食割れ性に優れた溶接構造材用高力アルミニウム合金
JPH0794698B2 (ja) 1990-05-18 1995-10-11 昭和アルミニウム株式会社 耐応力腐食割れ性に優れた高強度アルミニウム合金
JPH04136141A (ja) 1990-09-26 1992-05-11 Mazda Motor Corp アルミ合金製シリンダヘッドの熱処理方法
US5503798A (en) 1992-05-08 1996-04-02 Abb Patent Gmbh High-temperature creep-resistant material
JPH07238336A (ja) 1994-02-25 1995-09-12 Takeshi Masumoto 高強度アルミニウム基合金
AU3813795A (en) 1994-09-26 1996-04-19 Ashurst Technology Corporation (Ireland) Limited High strength aluminum casting alloys for structural applications
US5830288A (en) 1994-09-26 1998-11-03 General Electric Company Titanium alloys having refined dispersoids and method of making
US5624632A (en) 1995-01-31 1997-04-29 Aluminum Company Of America Aluminum magnesium alloy product containing dispersoids
JP3229954B2 (ja) 1996-02-27 2001-11-19 本田技研工業株式会社 耐熱性マグネシウム合金
JPH1081929A (ja) 1996-07-15 1998-03-31 Sumitomo Metal Ind Ltd ジルコニウム合金および合金管とその製造方法
US5776617A (en) 1996-10-21 1998-07-07 The United States Of America Government As Represented By The Administrator Of The National Aeronautics And Space Administration Oxidation-resistant Ti-Al-Fe alloy diffusion barrier coatings
ES2188897T3 (es) 1997-02-10 2003-07-01 Aluminum Co Of America Producto de aleacion de aluminio.
WO1999026744A1 (en) * 1997-11-20 1999-06-03 Kaiser Aluminum & Chemical Corporation Device and method for cooling casting belts
DE19838017C2 (de) 1998-08-21 2003-06-18 Eads Deutschland Gmbh Schweißbare, korrosionsbeständige AIMg-Legierungen, insbesondere für die Verkehrstechnik
DE19838015C2 (de) 1998-08-21 2002-10-17 Eads Deutschland Gmbh Gewalztes, stranggepreßtes, geschweißtes oder geschmiedetes Bauteil aus einer schweißbaren, korrosionsbeständigen hochmagnesiumhaltigen Aluminium-Magnesium-Legierung
US6248453B1 (en) 1999-12-22 2001-06-19 United Technologies Corporation High strength aluminum alloy
JP3903301B2 (ja) 2000-12-21 2007-04-11 東洋アルミニウム株式会社 中性子吸収材料用アルミニウム合金粉末及び中性子吸収材料
US6607355B2 (en) 2001-10-09 2003-08-19 United Technologies Corporation Turbine airfoil with enhanced heat transfer
US6622774B2 (en) * 2001-12-06 2003-09-23 Hamilton Sundstrand Corporation Rapid solidification investment casting
US20040156739A1 (en) 2002-02-01 2004-08-12 Song Shihong Gary Castable high temperature aluminum alloy
WO2003104505A2 (en) 2002-04-24 2003-12-18 Questek Innovations Llc Nanophase precipitation strengthened al alloys processed through the amorphous state
JP4324704B2 (ja) 2002-09-13 2009-09-02 Dowaメタルテック株式会社 金属−セラミックス複合部材の製造装置、製造用鋳型、並びに製造方法
US6974510B2 (en) 2003-02-28 2005-12-13 United Technologies Corporation Aluminum base alloys
JP2005224834A (ja) 2004-02-12 2005-08-25 Asama Giken Co Ltd アルミニウム又はアルミニウム合金鋳物の鋳造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180422A (ja) * 2009-01-06 2010-08-19 Nippon Light Metal Co Ltd アルミニウム合金の製造方法
JP2014525839A (ja) * 2011-08-19 2014-10-02 インスティチュート オドレウニクトワ インベストメント鋳造の製造方法
JP2016068099A (ja) * 2014-09-29 2016-05-09 日立金属株式会社 鋳物およびその製造方法
JP2019108579A (ja) * 2017-12-18 2019-07-04 昭和電工株式会社 アルミニウム合金材およびアルミニウム合金製品の製造方法
JP2021134413A (ja) * 2020-02-28 2021-09-13 株式会社豊田自動織機 アルミニウム合金材、その製造方法及びインペラ
JP7321457B2 (ja) 2020-02-28 2023-08-07 株式会社豊田自動織機 アルミニウム合金材、その製造方法及びインペラ

Also Published As

Publication number Publication date
US7854252B2 (en) 2010-12-21
CN1936038A (zh) 2007-03-28
DE602006021112D1 (de) 2011-05-19
EP1767292A2 (en) 2007-03-28
EP1767292A3 (en) 2007-10-31
US20090288796A1 (en) 2009-11-26
US20070062669A1 (en) 2007-03-22
ATE504373T1 (de) 2011-04-15
US7584778B2 (en) 2009-09-08
EP1767292B1 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
JP2007083307A (ja) アルミニウム合金鋳造方法
KR101010965B1 (ko) 티타늄 알루미나이드계 합금
Hakeem et al. Comparative evaluation of thermal and mechanical properties of nickel alloy 718 prepared using selective laser melting, spark plasma sintering, and casting methods
EP1561831A2 (en) Castable high temperature aluminium alloy
JP5787643B2 (ja) ニッケル基超合金から成る単結晶部品の製造方法
AU2006200325A1 (en) Superalloy compositions, articles, and methods of manufacture
Sampath Studies on the effect of grain refinement and thermal processing on shape memory characteristics of Cu–Al–Ni alloys
JP5703881B2 (ja) 高強度マグネシウム合金およびその製造方法
KR20140002063A (ko) 고온 특성이 우수한 알루미늄 합금
TWI557233B (zh) NiIr基底之耐熱合金及其製造方法
US8858874B2 (en) Ternary nickel eutectic alloy
JP5598895B2 (ja) アルミニウムダイカスト合金、この合金からなる鋳造コンプレッサ羽根車およびその製造方法
US20100135847A1 (en) Nickel-containing alloys, method of manufacture thereof and articles derived therefrom
JP2021507088A (ja) 添加剤技術用のアルミニウム合金
US20050069450A1 (en) Nickel-containing alloys, method of manufacture thereof and articles derived thereform
Sonar et al. An overview of microstructure, mechanical properties and processing of high entropy alloys and its future perspectives in aeroengine applications
JP6284232B2 (ja) TiAl基鋳造合金及びその製造方法
JP7467633B2 (ja) 粉末アルミニウム材料
WO2017123186A1 (en) Tial-based alloys having improved creep strength by strengthening of gamma phase
JP4704720B2 (ja) 高温疲労特性に優れた耐熱性Al基合金
Jie et al. Effects of grain refinement on cast structure and tensile properties of superalloy K4169 at high pouring temperature
Zainon et al. Effect of intermetallic phase on microstructure and mechanical properties of AA332/Mg2Si (p) composite
JPS63118037A (ja) Ni基単結晶耐熱合金
CN105441723A (zh) 一种含稀土铒的铸态铝锰合金材料及其制备方法
Zainon et al. Effect of intermetallic phase on microstructure and mechanical properties of AA332/Mg

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407