JP2007053304A - 放射線画像検出システム - Google Patents

放射線画像検出システム Download PDF

Info

Publication number
JP2007053304A
JP2007053304A JP2005238691A JP2005238691A JP2007053304A JP 2007053304 A JP2007053304 A JP 2007053304A JP 2005238691 A JP2005238691 A JP 2005238691A JP 2005238691 A JP2005238691 A JP 2005238691A JP 2007053304 A JP2007053304 A JP 2007053304A
Authority
JP
Japan
Prior art keywords
light
wavelength band
layer
radiation image
reading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005238691A
Other languages
English (en)
Inventor
Satoru Irisawa
覚 入澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005238691A priority Critical patent/JP2007053304A/ja
Publication of JP2007053304A publication Critical patent/JP2007053304A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Measurement Of Radiation (AREA)
  • Radiography Using Non-Light Waves (AREA)

Abstract

【課題】 2種類の発光部を用いることなく、読取光と、該読取光とは波長帯域の異なる消去光とを放射線画像検出器へ照射する。
【解決手段】 読取時には、制御手段60は光シャッタ層29を制御して、400nm〜500nmの波長帯域の光を透過する読取光透過状態とし、ライン状の各微小EL発光体21が順次発光するように面状光源20を制御する。各微小EL発光体21から発せられた白色光は、光シャッタ層29を透過する際に400nm〜500nmの波長帯域の光以外は遮光されるため、青色光である読取光L2となり、放射線画像検出器10の補助線状電極15aに入射する。消去時には、制御手段60は光シャッタ層29を制御して、可視光の波長帯域の光をほぼ透過する消去光透過状態とし、さらに面状光源20を制御し、全ての微少EL発光体21を同時に発光させ、白色光である消去光L3を射出させる。
【選択図】 図2

Description

本発明は、放射線画像を担持した放射線または記録光が照射され、該放射線または記録光の照射量に応じて発生した電荷を蓄積することにより放射線画像を記録する放射線画像検出器に読取光を照射して記録された放射線画像を読み取り、また消去光を照射して残存電荷を消去する放射線画像検出システムに関するものである。
従来より、被写体を透過したX線などの放射線の照射量に応じた量の電荷を蓄電部に蓄積することにより被写体の放射線画像を検出する放射線画像検出器を用いて放射線画像を記録するとともに、その放射線画像検出器に記録された放射線画像を電気信号をとして読み取る放射線画像検出システムが、医療用放射線画像の撮影などにおいて多く利用されており、種々のタイプのものが提案されている。
そして、上記のような放射線画像検出システムにおいて用いられる放射線画像検出器としては、たとえば、特許文献1には、放射線を透過する第1の電極層、放射線の照射を受けることにより電荷を発生する記録用光導電層、潜像電荷に対しては絶縁体として作用し、かつ潜像電荷と逆極性の輸送電荷に対しては導電体として作用する電荷輸送層、ライン状の読取光の照射を受けることにより電荷を発生する読取用光導電層、および線状電極が平行に配列された第2の電極層をこの順に積層してなる放射線画像検出器が提案されている。上記放射線画像検出器を用いた放射線画像検出システムにおいては、第1の電極層と第2の電極層とに電圧が印加された状態で第1の電極層側から放射線が照射され、その照射された放射線の照射量に応じた量の電荷が記録用光導電層において発生し、その電荷のうち一方の極性の電荷が第1の電極層に帯電された電荷と結合するとともに他方の極性の電荷が記録用光導電層と電荷輸送層との界面に形成される蓄電部に潜像電荷として蓄積されることより、放射線画像の記録が行われる。そして、第2の電極層側から照射された青色波長帯域あるいは緑色波長帯域読取光が第2の電極層を透過して読取用光導電層に照射され、その読取光の照射により読取用光導電層において発生した一方の極性の電荷が蓄電部における潜像電荷と結合するとともに、他方の極性の電荷が線状電極に接続された電流検出アンプにより検出されることにより放射線画像が電気信号として読み出される。
通常このような放射線画像検出システムでは、発光部から射出された読取光は光学部材により集光されて、放射線画像検出器上に照射される(特許文献2参照)。なお、読取光としては、所定の浸透度が得られること、また集光性がよいことから、青色波長帯域あるいは緑色波長帯域で、比較的狭い波長帯域の光が使用されることが多い。
また、放射線画像検出器から放射線画像を読み取った後に、放射線検出器内に電荷が残存してしまう場合があることが知られている。このような残存する電荷を消去することなく、次の放射線画像の記録を行うと、放射線画像の画質の劣化を招く虞がある。そのため、消去光を照射することにより、このような残存電荷の消去が行われている。一般に読取光を消去光としても使用することが多い。
特開2000−105297号公報 特開2001−66366号公報
近年、消去光として、青色波長帯域あるいは緑色波長帯域の光に放射線検出器内への浸透度の深い赤色波長帯域の光を加えた光、例えば白色光を用いることにより、消去効率を向上させることができることが知られている。しかしながら、光源部に青色光を射出する発光部と、白色光を射出する発光部との2種類の発光部を配置した場合には、光源部の構造が複雑になったり、あるいは読取光用の発光部の配置密度が低くなるなどの問題がある。
本発明は、上記の事情に鑑みてなされたものであり、2種類の発光部を用いることなく、読取光と該読取光とは波長帯域の異なる消去光とを放射線画像検出器へ照射することのできる放射線画像検出システムを提供することを目的とするものである。
本発明の放射線画像検出システムは、放射線画像を担持した放射線または記録光を透過する第1の電極層と、前記第1の電極層を透過した放射線または記録光の照射により、導電性を呈した該放射線の照射量に応じた電荷を発生する記録用光導電層と、該記録用光導電層において発生した電荷を蓄積する蓄電部と、読取光の照射により導電性を呈する読取用光導電層と、前記読取光を透過する第2の電極層とを有し、前記蓄電部に潜像電荷として放射線を記録する放射線画像検出器を有し、
前記読取光により前記放射線画像検出器を走査して、蓄電部に蓄積された電荷を読み取り、また消去光を前記放射線画像検出器へ照射することにより残存電荷を消去する放射線画像検出システムにおいて、
前記消去光の波長帯域と前記読取光の波長帯域が異なるものであり、
前記消去光の波長帯域および前記読取光の波長帯域を含む波長帯域の光を射出する発光部を有する光照射手段と、
前記発光部と前記放射線画像検出器との間に配置され、前記消去光の波長帯域の光を透過する消去光透過状態と、前記読取光の波長帯域の光を透過する読取光透過状態とを切り換える光シャッタ層とを備えたことを特徴とするものである。
ここで、上記「消去光の波長帯域と前記読取光の波長帯域が異なる」とは、消去光の波長帯域の中に、読取光の波長帯域が含まれるものであってもよいし、あるいは消去光の波長帯域と前記読取光の波長帯域の一部が重なっているものであってもよい。また消去光の波長帯域と前記読取光の波長帯域とがまったく別個の波長帯域であってもよい。
また、「消去光の波長帯域および前記読取光の波長帯域を含む波長帯域の光を射出する発光部を有する光照射手段」とは、該発光部から射出される読取光により、放射線画像検出器を走査可能な形態の光照射手段であり、例えば多数の点状あるいはライン状の発光部が並べられた面状光源や、1つの発光部あるいはライン状の1本の発光部を機械的に移動させることにより、読取光により放射線画像検出器を走査する移動式光源等がある。
さらに、「消去光の波長帯域の光を透過する消去光透過状態」とは、光シャッタ層を透過した光が消去光の波長帯域となる状態であればよく、例えば発光部から射出される光の波長帯域が消去光の波長帯域と同一の波長帯域であれば、少なくともこの波長帯域を透過する状態であればよいし、あるいは発光部から射出される光の波長帯域が消去光の波長帯域より広い場合には、実質的に消去光の波長帯域のみを透過する状態であればよい、なおこの場合であっても放射線画像検出器が感度を有していない波長帯域に関しては、その波長帯域の光を透過しても支障はない。また、同様に「前記読取光の波長帯域の光を透過する読取光透過状態」とは、光シャッタ層を透過した光が読取光の波長帯域となる状態であればよく、例えば発光部から射出される光の波長帯域が読取光の波長帯域と同一の波長帯域であれば、少なくともこの波長帯域を透過する状態であればよいし、あるいは発光部から射出される光の波長帯域が消去光の波長帯域より広い場合には、実質的に消去光の波長帯域のみを透過する状態であればよい、なおこの場合であっても放射線画像検出器が感度を有していない波長帯域に関しては、その波長帯域の光を透過しても支障はない。
前記光シャッタ層は、液晶光シャッタ層であってもよい。また、ゲストホスト式の液晶光シャッタ層あるいはコレステリック式の液晶光シャッタ層であってもよい。
前記発光部は前記消去光の波長帯域の光を射出するものであり、かつ前記読取光の波長帯域は前記消去光の波長帯域の一部であってもよい。
なお、放射線画像検出器に備えられた記録用光導電層と読取用光導電層は別個に設けられた光導電層であってもよいし、1枚の光導電層が記録用光導電層と読取用光導電層の両者を兼ねるものであってもよい。また、読取用光導電層は、電荷輸送性を有する読取用電荷輸送性光導電層であってもよい。あるいは、上述の特許文献1に記載されたように、記録用光導電層と読取用光導電層との間に電荷輸送層が設けられていてもよい。
本発明の放射線画像検出システムでは、前記消去光の波長帯域および前記読取光の波長帯域を含む波長帯域の光を射出する発光部を有する光照射手段と、前記発光部と前記放射線画像検出器との間に配置され、前記消去光の波長帯域の光を透過する消去光透過状態と、前記読取光の波長帯域の光を透過する読取光透過状態とを切り換える光シャッタ層とを備えているため、1種類の発光部を用いて、読取光と該読取光とは波長帯域の異なる消去光とを放射線画像検出器へ照射することができる。
前記光シャッタ層が、液晶光シャッタ層であれば薄膜状に形成でき、また機械的な可動部がないため、発光部と放射線画像検出器との間に、コンパクトに配設することができる。
前記液晶シャッタが、ゲストホスト式の液晶光シャッタ層あるいはコレステリック式の液晶光シャッタ層であれば、読取光透過状態と消去光透過状態とを電圧印加により容易に切り換え制御でき、制御部も含めて安価に消去光透過状態と読取光透過状態とを切り換えることのできる光シャッタ層を実現できる。
前記発光部が前記消去光の波長帯域の光を射出するものであり、かつ前記読取光の波長帯域が前記消去光の波長帯域の一部であれば、消去光透過状態は、光をほぼ遮光しない透明な状態であればよく、光シャッタ層の構成を簡易化できる。
以下、図面を参照して本発明の放射線画像検出システムを適用した実施の形態である放射線画像記録読取装置1について説明する。図1に示すように、放射線画像記録読取装置1は放射線L1を射出する放射線源5と、放射線源5から射出され、被写体6を透過した放射線L1の照射により被写体の放射線画像を検出する放射線画像検出器10と、放射線画像検出器10に記録された放射線画像を読み取るための読取光L2および残存電荷を消去するための消去光である白色光L3を放射線画像検出器10に照射する面状光源20と、放射線画像検出器10の面状光源20側に設けられた絶縁層19と、該絶縁層19と面状光源20との間に設けられた光シャッタ層29と、読取光の照射により放射線画像検出器10において発生した電流を検出する電流検出回路31が多数設けられた電流検出部30と、放射線画像を記録する際および残存電荷を消去する際に、放射線画像検出器10に電圧を印加する電圧源40と、放射線画像検出器10の後述する第1の電極層11および第2の電極層15の接続先を切り換えるスイッチ手段50と、放射線源5、面状光源20、光シャッタ層29、電流検出部30、電圧源40およびスイッチ手段50へ接続され、各部位の動作を制御する制御手段60とを備えている。
放射線画像検出器10は、被写体6の放射線画像を担持した放射線L1を透過する第1の電極層11と、第1の電極層11を透過した放射線の照射を受けることにより電荷を発生する記録用光導電層12と、記録用光導電層12において発生した潜像電荷に対しては絶縁体として作用し、且つその潜像電荷と逆極性の輸送電荷に対しては導電体として作用する電荷輸送層13と、読取光L2の照射を受けることにより電荷を発生する読取用光導電層14と、および読取光L2を透過する第2の電極層15をこの順に積層してなるものである。また、記録用光導電層12と電荷輸送層13との間には、記録用光導電層2内で発生した潜像電荷を蓄積する蓄電部16が形成されている。
第1の電極層11としては、放射線L1を透過するものであればよく、たとえば、ネサ皮膜(SnO)、ITO(Indium Tin Oxide)、アモルファス状光透過性酸化膜であるIDIXO(Idemitsu Indium X-metal Oxide ;出光興産(株))などを50〜200nm厚にして用いることができる。
第2の電極層15は、図1に示すように、白色光である消去光L3を透過し、線状に延びる多数の補助線状電極15aと、青色光である読取光L2を遮光し、線状に延びる多数の読出線状電極15bとが交互かつ平行に配列された第2の電極層である。読出線状電極15bは、読取光L2を遮光するAl、Crなどの金属から形成されている。また、補助線状電極15aは、第1の電極層11と同様の材料で形成することができ、読取光L2を透過するものである。読出線状電極15bについても、補助線状電極15aと同様の材料により形成し、その後、読取光L2を遮光するようにAl、Crなどの金属によりコーティングするようにしてもよい。
また、第2の電極層15における読出線状電極15bには、上記読出線状電極15bにより読み出された電荷を検出するためのチャージアンプ31がそれぞれ接続されている。
記録用光導電層13は、放射線の照射を受けることにより電荷を発生するものであればよく、放射線に対して比較的量子効率が高く、また暗抵抗が高いなどの点で優れているa−Seを主成分とするものを使用する。厚さは500μm程度が適切である。
電荷輸送層13としては、第1の電極層11に帯電する電荷の移動度と、その逆極性となる電荷の移動度の差が大きい程良く(例えば10以上、望ましくは10以上)、かつ読取光L2の照射により電荷を発生する光導電性を有するであればよく、例えばSe−Te、Se−Te−As、Se−Te−P、Se−As等を主成分とする合金、あるいは、ポリN−ビニルカルバゾール(PVK)、N,N'−ジフェニル−N,N'−ビス(3−メチルフェニル)−〔1,1'−ビフェニル〕−4,4'−ジアミン(TPD)やディスコティック液晶等の有機系化合物、或いはTPDのポリマー(ポリカーボネート、ポリスチレン、PVK)分散物,Clを10〜200ppmドープしたa−Se等の半導体物質が適当である。
読取用光導電層14としては、読取光の照射を受けることにより導電性を呈するものであればよく、例えば、a−Se、Se−Te、Se−As−Te、無金属フタロシアニン、金属フタロシアニン、MgPc(Magnesium phtalocyanine)、VoPc(phaseII of Vanadyl phthalocyanine)、CuPc(Cupper phtalocyanine)などのうち少なくとも1つを主成分とする光導電性物質が好適である。厚さは10μm程度が適切である。なお、各層の積層方向をZ、読出線状電極の長手方向をX、ZX平面と垂直な方向をY方向とする。
また、放射線画像検出器10の層構成は上記のような層構成に限定されるものではなく、種々の構成が考えられる。例えばブロッキング層等を、層間に含むものであってもよい。あるいは、第1電極層/記録用兼読取用の光導電層/第2電極層からなり、光導電層と第2導電極層との界面に蓄電部が形成される放射画像検出器(Medical Physics,Vol.16,No.1,Jan/Feb 1989;P105-P109参照)であってもよい。また、電荷輸送層および読取用光導電層の代わりに、読取用電荷輸送性光導電層を備える放射線画像検出器等であってもよい。また、記録用光導電層と第1の電極層との間に結晶化防止膜あるいはブロッキング層(絶縁膜)が設けられている放射線画像検出器であってもよい。また各層の材料についても上記各層の作用と同等の作用を有するものであれば上記以外の材料を利用するようにしてもよい。
そして、上気のように構成された放射線画像検出器10には、図1に示すように、第2の電極層15側に面状光源20が設けられている。また、放射線画像検出器10の絶縁層19と面状光源20との間には、光シャッタ層29が設けられている。
面状光源20は、図2に示すように、多数の微小EL発光体21とガラス製の基板22と、該微小EL発光体21と基板22との間に設けられたレンズ部23から構成されている。各微小EL発光体21は、透明線状電極24と、EL層25と、平板電極26とからなる。
この面状光源20としては、以下のようにして製造されたものを使用する。先ず、ガラス製の基板22の微小EL発光体21が配される側の面に、プレス成形により、多数の微小凹状溝を100μmピッチで形成する。なお、この微小凹状溝は、線状電極15aおよび15bと垂直な方向であるY方向へ延ばされている。
次に、基板22に、絶縁層27を塗布などによって製膜する。この絶縁層27としては、耐エッチング性の強いものを使用する。また、絶縁層27として、屈折率の適当な材質(本例においては、ガラス製の基板22よりも屈折率の大きなもの)を選ぶことにより、基板22との界面で光が屈折し、シリンドリカルレンズ23となる。
次に、シリンドリカルレンズ23(絶縁層27)上に、アモルファス状光透過性酸化膜を製膜した後、各微小凹状構造の光学中心が電極の中心と合致するように、エッチング処理を行って、透明線状電極24を形成する。
次に、基板22の透明線状電極24側にEL層25を製膜する。このEL層25は、無機材料で形成された無機EL層であってもよいし、有機材料で形成された有機EL層であってもよい。
最後にEL層25上に平板電極26が形成されるように導電層を製膜する。平板電極26は、EL層25から発せられるEL光を略全反射させるMgAgで形成するのが好ましい。なお、本実施の形態においては、EL層として400nm〜700nmの波長帯域の光を射出する白色EL層が用いられている。
面状光源20と放射線固体検出器10は、絶縁層19および後述する光シャッタ層29を介して、対向し、かつ放射線画像検出器10の補助線状電極15a、15bと面状光源20の透明線状電極24とが直交するように貼り合わされ、一体化される。
また、面状光源20の各透明線状電極24および平板電極26は、制御手段60に接続される。制御手段60は、各透明線状電極24を順次切り替えながら、夫々の透明線状電極24と平板電極26との間に所定の直流電圧を印加する。この直流電圧の印加により透明線状電極24と平板電極26とに挟まれたEL層25からEL光が発せられる。透明線状電極24はライン状(線状)になっているから、透明線状電極24を透過したEL光はライン状の読取光として利用できる。つまり、面状光源20としては、透明線状電極24、EL層25および平板電極26からなる微小EL発光体21が多数配列されたものとして構成され、透明線状電極24を順次切り替えてEL層25からEL発光させることにより、ライン状の読取光で放射線画像検出器10を電気的に走査することができるようになる。
このようにして構成された放射線画像記録読取装置1においては、各微小EL発光体21のEL層25から発せられたEL光が透明線状電極24、絶縁層27および基板22を順次透過し、検出器10の絶縁層19に入射し、該絶縁層19を透過して第2の電極層15に入射する。
光シャッタ層29は、ゲストホスト方式の液晶光シャッタ層である。ゲストホスト方式の液晶素子では、液晶中に二色性色素を溶解させた液晶組成物をセル中に封入し、これに電場を与え、電場による液晶の動きに合わせて、二色性色素の配向を変化させ、セルの吸光状態を変化させることによって透過させる光の波長帯域を変化させることができる。このようなゲストホスト方式については、例えば、「Handbook of Liquid Crystals」(B.Bahadur著、D.Demus,J.Goodby,G.W.Gray,H.W.Spiess,V.Vill編、Vol.2A,Wiley−VCH社、1998年)の第3.4章、第257〜302頁に詳細な記載がある。また、液晶素子に利用される二色性色素に関しては、「Dichroic Dyes for Liquid Crystal Display」(A.V.Ivashchenko著、CRC社、1994年)に詳細な記載がある。また、光シャッタ層29は、制御手段60の制御により、可視光の波長帯域の光をほぼ透過する消去光透過状態と、400nm〜500nmの波長帯域の光を透過する読取光透過状態とが切り換わるものである。
電圧源40は、その電圧のON、OFFおよび電圧の大きさは制御手段60により制御される。また、電流検出部30は、第2の電極層15の各読出線状電極15bに接続された多数のチャージアンプ31を有している。
また、スイッチ手段50は、読出線状電極15b、補助線状電極15aおよび第1の電極層11の接続先を切り換えるスイッチであり、図1に示すように、a端子には電圧源40の負極側の端子が接続され、c端子にはアースが接続されている。また、d端子には、放射線画像検出器10における第1の電極層11が接続され、e端子には、第2の電極層15の各補助線状電極15aが接続されている。なお、b端子には、後述する記録時のみ各読出線状電極15bが接続され、かつb端子とc端子が接続されて、読出線状電極15bが接地される。
このスイッチ手段50は、放射線画像検出器10による放射線画像の消去、記録および読取の際に切換えられる。このスイッチ手段50の切換えは、制御手段60により制御される。
次に、上記放射線画像記録読取装置1の動作について説明する。まず、本放射線画像記録読取装置1においては、放射線画像検出器10へ放射線画像を記録する前に、前回に放射線画像検出器10から放射線画像を読み取った後に放射線画像検出器10に残存した電荷を消去する動作を行う。以下に、その残存電荷の消去の作用について詳細に説明する。図3は、放射線画像検出器10における残存電荷の消去の作用を説明するための模式図である。
後述するように、放射線画像検出器10では、放射線画像の記録時に、放射線画像検出器10の第1の電極層11が負の電位に、第2の電極層15が正の電位となるように記録用電圧を印加し、被写体6を透過した放射線を放射線画像検出器10に照射する。すると、放射線画像検出器10の記録用光導電層12内で正と負の電荷対が発生し、この電荷対のうち正の電荷は負に帯電した第1の電極層11に向かって移動し、第1の電極層11における負の電荷と結合して消滅する。一方、上記のようにして発生した電荷対のうち負の電荷は正に帯電した第2の電極層15に向かって移動するが、電荷輸送層13は正の電荷に対して導体として作用し、負の電荷に対しては絶縁体として作用するため、上記負の電荷は、記録用光導電層12と電荷輸送層13との界面である蓄電部16に潜像電荷として蓄積される。
しかし、記録された放射線画像を読み取った後には、読み取られなかった負の電荷が蓄電部16に残存し、またこの負の電荷とつりあうように正の電荷が電荷輸送層13にトラップされている。
上記のような残存電荷を消去するため、本放射線画像記録読取装置1においては、まず、制御手段60によりスイッチ手段50のc端子とe端子とが接続され、第2の電極層15の補助線状電極15aが接地される。
また、a端子とd端子が接続され、第1の電極層11へ電圧源40の負極側が接続される。制御手段60により電圧源40が制御され、第1の電極層11が負の電位となるように電圧が印加される。なお、この際に印加される電圧の大きさは、放射線画像検出器10への放射線画像の記録の際に第1の電極層11と第2の電極層15との間に印加される記録用電圧の1/10〜1/1000程度であることが望ましく、より望ましくは1/100程度である。本実施の形態では、放射線画像の記録用電圧を5kV程度とし、残存電荷の消滅の際の電圧を50V程度としている。
また、制御手段60は、光シャッタ層29を制御して、可視光の波長帯域の光をほぼ透過する消去光透過状態とする。さらに、制御手段60は、面状光源20を制御し、全ての微少EL発光体21を同時に発光させ、白色光である消去光L3を射出させる。
第2の電極層15側から消去光L3が照射されることにより、読取用光導電層14内が導電性を呈し、電荷が容易に移動可能となるため、蓄電部16に残存している負の残存電荷は読取用光導電層14内を移動して、正電荷と結合して、残存電荷が消去される。
また、消去光L3には青色波長帯域あるいは緑色波長帯域の光に比べ、放射線画像検出器10内への浸透度の深い赤色波長帯域の光が含まれている。消去光L3はこのため、読取用光導電層14に容易に浸透し、残存電荷は効率よく消去される。
なお、電圧源40により、第1の電極層11が負の電位となるように電圧が印加されているので、この電圧印加により形成された電界により、蓄電部16に残存している残存負電荷と読取用光導電層14側にトラップされている正電荷との結合がより促進されて、残存電荷が効率よく消滅する。
上記のような作用により、放射線検出器10内に残存していた残存電荷は、効率よく消去される。
次に、上記実施の形態の放射線画像記録読取装置における放射線画像の記録および読取動作につい簡単に説明する。図4は、放射線画像検出器10における放射線画像の記録および読出し動作を説明するための模式図である。なお、説明を簡単にするために、スイッチ部50の動作の詳細な説明は省略する。
放射線画像の記録は、まず、図4の(A)に示すように、制御手段60により放射線画像検出器10の第1の電極層11と第2の電極層15との間に記録用電圧が印加される。このとき印加される記録用電圧の大きさは、5kV程度であり、第1の電極層11が負の電位に、第2の電極層15が正の電位となるように印加される。そして、この記録用電圧の印加の後、放射線源5から放射線を射出させ、被写体6を透過した放射線を放射線画像検出器10に照射する。すると、放射線画像検出器10の記録用光導電層12内で正と負の電荷対が発生し、この電荷対のうち正の電荷は負に帯電した第1の電極層11に向かって移動し、第1の電極層11における負の電荷と結合して消滅する。一方、上記のようにして発生した電荷対のうち負の電荷は正に帯電した第2の電極層15に向かって移動するが、電荷輸送層13は正の電荷に対して導体として作用し、負の電荷に対しては絶縁体として作用するため、上記負の電荷は、図4(A)に示すように、記録用光導電層12と電荷輸送層13との界面である蓄電部16に蓄積される。
次に、上記のようにして放射線画像検出器10に記録された放射線画像を読取る際の作用について説明する。図4(B)に示すように、第1の電極層11および第2の電極層15における補助線状電極15aは接地され、読出線状電極15bはチャージアンプ31にそれぞれ接続される。
また、制御手段60は、光シャッタ層29を制御して、400nm〜500nmの波長帯域の光を透過する読取光透過状態とする。さらに、制御手段60は、放射線画像検出器10の第2の電極層15の読出線状電極15bと直交するように配列されているライン状の各微小EL発光体21が順次発光するように面状光源20を制御する。
各微小EL発光体21から発せられた白色光は透明線状電極24、絶縁層27および基板22を順次透過し、さらに光シャッタ層29および絶縁層19を透過して、検出器10の補助線状電極15aに入射する。なお、光シャッタ層29は、400nm〜500nmの波長帯域の光を透過する読取光透過状態であるため、各微小EL発光体21から発せられた白色光は、光シャッタ層29を透過すると、青色光である読取光L2となる。
なお、EL発光体21から発せられた白色光は多少の拡がり幅を持っているが、白色光が絶縁層27を透過し、微小凹状構造が形成された基板22の界面91に入射することによって一方の方向に収束されるので、EL発光体21から発せられ透明線状電極24を透過した白色光は補助線状電極15aの長手方向において読取位置に集光されるようになる。この際、集光性のよくない、500nm以上の波長帯域の光は光シャッタ層29により遮光されるため、青色光である読取光L2は、読取位置において、非常に細いライン状に集光される。
上記の制御により読取光L2が照射されると、読取光L2は第2の電極層15の補助線状電極15aを透過して読取用光導電層14に照射され、図4(B)に示すように、読取用光導電層14において電荷対が発生する。
そして、その電荷対のうち正の電荷は読取用光導電層14を通過して蓄電部16の負の電荷と結合して消滅する。一方、読取用光導電層14において発生した電荷対のうち負の電荷は第2の電極層15に帯電された正の電荷に向かって移動する。そして、第2の電極層15における補助線状電極15aに帯電した正の電荷と結合するとともに、読出線状電極15bに帯電した正の電荷ともチャージアンプ31を介して結合する。チャージアンプが上記青色光L2の走査に応じて所定のタイミングで順次スイッチングされることにより放射線画像を構成する画素毎の電気信号が各チャージアンプ31から順次出力される。
上記の説明で明らかなように、放射線画像記録読取装置1においては、残存電荷の消去を行う際には、微小EL発光体21から消去光L3の波長帯域である400nm〜700nmの波長帯域の光が射出され、光シャッタ層29が、制御手段60の制御により、可視光の波長帯域の光をほぼ透過する消去光透過状態となるため、波長400nm〜700nmの白色光である消去光L3が放射線画像検出器10に照射される。また放射線画像の読取を行う際には、光シャッタ層29が、制御手段60の制御により、400nm〜500nmの波長帯域の光を透過する読取光透過状態となるため、波長400nm〜500nmの青色光である読取光L2が放射線画像検出器10に照射される。このため、従来必要であった青色光である読取光のみを射出する発光部は不要になり、白色光を射出する発光部のみを用いて、白色光である消去光と、青色光である読取光とを放射線画像検出器へ照射することができる。
また、光シャッタ層として、ゲストホスト式の液晶光シャッタ層を用いたため、コンパクトな構成で、かつ安価に消去光透過状態と読取光透過状態とを切り換えることができる。
なお、400nm〜500nmの波長帯域の青色光である読取光L2は、シリンドリカルレンズ23により補助線状電極15aの長手方向(X方向)において集光される。これにより、各微小EL発光体21のEL層25から発光されたEL光の、補助線状電極15a上でのビームサイズを、補助線状電極15aの長手方向において画素サイズ同等以下とすることができる。このため、補助線状電極15aの長手方向の隣接画素位置を照射する虞れがなく、したがって、再生画像にボケが生じることもない。
また、上気実施の形態においては、多数のライン状の微少EL発光体21が配列した面状光源20を用いたが、このような構成に限らず、例えば多数の点状の微少EL発光体が並べられた面状光源や、1つの点状の微少EL発光体あるいはライン状の1本の微少EL発光体を機械的に移動させる構成を有する光源を用いてもよい。
さらに、本実施の形態においては、光シャッタ層29を、放射線画像検出器10の面状光源20側に設けられた絶縁層19と面状光源20との間に設けたがこれに限定するものではなく、光シャッタ層は、放射線画像検出器10と光源(発光部)の間であれば、いかなる位置に設けられもよい。例えば、図5に示すように、多数の微小EL発光体21の上にガラス製の基板70を設け、該ガラス製の基板70の上側に微少凸状シリンドリカルレンズ71を配置する場合であれば、基板70と微少凸状シリンドリカルレンズ71との間に光シャッタ層72を配設してもよい。
また、光シャッタ層として、本実施の形態ではゲストホスト型の液晶光シャッタ層を用いたがこれに限定されるものではなく、読取光を透過する読取光透過状態と、消去光を透過する消去光透過状態とを切り換え可能であれば、いかなる形態の光シャッタ層であってもよい。具体的には、スメチック液晶や、コレステリック液晶を用いた液晶光シャッタ層を用いることもできる。
本発明の実施の形態である放射線画像記録読取装置の概略構成図 面状光源および光シャッタ層の概略構成図 図1に示す放射線画像記録読取装置の放射線画像検出器における消去の動作を説明するための模式図 図1に示す放射線画像記録読取装置の放射線画像検出器における記録および読取の動作を説明するための模式図 他の面状光源および光シャッタ層の概略構成図
符号の説明
5 放射線源
6 被写体
10 放射線画像検出器
11 第1の電極層
12 記録用光導電層
13 電荷輸送層
14 読取用光導電層
15 第2の電極層
16 蓄電部
19 絶縁層
20 面状光源
21 微小EL発光体
23 シリンドリカルレンズ
29 光シャッタ層
30 電流検出部
31 チャージアンプ
40 電圧源
50 スイッチ手段
60 制御手段

Claims (5)

  1. 放射線画像を担持した放射線または記録光を透過する第1の電極層と、前記第1の電極層を透過した放射線または記録光の照射により、導電性を呈した該放射線の照射量に応じた電荷を発生する記録用光導電層と、該記録用光導電層において発生した電荷を蓄積する蓄電部と、読取光の照射により導電性を呈する読取用光導電層と、前記読取光を透過する第2の電極層とを有し、前記蓄電部に潜像電荷として放射線を記録する放射線画像検出器を有し、
    前記読取光により前記放射線画像検出器を走査して、蓄電部に蓄積された電荷を読み取り、また消去光を前記放射線画像検出器へ照射することにより残存電荷を消去する放射線画像検出システムにおいて、
    前記消去光の波長帯域と前記読取光の波長帯域が異なるものであり、
    前記消去光の波長帯域および前記読取光の波長帯域を含む波長帯域の光を射出する発光部を有する光照射手段と、
    前記発光部と前記放射線画像検出器との間に配置され、前記消去光の波長帯域の光を透過する消去光透過状態と、前記読取光の波長帯域の光を透過する読取光透過状態とを切り換える光シャッタ層とを備えたことを特徴とする放射線画像検出システム。
  2. 前記光シャッタ層が、液晶光シャッタ層であることを特徴とする請求項1記載の放射線画像検出システム。
  3. 前記液晶シャッタが、ゲストホスト式の液晶光シャッタ層であることを特徴とする請求項2記載の放射線画像検出システム。
  4. 前記液晶シャッタが、コレステリック式の液晶光シャッタ層であることを特徴とする請求項2記載の放射線画像検出システム。
  5. 前記発光部が前記消去光の波長帯域の光を射出するものであり、かつ前記読取光の波長帯域が前記消去光の波長帯域の一部であることを特徴とする請求項1から4いずれか1項記載の放射線画像検出システム。
JP2005238691A 2005-08-19 2005-08-19 放射線画像検出システム Withdrawn JP2007053304A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005238691A JP2007053304A (ja) 2005-08-19 2005-08-19 放射線画像検出システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005238691A JP2007053304A (ja) 2005-08-19 2005-08-19 放射線画像検出システム

Publications (1)

Publication Number Publication Date
JP2007053304A true JP2007053304A (ja) 2007-03-01

Family

ID=37917537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005238691A Withdrawn JP2007053304A (ja) 2005-08-19 2005-08-19 放射線画像検出システム

Country Status (1)

Country Link
JP (1) JP2007053304A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011031810A2 (en) * 2009-09-11 2011-03-17 Massachusetts Institute Of Technology Electronic shutter with photogenerated charge extinguishment capability for back-illuminated image sensors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011031810A2 (en) * 2009-09-11 2011-03-17 Massachusetts Institute Of Technology Electronic shutter with photogenerated charge extinguishment capability for back-illuminated image sensors
WO2011031810A3 (en) * 2009-09-11 2011-05-19 Massachusetts Institute Of Technology Electronic shutter with photogenerated charge extinguishment capability for back-illuminated image sensors

Similar Documents

Publication Publication Date Title
JP3445164B2 (ja) 静電記録体、静電潜像記録装置および静電潜像読取装置
JP2008177387A (ja) 放射線画像検出装置
US7420197B2 (en) Radiation image detection method and system
JP2007053304A (ja) 放射線画像検出システム
JP2007192611A (ja) 放射線画像検出器の残像消去方法および装置
JP2005183671A (ja) 放射線画像検出器
JP5235119B2 (ja) 放射線画像検出器
JP5137331B2 (ja) 放射線画像記録読取装置
JP5509228B2 (ja) 放射線画像記録読取装置
JP2004186604A (ja) 画像記録媒体
JP2008089491A (ja) 放射線画像検出装置
JP2005024368A (ja) 放射線画像検出器の残像消去方法および装置
JP2006261206A (ja) 放射線画像検出器および放射線画像検出システム
JP2007080927A (ja) 放射線画像検出器
JP2005201807A (ja) 放射線画像記録読取装置および画像表示装置並びにそれらの製造方法
JP2007095721A (ja) 放射線画像検出器
JP2000346951A (ja) 放射線固体検出器、並びにそれを用いた放射線画像記録/読取方法および装置
JP2006258715A (ja) 残像消去方法および残像消去装置
JP2003218335A (ja) 固体検出器
US7345294B2 (en) Solid state radiation detector having variable width linear electrodes
JP2006242827A (ja) 放射線固体検出器および放射線固体検出器の試験方法
JP2008128725A (ja) 放射線画像読方法および放射線画像検出器
JP2006250671A (ja) 放射線画像検出システム
JP2008103635A (ja) 放射線画像検出器
JP2003028964A (ja) 画像記録方法および装置並びに画像記録媒体

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061209

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104