JP2007058098A - 光導波路基板及びその製造方法 - Google Patents

光導波路基板及びその製造方法 Download PDF

Info

Publication number
JP2007058098A
JP2007058098A JP2005246367A JP2005246367A JP2007058098A JP 2007058098 A JP2007058098 A JP 2007058098A JP 2005246367 A JP2005246367 A JP 2005246367A JP 2005246367 A JP2005246367 A JP 2005246367A JP 2007058098 A JP2007058098 A JP 2007058098A
Authority
JP
Japan
Prior art keywords
core
optical waveguide
optical component
portions
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005246367A
Other languages
English (en)
Other versions
JP4509892B2 (ja
Inventor
Takafumi Yoshino
隆文 能野
Katsumi Shibayama
勝己 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2005246367A priority Critical patent/JP4509892B2/ja
Priority to US11/509,843 priority patent/US7447400B2/en
Priority to CNB2006101265679A priority patent/CN100541247C/zh
Priority to KR1020060081700A priority patent/KR20070024440A/ko
Publication of JP2007058098A publication Critical patent/JP2007058098A/ja
Application granted granted Critical
Publication of JP4509892B2 publication Critical patent/JP4509892B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12104Mirror; Reflectors or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12109Filter

Abstract

【課題】 簡易な構成及び工程によって、光学部品を樹脂製の光導波路層内部に埋め込み、且つ光導波路層表面を平坦にできる光導波路基板及びその製造方法を提供する。
【解決手段】 光導波路基板1aは、基板2と、基板2上に設けられ、コア部32a、コア部32aの長手方向と交差する方向に延びるコア部32b、並びにコア部32a及び32bを覆うクラッド部35を有する樹脂製の光導波路層3と、反射面4aを有し、コア部32a及び32bのうち一方のコア部を導波した光を反射面4aが他方のコア部へ反射するように基板2上に設けられた波長フィルタ4とを備える。光導波路層3は、コア部32a及び32bと同じ層に位置するとともに同じ材料からなる部分32d〜32gを含み波長フィルタ4を互いの間に挟み込んで保持する第1の支持部36a、36b及び第2の支持部37a、37bを更に有する。波長フィルタ4は、クラッド部35によって覆われる。
【選択図】 図1

Description

本発明は、光導波路基板及びその製造方法に関するものである。
光ファイバなどの光伝送媒体中を進む光を分岐或いは結合するために、光導波路基板が用いられる。例えば埋め込み型の光導波路基板は、Si等からなる基板上に、光を導波するコア、及び該コアを覆うクラッドからなるポリマー製の光導波路層を備える。そして、このような光導波路基板においては、コアの長手方向と交差する位置に波長フィルタなどの光学部品が設けられる場合がある。一般的に、光学部品は、例えば光導波路基板の所定の位置に形成された溝に挿入され、固定される。
例えば、特許文献1〜6には、上記のような構成を備える光導波路基板が開示されている。従来の光導波路基板の多くは、基板上に形成された光導波路層にダイシングによる溝を形成し、この溝に光学部品を挿入している。そして、光学部品を光導波路層及び基板に固定している。また、特許文献7には、ダイシング溝に光学部品(光学フィルタ)を挿入する際に、光学部品の反りを矯正するための圧入材を光学部品と共にダイシング溝に挿入する方法が開示されている。なお、上記以外の構成例としては、特許文献8に、2枚の光導波路基板の間に光学部品(フィルタ)を挟んで固定する光合分波器が開示されている。
特開平11−38240 特開平11−52150 特開平11−287916 特開2000−131527 特開2000−75155 特開2002−243960 特開2002−303772 特開2005−77933
上述した各特許文献に記載された光導波路基板の多くは、紫外線硬化樹脂等の接着剤によって光学部品をダイシング溝に固定している。しかしながら、特許文献2に記載されているように、光導波路基板に用いられる接着剤には十分な耐湿性・耐熱性を備えるものが少なく、光導波路基板の信頼性が損なわれてしまう。また、光導波路基板の表面には光学部品や接着剤による凹凸が生じるので、例えばフォトダイオート等の光デバイスを光導波路基板上に安定して載置することが難しい。
本発明者らは、従来の光導波路基板が有するこれらの問題を解決するため、樹脂製の光導波路層の内部に光学部品を埋め込んだ構造の光導波路基板を提案している。光導波路層の内部に光学部品を埋め込むことにより、耐湿性・耐熱性を備え信頼性に優れた光導波路基板を提供できる。また、光導波路層の表面を平坦に形成すれば、フォトダイオート等のデバイスを光導波路基板上に安定して載置することもできる。
しかしながら、光導波路層が樹脂によって構成される場合、光導波路層は層厚を均一に整えるために例えばスピンコートといった方法により塗布形成されることが多い。従って、光学部品を光導波路層内に埋め込む際には、光学部品が押し流されないように、光学部品を所定位置に予め保持しておくことが好ましい。また、スピンコート法を用いない場合であっても、光学部品の位置がずれると光学部品とコアとの光結合効率が低下するので、光学部品を光導波路層内に埋め込む際に光学部品を予め所定位置に保持しておくことが好ましい。
なお、特許文献7においては、圧入材を用いて光学フィルタを溝内に圧接して固定している。しかしながら、このような固定方法では、圧入材が必要なため部品点数が増加するほか、この文献に記載されているように溝への挿入作業に手間や時間がかかる等の問題がある。
本発明は、上記した問題点を鑑みてなされたものであり、簡易な構成及び工程によって、光学部品を樹脂製の光導波路層内部に埋め込み、且つ光導波路層表面を平坦にできる光導波路基板及びその製造方法を提供することを目的とする。
上記した課題を解決するために、本発明による光導波路基板は、主面を有する基板と、基板の主面上に設けられ、第1のコア部、第1のコア部の長手方向と交差する方向に延びる第2のコア部、並びに第1及び第2のコア部を覆うクラッド部を有する樹脂製の光導波路層と、光を反射する反射面を有し、第1及び第2のコア部のうち一方のコア部を導波した光を反射面が他方のコア部へ反射するように基板の主面上に設けられた光学部品とを備え、光導波路層が、第1及び第2のコア部と同じ層に位置するとともに同じ材料からなる部分を含み光学部品を互いの間に挟み込んで保持する第1及び第2の支持部を更に有し、光学部品が、クラッド部によって覆われていることを特徴とする。
上記した光導波路基板においては、光導波路層が、光学部品を互いの間に挟み込んで保持する第1及び第2の支持部を有する。そして、これら第1及び第2の支持部が、第1及び第2のコア部と同じ層に位置するとともに同じ材料からなる部分を含む。従って、第1及び第2のコア部並びに第1及び第2の支持部を基板の主面上に同時に形成した後に、光学部品を第1の支持部と第2の支持部との間に挟み込んで所定位置に保持したまま、第1及び第2のコア部、第1及び第2の支持部、並びに光学部品を覆うように樹脂製のクラッド部を形成できる。このように、上記した光導波路基板によれば、簡易に形成可能な第1及び第2の支持部によって光学部品を保持しながら該光学部品をクラッド部で覆うことができるので、例えばスピンコーティングによってクラッド部を形成する場合においても樹脂に押し流されることなく、光学部品を簡易な構成によって光導波路層内部に埋め込むことができる。これによって、作製が容易であり、耐湿性・耐熱性を備え、高い信頼性を有する光導波路基板を提供できる。また、光学部品を接着剤によって溝に固定する従来の構成とは異なり、光学部品がクラッド部によって覆われて(埋め込まれて)いるので、光導波路層の表面を平坦に形成することも容易にできる。
また、上記した光導波路基板においては、第1及び第2の支持部が、第1及び第2のコア部と同じ層に位置するとともに同じ材料からなる部分を含むので、第1及び第2のコア部を形成する際のマスクを利用して第1及び第2の支持部を同時に形成することにより、第1及び第2のコア部に対して第1及び第2の支持部を位置精度よく形成できる。従って、上記した光導波路基板によれば、少ない工程によって精度よく光学部品を位置決めできる。更に、上記した光導波路基板においては、第1及び第2のコア部を覆うクラッド部によって光学部品も覆われているので、第1及び第2のコア部と光学部品の反射面との隙間への塵や埃の侵入をクラッド部によって防止できるとともに、クラッド部によって該隙間を埋めることができる。従って、上記した光導波路基板によれば、光学部品とコア部との隙間に屈折率調整用の接着剤等を注入する工程が省けるので、工程を増加することなく第1及び第2のコア部と光学部品との間の光損失を低減できる。
また、本発明による光導波路基板は、主面を有する基板と、基板の主面上に設けられ、第1のコア部、第1のコア部の長手方向と交差する方向に延びる第2のコア部、並びに第1及び第2のコア部を覆う第1のクラッド部を有する樹脂製の光導波路層と、光を反射する反射面を有し、第1及び第2のコア部のうち一方のコア部を導波した光を反射面が他方のコア部へ反射するように基板の主面上に設けられた光学部品とを備え、光導波路層の第1のクラッド部が、光学部品を収容する光学部品収容溝と、光学部品収容溝の側面に形成され光学部品を互いの間に挟み込んで保持する第1及び第2の支持部とを有し、光導波路層が、第1のクラッド部及び光学部品を覆う第2のクラッド部を更に有することを特徴とする。
上記した光導波路基板においては、第1のクラッド部が、光学部品を互いの間に挟み込んで保持する第1及び第2の支持部を有する。従って、第1及び第2のコア部並びに第1のクラッド部が主面上に形成された基板に対し、光学部品を第1の支持部と第2の支持部との間に挟み込んで光学部品収容溝内に保持したまま、第1のクラッド部及び光学部品を覆うように樹脂製の第2のクラッド部を形成できる。このように、上記した光導波路基板によれば、簡易に形成可能な第1及び第2の支持部によって光学部品を保持しながら該光学部品を第2のクラッド部で覆うことができるので、例えばスピンコーティングによって第2のクラッド部を形成する場合においても樹脂に押し流されることなく、光学部品を簡易な構成によって光導波路層内部に埋め込むことができる。これによって、作製が容易であり、耐湿性・耐熱性を備え、高い信頼性を有する光導波路基板を提供できる。また、光学部品を接着剤によって溝に固定する従来の構成とは異なり、光学部品が第2のクラッド部によって覆われて(光導波路層内に埋め込まれて)いるので、光導波路層の表面を平坦に形成することも容易にできる。
なお、光を反射する反射面とは、全反射に限られるものではなく、少なくとも光の一部を反射する面を含む意味である。このような面を有する光学部品としては、例えば光に含まれる波長成分を該波長に応じて選択的に反射または透過する波長フィルタや、光量の一部を反射し、残りを透過するハーフミラー等を例示することができる。
また、光導波路基板は、第1の支持部が、光学部品の反射面と接する第1の接触面を有しており、第2の支持部が、光学部品の裏面と接する第2の接触面を有しており、光学部品が、第1及び第2の接触面に保持されていることを特徴としてもよい。これにより、第1及び第2の支持部が光学部品を安定して保持できる。また、この場合、第1及び第2の接触面が、光学部品における反射面と交差する方向の厚さよりも小さい間隔で形成されており、光学部品が、第1の接触面と第2の接触面との間に圧入されていることが好ましい。これにより、第1及び第2の支持部が光学部品を強固に保持できる。
また、光導波路基板は、第1の支持部が、光学部品の反射面と対向する第1の対向面、及び第1の対向面から突出した凸状部を有しており、第2の支持部が、光学部品の裏面と対向する第2の対向面、及び第2の対向面から突出した凸状部を有しており、光学部品が、第1及び第2の対向面の凸状部に接していることを特徴としてもよい。これにより、第1及び第2の支持部と光学部品との接触面積を小さくできるので、第1の支持部と第2の支持部との間に光学部品を挿入する際の光学部品の損傷(特に反射面の損傷)を低減できる。また、この場合、第1及び第2の支持部それぞれに形成された凸状部同士の距離が、光学部品における反射面と交差する方向の厚さよりも短く形成されており、光学部品が、第1の支持部の凸状部と第2の支持部の凸状部との間に圧入されていることが好ましい。これにより、第1及び第2の支持部が光学部品を強固に保持できる。
また、光導波路基板は、光学部品における基板に近い部分の厚さが、基板へ向かって小さくなるようにテーパ状に形成されていることを特徴としてもよい。これにより、第1の支持部と第2の支持部との間に光学部品を容易に挿入できる。また、この場合、光学部品の裏面のうち基板に近い領域が反射面に対して傾斜していることが好ましい。これにより、反射面を平坦に維持したまま、光学部品における基板に近い部分をテーパ状にできる。
本発明による光導波路基板の第1の製造方法は、樹脂製の第1クラッド層を基板の主面上に形成する第1クラッド層形成工程と、第1クラッド層よりも高屈折率の樹脂からなるコア層を第1クラッド層上に形成するコア層形成工程と、第1のコア部の平面形状、第1のコア部の長手方向と交差する方向に延びる第2のコア部の平面形状、並びに第1及び第2のコア部のうち一方のコア部を導波した光を光学部品の反射面が他方のコア部へ反射するように光学部品を互いの間に挟み込んで保持する第1及び第2の支持部の平面形状が形成されたマスクを用い、コア層及び第1クラッド層に対しエッチングを行うことにより、第1及び第2のコア部並びに第1及び第2の支持部を形成するエッチング工程と、光学部品を第1の支持部と第2の支持部との間に挿入する光学部品設置工程と、第1及び第2のコア部、第1及び第2の支持部、並びに光学部品のそれぞれを覆うように、コア層よりも低屈折率の樹脂からなる第2クラッド層を形成する第2クラッド層形成工程とを備えることを特徴とする。
上記した光導波路基板の第1の製造方法においては、エッチング工程の際に、光学部品を互いの間に挟み込んで保持する第1及び第2の支持部が形成されるので、次の光学部品設置工程の際に、第1の支持部と第2の支持部との間に挟み込んで光学部品を所定位置に保持できる。そして、次の第2クラッド層形成工程の際に、光学部品を第1及び第2の支持部間に保持したまま、第1及び第2のコア部、第1及び第2の支持部、並びに光学部品を覆うように樹脂製の第2クラッド層を形成できる。このように、上記した光導波路基板の第1の製造方法によれば、簡易に形成可能な第1及び第2の支持部によって光学部品を保持しながら該光学部品を第2クラッド層で覆うことができるので、例えばスピンコーティングによって第2クラッド層を形成する場合においても樹脂に押し流されることなく、光学部品を簡易な工程によって第2クラッド層内部に好適に埋め込むことができる。これによって、作製が容易であり、耐湿性・耐熱性を備え、高い信頼性を有する光導波路基板を製造できる。また、光学部品を接着剤によって溝に固定する従来の製造方法とは異なり、光学部品を第2クラッド層によって覆う(埋め込む)ので、光導波路基板の表面を平坦に形成することも容易にできる。
また、上記した光導波路基板の第1の製造方法においては、第1及び第2のコア部を形成するためのマスクに第1及び第2の支持部の平面形状が形成されているので、第1及び第2のコア部に対して第1及び第2の支持部を位置精度よく形成できる。従って、上記した光導波路基板の第1の製造方法によれば、第1及び第2のコア部に対して光学部品を少ない工程によって精度よく位置決めできる。更に、上記した光導波路基板の第1の製造方法においては、第2クラッド層形成工程の際に、第1及び第2のコア部だけでなく光学部品も覆うように第2クラッド層を形成するので、第1及び第2のコア部と光学部品の反射面との隙間への塵や埃の侵入を防止できるとともに、第2クラッド層によって該隙間を埋めることができる。従って、上記した光導波路基板の第1の製造方法によれば、光学部品とコア部との隙間に屈折率調整用の接着剤等を注入する工程が省けるので、工程を増加することなく第1及び第2のコア部と光学部品との間の光損失を低減できる。
本発明による光導波路基板の第2の製造方法は、基板の主面上に設けられ、第1のコア部、第1のコア部の長手方向と交差する方向に延びる第2のコア部、並びに第1及び第2のコア部を覆う第1のクラッド部を有する樹脂製の積層部に対し、第1及び第2のコア部のうち一方のコア部を導波した光を光学部品の反射面が他方のコア部へ反射するように光学部品を収容する光学部品収容溝の平面形状、並びに光学部品収容溝の側面に形成され光学部品を互いの間に挟み込んで保持する第1及び第2の支持部の平面形状が形成されたマスクを用いてエッチングを行うことにより、光学部品収容溝並びに第1及び第2の支持部を積層部に形成するエッチング工程と、光学部品を第1の支持部と第2の支持部との間に挿入する光学部品設置工程と、積層部及び光学部品を覆うように、第1及び第2のコア部よりも低屈折率の樹脂からなる第2のクラッド部を形成する第2クラッド部形成工程とを備えることを特徴とする。
上記した光導波路基板の第2の製造方法においては、エッチング工程の際に、光学部品を互いの間に挟み込んで保持する第1及び第2の支持部が積層部に形成されるので、次の光学部品設置工程の際に、第1の支持部と第2の支持部との間に挟み込んで光学部品を所定位置に保持できる。そして、次の第2クラッド部形成工程の際に、光学部品を第1及び第2の支持部間に保持したまま、積層部及び光学部品を覆うように樹脂製の第2のクラッド部を形成できる。このように、上記した光導波路基板の第2の製造方法によれば、簡易に形成可能な第1及び第2の支持部によって光学部品を保持しながら該光学部品を第2のクラッド部で覆うことができるので、例えばスピンコーティングによって第2クラッド部を形成する場合においても樹脂に押し流されることなく、光学部品を簡易な工程によって第2のクラッド部の内部に好適に埋め込むことができる。これによって、作製が容易であり、耐湿性・耐熱性を備え、高い信頼性を有する光導波路基板を製造できる。また、光学部品を接着剤によって溝に固定する従来の製造方法とは異なり、光学部品を第2のクラッド部によって覆う(埋め込む)ので、光導波路基板の表面を平坦に形成することも容易にできる。
本発明による光導波路基板及びその製造方法によれば、簡易な構成及び工程によって、光学部品を樹脂製の光導波路層内部に埋め込み、且つ光導波路層表面を平坦にできる。
以下、添付図面を参照しながら本発明による光導波路基板及びその製造方法の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
(第1の実施の形態)
まず、本発明による光導波路基板及びその製造方法の第1実施形態について説明する。図1は、本実施形態による光導波路基板1aの構成を示す斜視図である。図2は、図1に示した光導波路基板1aの構成の中心部付近を示す平面図である。図3(a)は、図2に示した光導波路基板1aのI−I線、II−II線、及びIII−III線に沿った断面を示す側面断面図である。図3(b)は、図2に示した光導波路基板1aのIV−IV線、及びV−V線に沿った断面を示す側面断面図である。なお、本実施形態の光導波路基板1aは、いわゆる埋込み型の光導波路基板である。
図1〜図3を参照すると、本実施形態の光導波路基板1aは、基板2、光導波路層3、及び波長フィルタ4を備える。基板2は、その平面形状が矩形状であり、主面2aを有する。基板2は、例えばシリコン、ポリイミド、ガラス、石英、ガラスエポキシ、セラミックなどの材料によって構成される。光導波路層3が重合体(ポリマー)からなる場合、光導波路層3を熱硬化させる際に光導波路層3が収縮するため、熱膨張率を整合させるのであれば、基板2も光導波路層3と同種の材料によって構成するとよい。また、基板2が光導波路層3とは異種の材料によって構成される場合(例えばポリイミド製の光導波路層3に対してシリコン基板やガラス基板を用いる場合など)には、光導波路層3の収縮による光導波路基板1aの反りを抑えるために、基板2の厚さを比較的厚く(例えば厚さ300μm以上1mm以下)することが好ましい。
光導波路層3は、光を導波するコア部32a〜32cを含む層であり、基板2の主面2a上に設けられている。光導波路層3は、例えばポリイミド、シリコーン、エポキシ、アクリレート、ポリメチルメタクリレート(PMMA)、ポリベンゾオキサゾールといった有機系材料のうち少なくとも一種類の材料を主剤とする重合体を含んで構成される。或いは、光導波路層3は、導波する光の波長に応じた最適な透過特性を得るために、これら有機系材料のC−H基におけるHが重水素に置換された重水素化物(例:重水素化シリコーン)や、C−H基におけるHがフッ素に置換されたフッ素化物(例:フッ素化ポリイミド)を主剤とする重合体を含んで構成されてもよい。(なお、以下の説明において、これらの有機系材料或いはその重水素化物、フッ素化物を主剤とする重合体を単に「ポリイミド等の重合体」という。)これにより、光導波路層3の内部に、波長フィルタ4を容易に埋め込むことができる。また、光導波路層3は、これら有機系材料の中でも、ガラス転位温度が高く耐熱性に優れたポリイミドを含んで構成されることが好ましい。光導波路層3がポリイミドを含むことにより、光導波路層3の信頼性を長期にわたって維持できるとともに、光導波路層3上に電子デバイス等が実装される場合のハンダ付けにも耐えることができる。なお、更に好適には、光導波路層3は、光透過率、屈折率特性などを考慮してフッ素化ポリイミドを含んで構成されるとよい。
光導波路層3は、クラッド部35と、クラッド部35よりも屈折率が大きいコア部32a〜32cとを有する。クラッド部35は基板2の主面2a上に層状に形成されており、コア部32a〜32cはクラッド部35に覆われている。コア部32aは、本実施形態における第1のコア部であり、所定の光軸A(図2参照)に沿った方向に延びている。また、コア部32bは、本実施形態における第2のコア部であり、コア部32aの長手方向(すなわち光軸Aに沿った方向)と交差する所定の光軸B(図2参照)に沿った方向に延びている。コア部32aの一端はコア部32bの一端と繋がっており、端面32h(図2参照)がコア部32a及び32bの共通の端面となっている。コア部32a及び32bの他端はそれぞれ光導波路基板1aの側面においてクラッド部35から露出しており光入出射端5a及び5bとなっている。また、コア部32cは、コア部32aに対し所定の光軸Aに沿った方向に並んで設けられており、所定の光軸Aに沿った方向に延びている。コア部32cの一端は、所定の間隔をあけてコア部32aの一端と対向する端面32i(図2参照)となっている。コア部32cの他端は、光導波路基板1aの側面においてクラッド部35から露出しており光入出射端5cとなっている。
クラッド部35は、下層クラッド部31a〜31c及び上層クラッド部33を含んで構成されている。下層クラッド部31a〜31cは、コア部32a〜32cと基板2との間に設けられている。下層クラッド部31a〜31cは、後述する製造工程に示すように、コア部32a〜32cがエッチングにより形成される際に同時にエッチングされ、形成される。従って、下層クラッド部31a〜31cの平面形状は、それぞれコア部32a〜32cの平面形状と同じ形状となっている。また、上層クラッド部33は、コア部32a〜32c及び下層クラッド部31a〜31cを覆うように主面2a上の全面にわたって形成されている。なお、図1においては、光導波路層3の内部構成を説明するために上層クラッド部33を仮想線(一点鎖線)で示している。また、図2においては、上層クラッド部33の図示を省略している。
波長フィルタ4は、光に含まれる波長成分を該波長に応じて選択的に反射する部品であり、本発明における光学部品の一例である。図2及び図3(b)を参照すると、波長フィルタ4は、波長に応じて選択的に光を反射する反射面4a、及び反射面4aとは反対側の裏面4bを有する。波長フィルタ4は、コア部32aを導波した光をコア部32bへ反射面4aが反射するように(逆にいえば、コア部32bを導波した光をコア部32aへ反射面4aが反射するように)、基板2の主面2a上に設置されている。具体的には、波長フィルタ4は、所定の光軸Aと光軸Bとのなす角を反射面4aの法線が二等分するように設置されている。反射面4aは、コア部32a(32b)の端面32hと対向しており、裏面4bは、コア部32cの端面32iと対向している。波長フィルタ4は、反射面4a、裏面4b、側面4c、及び上面を上層クラッド部33によって覆われている。従って、反射面4aと端面32hとの隙間、並びに裏面4bと端面32iとの隙間は、上層クラッド部33の構成材料によって満たされている。
波長フィルタ4は、基部41及び基部41の反射面4a側に設けられた誘電体多層膜42によって構成される。誘電体多層膜42は、所定の厚さ及び屈折率を有する複数の誘電体層が積層されており、波長に応じて選択的に光を反射できる。また、基部41は多層膜42の機械的強度を維持するための部分であり、例えばコア部32a〜32cを導波する光の波長に対して透明な材料からなる。なお、波長フィルタ4は、本実施形態のように基板2の主面2a上に直接設置されることが好ましいが、例えばクラッド部35の一部を主面2aとの間に介して設置されてもよい。また、図示していないが、波長フィルタ4として誘電体多層膜を用いることにより、波長フィルタ4において反射されずに透過する光の光軸は、波長フィルタ4に入る前の光の光軸Aに対して少しずれることとなる。
また、光導波路層3がポリイミド等の重合体(ポリマー)からなる場合、光導波路層3を熱硬化させる際に光導波路層3が収縮するため、熱膨張率を整合させるために波長フィルタ4も光導波路層3と同じくポリイミド等の重合体を含んで構成されることが好ましい。これにより、光導波路層3(特に、上層クラッド部33)を硬化させる際の収縮によるコア部32a、32b、及び32cと波長フィルタ4との位置ずれを抑えることができる。なお、更に好ましくは、波長フィルタ4と上層クラッド部33とが同種の材料を含むとよい。例えば、上層クラッド部33がフッ素化ポリイミドを主剤とする重合体により構成されている場合、波長フィルタ4もフッ素化ポリイミドを主剤とする重合体により構成されることが好ましい。
ここで、光導波路層3は、更に第1の支持部36a及び36b、並びに第2の支持部37a及び37bを有する。第1の支持部36a及び36b、並びに第2の支持部37a及び37bは、波長フィルタ4を互いの間に挟み込んで該波長フィルタ4を保持するための部分である。第1の支持部36a及び36bは、基板2の主面2a上において波長フィルタ4の長手方向に沿って並んで形成されており、波長フィルタ4の両端付近に配置されている。第2の支持部37a及び37bも同様に、基板2の主面2a上において波長フィルタ4の長手方向に沿って並んで形成されており、波長フィルタ4の両端付近に配置されている。第1の支持部36a及び36bは、波長フィルタ4の反射面4aに接する側面36c及び36dをそれぞれ有する。側面36c及び36dは、本実施形態における第1の接触面である。また、第2の支持部37a及び37bは、波長フィルタ4の裏面4bに接する側面37c及び37dをそれぞれ有する。側面37c及び37dは、本実施形態における第2の接触面である。
側面36cと側面37cとは、波長フィルタ4を挟んで互いに対向配置されている。また、側面36dと側面37dとは、波長フィルタ4を挟んで互いに対向配置されている。この構成により、波長フィルタ4の一端は、側面36cと側面37cとに挟み込まれ、波長フィルタ4の他端は、側面36dと側面37dとに挟み込まれ、それぞれ保持される。また、波長フィルタ4と第1の支持部36a及び36bとの接触位置(すなわち反射面4aと側面36c及び36dとの接触位置)、及び波長フィルタ4と第2の支持部37a及び37bとの接触位置(すなわち裏面4bと側面37c及び37dとの接触位置)が、波長フィルタ4を挟んで互いに対称に配置されることとなる。これにより、波長フィルタ4が安定して保持される。そして、波長フィルタ4の反射面4aの位置及び角度は、側面36c及び36d並びに側面37c及び37dによって規定される。なお、第1の支持部36a及び36b、並びに第2の支持部37a及び37bは、後述する製造工程に示すように、コア部32a〜32cと同時に(同じマスクを用いて)形成される。
ここで、図3(b)に示すように、本実施形態においては、側面36cと側面37cとの間隔(側面36dと側面37dとの間隔)Waが、波長フィルタ4における反射面4aと交差する方向の厚さtよりも小さい間隔で形成されている。そして、波長フィルタ4は、側面36cと側面37cとの間(側面36dと側面37dとの間)に圧入されている。従って、第1の支持部36a及び36b、並びに第2の支持部37a及び37bによって波長フィルタ4が強固に保持されることとなる。なお、本実施形態においては、第1の支持部36a及び第2の支持部37aは、第1の支持部36a及び第2の支持部37aと同じ層に形成された連結部38aによって互いに繋がっている。第1の支持部36b及び第2の支持部37bもまた、第1の支持部36b及び第2の支持部37bと同じ層に形成された連結部38bによって互いに繋がっている。これにより、第1の支持部36a、36b及び第2の支持部37a、37bの機械的強度を増加し、波長フィルタ4を圧入する際における第1の支持部36a、36b及び第2の支持部37a、37bの剥離を防止できる。また、波長フィルタ4を圧入する際における第1の支持部36a、36b及び第2の支持部37a、37bの剥離を防止するためには、第1の支持部36a、36bと基板2の主面2aとの接触面の幅、及び第2の支持部37a、37bと基板2の主面2aとの接触面の幅を、それぞれ波長フィルタ4の厚さtと同程度以上に設定することも有効である。
また、本実施形態においては光導波路層3がポリイミド等の重合体を含んで構成されており、第1の支持部36a及び36b、並びに第2の支持部37a及び37bもまた、同様にポリイミド等の重合体を含んで構成されている。このように、第1の支持部36a及び36b、並びに第2の支持部37a及び37bが比較的軟質な材料である重合体(ポリマー)を含むことによって、波長フィルタ4を第1の支持部36a、36bと第2の支持部37a、37bとの間へ挿入する際の波長フィルタ4の損傷(特に反射面4aの損傷)が低減される。また、上述したように、本実施形態においては波長フィルタ4もまたポリイミド等の重合体を含んで構成されているので、波長フィルタ4を挿入する際の波長フィルタ4の損傷が更に低減される。
第1の支持部36aは、第1の部分31dと、第1の部分31d上に設けられた第2の部分32dとを有する。同様に、第1の支持部36bは、第1の部分31eと、第1の部分31e上に設けられた第2の部分32eとを有する。第1の部分31d及び31eは、下層クラッド部31a〜31cと同じ層に位置するとともに同じ材料によって構成されており、第2の部分32d及び32eは、コア部32a〜32cと同じ層に位置するとともに同じ材料によって構成されている。また、第2の支持部37aは、第1の部分31fと、第1の部分31f上に設けられた第2の部分32fとを有する。同様に、第2の支持部37bは、第1の部分31gと、第1の部分31g上に設けられた第2の部分32gとを有する。第1の部分31f及び31gは、下層クラッド部31a〜31cと同じ層に位置するとともに同じ材料によって構成されており、第2の部分32f及び32gは、コア部32a〜32cと同じ層に位置するとともに同じ材料によって構成されている。
なお、第2の部分32d、32e、32f、及び32gは、コア部32a〜32cと同じ層に位置し、且つ同じ材料によって構成されているため、コア部32a〜32cから近すぎる位置に形成されるとコア部32a〜32cを導波する光の一部を吸収するおそれがある。従って、第2の部分32d、32e、32f、及び32gとコア部32a〜32cとの間には、充分な間隔(例えばコア部32a〜32cの幅や高さが5〜8μmで形成される場合、第2の部分32d、32e、32f、及び32gとの間隔は50μm)を設けることが好ましい。
以上の構成を備える光導波路基板1aの製造方法について説明する。図4〜図10は、本実施形態による光導波路基板1aの製造工程を順に示す斜視図である。
まず、図4に示すように、主面2aを有する基板2を用意する。なお、理解を容易にするために図4には一つの光導波路基板1aに用いられる矩形の基板2が示されているが、基板2よりも大きなウェハを用意し、以下に説明する工程により該ウェハ上に光導波路層3を形成し、その後に該ウェハをチップ状に切断することにより、複数の光導波路基板1aを同時に製造することもできる。
続いて、図5(a)及びその一部を拡大した図5(b)に示すように、基板2の主面2a上に樹脂製の第1クラッド層51を形成する(第1クラッド層形成工程)。このとき、第1クラッド層51をポリイミド等の重合体により形成することが好ましい。この場合、第1クラッド層51を主面2a上に塗布(好ましくはスピンコーティング)により形成するとよい。
続いて、図6(a)及びその一部を拡大した図6(b)に示すように、第1クラッド層51上に樹脂製のコア層52を形成する(コア層形成工程)。このとき、コア層52を、第1クラッド層51よりも高屈折率の材料により形成する。本工程では、コア層52をポリイミド等の重合体により形成することが好ましい。この場合、第1クラッド層51と同様に、コア層52を第1クラッド層51上に塗布(好ましくはスピンコーティング)により形成するとよい。
続いて、図7に示すように、コア層52上にマスク61を形成する(マスク形成工程)。このマスク61は、図1及び図2に示したコア部32a〜32cそれぞれの平面形状(コアパターン)に応じた形状を有するマスク部分61a〜61cと、第1の支持部36a及び36bそれぞれの平面形状に応じた形状を有するマスク部分61d及び61eと、第2の支持部37a及び37bそれぞれの平面形状に応じた形状を有するマスク部分61f及び61gと、連結部38a及び38bそれぞれの平面形状に応じた形状を有するマスク部分61h及び61iとを含むように形成される。また、マスク部分61d及び61eは、第1の支持部36a、36bにおける側面36c、36dに対応する辺61j、61kを含むように形成される。同様に、マスク部分61f及び61gは、第2の支持部37a、37bにおける側面37c、37dに対応する辺61m、61nを含むように形成される。また、辺61jと辺61mとの間隔、及び辺61kと辺61nとの間隔は、波長フィルタ4における反射面4aと交差する方向の厚さt(図3(b)参照)よりも小さい間隔で形成される。本工程では、このマスク61を例えば通常のフォトリソグラフィ技術を用いて形成するとよい。また、マスク61のマスク材としては、例えばレジストや金属薄膜(Al,Ti,Cr,WSi等)を用いることができる。
続いて、マスク61をマスクとして用いてコア層52及び第1クラッド層51をエッチングすることにより、図8に示すようにコア部32a〜32c、下層クラッド部31a〜31c、第1の支持部36a(第1の部分31d及び第2の部分32d)、第1の支持部36b(第1の部分31e及び第2の部分32e)、第2の支持部37a(第1の部分31f及び第2の部分32f)、並びに第2の支持部37b(第1の部分31g及び第2の部分32g)を形成する(エッチング工程)。また、このとき、第1の支持部36a及び36bに、波長フィルタ4の反射面4a(図1〜図3参照)と接するための側面36c及び36dをそれぞれ形成するとともに、第2の支持部37a及び37bに、波長フィルタ4の裏面4b(図1〜図3参照)と接するための側面37c及び37dをそれぞれ形成する。本工程では、コア層52及び第1クラッド層51をドライエッチングによりエッチングすることが好ましい。また、コア層52及び第1クラッド層51をエッチングする際のエッチング深さを、コア層52の厚さよりも深くする。なお、第1の支持部36a、36b及び第2の支持部37a、37bの高さを確保するために、このエッチング深さをより深くする(例えば基板2の主面2aが露出するようにエッチングを行う)ことが好ましい。これにより、次の工程において第1の支持部36a、36bと第2の支持部37a、37bとの間に挿入される波長フィルタ4を強固に保持できる。
続いて、図9に示すように、第1の支持部36a、36bと第2の支持部37a、37bとの間に波長フィルタ4を挿入する(光学部品設置工程)。このとき、側面36cと側面37cとの間隔及び側面36dと側面37dとの間隔が波長フィルタ4の厚さよりも狭く形成されている場合には、第1の支持部36a、36bと第2の支持部37a、37bとの間に波長フィルタ4を圧入する。なお、次の工程で形成される上層クラッド部33がポリイミド等の重合体を含む場合には、同様にポリイミド等の重合体を含む波長フィルタ4を挿入するとよい。また、更に好ましくは、上層クラッド部33と同種の材料を含む波長フィルタ4を挿入するとよい。
続いて、図10に示すように、コア部32a〜32cよりも低屈折率の樹脂からなる上層クラッド部(第2クラッド層)33を形成する(第2クラッド層形成工程)。このとき、上層クラッド部33を、主面2a、下層クラッド部31a〜31c、コア部32a〜32c、第1の支持部36a及び36b、第2の支持部37a及び37b、並びに波長フィルタ4を全て覆うように形成する。これにより、下層クラッド部31a〜31c及び上層クラッド部33からなるクラッド部35が形成される。本工程においては、上層クラッド部33をポリイミド等の重合体により形成することが好ましく、この場合、上層クラッド部33を塗布(好ましくはスピンコーティング)により形成するとよい。その際、上層クラッド部33の表面は、その上に電気配線を形成したり、光素子を搭載するために、平坦に形成されることが好ましい。スピンコーティングにより上層クラッド部33を形成することにより、上層クラッド部33の表面を平坦に形成できる。また、波長フィルタ4、第1の支持部36a及び36b、並びに第2の支持部37a及び37bは、適切な硬度と弾力とを兼ね備えるポリマー等の重合体によって構成されているので、割れたり欠けたりすることなく、第1の支持部36a及び36b、並びに第2の支持部37a及び37bが波長フィルタ4を保持できる。
以上の工程により、基板2、光導波路層3、及び波長フィルタ4を備える光導波路基板1aが完成する。
なお、光をシングルモードで導波する場合、上述した第1クラッド層形成工程(図5)において形成される第1クラッド層51の厚さは、例えば10μm以上20μm以下であることが好ましい。特に、光導波路層3をフッ素化ポリイミドにより形成する場合には、第1クラッド層51の好適な厚さは例えば15μmである。また、コア層形成工程(図6)において形成されるコア層52の厚さは、例えば5μm以上10μm以下であることが好ましい。特に、光導波路層3をフッ素化ポリイミドにより形成する場合には、コア層52の好適な厚さは例えば9μmである。また、第2クラッド層形成工程(図10)において形成される上層クラッド部33の厚さは、例えばコア部32a〜32cの上面から10μm以上30μm以下であることが好ましい。特に、上層クラッド部33をフッ素化ポリイミドにより形成する場合には、上層クラッド部33の好適な厚さは例えばコア部32a〜32cの上面から20μmである。
また、光をマルチモードで導波する場合、第1クラッド層51、コア層52、及び上層クラッド部33の厚さは、例えば10μm〜数百μmの広い範囲にわたって自由に設定でき、用途に応じて決定される。
また、光学部品設置工程において設置される波長フィルタ4の厚さは、例えば波長フィルタ4がポリイミドにより構成される場合、30μm〜100μm程度が好ましい。ただし、波長フィルタ4を透過する光の損失を抑えるためには、波長フィルタ4の厚さは薄いほどよい(例えば30μm〜40μm)。また、波長フィルタ4は上層クラッド部33により覆われる必要があるので、波長フィルタ4の高さ(すなわち主面2aの法線方向における波長フィルタ4の幅)は、例えば30μm〜50μm程度であることが好ましい。また、波長フィルタ4の長手方向の幅は、波長フィルタ4の設置安定性や設置スペースの広さに応じて適宜決定でき、例えば200μm〜400μm程度が妥当である。
以上に説明した本実施形態による光導波路基板1a及びその製造方法が有する効果について説明する。本実施形態の光導波路基板1aにおいては、光導波路層3が、波長フィルタ4を互いの間に挟み込んで保持する第1の支持部36a、36b及び第2の支持部37a、37bを有する。そして、これら第1の支持部36a、36b及び第2の支持部37a、37bが、コア部32a〜32cと同じ層に位置するとともに同じ材料からなる第2の部分32d〜32gを含む。従って、上記製造方法に示したように、エッチング工程においてコア部32a〜32c、第1の支持部36a、36b、及び第2の支持部37a、37bを基板2の主面2a上に同時に形成し、波長フィルタ設置工程において波長フィルタ4を第1の支持部36a、36bと第2の支持部37a、37bとの間に挟み込んで所定位置に保持したまま、コア部32a〜32c、第1の支持部36a及び36b、第2の支持部37a及び37b、並びに波長フィルタ4を覆うように樹脂製の上層クラッド部(第2クラッド層)33を形成できる。
このように、本実施形態の光導波路基板1a及びその製造方法によれば、コア部32a〜32cを形成するためのマスク61と同じマスクによって第1の支持部36a、36b及び第2の支持部37a、37bを簡易に形成可能であり、且つ、このような第1の支持部36a、36b及び第2の支持部37a、37bによって波長フィルタ4を保持しながら上層クラッド部(第2クラッド層)33を形成できるので、例えばスピンコーティングによって上層クラッド部(第2クラッド層)33を形成する場合においても波長フィルタ4が樹脂に押し流されることなく、簡易な構成(工程)によって波長フィルタ4を上層クラッド部(第2クラッド層)33の内部に好適に埋め込むことができる。これにより、作製が容易であり、耐湿性・耐熱性を備え、高い信頼性を有する光導波路基板を提供できる。また、波長フィルタ4を接着剤によって溝に固定する従来の製造方法とは異なり、波長フィルタ4を上層クラッド部(第2クラッド層)33によって覆う(埋め込む)ので、光導波路基板1aの表面を平坦に形成することも容易にできる。
また、本実施形態の光導波路基板1aでは、第1の支持部36a、36b及び第2の支持部37a、37bが、コア部32a〜32cと同じ層(すなわち図6に示したコア層52)に位置するとともにコア部32a〜32cと同じ材料からなる。従って、上記製造方法(図7)に示したように、コア部32a〜32cを形成する際のマスク61を利用して第1の支持部36a、36b及び第2の支持部37a、37bをコア部32a〜32cと共に形成できる。従って、本実施形態の光導波路基板1a及びその製造方法によれば、コア部32a〜32cに対する第1の支持部36a、36b及び第2の支持部37a、37bの位置精度をマスク61形成時の寸法精度と同等に高めることができるので、波長フィルタ4の反射面4aをコア部32a〜32cに対し極めて精度よく配置することが可能となる。
更に、本実施形態の光導波路基板1a及びその製造方法によれば、コア部32a〜32cを覆う上層クラッド部33によって波長フィルタ4が覆われるので、コア部32a〜32cと波長フィルタ4の反射面4aとの隙間への塵や埃の侵入を防止し、光損失を低減できる。また、上層クラッド部33を形成する工程(第2クラッド層形成工程)によって該隙間を埋めることができるので、該隙間を埋めるための別工程(例えば屈折率調整用の樹脂接着剤を付着させる工程など)を必要とせず、製造工程を簡略化できる。
また、本実施形態のように、光導波路基板1aが、コア部32a〜32cを導波した光に含まれる波長成分を該波長に応じて選択的に反射する波長フィルタ4を備えることにより、波長に応じて光を分岐または結合する、光損失の少ない光合分波器(光カプラ)を実現できる。
(第1の変形例)
図11は、上記実施形態の光導波路基板1aの第1変形例の構成を示す平面図である。本変形例と上記実施形態との相違点は、第1及び第2の支持部の形状である。本発明の第1及び第2の支持部は、上記実施形態に限らず、本変形例のような形状であっても波長フィルタ4を好適に挟み込んで保持できる。
すなわち、本変形例における第1の支持部36e及び36fは、波長フィルタ4の反射面4aと対向する側面36g及び36hをそれぞれ有し、更に、側面36g及び36hから突出した凸状部36i及び36jをそれぞれ有する。なお、側面36g及び36hは本変形例における第1の対向面である。そして、波長フィルタ4の反射面4aは、凸状部36i及び36jの先端に接している。また、本変形例における第2の支持部37e及び37fは、波長フィルタ4の裏面4bと対向する側面37g及び37hをそれぞれ有し、更に、側面37g及び37hから突出した凸状部37i及び37jをそれぞれ有する。なお、側面37g及び37hは本変形例における第2の対向面である。そして、波長フィルタ4の裏面4bは、凸状部37i及び37jの先端に接している。
凸状部36iと凸状部37iとは、波長フィルタ4を挟んで互いに対向配置されている。また、凸状部36jと凸状部37jとは、波長フィルタ4を挟んで互いに対向配置されている。この構成により、波長フィルタ4の一端は、凸状部36iと凸状部37iとに挟み込まれ、波長フィルタ4の他端は、凸状部36jと凸状部37jに挟み込まれ、それぞれ保持される。また、波長フィルタ4と第1の支持部36e及び36fとの接触位置(すなわち反射面4aと凸状部36i及び36jとの接触位置)、及び波長フィルタ4と第2の支持部37e及び37fとの接触位置(すなわち裏面4bと凸状部37i及び37jとの接触位置)が、波長フィルタ4を挟んで互いに対称に配置されることとなる。これにより、波長フィルタ4が安定して保持される。
また、本変形例においては、凸状部36iと凸状部37iとの間の距離(凸状部36jと凸状部37jとの間の距離)が、波長フィルタ4における反射面4aと交差する方向の厚さ(図3(b)に示すt)よりも短く形成されることが好ましい。そして、波長フィルタ4は、凸状部36iと凸状部37iとの間(凸状部36jと凸状部37jとの間)に圧入されることが好ましい。これにより、第1の支持部36e及び36f、並びに第2の支持部37e及び37fによって波長フィルタ4が強固に保持されることとなる。
図12は、本変形例による第1の支持部36e、36f及び第2の支持部37e、37fをエッチングにより形成するためのマスク62の形状を示す斜視図である。本変形例の第1の支持部36e、36f及び第2の支持部37e、37fは、上記製造方法におけるマスク61(図7参照)に代えてマスク62を用いることによって、容易に形成される。
マスク62は、コア部32a〜32cそれぞれの平面形状(コアパターン)に応じた形状を有するマスク部分62a〜62cと、第1の支持部36e及び36fそれぞれの平面形状に応じた形状を有するマスク部分62d及び62eと、第2の支持部37e及び37fそれぞれの平面形状に応じた形状を有するマスク部分62f及び62gと、連結部38a及び38bそれぞれの平面形状に応じた形状を有するマスク部分62h及び62iとを含むように形成される。また、マスク部分62d及び62eは、第1の支持部36e、36fにおける側面36g、36hに対応する辺62j、62kを含むように形成される。同様に、マスク部分62f及び62gは、第2の支持部37e、37fにおける側面37g、37hに対応する辺62m、62nを含むように形成される。辺62jと辺62mとの間隔、及び辺62kと辺62nとの間隔は、波長フィルタ4における反射面4aと交差する方向の厚さt(図3(b)参照)よりも大きな間隔で形成される。また、マスク部分62d及び62eは、第1の支持部36e、36fにおける凸状部36i、36jに対応する凸状部62p、62qを含むように形成される。同様に、マスク部分62f及び62gは、第2の支持部37e、37fにおける凸状部37i、37jに対応する凸状部62r、62sを含むように形成される。マスク62は、例えば通常のフォトリソグラフィ技術を用いて形成される。また、マスク62のマスク材としては、例えばレジストや金属薄膜(Al,Ti,Cr,WSi等)が用いられる。
(第2の変形例)
図13は、上記実施形態の光導波路基板1aの第2変形例の構成を示す平面図である。本変形例と上記第1変形例との相違点は、第2の支持部37e、37fにおける凸状部の配置である。本発明の第1及び第2の支持部は、本変形例のような形状であっても波長フィルタ4を好適に挟み込んで保持できる。
すなわち、本変形例における第2の支持部37eは、側面37gから突出した二つの凸状部37k及び37mを有する。また、第2の支持部37fは、側面37hから突出した二つの凸状部37n及び37pを有する。そして、波長フィルタ4の裏面4bは、凸状部37k、37m、37n、及び37pの先端に接している。
第2の支持部37eの凸状部37k及び37mは、第1の支持部36eの凸状部36iに対し、波長フィルタ4を挟んで配置されている。また、第2の支持部37fの凸状部37n及び37pは、第1の支持部36fの凸状部36jに対し、波長フィルタ4を挟んで配置されている。この構成により、波長フィルタ4の一端は、凸状部36iと凸状部37k及び37mとに挟み込まれ、波長フィルタ4の他端は、凸状部36jと凸状部37n及び37pに挟み込まれ、それぞれ保持される。また、波長フィルタ4と第1の支持部36e及び36fとの接触位置(すなわち反射面4aと凸状部36i及び36jとの接触位置)、及び波長フィルタ4と第2の支持部37e及び37fとの接触位置(すなわち裏面4bと凸状部37k、37m、37n、及び37pとの接触位置)が、波長フィルタ4を挟んで互いに非対称に配置されている。これにより、第1の支持部36e、36fと第2の支持部37e、37fとの間に波長フィルタ4を容易に挿入できる。
図14は、本変形例による第1の支持部36e、36f及び第2の支持部37e、37fをエッチングにより形成するためのマスク63の形状を示す斜視図である。本変形例の第1の支持部36e、36f及び第2の支持部37e、37fは、上記製造方法におけるマスク61(図7参照)に代えてマスク63を用いることによって、容易に形成される。
マスク63は、コア部32a〜32cそれぞれの平面形状(コアパターン)に応じた形状を有するマスク部分63a〜63cと、第1の支持部36e及び36fそれぞれの平面形状に応じた形状を有するマスク部分63d及び63eと、第2の支持部37e及び37fそれぞれの平面形状に応じた形状を有するマスク部分63f及び63gと、連結部38a及び38bそれぞれの平面形状に応じた形状を有するマスク部分63h及び63iとを含むように形成される。また、マスク部分63d及び63eは、第1の支持部36e、36fにおける側面36g、36hに対応する辺63j、63kを含むように形成される。同様に、マスク部分63f及び63gは、第2の支持部37e、37fにおける側面37g、37hに対応する辺63m、63nを含むように形成される。辺63jと辺63mとの間隔、及び辺63kと辺63nとの間隔は、波長フィルタ4における反射面4aと交差する方向の厚さt(図3(b)参照)よりも大きな間隔で形成される。また、マスク部分63d及び63eは、第1の支持部36e、36fにおける凸状部36i、36jに対応する凸状部63p、63qを含むように形成される。また、マスク部分63fは、第2の支持部37eにおける凸状部37k、37mに対応する凸状部63t、63uを含むように形成される。同様に、マスク部分63gは、第2の支持部37fにおける凸状部37n、37pに対応する凸状部63v、63wを含むように形成される。マスク63は、例えば通常のフォトリソグラフィ技術を用いて形成される。また、マスク63のマスク材としては、例えばレジストや金属薄膜(Al,Ti,Cr,WSi等)が用いられる。
(第3の変形例)
図15は、上記実施形態の光導波路基板1aの第3変形例の構成を示す側面断面図である。なお、図15は、図2に示した光導波路基板1aのIV−IV線、及びV−V線に沿った断面と同じ箇所の断面を示している。本変形例と上記実施形態との相違点は、波長フィルタの形状である。本変形例による波長フィルタ43は、波長に応じて選択的に光を反射する反射面43a、及び反射面43aとは反対側の裏面43bを有する。波長フィルタ43は、基部44及び基部44の反射面43a側に設けられた誘電体多層膜45によって構成される。
本変形例においては、波長フィルタ43は、その基板2に近い部分の厚さが、基板2へ向かって小さくなるようにテーパ状に形成されている。これにより、第1の支持部36a及び36bと第2の支持部37a及び37bとの間に波長フィルタ43を容易に挿入できる。また、本変形例においては、波長フィルタ43の反射面43aは平坦に形成されており、波長フィルタ43の裏面43bのうち基板2に近い領域が反射面43aに対して傾斜している。これにより、反射面43aの平坦性を維持して光を好適に反射するとともに、波長フィルタ43をテーパ状に成形できる。
(第2の実施の形態)
次に、本発明による光導波路基板の製造方法の第2実施形態について説明する。図16〜図20は、本実施形態による光導波路基板の製造工程を順に示す斜視図である。
まず、上記第1実施形態における製造方法と同様に、主面2aを有する基板2を用意し、主面2a上に第1クラッド層51及びコア層52を形成する(第1クラッド層形成工程及びコア層形成工程)。なお、本実施形態においても、基板2よりも大きなウェハを用意し、該ウェハ上に光導波路層を形成し、その後に該ウェハをチップ状に切断することにより、複数の光導波路基板を同時に製造することができる。
続いて、図16(a)及びその一部を拡大した図16(b)に示すように、コア層52上に第3クラッド層53を形成する。このとき、第3クラッド層53を、コア層52よりも低屈折率の材料により形成する。また、第3クラッド層53をポリイミド等の重合体により形成する場合には、第3クラッド層53をコア層52上に塗布(好ましくはスピンコーティング)により形成するとよい。
続いて、図17に示すように、第3クラッド層53上にマスク61を形成する(マスク形成工程)。このマスク61は、上記第1実施形態におけるマスク61(図7参照)と同様の形状、材料、及び方法で形成されるので、ここでは詳細な説明を省略する。
続いて、マスク61をマスクとして用いて第3クラッド層53、コア層52、及び第1クラッド層51をエッチングすることにより、図18に示すように下層クラッド部31a〜31c、コア部32a〜32c、及び上層クラッド部の一部分33a〜33cを形成するとともに、順に積層された第1の部分31d、第2の部分32d、及び第3の部分33dからなる第1の支持部36qと、順に積層された第1の部分31e、第2の部分32e、及び第3の部分33eからなる第1の支持部36rと、順に積層された第1の部分31f、第2の部分32f、及び第3の部分33fからなる第2の支持部37qと、順に積層された第1の部分31g、第2の部分32g、及び第3の部分33gからなる第2の支持部37rとを形成する(エッチング工程)。また、このとき、第1の支持部36q及び36rそれぞれの側面36c及び36d、並びに第2の支持部37q及び37rそれぞれの側面37c及び37dを形成する。
続いて、図19に示すように、第1の支持部36q、36rと第2の支持部37q、37rとの間に波長フィルタ4を挿入する(光学部品設置工程)。このとき、側面36cと側面37cとの間隔及び側面36dと側面37dとの間隔が波長フィルタ4の厚さよりも狭く形成されている場合には、第1の支持部36q、36rと第2の支持部37q、37rとの間に波長フィルタ4を圧入する。
続いて、図20に示すように、コア部32a〜32cよりも低屈折率の樹脂からなる上層クラッド部の残りの部分33hを形成することにより、各部分33a〜33c及び33hからなる上層クラッド部(第2クラッド層)33を形成する(第2クラッド層形成工程)。このとき、上層クラッド部33の部分33hを、主面2a、下層クラッド部31a〜31c、コア部32a〜32c、第1の支持部36q及び36r、第2の支持部37q及び37r、並びに波長フィルタ4を全て覆うように形成する。これにより、下層クラッド部31a〜31c及び上層クラッド部33からなるクラッド部35が形成される。なお、上層クラッド部33をポリイミド等の重合体により形成する場合には、該部分33hを塗布(好ましくはスピンコーティング)により形成するとよい。
以上に述べたように、本実施形態のような製造方法によっても、上記第1実施形態と同様の光導波路基板1aを好適に製造できる。また、上記第1実施形態と同様に、第1の支持部36q、36rと第2の支持部37q、37rとの間に波長フィルタ4を挟み込んで保持するので、上層クラッド部33の残りの部分33hを塗布形成する際に、波長フィルタ4を所定位置に好適に保持できる。
(第3の実施の形態)
次に、本発明による光導波路基板の第3実施形態について説明する。図21は、本実施形態による光導波路基板1bの構成を示す斜視図である。図22は、図21に示した光導波路基板1bの構成の中心部付近を示す平面図である。図23(a)は、図22に示した光導波路基板1bのVI−VI線、VII−VII線、及びVIII−VIII線に沿った断面を示す側面断面図である。図23(b)は、図22に示した光導波路基板1bのIX−IX線、及びX−X線に沿った断面を示す側面断面図である。なお、本実施形態の光導波路基板1bもまた、第1実施形態の光導波路基板1aと同様、いわゆる埋込み型の光導波路基板である。
図21〜図23を参照すると、本実施形態の光導波路基板1bは、基板2、光導波路層3b、及び波長フィルタ4を備える。基板2及び波長フィルタ4は、第1実施形態と同様の材料によって構成され、同様の形状及び構成を有する。光導波路層3bは、光を導波するコア部32a〜32cを含む層であり、基板2の主面2a上に設けられている。光導波路層3bは、樹脂製であり、例えばポリイミド等の重合体を含んで構成される。これにより、光導波路層3bの内部に、波長フィルタ4を容易に埋め込むことができる。また、光導波路層3bは、ガラス転位温度が高く耐熱性に優れたポリイミドを含んで構成されることが好ましい。光導波路層3bがポリイミドを含むことにより、光導波路層3bの信頼性を長期にわたって維持できるとともに、光導波路層3b上に電子デバイス等が実装される場合のハンダ付けにも耐えることができる。なお、更に好適には、光導波路層3bは、光透過率、屈折率特性などを考慮してフッ素化ポリイミドを含んで構成されるとよい。
光導波路層3bは、基板2の主面2a上に形成された積層部34と、該積層部34上に形成された第2のクラッド部39bとを有する。なお、光導波路層3bの内部構成を説明するため、図22においては、第2のクラッド部39bの図示を省略している。
積層部34は、第1のクラッド部39aと、第1のクラッド部39aよりも屈折率が大きいコア部32a〜32cとを有する。なお、第1のクラッド部39a及び第2のクラッド部39bは、共に同じ屈折率の材料によって構成されることが好ましい。第1のクラッド部39aは基板2の主面2a上に層状に形成されており、コア部32a〜32cは第1のクラッド部39aに覆われている。コア部32aは、本実施形態における第1のコア部であり、所定の光軸A(図22参照)に沿った方向に延びている。また、コア部32bは、本実施形態における第2のコア部であり、コア部32aの長手方向(すなわち光軸Aに沿った方向)と交差する所定の光軸B(図22参照)に沿った方向に延びている。コア部32aの一端はコア部32bの一端と繋がっており、端面32h(図22参照)がコア部32a及び32bの共通の端面となっている。コア部32a及び32bの他端はそれぞれ光導波路基板1bの側面において第1のクラッド部39aから露出しており光入出射端5a及び5bとなっている。また、コア部32cは、コア部32aに対し所定の光軸Aに沿った方向に並んで設けれており、所定の光軸Aに沿った方向に延びている。コア部32cの一端は、所定の間隔をあけてコア部32aの一端と対向する端面32i(図22参照)となっている。コア部32cの他端は、光導波路基板1bの側面において第1のクラッド部39aから露出しており光入出射端5cとなっている。
第1のクラッド部39aは、下層クラッド部31及び上層クラッド部33を含んで構成されている。本実施形態の下層クラッド部31は、第1実施形態の下層クラッド部31a〜31cとは異なり、基板2の主面2aの全面にわたって層状に形成されている。そして、コア部32a〜32cは、下層クラッド部31上に設けられている。また、上層クラッド部33は、コア部32a〜32c及び下層クラッド部31を覆うように主面2a上の全面にわたって層状に形成されている。
図22及び図23(b)に示すように、積層部34の第1のクラッド部39aには、波長フィルタ4を収容するための光学部品収容溝34aが形成されている。光学部品収容溝34aは、コア部32a及び32bとコア部32cとの間を横切るように形成されている。そして、波長フィルタ4は、反射面4aがコア部32a(32b)の端面32hと対向し、裏面4bがコア部32cの端面32iと対向するように、光学部品収容溝34a内に挿入されている。これにより、波長フィルタ4は、コア部32aを導波した光をコア部32bへ反射面4aが反射するように(逆にいえば、コア部32bを導波した光をコア部32aへ反射面4aが反射するように)、基板2の主面2a上に設置される。
第1のクラッド部39aは、光学部品収容溝34aの側面に形成され、波長フィルタ4を互いの間に挟み込んで保持する第1の支持部34b及び34c、並びに第2の支持部34d及び34eを有する。第1の支持部34bは、光学部品収容溝34aの長手方向の一端において、コア部32a及び32b側の側面に形成されている。第1の支持部34cは、光学部品収容溝34aの長手方向の他端において、コア部32a及び32b側の側面に形成されている。また、第2の支持部34dは、光学部品収容溝34aの長手方向の一端において、コア部32c側の側面に形成されている。第2の支持部34eは、光学部品収容溝34aの長手方向の他端において、コア部32c側の側面に形成されている。そして、光学部品収容溝34aの一端は、第1の支持部34b及び第2の支持部34dによって狭窄されており、光学部品収容溝34aの他端は、第1の支持部34c及び第2の支持部34eによって狭窄されている。第1の支持部34b及び34cは、波長フィルタ4の反射面4aに接する側面34f及び34gをそれぞれ有する。側面34f及び34gは、本実施形態における第1の接触面である。第2の支持部34d及び34eは、波長フィルタ4の裏面4bに接する側面34h及び34iをそれぞれ有する。側面34h及び34iは、本実施形態における第2の接触面である。
側面34fと側面34hとは、波長フィルタ4を挟んで互いに対向配置されている。また、側面34gと側面34iとは、波長フィルタ4を挟んで互いに対向配置されている。この構成により、波長フィルタ4の一端は、側面34fと側面34hとに挟み込まれ、波長フィルタ4の他端は、側面34gと側面34iとに挟み込まれ、それぞれ保持される。また、波長フィルタ4と第1の支持部34b及び34cとの接触位置(すなわち反射面4aと側面34f及び34gとの接触位置)、及び波長フィルタ4と第2の支持部34d及び34eとの接触位置(すなわち裏面4bと側面34h及び34iとの接触位置)が、波長フィルタ4を挟んで互いに対称に配置されることとなる。これにより、波長フィルタ4が安定して保持される。そして、波長フィルタ4の反射面4aの位置及び角度は、側面34f及び34g並びに側面34h及び34iによって規定される。
ここで、図23(b)に示すように、本実施形態においては、側面34fと側面34hとの間隔(側面34gと側面34iとの間隔)Wbが、波長フィルタ4における反射面4aと交差する方向の厚さtよりも小さい間隔で形成されている。そして、波長フィルタ4は、側面34fと側面34hとの間(側面34gと側面34iとの間)に圧入されている。従って、第1の支持部34b及び34c、並びに第2の支持部34d及び34eによって波長フィルタ4が強固に保持されることとなる。
また、本実施形態においては光導波路層3bがポリイミド等の重合体を含んで構成されており、第1のクラッド部39aに形成される第1の支持部34b及び34c、並びに第2の支持部34d及び34eもまた、同様にポリイミド等の重合体を含んで構成されている。このように、第1の支持部34b及び34c、並びに第2の支持部34d及び34eが比較的軟質な材料である重合体(ポリマー)を含むことによって、波長フィルタ4を第1の支持部34b、34cと第2の支持部34d、34eとの間へ挿入する際の波長フィルタ4の損傷(特に反射面4aの損傷)が低減される。また、波長フィルタ4もまたポリイミド等の重合体を含んで構成される場合には、波長フィルタ4を挿入する際の波長フィルタ4の損傷が更に低減される。
第2のクラッド部39bは、積層部34上に層状に形成されており、波長フィルタ4の反射面4a、裏面4b、側面4c、及び上面を覆っている。従って、反射面4aと端面32hとの隙間、並びに裏面4bと端面32iとの隙間は、第2のクラッド部39bの構成材料によって満たされることとなる。第2のクラッド部39bは、ポリイミド等の重合体からなり、第1のクラッド部39aと同じ屈折率の材料からなることが好ましい。
光導波路層3bがポリイミド等の重合体(ポリマー)からなる場合、光導波路層3bを熱硬化させる際に光導波路層3bが収縮するため、熱膨張率を整合させるために波長フィルタ4も光導波路層3bと同じくポリイミド等の重合体を含んで構成されることが好ましい。これにより、光導波路層3b(特に第2のクラッド部39b)を硬化させる際の収縮によるコア部32a、32b、及び32cと波長フィルタ4との位置ずれを抑えることができる。なお、更に好ましくは、波長フィルタ4と第2のクラッド部39bとが同種の材料を含むとよい。例えば、第2のクラッド部39bがフッ素化ポリイミドを主剤とする重合体により構成されている場合、波長フィルタ4もフッ素化ポリイミドを主剤とする重合体により構成されることが好ましい。
以上の構成を備える光導波路基板1bの製造方法について説明する。図24〜図30は、本実施形態による光導波路基板1bの製造工程を順に示す斜視図である。
まず、上記第1実施形態における製造方法と同様に、主面2aを有する基板2を用意し、樹脂製の(好ましくはポリイミド等の重合体からなる)第1クラッド層51、及び第1クラッド層51よりも高屈折率のコア層52を主面2a上に形成する。なお、本実施形態においても、基板2よりも大きなウェハを用意し、該ウェハ上に光導波路層を形成し、その後に該ウェハをチップ状に切断することにより、複数の光導波路基板を同時に製造することができる。
続いて、図24に示すように、コア層52上にマスク64を形成する(第1のマスク形成工程)。このマスク64は、図21及び図22に示したコア部32a〜32cそれぞれの平面形状(コアパターン)に応じた形状を有するマスク部分64a〜64cを含むように形成される。本工程では、このマスク61を例えば通常のフォトリソグラフィ技術を用いて形成するとよい。また、マスク61のマスク材としては、例えばレジストや金属薄膜(Al,Ti,Cr,WSi等)を用いることができる。
続いて、マスク64をマスクとして用いてコア層52をエッチングすることにより、図25に示すようにコア部32a〜32cを形成する(第1のエッチング工程)。本実施形態においては、第1実施形態と異なり、コア層52のエッチングを、第1クラッド層51の表面が露出した時点で停止する。これにより、第1クラッド層51が、層状の下層クラッド部31として機能する。本工程では、コア層52をドライエッチングによりエッチングすることが好ましい。
続いて、図26に示すように、コア部32a〜32cよりも低屈折率の樹脂からなる上層クラッド部33を形成する。このとき、上層クラッド部33を、下層クラッド部31及びコア部32a〜32cを覆うように層状に形成する。これにより、下層クラッド部31及び上層クラッド部33からなる第1のクラッド部39aが形成されるとともに、第1のクラッド部39a及びコア部32a〜32cからなる積層部34が形成される。上層クラッド部33をポリイミド等の重合体により形成する場合には、上層クラッド部33を塗布(好ましくはスピンコーティング)により形成するとよい。
続いて、図27に示すように、積層部34上にマスク65を形成する(第2のマスク形成工程)。このマスク65は、図21及び図22に示した光学部品収容溝34aの平面形状に応じた開口65aを含むように形成される。そして、この開口65aの縁には、第1の支持部34b及び34cそれぞれが有する側面34f及び34gに対応する辺65b及び65c、並びに第2の支持部34d及び34eそれぞれが有する側面34h及び34iに対応する辺65d及び65eが含まれている。辺65bと辺65dとの間隔、及び辺65cと辺65eとの間隔は、波長フィルタ4における反射面4aと交差する方向の厚さt(図23(b)参照)よりも小さい間隔で形成される。本工程では、このマスク65を例えば通常のフォトリソグラフィ技術を用いて形成するとよい。また、マスク65のマスク材としては、例えばレジストや金属薄膜(Al,Ti,Cr,WSi等)を用いることができる。
続いて、マスク65をマスクとして用いて積層部34の第1のクラッド部39aをエッチングすることにより、図28に示すように、光学部品収容溝34aを形成する。また、これと同時に、波長フィルタ4の反射面4aと接するための側面34f及び34gをそれぞれ有する第1の支持部34b及び34c、並びに波長フィルタ4の裏面4bと接するための側面34h及び34iを有する第2の支持部34d及び34eを形成する(第2のエッチング工程)。本工程では、積層部34の第1のクラッド部39aをドライエッチングによりエッチングすることが好ましい。また、第1のクラッド部39aをエッチングする際のエッチング深さを、コア層52の底面よりも深くする。なお、第1の支持部34b、34c及び第2の支持部34d、34eの高さ(深さ)を確保するために、このエッチング深さをより深くする(例えば基板2の主面2aが露出するようにエッチングを行う)ことが好ましい。これにより、次の工程において第1の支持部34b、34cと第2の支持部34d、34eとの間に挿入される波長フィルタ4を強固に保持できる。
続いて、図29に示すように、光学部品収容溝34aに波長フィルタ4を収容するとともに、第1の支持部34b、34cと第2の支持部34d、34eとの間に波長フィルタ4を挿入する(光学部品設置工程)。このとき、側面34fと側面34hとの間隔及び側面34gと側面34iとの間隔(共に図28参照)が波長フィルタ4の厚さよりも狭く形成されている場合には、第1の支持部34b、34cと第2の支持部34d、34eとの間に波長フィルタ4を圧入する。なお、次の工程で形成される第2のクラッド部39bがポリイミド等の重合体を含む場合には、同様にポリイミド等の重合体を含む波長フィルタ4を挿入するとよい。また、更に好ましくは、第2のクラッド部39bと同種の材料を含む波長フィルタ4を挿入するとよい。
続いて、図30に示すように、コア部32a〜32cよりも低屈折率の樹脂からなる第2のクラッド部39bを形成する(第2クラッド部形成工程)。このとき、第2のクラッド部39bを、積層部34(第1のクラッド部39a)及び波長フィルタ4を全て覆うように層状に形成する。これにより、波長フィルタ4を埋め込み、第1のクラッド部39a、第2のクラッド部39b、及びコア部32a〜32cからなる光導波路層3bが形成される。第2のクラッド部39bをポリイミド等の重合体により形成する場合には、第2のクラッド部39bを塗布(好ましくはスピンコーティング)により形成するとよい。その際、第2のクラッド部39bの表面は、その上に電気配線を形成したり、光素子を搭載するために、平坦に形成されることが好ましい。スピンコーティングにより第2のクラッド部39bを形成することにより、第2のクラッド部39bの表面を平坦に形成できる。また、波長フィルタ4、第1の支持部34b及び34c、並びに第2の支持部34d及び34eは、適切な硬度と弾力とを兼ね備えるポリマー等の重合体によって構成されているので、割れたり欠けたりすることなく、第1の支持部34b及び34c、並びに第2の支持部34d及び34eが波長フィルタ4を保持できる。
以上の工程により、基板2、光導波路層3b、及び波長フィルタ4を備える光導波路基板1bが完成する。
以上に説明した本実施形態による光導波路基板1b及びその製造方法が有する効果について説明する。本実施形態の光導波路基板1bにおいては、第1のクラッド部39aが、波長フィルタ4を互いの間に挟み込んで保持する第1の支持部34b、34c及び第2の支持部34d、34eを光学部品収容溝34aに有する。また、本実施形態の光導波路基板1bの製造方法においては、コア部32a〜32c、及びコア部32a〜32cを覆う第1のクラッド部39aが主面2a上に形成された基板2に対し、光学部品収容溝34aを形成するとともに、第1の支持部34b、34c及び第2の支持部34d、34eを形成している。従って、上記製造方法に示したように、波長フィルタ4を第1の支持部34b、34cと第2の支持部34d、34eとの間に挟み込んで光学部品収容溝34a内に保持したまま、第1のクラッド部39a及び波長フィルタ4を覆うように樹脂製の第2のクラッド部39bを形成できる。
このように、本実施形態の光導波路基板1b及びその製造方法によれば、光学部品収容溝34aを形成するためのマスク65と同じマスクによって第1の支持部34b、34c及び第2の支持部34d、34eを簡易に形成可能であり、且つ、このような第1の支持部34b、34c及び第2の支持部34d、34eによって波長フィルタ4を保持しながら第2のクラッド部39bを形成できるので、例えばスピンコーティングによって第2のクラッド部39bを形成する場合においても波長フィルタ4が樹脂に押し流されることなく、簡易な工程によって波長フィルタ4を第2のクラッド部39bの内部に好適に埋め込むことができる。従って、作製が容易であり、耐湿性・耐熱性を備え、高い信頼性を有する光導波路基板を提供できる。また、波長フィルタ4を接着剤によって溝に固定する従来の製造方法とは異なり、波長フィルタ4を第2のクラッド部39bによって覆う(埋め込む)ので、光導波路基板1bの表面を平坦に形成することも容易にできる。
(第4の変形例)
図31は、第3実施形態の光導波路基板1bの第4変形例の構成を示す平面図である。なお、図31においては、理解を容易にするために第2のクラッド部39b及び波長フィルタ4の図示を省略している。本変形例と第3実施形態との相違点は、第1及び第2の支持部の形状である。本発明の第1及び第2の支持部は、上記実施形態に限らず、本変形例のような形状であっても波長フィルタ4を好適に挟み込んで保持できる。
すなわち、本変形例においては、第1のクラッド部39aが、第1の支持部34j及び34k、並びに第2の支持部34m及び34nを有する。第1の支持部34jは、光学部品収容溝34aの長手方向の一端付近において、コア部32a及び32b側の側面から突出して形成されている。第1の支持部34kは、光学部品収容溝34aの長手方向の他端付近において、コア部32a及び32b側の側面から突出して形成されている。第2の支持部34mは、光学部品収容溝34aの長手方向の一端付近において、コア部32c側の側面から突出して形成されている。第2の支持部34nは、光学部品収容溝34aの長手方向の他端付近において、コア部32c側の側面から突出して形成されている。そして、光学部品収容溝34aの一部は、第1の支持部34j及び第2の支持部34mによって狭窄されており、光学部品収容溝34aの他の一部は、第1の支持部34k及び第2の支持部34nによって狭窄されている。また、第1の支持部34j及び34kは、波長フィルタ4の反射面4aに接する側面34p及び34qをそれぞれ有する。側面34p及び34qは、本変形例における第1の接触面である。第2の支持部34m及び34nは、波長フィルタ4の裏面4bに接する側面34r及び34sをそれぞれ有する。側面34r及び34sは、本実施形態における第2の接触面である。
側面34pと側面34rとは、波長フィルタ4を挟んで互いに対向配置されている。また、側面34qと側面34sとは、波長フィルタ4を挟んで互いに対向配置されている。この構成により、波長フィルタ4の一端付近の一部分は、側面34pと側面34rとに挟み込まれ、波長フィルタ4の他端付近の一部分は、側面34qと側面34sとに挟み込まれ、それぞれ保持される。また、波長フィルタ4と第1の支持部34j及び34kとの接触位置(すなわち反射面4aと側面34p及び34qとの接触位置)、及び波長フィルタ4と第2の支持部34m及び34nとの接触位置(すなわち裏面4bと側面34r及び34sとの接触位置)が、波長フィルタ4を挟んで互いに対称に配置されることとなる。これにより、波長フィルタ4が安定して保持される。そして、波長フィルタ4の反射面4aの位置及び角度は、側面34p及び34q並びに側面34r及び34sによって規定される。
また、本変形例においては、側面34pと側面34rとの間の距離(側面34qと側面34sとの間の距離)が、波長フィルタ4における反射面4aと交差する方向の厚さ(図23(b)に示すt)よりも短く形成されることが好ましい。そして、波長フィルタ4は、側面34pと側面34rとの間(側面34qと側面34sとの間)に圧入されることが好ましい。これにより、第1の支持部34j及び34k、並びに第2の支持部34m及び34nによって波長フィルタ4が強固に保持されることとなる。
なお、本変形例による第1の支持部34j、34k及び第2の支持部34m、34nを形成するためには、第2のエッチング工程(図27参照)において、マスク65に代えて、第1の支持部34j、34k及び第2の支持部34m、34nの平面形状に応じたマスク部分を有するマスクを用いるとよい。
図32は、本変形例による光導波路基板の他の一例の構成を示す平面図である。なお、図32においても、理解を容易にするために第2のクラッド部39b及び波長フィルタ4の図示を省略している。本変形例においては、図32に示すように、光学部品収容溝34aの側面からの第1の支持部34j、34kの突出高さと、光学部品収容溝34aの側面からの第2の支持部34m、34nの突出高さとが異なってもよい。このような構成であっても、波長フィルタ4を好適に挟み込んで保持できる。特に、第1の支持部34j、34kの突出高さを第2の支持部34m、34nの突出高さよりも低くすることにより、コア部32a及び32bの端面32h(図22参照)と波長フィルタ4の反射面4aとの間隔を狭めることができるので、光伝搬損失を低減できる。
(第5の変形例)
図33は、第3実施形態の光導波路基板1bの第5変形例の構成を示す平面図である。なお、図33においても、理解を容易にするために第2のクラッド部39b及び波長フィルタ4の図示を省略している。本変形例と第3実施形態との相違点は、第1及び第2の支持部の形状である。本発明の第1及び第2の支持部は、本変形例のような形状であっても波長フィルタ4を好適に挟み込んで保持できる。
すなわち、本変形例においては、第1のクラッド部39aが、第1の支持部34t及び34u、並びに第2の支持部34v及び34wを有する。第1の支持部34tは、光学部品収容溝34aの長手方向の一端付近において、コア部32a及び32b側の側面から半円柱形状に突出して形成されている。第1の支持部34uは、光学部品収容溝34aの長手方向の他端付近において、コア部32a及び32b側の側面から半円柱形状に突出して形成されている。第2の支持部34vは、光学部品収容溝34aの長手方向の一端付近において、コア部32c側の側面から半円柱形状に突出して形成されている。第2の支持部34wは、光学部品収容溝34aの長手方向の他端付近において、コア部32c側の側面から半円柱形状に突出して形成されている。そして、光学部品収容溝34aの一部は、第1の支持部34t及び第2の支持部34vによって狭窄されており、光学部品収容溝34aの他の一部は、第1の支持部34u及び第2の支持部34wによって狭窄されている。
本変形例のように、第1の支持部34t、34u及び第2の支持部34v、34wの側面が半円柱状に(丸みを帯びて)形成されることにより、波長フィルタ4を第1の支持部34t、34uと第2の支持部34v、34wとの間に挿入する際における誘電体多層膜42の破損や剥離などを低減できる。
また、第1の支持部34tと第2の支持部34vとは、波長フィルタ4を挟んで互いに対向配置されている。また、第1の支持部34uと第2の支持部34wとは、波長フィルタ4を挟んで互いに対向配置されている。この構成により、波長フィルタ4の一端付近の一部分は、第1の支持部34tの半円柱状の側面と第2の支持部34vの半円柱状の側面とに挟み込まれ、波長フィルタ4の他端付近の一部分は、第1の支持部34uの半円柱状の側面と第2の支持部34wの半円柱状の側面とに挟み込まれ、それぞれ保持される。また、波長フィルタ4の反射面4aと第1の支持部34t及び34uとの接触位置、及び波長フィルタ4の裏面4bと第2の支持部34v及び34wとの接触位置が、波長フィルタ4を挟んで互いに対称に配置されることとなる。これにより、波長フィルタ4が安定して保持される。そして、波長フィルタ4の反射面4aの位置及び角度は、第1の支持部34t及び34u、並びに第2の支持部34v及び34wによって規定される。
また、本変形例においては、第1の支持部34tと第2の支持部34vとの間の距離(第1の支持部34uと第2の支持部34wとの間の距離)が、波長フィルタ4における反射面4aと交差する方向の厚さ(図23(b)に示すt)よりも短く形成されることが好ましい。そして、波長フィルタ4は、第1の支持部34tと第2の支持部34vとの間(第1の支持部34uと第2の支持部34wとの間)に圧入されることが好ましい。これにより、第1の支持部34t及び34u、並びに第2の支持部34v及び34wによって波長フィルタ4が強固に保持されることとなる。
なお、本変形例による第1の支持部34t、34u及び第2の支持部34v、34wを形成するためには、第2のエッチング工程(図27参照)において、マスク65に代えて、第1の支持部34t、34u及び第2の支持部34v、34wの平面形状に応じたマスク部分を有するマスクを用いるとよい。
図34は、本変形例による光導波路基板の他の一例の構成を示す平面図である。なお、図34においても、理解を容易にするために第2のクラッド部39b及び波長フィルタ4の図示を省略している。本変形例においては、図34に示すように、光学部品収容溝34aの側面からの第1の支持部34t、34uの突出高さと、光学部品収容溝34aの側面からの第2の支持部34v、34wの突出高さとが異なってもよい。このような構成であっても、波長フィルタ4を好適に挟み込んで保持できる。特に、第1の支持部34t、34uの突出高さを第2の支持部34v、34wの突出高さよりも低くすることにより、コア部32a及び32bの端面32h(図22参照)と波長フィルタ4の反射面4aとの間隔を狭めることができるので、光伝搬損失を低減できる。
(第6の変形例)
図35は、第3実施形態の光導波路基板1bの第6変形例の構成を示す平面図である。なお、図35においても、理解を容易にするために第2のクラッド部39b及び波長フィルタ4の図示を省略している。本変形例と第3実施形態との相違点は、第1及び第2の支持部の形状である。本発明の第1及び第2の支持部は、本変形例のような形状であっても波長フィルタ4を好適に挟み込んで保持できる。
すなわち、本変形例においては、第1のクラッド部39aが、第1の支持部34t及び34u、並びに第2の支持部34xを有する。第1の支持部34t及び34uの形状は、上記した第5変形例と同様である。第2の支持部34xは、光学部品収容溝34aの長手方向の中心付近において、コア部32c側の側面から半円柱形状に突出して形成されている。そして、波長フィルタ4と第1の支持部34t及び34uとの接触位置(すなわち第1の支持部34t及び34uの先端部)、及び波長フィルタ4と第2の支持部34xとの接触位置(すなわち第2の支持部34xの先端部)が、波長フィルタ4を挟んで互いに非対称に配置されている。これにより、光学部品収容溝34aへ波長フィルタ4を収容する際に、波長フィルタ4の角度を変えつつ、第1の支持部34t、34uと第2の支持部34xとの間に波長フィルタ4を容易に挿入できる。
(第7の変形例)
図36は、第3実施形態の光導波路基板1bの第7変形例の構成を示す平面図である。図36においても、理解を容易にするために第2のクラッド部39b及び波長フィルタ4の図示を省略している。本変形例と第3実施形態との相違点は、第1及び第2の支持部の形状である。本発明の第1及び第2の支持部は、本変形例のような形状であっても波長フィルタ4を好適に挟み込んで保持できる。
すなわち、本変形例においては、第1のクラッド部39aが、第1の支持部34y及び第2の支持部34zを有する。第1の支持部34yは、光学部品収容溝34aの側面における四隅のうち、コア部32a及び32b側の二隅に形成されている。第1の支持部34yは、波長フィルタ4の反射面4aに対して斜めに形成された側面を有する。また、第2の支持部34zは、光学部品収容溝34aの側面における四隅のうち、コア部32c側の二隅に形成されている。第2の支持部34zは、波長フィルタ4の裏面4bに対して斜めに形成された側面を有する。
この構成により、波長フィルタ4の一端は、一方の第1の支持部34yと第2の支持部34zとに挟み込まれ、波長フィルタ4の他端は、他方の第1の支持部34yと第2の支持部34zとに挟み込まれ、それぞれ保持される。そして、波長フィルタ4の反射面4aの位置及び角度は、第1の支持部34y及び第2の支持部34zによって規定される。
なお、本変形例による第1の支持部34y及び第2の支持部34zを形成するためには、第2のエッチング工程(図27参照)において、マスク65に代えて、第1の支持部34y及び第2の支持部34zの平面形状に応じたマスク部分を有するマスクを用いるとよい。
(第4の実施の形態)
次に、本発明による光導波路基板の第4実施形態について説明する。図37は、本実施形態による光導波路基板1cの構成を概略的に示す平面図である。図37を参照すると、光導波路基板1cにおいては、所定の光軸Aと、該光軸Aから分岐されるとともに互いに平行に延びる複数の光軸B〜Bが設定されている。そして、光導波路基板1cは、光軸Aに沿ったコア部91a(第1のコア部)と、光軸B〜Bのそれぞれに沿った複数のコア部91b〜91e(第2のコア部)と、コア部91b〜91eのそれぞれとコア部91aとの結合位置に配置された複数の波長フィルタ71〜74とを備える。なお、コア部91a〜91e及び波長フィルタ71〜74は、図示しないクラッド部によって覆われている。
波長フィルタ71〜74は、コア部91aを導波する光の波長成分λ〜λのうち、それぞれ波長成分λ〜λを選択的に反射する反射面71a〜74aを有する。波長フィルタ71の反射面71aは、導波光の波長成分λをコア部91aからコア部91bへ反射するように設けられている。波長フィルタ72の反射面72aは、導波光の波長成分λをコア部91aからコア部91cへ反射するように設けられている。波長フィルタ73の反射面73aは、導波光の波長成分λをコア部91aからコア部91dへ反射するように設けられている。波長フィルタ74の反射面74aは、導波光の波長成分λをコア部91aからコア部91eへ反射するように設けられている。
また、波長フィルタ71〜74のそれぞれは、第1の支持部36a及び36b並びに第2の支持部37a及び37bによって保持されている。なお、本実施形態における第1の支持部36a及び36b並びに第2の支持部37a及び37bは、それぞれ第1実施形態と同様の構成を有することが好ましい。
本実施形態による光導波路基板1cでは、波長成分λ〜λを含む光がコア部91aの光入出射端5dから入射すると、この光はコア部91aを光軸Aに沿って導波する。そして、波長成分λ〜λは、それぞれ反射面71a〜74aにおいて反射する。その後、波長成分λ〜λは、それぞれコア部91b〜91eを光軸B〜Bに沿って導波し、コア部91b〜91eの光入出射端5e〜5hから出射する。また、波長成分λは、波長フィルタ71〜74を透過し、コア部91aの光入出射端5iから出射される。なお、光入出射端5e〜5hには、例えばフォトダイオードといった光検出素子を取り付けるとよい。
本実施形態の光導波路基板1cによれば、上記第1実施形態の光導波路基板1aと同様に、簡易な工程によって波長フィルタ71〜74をクラッド部の内部に好適に埋め込むことができる。また、光導波路基板1cの表面を平坦に形成することも容易にできる。更に、コア部91a〜91eに対して波長フィルタ71〜74を精度よく位置決めできるとともに、波長フィルタ71〜74とコア部91a〜91eとの間の光損失を低減できる。従って、例えば波長多重(WDM:Wavelength Division Multiplexing)通信に用いられる、より低損失な合分波モジュールを実現できる。また、波長フィルタ71〜74を比較的狭い間隔で設置することにより、例えばマッハツェンダー型と比較して、小型の合分波モジュールを実現できる。例えば、光軸Aに沿った方向における光導波路基板1cの好適な長さWは、例えば4mm〜10mmである。また、光軸B〜Bに沿った方向における光導波路基板1cの好適な幅Wは、例えば4mmである。
また、本実施形態による光導波路基板1cは、双方向通信に用いることもできる。図38は、本実施形態による光導波路基板1cの双方向通信における動作を示す平面図である。すなわち、光導波路基板1cでは、波長成分λ,λ,λを含む光が例えば通信用光ファイバからコア部91aの光入出射端5dに入射すると、この光はコア部91aを光軸Aに沿って導波する。そして、波長成分λ及びλは、それぞれ反射面71a及び72aで反射する。その後、波長成分λ及びλは、それぞれコア部91b及び91cを光軸B及びBに沿って導波し、光入出射端5e及び5fから出射する。波長成分λは、波長フィルタ71〜74を透過し、光入出射端5iから出射する。なお、光入出射端5e及び5fには、例えばフォトダイオードといった光検出素子を取り付けるとよい。
また、光入出射端5gに波長λの光が入射すると、この光はコア部91dを光軸Bに沿って導波し、反射面73aで反射する。同様に、光入出射端5hに波長λの光が入射すると、この光はコア部91eを光軸Bに沿って導波し、反射面74aで反射する。こうして、反射面73a及び74aのそれぞれで反射した波長λ及びλの光は、光軸Aに沿ってコア部91aを導波し、光入出射端5dから例えば通信用光ファイバへ出射する。なお、光入出射端5g及び5hには、例えばレーザダイオードといった発光素子を取り付けるとよい。
本実施形態の光導波路基板1cによれば、このような双方向通信モジュールにおいて、簡易な工程によって波長フィルタ71〜74をクラッド部の内部に好適に埋め込むことができる。また、光導波路基板1cの表面を平坦に形成することも容易にできる。また、低損失且つ小型に構成できる。
なお、本実施形態の光導波路基板1cにおいては、波長フィルタ71〜74が第1実施形態と同様の第1の支持部36a、36b及び第2の支持部37a、37bによって保持されているが、他の実施形態または変形例による第1及び第2の支持部によって保持されてもよい。
(変形例)
図39は、本実施形態の変形例による光導波路基板1dの構成を概略的に示す平面図である。本変形例の光導波路基板1dと第4実施形態の光導波路基板1cとの相違点は、光軸Aと光軸B〜Bとのなす角度(コア部91aの長手方向とコア部91b〜91eの長手方向とのなす角度)である。すなわち、本変形例の光導波路基板1dでは、光軸Aと光軸B〜Bとが直角よりも小さい所定の角度θをなすように設定されている。そして、コア部91aとコア部91b〜91eとが該所定の角度θで結合され、反射面71a〜74aの法線が該所定の角度θを2等分するように波長フィルタ71〜74が設置されている。本変形例のように、光軸Aと光軸B〜Bとのなす角は、直角に限らず様々な角度に設定できる。
また、本変形例の光導波路基板1dと第4実施形態の光導波路基板1cとの別の相違点は、光軸B〜Bと光入出射端5e〜5hとのなす角度(コア部91b〜91eの長手方向と光入出射端5e〜5hとのなす角度)である。すなわち、本変形例の光導波路基板1dでは、光軸B〜B(コア部91b〜91eの長手方向)と光入出射端5e〜5hとが垂直ではない所定の角度θで交差している。これにより、光入出射端5e〜5hにおけるフレネル反射を効果的に防止できる。なお、角度θは任意であるが、例えば82°(すなわち光入出射端5e〜5hの垂線と光軸B〜Bとのなす角が8°)程度に設定するとよい。
(第5の実施の形態)
次に、本発明による光導波路基板の第5実施形態について説明する。図40は、本実施形態による光導波路基板1eの構成を概略的に示す平面図である。図40を参照すると、光導波路基板1eにおいては、所定の光軸A及びAと、光軸Aから分岐するとともに互いに平行に延びる複数の光軸B〜Bと、光軸Aから分岐するとともに互いに平行に延びる複数の光軸B〜Bとが設定されている。そして、光導波路基板1eは、光軸A及びAのそれぞれに沿ったコア部91i及び91j(第1のコア部)と、光軸B〜Bのそれぞれに沿ったコア部91k〜91s(第2のコア部)と、コア部91k〜91nのそれぞれとコア部91iとの結合位置に配置された波長フィルタ81〜84と、コア部91p〜91sのそれぞれとコア部91jとの結合位置に配置された波長フィルタ85〜88とを備える。コア部91jの一端は、コア部91iと結合されている。なお、コア部91i〜91s及び波長フィルタ81〜88は、図示しないクラッド部によって覆われている。
波長フィルタ81〜84は、波長成分λ〜λをそれぞれ選択的に反射する反射面81a〜84aを有する。また、波長フィルタ85〜88は、波長成分λ〜λをそれぞれ選択的に反射する反射面85a〜88aを有する。反射面81a〜84aのそれぞれは、導波光の波長成分λ〜λをコア部91iからコア部91k〜91nへそれぞれ反射するように設けられている。反射面85a〜88aは、それぞれ波長λ〜λの光をコア部91p〜91sからコア部91jへ反射するように設けられている。
また、波長フィルタ81〜88のそれぞれは、第1の支持部36a及び36b並びに第2の支持部37a及び37bによって保持されている。なお、本実施形態における第1の支持部36a及び36b並びに第2の支持部37a及び37bは、それぞれ第1実施形態と同様の構成を有することが好ましい。
本実施形態による光導波路基板1eでは、波長成分λ〜λを含む光がコア部91iの光入出射端5jから入射すると、この光はコア部91iを光軸Aに沿って導波する。そして、波長成分λ〜λは、それぞれ反射面81a〜84aで反射する。その後、波長成分λ〜λは、それぞれコア部91k〜91nを光軸B〜Bに沿って導波し、コア部91k〜91nの光入出射端5k〜5nから出射する。また、波長成分λは、波長フィルタ81〜84を透過し、コア部91iの光入出射端5tから出射する。なお、各光入出射端5k〜5nには、例えばフォトダイオードといった光検出素子を取り付けるとよい。
また、コア部91p〜91sにおける光入出射端5p〜5sに波長λ〜λの光がそれぞれ入射すると、これらの光はそれぞれコア部91p〜91sを光軸B〜Bに沿って導波し、それぞれ反射面85a〜88aで反射する。こうして、反射面85a〜88aのそれぞれで反射した波長λ〜λの光は、光軸Aに沿ってコア部91jを導波した後、光軸Aに沿ってコア部91iを導波する波長λの光と結合する。そして、この結合した光は、光入出射端5tから出射する。なお、光入出射端5p〜5sには、例えばレーザダイオードといった発光素子を取り付けるとよい。
本実施形態の光導波路基板1eによれば、上記第1実施形態の光導波路基板1aと同様に、簡易な工程によって波長フィルタ81〜88をクラッド部の内部に好適に埋め込むことができる。また、光導波路基板1eの表面を平坦に形成することも容易にできる。更に、コア部91i〜91sに対して波長フィルタ81〜88を精度よく位置決めできるとともに、波長フィルタ81〜88とコア部91i〜91sとの間の光損失を低減できる。従って、例えばWDM通信において異なる波長の光信号を抽出及び付加するための、より低損失なWDMモジュールを実現できる。なお、光軸A及びAに沿った方向における光導波路基板1eの好適な長さWは、例えば10mm〜30mmである。また、光軸B〜Bに沿った方向における光導波路基板1eの好適な幅Wは、例えば4mmである。
なお、本実施形態の光導波路基板1eにおいては、波長フィルタ81〜88が第1実施形態と同様の第1の支持部36a、36b及び第2の支持部37a、37bによって保持されているが、他の実施形態または変形例による第1及び第2の支持部によって保持されてもよい。
本発明による光導波路基板及びその製造方法は、上記した各実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上記各実施形態では光学部品として波長フィルタを例示しているが、本発明の光学部品としては他にも反射面を有する様々な部品(例えばハーフミラー)を適用できる。
また、上記各実施形態及び変形例においては、第1及び第2の支持部がそれぞれ光学部品(波長フィルタ)の反射面及び裏面に接するように設けられているが、第1及び第2の支持部は、光学部品の長手方向の両端面(例えば、図1に示す側面4c)に接するように設けられてもよく、或いは、光学部品の四隅に当接するように設けられてもよい。
また、上記各実施形態及び変形例においては、光学部品(波長フィルタ)の平面形状が長方形である場合について説明したが、光学部品の形状はこれに限られるものではなく、三角形など、様々な形状の光学部品に対して本発明を適用できる。
第1実施形態による光導波路基板の構成を示す斜視図である。 図1に示した光導波路基板の構成の中心部付近を示す平面図である。 (a)図2に示した光導波路基板のI−I線、II−II線、及びIII−III線に沿った断面を示す側面断面図である。(b)図2に示した光導波路基板のIV−IV線、及びV−V線に沿った断面を示す側面断面図である。 第1実施形態による光導波路基板の製造工程を示す斜視図である。 (a)第1実施形態による光導波路基板の製造工程を示す斜視図である。(b)(a)の一部を拡大した図である。 (a)第1実施形態による光導波路基板の製造工程を示す斜視図である。(b)(a)の一部を拡大した図である。 第1実施形態による光導波路基板の製造工程を示す斜視図である。 第1実施形態による光導波路基板の製造工程を示す斜視図である。 第1実施形態による光導波路基板の製造工程を示す斜視図である。 第1実施形態による光導波路基板の製造工程を示す斜視図である。 第1実施形態の光導波路基板の第1変形例の構成を示す平面図である。 第1変形例による第1及び第2の支持部をエッチングにより形成するためのマスクの形状を示す斜視図である。 第1実施形態の光導波路基板の第2変形例の構成を示す平面図である。 第2変形例による第1及び第2の支持部をエッチングにより形成するためのマスクの形状を示す斜視図である。 第1実施形態の光導波路基板の第3変形例の構成を示す側面断面図である。 (a)第2実施形態による光導波路基板の製造工程を示す斜視図である。(b)(a)の一部を拡大した図である。 第2実施形態による光導波路基板の製造工程を示す斜視図である。 第2実施形態による光導波路基板の製造工程を示す斜視図である。 第2実施形態による光導波路基板の製造工程を示す斜視図である。 第2実施形態による光導波路基板の製造工程を示す斜視図である。 第3実施形態による光導波路基板の構成を示す斜視図である。 図21に示した光導波路基板の構成の中心部付近を示す平面図である。 (a)図22に示した光導波路基板のVI−VI線、VII−VII線、及びVIII−VIII線に沿った断面を示す側面断面図である。(b)図22に示した光導波路基板のIX−IX線、及びX−X線に沿った断面を示す側面断面図である。 第3実施形態による光導波路基板の製造工程を示す斜視図である。 第3実施形態による光導波路基板の製造工程を示す斜視図である。 第3実施形態による光導波路基板の製造工程を示す斜視図である。 第3実施形態による光導波路基板の製造工程を示す斜視図である。 第3実施形態による光導波路基板の製造工程を示す斜視図である。 第3実施形態による光導波路基板の製造工程を示す斜視図である。 第3実施形態による光導波路基板の製造工程を示す斜視図である。 第3実施形態の光導波路基板の第4変形例の構成を示す平面図である。 第4変形例による光導波路基板の他の一例の構成を示す平面図である。 第3実施形態の光導波路基板の第5変形例の構成を示す平面図である。 第5変形例による光導波路基板の他の一例の構成を示す平面図である。 第3実施形態の光導波路基板の第6変形例の構成を示す平面図である。 第3実施形態の光導波路基板の第7変形例の構成を示す平面図である。 第4実施形態による光導波路基板の構成を概略的に示す平面図である。 第4実施形態による光導波路基板の双方向通信における動作を示す平面図である。 第4実施形態の変形例による光導波路基板の構成を概略的に示す平面図である。 第5実施形態による光導波路基板の構成を概略的に示す平面図である。
符号の説明
1a〜1e…光導波路基板、2…基板、2a…主面、3,3b…光導波路層、4…波長フィルタ、4a…反射面、4b…裏面、5a〜5t…光入出射端、31,31a〜31c…下層クラッド部、32a〜32c…コア部、33…上層クラッド部、34…積層部、34a…光学部品収容溝、34b,34c,36a,36b…第1の支持部、34d,34e,37a,37b…第2の支持部、35…クラッド部、36i,36j…凸状部、39a…第1のクラッド部、39b…第2のクラッド部。

Claims (10)

  1. 主面を有する基板と、
    前記基板の前記主面上に設けられ、第1のコア部、前記第1のコア部の長手方向と交差する方向に延びる第2のコア部、並びに前記第1及び第2のコア部を覆うクラッド部を有する樹脂製の光導波路層と、
    光を反射する反射面を有し、前記第1及び第2のコア部のうち一方の前記コア部を導波した光を前記反射面が他方の前記コア部へ反射するように前記基板の前記主面上に設けられた光学部品と
    を備え、
    前記光導波路層が、前記第1及び第2のコア部と同じ層に位置するとともに同じ材料からなる部分を含み前記光学部品を互いの間に挟み込んで保持する第1及び第2の支持部を更に有し、
    前記光学部品が、前記クラッド部によって覆われていることを特徴とする、光導波路基板。
  2. 前記第1の支持部が、前記光学部品の前記反射面と対向する第1の対向面、及び前記第1の対向面から突出した凸状部を有しており、
    前記第2の支持部が、前記光学部品の裏面と対向する第2の対向面、及び前記第2の対向面から突出した凸状部を有しており、
    前記光学部品が、前記第1及び第2の対向面の前記凸状部に接していることを特徴とする、請求項1に記載の光導波路基板。
  3. 前記第1及び第2の支持部それぞれに形成された凸状部同士の距離が、前記光学部品における前記反射面と交差する方向の厚さよりも短く形成されており、
    前記光学部品が、前記第1の支持部の前記凸状部と前記第2の支持部の前記凸状部との間に圧入されていることを特徴とする、請求項2に記載の光導波路基板。
  4. 主面を有する基板と、
    前記基板の前記主面上に設けられ、第1のコア部、前記第1のコア部の長手方向と交差する方向に延びる第2のコア部、並びに前記第1及び第2のコア部を覆う第1のクラッド部を有する樹脂製の光導波路層と、
    光を反射する反射面を有し、前記第1及び第2のコア部のうち一方の前記コア部を導波した光を前記反射面が他方の前記コア部へ反射するように前記基板の前記主面上に設けられた光学部品と
    を備え、
    前記光導波路層の前記第1のクラッド部が、
    前記光学部品を収容する光学部品収容溝と、
    前記光学部品収容溝の側面に形成され前記光学部品を互いの間に挟み込んで保持する第1及び第2の支持部と
    を有し、
    前記光導波路層が、
    前記第1のクラッド部及び前記光学部品を覆う第2のクラッド部を更に有することを特徴とする、光導波路基板。
  5. 前記第1の支持部が、前記光学部品の前記反射面と接する第1の接触面を有しており、
    前記第2の支持部が、前記光学部品の裏面と接する第2の接触面を有しており、
    前記光学部品が、前記第1及び第2の接触面に保持されていることを特徴とする、請求項1または4に記載の光導波路基板。
  6. 前記第1及び第2の接触面が、前記光学部品における前記反射面と交差する方向の厚さよりも小さい間隔で形成されており、
    前記光学部品が、前記第1の接触面と前記第2の接触面との間に圧入されていることを特徴とする、請求項5に記載の光導波路基板。
  7. 前記光学部品における前記基板に近い部分の厚さが、前記基板へ向かって小さくなるようにテーパ状に形成されていることを特徴とする、請求項1〜6のいずれか一項に記載の光導波路基板。
  8. 前記光学部品の裏面のうち前記基板に近い領域が前記反射面に対して傾斜していることを特徴とする、請求項7に記載の光導波路基板。
  9. 樹脂製の第1クラッド層を基板の主面上に形成する第1クラッド層形成工程と、
    前記第1クラッド層よりも高屈折率の樹脂からなるコア層を前記第1クラッド層上に形成するコア層形成工程と、
    第1のコア部の平面形状、前記第1のコア部の長手方向と交差する方向に延びる第2のコア部の平面形状、並びに前記第1及び第2のコア部のうち一方の前記コア部を導波した光を光学部品の反射面が他方の前記コア部へ反射するように前記光学部品を互いの間に挟み込んで保持する第1及び第2の支持部の平面形状が形成されたマスクを用い、前記コア層及び前記第1クラッド層に対しエッチングを行うことにより、前記第1及び第2のコア部並びに前記第1及び第2の支持部を形成するエッチング工程と、
    前記光学部品を前記第1の支持部と前記第2の支持部との間に挿入する光学部品設置工程と、
    前記第1及び第2のコア部、前記第1及び第2の支持部、並びに前記光学部品のそれぞれを覆うように、前記コア層よりも低屈折率の樹脂からなる第2クラッド層を形成する第2クラッド層形成工程と
    を備えることを特徴とする、光導波路基板の製造方法。
  10. 基板の主面上に設けられ、第1のコア部、前記第1のコア部の長手方向と交差する方向に延びる第2のコア部、並びに前記第1及び第2のコア部を覆う第1のクラッド部を有する樹脂製の積層部に対し、前記第1及び第2のコア部のうち一方の前記コア部を導波した光を光学部品の反射面が他方の前記コア部へ反射するように前記光学部品を収容する光学部品収容溝の平面形状、並びに前記光学部品収容溝の側面に形成され前記光学部品を互いの間に挟み込んで保持する第1及び第2の支持部の平面形状が形成されたマスクを用いてエッチングを行うことにより、前記光学部品収容溝並びに前記第1及び第2の支持部を前記積層部に形成するエッチング工程と、
    前記光学部品を前記第1の支持部と前記第2の支持部との間に挿入する光学部品設置工程と、
    前記積層部及び前記光学部品を覆うように、前記第1及び第2のコア部よりも低屈折率の樹脂からなる第2のクラッド部を形成する第2クラッド部形成工程と
    を備えることを特徴とする、光導波路基板の製造方法。
JP2005246367A 2005-08-26 2005-08-26 光導波路基板及びその製造方法 Expired - Fee Related JP4509892B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005246367A JP4509892B2 (ja) 2005-08-26 2005-08-26 光導波路基板及びその製造方法
US11/509,843 US7447400B2 (en) 2005-08-26 2006-08-25 Optical waveguide substrate and method of fabricating the same
CNB2006101265679A CN100541247C (zh) 2005-08-26 2006-08-28 光波导路基板及其制造方法
KR1020060081700A KR20070024440A (ko) 2005-08-26 2006-08-28 광도파로 기판 및 그 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005246367A JP4509892B2 (ja) 2005-08-26 2005-08-26 光導波路基板及びその製造方法

Publications (2)

Publication Number Publication Date
JP2007058098A true JP2007058098A (ja) 2007-03-08
JP4509892B2 JP4509892B2 (ja) 2010-07-21

Family

ID=37778359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005246367A Expired - Fee Related JP4509892B2 (ja) 2005-08-26 2005-08-26 光導波路基板及びその製造方法

Country Status (4)

Country Link
US (1) US7447400B2 (ja)
JP (1) JP4509892B2 (ja)
KR (1) KR20070024440A (ja)
CN (1) CN100541247C (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011511314A (ja) * 2008-01-31 2011-04-07 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. 回路基板に実装される光導波路のための光タップ
JP2014134593A (ja) * 2013-01-08 2014-07-24 Nec Corp 光導波路デバイスおよびその製造方法
KR20150113440A (ko) * 2014-03-28 2015-10-08 한국광기술원 파장분할 광모듈 및 이를 적용한 홈네트워크 시스템

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7805033B2 (en) * 2006-09-27 2010-09-28 Xyratex Technology Limited Optical wavelength division multiplexed multiplexer/demultiplexer for an optical printed circuit board and a method of manufacturing the same
JP4983391B2 (ja) * 2007-05-17 2012-07-25 株式会社日立製作所 光モジュール及びその製造方法
JP4904249B2 (ja) * 2007-11-15 2012-03-28 日東電工株式会社 タッチパネル用光導波路およびそれを用いたタッチパネル
US7991251B2 (en) * 2008-07-02 2011-08-02 Hitachi, Ltd. Optical module mounted with WDM filter
JP6678510B2 (ja) * 2016-05-11 2020-04-08 古河電気工業株式会社 光導波路素子
US11105975B2 (en) * 2016-12-02 2021-08-31 Rockley Photonics Limited Waveguide optoelectronic device
JP2018116115A (ja) * 2017-01-17 2018-07-26 古河電気工業株式会社 交差光導波路構造及び光導波路素子
GB201721814D0 (en) * 2017-12-22 2018-02-07 Optoscribe Ltd Optical apparatus, optical assembly and methods of manufacture thereof
US11022825B2 (en) * 2018-09-03 2021-06-01 Ciena Corporation Silicon photonics modulator using TM mode and with a modified rib geometry
US11067749B2 (en) * 2019-11-21 2021-07-20 Globalfoundries U.S. Inc. Waveguides with cladding layers of gradated refractive index
US20230393340A1 (en) * 2022-06-06 2023-12-07 Globalfoundries U.S. Inc. Cladding structure in the back end of line of photonics chips

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242069A (ja) * 1985-04-19 1986-10-28 Nippon Telegr & Teleph Corp <Ntt> 混成光集積回路およびその製造方法
JPH01316710A (ja) * 1988-06-17 1989-12-21 Asahi Chem Ind Co Ltd 新しい光デバイス
JP2004144930A (ja) * 2002-10-23 2004-05-20 Matsushita Electric Ind Co Ltd 光モジュールおよび製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1138240A (ja) 1997-07-22 1999-02-12 Oki Electric Ind Co Ltd 光導波路及びその製造方法
JPH1152150A (ja) 1997-08-05 1999-02-26 Hitachi Cable Ltd フィルタ装着型光導波路
JP3708306B2 (ja) * 1997-10-06 2005-10-19 富士通株式会社 波長分割多重光デバイス及びその製造方法
JPH11287916A (ja) 1998-04-01 1999-10-19 Nippon Telegr & Teleph Corp <Ntt> 光導波路素子
JP2000075155A (ja) 1998-09-02 2000-03-14 Nippon Telegr & Teleph Corp <Ntt> 光モジュール
JP2000131527A (ja) 1998-10-29 2000-05-12 Hitachi Cable Ltd フィルタ挿入型光導波路の製造方法及び製造装置
JP2002243960A (ja) 2001-02-19 2002-08-28 Ntt Advanced Technology Corp フィルタ型多チャンネル高分子波長合分波器
JP2002303772A (ja) 2001-04-06 2002-10-18 Matsushita Electric Ind Co Ltd 波長分離素子の治具、製造装置及び方法
JP2005077933A (ja) 2003-09-02 2005-03-24 Murata Mfg Co Ltd 光合分波器
EP1602950A1 (en) * 2004-06-02 2005-12-07 Toyoda Gosei Co., Ltd. Optical module and manufacturing method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242069A (ja) * 1985-04-19 1986-10-28 Nippon Telegr & Teleph Corp <Ntt> 混成光集積回路およびその製造方法
JPH01316710A (ja) * 1988-06-17 1989-12-21 Asahi Chem Ind Co Ltd 新しい光デバイス
JP2004144930A (ja) * 2002-10-23 2004-05-20 Matsushita Electric Ind Co Ltd 光モジュールおよび製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011511314A (ja) * 2008-01-31 2011-04-07 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. 回路基板に実装される光導波路のための光タップ
US8761550B2 (en) 2008-01-31 2014-06-24 Hewlett-Packard Development Company, L.P. Optical taps for circuit board-mounted optical waveguides
JP2014134593A (ja) * 2013-01-08 2014-07-24 Nec Corp 光導波路デバイスおよびその製造方法
KR20150113440A (ko) * 2014-03-28 2015-10-08 한국광기술원 파장분할 광모듈 및 이를 적용한 홈네트워크 시스템
KR101587638B1 (ko) 2014-03-28 2016-02-03 한국광기술원 파장분할 광모듈 및 이를 적용한 홈네트워크 시스템

Also Published As

Publication number Publication date
KR20070024440A (ko) 2007-03-02
CN100541247C (zh) 2009-09-16
US20070092193A1 (en) 2007-04-26
JP4509892B2 (ja) 2010-07-21
CN1920599A (zh) 2007-02-28
US7447400B2 (en) 2008-11-04

Similar Documents

Publication Publication Date Title
JP4509892B2 (ja) 光導波路基板及びその製造方法
KR960014123B1 (ko) 광도파로와 광파이버의 접속방법
JP4704125B2 (ja) 光デバイス
EP0642045B1 (en) Hybrid optical IC with optical axes at different level
JP3111978B2 (ja) 光ファイバの高精度実装構造
JP5135513B2 (ja) 光ファイバアレイ
US20030142946A1 (en) Optical module
US6859588B2 (en) Optical fiber block
US20080267567A1 (en) Optical splicer, optical module, and method of producing optical splicer
KR20110028273A (ko) 광 스플리터 장치
JP2009198804A (ja) 光モジュール及び光導波路
JP2005195651A (ja) 光接続基板、光伝送システム、及び製造方法
JP2003248143A (ja) 光モジュールおよびその製造方法
JP2007199254A (ja) 光モジュール及び光モジュールの製造方法
JP2008209520A (ja) 光フィルタモジュール
JP2002040284A (ja) 光ファイバアレイ装置およびそれを用いた導波路型多層光波回路モジュール
JP2007183467A (ja) ミラー付光導波路及びその製造方法
US7065269B2 (en) Optical multiplexer/demultiplexer, optical integrated circuit and light transceiver using the same
JP2006251046A (ja) 光導波路基板、光表面実装導波路素子およびそれらの製造方法
JP4562185B2 (ja) 光導波路基板及びその製造方法
JP6810076B2 (ja) ファイバモジュール
JP2006126373A (ja) 光波回路モジュールの光ファイバ用ガイド基板
JPH11242131A (ja) 多心光ファイバアレイ端末
JP7348550B2 (ja) 光回路モジュール
JP4498978B2 (ja) 平面光回路アセンブリおよびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees