JP2006344383A - 光照射装置 - Google Patents

光照射装置 Download PDF

Info

Publication number
JP2006344383A
JP2006344383A JP2003179107A JP2003179107A JP2006344383A JP 2006344383 A JP2006344383 A JP 2006344383A JP 2003179107 A JP2003179107 A JP 2003179107A JP 2003179107 A JP2003179107 A JP 2003179107A JP 2006344383 A JP2006344383 A JP 2006344383A
Authority
JP
Japan
Prior art keywords
lamp
discharge lamp
light
reflecting mirror
pressure discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003179107A
Other languages
English (en)
Inventor
Makoto Horiuchi
誠 堀内
Mika Sakagami
美香 坂上
Takeshi Ichibagase
剛 一番ヶ瀬
Satoyuki Seki
関  智行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003179107A priority Critical patent/JP2006344383A/ja
Priority to PCT/JP2004/009244 priority patent/WO2004114364A1/ja
Publication of JP2006344383A publication Critical patent/JP2006344383A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
    • H01J61/822High-pressure mercury lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

【課題】紫外放射エネルギー効率を向上させることができる光照射装置を提供する。
【解決手段】発光管1と封止部2とを有する高圧放電ランプ100と、高圧放電ランプ100から発せられる光(111)を反射する反射鏡50とを備え、高圧放電ランプ100から発せられる光(111)は、少なくとも紫外域のスペクトルを有し、発光管1には、150mg/cm3を超える水銀、ハロゲンおよび希ガスが封入されており、ランプ100の管壁負荷は80W/cm2以上である、光照射装置500である。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、光照射装置に関する。特に、紫外線硬化樹脂の硬化や、半導体装置および液晶表示装置の製造工程における露光に用いられる光照射装置(例えば、紫外線照射装置)に関する。
【0002】
【従来の技術】
紫外線硬化樹脂を接着剤として用いた電子部品・光学部品の精密接着や、半導体装置および液晶表示装置の製造工程における露光などには、紫外線を含む光を放射する紫外線照射装置が用いれる。従来の紫外線照射装置としては、例えば、特許文献1に開示されたものがある。
【0003】
図6は、特許文献1に開示された紫外線照射装置の構成を示している。図6に示した紫外線照射装置は、ショートアーク型の放電ランプ1010と、中央部に開口を有する楕円集光鏡1021と、楕円集光鏡1021を保持する楕円集光鏡保持部材1020と、光ファイバーFとを備えている。
【0004】
ショートアーク型の放電ランプ1010は、内部に陰極1011と陽極1012とからなる一対の電極を有しており、放電ランプ1010の陽極1012側の口金1013には、フランジ部1015が設けられている。楕円集光鏡保持部材1020の底部中央には嵌合孔1022が設けられており、嵌合孔1022に放電ランプ1010の口金1013の小径部1016を挿入することにより、放電ランプ1010が定置される。放電ランプ1010は、楕円集光鏡1021の楕円の2つの焦点を通る光軸L上に放電ランプ1010のアークが位置するように配置される。楕円集光鏡1021は、ランプ点灯時に放射光が光ファイバFの光入射端Finに入射するように位置調整されている。ここで、Stはシャッタである。
【0005】
この公報に開示された紫外線照射装置では、嵌合孔1022に嵌合した口金1013に離脱可能に係合し、口金1013のフランジ部1015を楕円集光鏡保持部材1020側に付勢するバネ1030を楕円集光鏡保持部材1020に設けており、それにより、放電ランプ1010を取り付けた後、当該放電ランプ1010の位置調整を不要にすることができる。
【0006】
また、直流点灯式のショートアーク型水銀ランプの紫外線照射量を増大させるために、アルゴンガスを室温で1気圧から8気圧封入し、発光管の最大半径R(cm)、発光管の肉厚d(cm)、入力電力W(kW)として、0.211≦((Wd/R21/2≦0.387となる関係を満たすようにすることが、特許文献2に開示されている。ここでは、水銀は、ランプ内の単位容積当たり4.5mg/cc封入されている。
【0007】
【特許文献1】
特開平10−55713号公報
【特許文献2】
特開平11−191394号公報
【0008】
【発明が解決しようとする課題】
従来のショートアーク型水銀ランプを用いる紫外線照射装置では、水銀の紫外線波長を有効に使用できるように研究・開発が行われている。そして、紫外線硬化性樹脂の硬化や、半導体基板・液晶基板への露光に用いられる従来の紫外線照射装置では、水銀からの紫外発光を効率良く得るために、水銀動作圧で数十気圧程度のレベルの高圧水銀ランプ(または超高圧水銀ランプ)が使用されている。それを超えるレベルでの使用は、紫外発光の効率(つまり、紫外放射エネルギー効率)が低下してしまうので、そのような使用は採用されていない。
【0009】
一方、数十気圧の水銀動作圧においては、300nm未満の水銀発光が強力であり、その光が被照射物や照射装置にダメージを与えてしまうという問題がある。そして、その圧力で300nm未満の水銀発光が生じることは水銀の発光特性であるがゆえに、ダメージを与えてしまうような紫外線(短波長側の紫外線)が放射しないようにするためには、反射鏡の方で調整する必要がある。従来の紫外線照射装置の反射鏡では、300nm以上(例えば、300nm〜400nmの光)を効率良く反射するとともに、300nm未満の光はできるだけ排除するように設計がなされており、それによって300nm未満の光が出射光に含まれないようにしている。
【0010】
このような状況の中、本願発明者は、従来の常識および前提条件をもう一度見直し、従来よりも紫外放射エネルギー効率を向上させることを目的とし、そのようなことを実現できる光照射装置の開発に取り組んだ。
【0011】
本発明の主な目的は、従来よりも紫外放射エネルギー効率を向上させることが可能な光照射装置を提供することにある。本発明の他の目的および本発明の特徴は、後述する発明の実施の形態によって、理解することが可能である。
【0012】
【課題を解決するための手段】
本発明の光照射装置は、管内に発光物質が封入された発光管と、前記発光管から延びた封止部とを有する高圧放電ランプと、前記高圧放電ランプから発せられる光を反射する反射鏡とを備え、前記高圧放電ランプから発せられる前記光は、少なくとも紫外域のスペクトルを有し、前記発光管には、前記発光管の容積を基準にして、150mg/cm3を超える水銀、ハロゲンおよび希ガスが封入されており、前記ランプの管壁負荷は、80W/cm2以上である。
【0013】
ある好適な実施形態において、前記光照射装置は、少なくとも紫外線を照射する紫外線照射装置であり、前記反射鏡は、コールドミラーであり、前記水銀の封入量は、前記発光管の容積を基準にして、190mg/cm3以上である。
【0014】
ある好適な実施形態において、前記発光管内には、一対の電極が対向して配置されており、前記電極は、前記封止部内に配置された金属箔に電気的に接続されており、前記一対の電極の間の距離は、2.5mm以下である。
【0015】
ある好適な実施形態において、前記反射鏡は、前記高圧放電ランプの前記封止部が挿入される開口部が形成された中空ネック部を有し、前記高圧放電ランプは、前記中空ネック部に挿入されて前記反射鏡に固定されており、前記反射鏡は、楕円面の反射面を有する楕円面鏡であり、前記光照射装置は、前記反射鏡を取り囲み、前記反射鏡からの光を通過させる窓が形成された筐体をさらに備えており、前記筐体内には、前記高圧放電ランプに電気的に接続された点灯回路が配置されている。
【0016】
ある好適な実施形態において、前記筐体の窓の周囲には、光ファイバが配置されている。
【0017】
ある好適な実施形態において、前記高圧放電ランプは、交流点灯型のランプである。
【0018】
【発明の実施の形態】
以下、図面を参照しながら、本発明の実施の形態を説明する。以下の図面においては、説明の簡潔化のため、実質的に同一の機能を有する構成要素を同一の参照符号で示すことがある。なお、本発明は以下の実施形態に限定されない。
【0019】
(実施形態1)
図1から図11を参照しながら、本発明の実施形態1に係る光照射装置を説明する。図1は、本実施形態に係る光照射装置500の構成を模式的に示している。
【0020】
図1に示した光照射装置500は、高圧放電ランプ100と、高圧放電ランプ100から発せられる光111を反射する反射鏡50とを備えている。本実施形態の光照射装置500は、少なくとも紫外線を照射する紫外線照射装置であり、紫外線の他、短波長可視光線(例えば、h線、g線)も照射することができる。
【0021】
高圧放電ランプ100の発光管1には、発光管1の容積を基準にして、150mg/cm3を超える水銀、ハロゲンおよび希ガスが封入されており、そして、ランプ100の管壁負荷は、80W/cm2以上である。
【0022】
反射鏡50の周囲には、反射鏡50からの光112を通過させる窓125が形成された筐体120が設けられている。高圧放電ランプ100は、点灯回路100に電気的に接続されており、本実施形態では、点灯回路100は筐体120内に配置されている。
【0023】
高圧放電ランプ100は、管内に発光物質が封入された発光管1と、発光管1から延びた封止部2とを有しており、少なくとも紫外域のスペクトルを有する光を発光する。本実施形態の高圧放電ランプ100は、高圧水銀ランプであり、紫外域のスペクトル(例えば、365nm(i線)など)の他、可視域のスペクトル(例えば、405nm(h線)、436nm(g線)など)も発光する。
【0024】
図2に、本実施形態の高圧放電ランプ100の構成を示す。ランプ100の発光管1は、実質的に石英ガラスから構成されており、発光管1の両端からは、同じく石英ガラスから構成された封止部2が延在している。封止部2内には、金属箔(モリブデン箔)4が配置されており、金属箔4は、発光管1内に対向して配置されている電極の一端に接続されている。また、金属箔4には外部リード5が接続されている。一方の封止部2の端部には口金7が取り付けられている。一対の電極3の間の距離は、2.5mm以下であり、例えば、0.6〜2.5mm(好ましくは、0.8〜2.0mm)である。また、本実施形態の高圧放電ランプ100は、交流点灯型のランプである。
【0025】
ランプ100と組み合わされる反射鏡50は、凹面反射面を持つ反射部分50aと、反射部分50aと一体で構成された中空ネック部50bとを有している。反射部分50aおよび中空ネック部分50bは、いずれもガラスから構成されている。反射部分50aの肉厚は、例えば3mm以上である。反射鏡50の出射方向側の開口部(広開口部)の大きさDは、例えば30mm以上であり、好ましくは40mmから200mmである。
【0026】
反射鏡50の中空ネック部50bの開口部(狭開口部)に、ランプ100の封止部2が挿入されて、ランプ100は反射鏡50に固定されている。ランプ100は、例えばセメント53によって中空ネック部50bと隙間が生じないように固着されている。それゆえ、本実施形態の光照射装置500では、ランプ交換する際に、反射鏡50とランプ100とを同時に交換可能することができる。
【0027】
反射鏡50は、コールドミラーであり、反射鏡50の反射部分50bの内面(反射面)には、赤外線を透過し、紫外線を反射する膜がコートされている。本実施形態の反射鏡50は、楕円面の反射面を有する楕円面鏡であり、2つの焦点f1,f2を持ち、それぞれの焦点距離F1,F2は、図1中に表している。焦点距離F1は、例えば、3mm以上であり、好ましくは5mmから35mmの間にあり、一方、焦点距離F2は、例えば、50mm以上であり、好ましくは50mmから300mmの間にある。なお、焦点f1,f2および焦点距離F1,F2の関係は図3に示した。
【0028】
高圧放電ランプ100は、楕円反射鏡50の2つの焦点f1,f2を通る光軸上にセットされており、そして、高圧放電ランプ100の電極3,3間に形成されるアークが、2つの焦点のうち反射鏡50に近い側の焦点f1に位置するように配置されている。
【0029】
上述したように高圧放電ランプ100は、当該ランプ100に電力を供給できる点灯回路130に電気的に接続されている。より詳細に述べると、次の通りである。高圧放電ランプ100の一方の端子(外部リード5)は、外部リード引き出し線61に電気的に接続され、外部リード引き出し線61は、反射鏡50に形成された貫通孔58を通して、配線連結部材62に電気的に接続される。もう一方の端子は口金9となっており、この口金9および配線連結部材62に配線60が電気的に接続されており、そして配線60は点灯回路130に電気的に接続されている。各部材間の電気的な接続は、溶接やかしめによって行われる。
【0030】
本実施形態の点灯回路130は、DC−DCコンバータ回路131を含んでおり、DC−DCコンバータ回路131は、例えば、スイッチング素子とスイッチングトランスとダイオードとコンデンサとから構成されている。本実施形態の点灯回路130は、前記スイッチング素子のスイッチング周波数、またはスイッチのON/OFF比、あるいは両方を変化させることによって、ランプ100に供給する電力を、放電ランプ100の定格電力の100%から50%の間で変化させることができる機能を有している。
【0031】
さらに、本実施形態の点灯回路130は、インバータ回路132を、DC−DCコンバータ回路131の出力端に備えている。インバータ回路132は、複数のスイッチング素子を有しており、このスイッチング素子によってスイッチング周波数を例えば60Hzから800Hzの間で可変することができる。
【0032】
高圧放電ランプ100の構成をより詳細に説明すると、ランプ100は、封止部2を2つ備えたダブルエンド型のランプであり、発光管1は略球形をしており、外径が例えば5mm〜20mm程度であり、ガラス厚は例えば1mm〜5mm程度である。また、発光管1内の放電空間の容積は例えば0.01cc〜5cc(好ましくは、0.05〜2cc)程度である。本実施形態では、外径10mm程度、ガラス厚3mm程度、放電空間の容積0.06cc程度の発光管1を用いている。封止部2は、シュリンク手法によって作製されたシュリンク構造を有するものである。
【0033】
上述したように、発光管1内には、発光種である水銀6が、例えば150mg/cm3よりも多く封入されている。水銀6の封入量は、好ましくは190mg/cm3から350mg/cm3である。また、発光管1内には、10-6μmol/mm3以上のハロゲンが封入されている。ハロゲンは、好ましくは、10-6と10-1μmol/mm3 の間の量の臭素が封入されている。ハロゲンは、ハロゲン単体の他、分解してハロゲンを生成するハロゲン前駆体の形態で封入しても良く、本実施形態では、CH2Br2、HBr、HgBr2などの形態で発光管1内に導入している。そして、発光管1内には、5〜40kPaの希ガス(例えばAr)も封入されており、本実施形態では、約20kPaのArが封入されている。
【0034】
次に、従来の紫外線照射装置においては、紫外線エネルギー効率を考慮して、水銀動作圧が高くても数十気圧程度まで高圧水銀ランプしか使用しなかったのに対し、本実施形態では、従来の紫外線エネルギー効率の考え方をあえて無視して、水銀封入量を150mg/ccよりも多くしている理由について述べる。
【0035】
本実施形態の高圧放電ランプ100は、150気圧よりも高い圧力で動作させているにもかかわらず、反射鏡50から反射され集光された光において、樹脂硬化や露光に使用される365nmや405nm、436nmの水銀輝線強度が、なんと従来のものよりも高くなる。この驚くべき事象は、本願発明者によって見出された。以下、さらに説明を続ける。
【0036】
本願発明者は、図2に示した本実施形態の高圧水銀ランプ100において、管壁負荷を80W/cm2とし、水銀封入量を90mg/cm3、120mg/cm3、150mg/cm3、190mg/cm3と変化させて、動作圧力を90気圧、120気圧、150気圧、190気圧と変化させたときの、ランプから放射される365nmや、405nm、436nmの水銀輝線強度を測定した。その結果を図4に示す。
【0037】
図4中のグラフの縦軸は、従来ランプの強度を100%としたものでり、図4では、相対値でもって結果をプロットしている。図4中のグラフの横軸は、ランプの動作圧(気圧)を表す。この場合、反射鏡50が無し状態で積分球を使用して光強度の測定を実施した。確かに、従来から言われているように、水銀蒸気圧を高くすればするほど、365nmや、405nm、436nmの水銀輝線強度は低下し、水銀蒸気圧の増加は樹脂硬化や露光によって不利な振る舞いを見せる。
【0038】
しかしながら、同じランプを反射鏡50に組み込み、反射鏡50からの収束光を積分球に導いて光り強度を測定すると、驚くべきことに、露光に有利な405nmや436nmの輝線強度は、図5に示すように、従来ランプのよりも高くなった。
【0039】
図5は、高圧水銀電ランプ(100)を反射鏡50に組み込んで、水銀封入量を90mg/cm3、120mg/cm3、150mg/cm3、190mg/cm3と変化させて、動作圧力を90気圧、120気圧、150気圧、190気圧と変化させたときの、反射鏡50からの収束光の365nmや、405nm、436nmの水銀輝線強度を測定した結果を示すグラフである。参考のために、波長範囲355nmから375nmの放射エネルギー、波長範囲345nmから385nmの放射エネルギー、波長範囲335nmから395nmの放射エネルギー、波長範囲300nmから400nmの放射エネルギーもそれぞれ求めて結果をプロットしている。図4に示したグラフと同様に、図5中のグラフの縦軸は、従来ランプの強度を100%としたものでり、図5でも、相対値でもって結果をプロットしている。図5中のグラフの横軸は、ランプの動作圧(気圧)を表す。
【0040】
図5に示すように、露光に有利な405nm、436nmの強度は90気圧の動作時で、既に従来の1.5倍以上であり、非常に高い値が得られる。蒸気圧とともに、それらの強度は低下傾向を示すが、驚くべきことに、150気圧よりも高い蒸気圧範囲では圧力とともに増加に転じる。樹脂硬化に有利な365nm輝線強度は動作圧90気圧から150気圧までは一定で、動作圧が150気圧よりも高くなると圧力とともに増加し、約250気圧以上で従来ランプをしのぐ強度が得られる。
【0041】
一方で、365nmを含んでわずかに波長選択範囲を広げると、例えば、355nmから375の範囲の放射エネルギーは90気圧の動作時で既に従来の1.2倍以上であり、非常に高い値が得られる。したがって、樹脂硬化においても90気圧の動作圧であっても、従来と同等以上の性能を示すものと考えられる。その355nmから375nmの範囲の放射エネルギーは蒸気圧とともに、それらの強度は低下傾向を示すが、ここでも驚くべきことに、露光に有利な405nm、436nmの輝線強度の振る舞いと同様に、150気圧よりも高い蒸気圧範囲では、圧力とともに増加に転じる。樹脂硬化に有利なその他の波長範囲である、波長範囲345nmから385nmの放射エネルギー、波長範囲335nmから395nmの放射エネルギー、波長範囲300nmから400nmの放射エネルギーにおいては、90気圧の動作時でも、既に従来の1.2倍から1.8倍のエネルギーを示し、非常に高い値が得られる。それらは蒸気圧とともに、低下傾向を示すが、露光に有利な405nm、436nmの輝線強度の振る舞いと同様に、150気圧よりも高い蒸気圧範囲では圧力とともに増加に転じる。
【0042】
以上のように、反射鏡50と組み合わされる高圧放電ランプ100の水銀封入量を、従来の動作圧が数十気圧となるレベルの水銀封入量よりも多い、90mg/cm3とし、好ましくは水銀封入量を150mg/cm3よりも多くし、その動作圧を90気圧以上、好ましくは150気圧よりも高くすることで、樹脂硬化や露光に有利な放射を、従来よりもはるかに高い効率で得ることができる。
【0043】
この高い効率によって、水銀蒸気圧の増加とともに増える赤外線による被照射物の熱の問題も実質的に解消することができる。よく知られているように、水銀蒸気圧が増加すると、可視発光とともに長波長の赤外発光も増加する。しかし、ここでは、当該高い効率によって、従来と同じ紫外線量を得るに必要なランプ電力が低減され、それゆえ、ランプから放射される赤外線の絶対量が低減される。しがたって、水銀蒸気圧の増加とともに増える赤外線による被照射物の熱の問題も実質的に解消できるのである。
【0044】
なお、水銀封入量を150mg/cm3よりも多くし、その動作圧を150気圧よりも高くする有利な点は、放射効率がよいばかりでなく、非常に長い寿命が得られるという点である。本実施形態の光照射装置に用いる高圧放電ランプ100では、いわゆるハロゲンサイクルによる黒化防止のために、臭素が封入されているが、いくつかの試験によって、150気圧以下の動作圧ではハロゲンサイクルが正常に働かないことがある。この理由は、水銀封入量が150mg/cm3以下では、水銀と結合せずに、ハロゲンサイクルに寄与するハロゲンが過剰となって、定温度域の電極3、具体的には、電極3のうち封止部2に近い部分が、激しくハロゲンに侵食され、その結果、その近くの発光管1が黒くなったり、電極が折れてしまう可能性があるからである。
【0045】
また、水銀封入量の低下は、発光管1内で起きる対流が弱くなるので、発光管1の温度の過度の低下を招く。このため、水銀封入量90mg/cm3では温度が低くなった発光管1の上部にもタングステン輸送がおき、初期に黒くなる現象が見られた。寿命の観点から述べると、水銀封入量を150mg/cm3よりも多くし、その動作圧を150気圧よりも高くすることで、なんと5000時間から10000時間の点灯においても、ランプは黒くならず、点灯し続けることが可能となる。従来の紫外線照射装置用ランプの寿命では、点灯時間2000時間で長寿命をうたっているのと比較すれば、この非常に長い寿命は、顕著な効果である。
【0046】
なお、水銀封入量の上限を熱的な観点から規定するとすれば、例えば水銀封入量350mg/cm3、動作圧350気圧である。この値を超えると、赤外放射量が猛烈な勢いで増加すると思われるので、それにより、被照射物に熱的ダメージを与えてしまうおそれがある。
【0047】
管壁負荷を80W/cm2以上に増加させると、反射鏡50からの収束光の365nmや405nm、436nmの水銀輝線強度、さらには、波長範囲365nmから375nmの放射エネルギー、波長範囲345nmから385nmの放射エネルギー、波長範囲335nmから395nmの放射エネルギー、波長範囲300nmから400nmの放射エネルギーは従来ランプよりも更に増加する。例えば、下記表1に示すように、管壁負荷を80W/cm2から140W/cm2に増加させると、反射鏡50からの収束光の365nm、405nm、436nmの水銀輝線強度、さらには、波長範囲365nmから375nmの放射エネルギー、波長範囲345nmから385nmの放射エネルギー、波長範囲335nmから395nmの放射エネルギー、波長範囲300nmから400nmの放射エネルギーは、比較例(従来ランプ)と比較して、それぞれ、1.1倍、3.4倍、2.4倍、2.6倍、3.5倍、4.1倍となり、この条件では、もはや、比較例(従来ランプ)のを下回る強度のものはなく、それら全てが従来ランプをはるかにしのぐ、高い放射が得られる。
【0048】
【表1】
Figure 2006344383
【0049】
管壁負荷を80W/cm2よりも小さくすると、ランプの温度が低くなりすぎて、水銀の一部が凝縮して蒸発せず、動作圧が低下してしまい、結果として従来ランプと比べると、反射光50からの収束光365nmや405nm、436nmの強度が低下して不利になる。逆に管壁負荷は高ければ高いほど放射に有利である。これは、発光管での光のロス(例えば、石英ガラスや封入された水銀蒸気および/またはハロゲンの吸収による短波長の光のロス)が小さくなり、さらには小さな発光管が放電アークの収縮をもたらして輝度を上げるためかもしれない。しかしながら、石英ガラスの耐熱性の制限から、実用的な寿命5000時間から、1000時間を得るには、300W/cm2を上限とするのが好ましい。ただし、冷却を施したり、ランプの交換サイクルを短くするような使用が可能ならこの限りでない。
【0050】
本実施形態の構成において、発光管1内で電極3の先端は、その先端間距離、つまり電極間距離が約0.6mmから2.5mmの間で、好ましくは0.8mmから2.0mmになるように配置されている理由を次に述べる。それは、0.6mmよりも短い電極間距離では電極3の温度が高くなり、その電極の熱放射光(白熱電球と同様に、長波長成分が豊富)が反射鏡50からの収束光に加わり、被照射物の温度を過度に上昇させてしまう可能性があるからである。また、2.5mmよりも長くなると、高い動作圧に起因する対流による放電アークの不安定さが増し、ちらつきが生じやすくなるとともに、アークの温度が低下し、あたかも実質的に低い水銀蒸気圧のランプのように405nmや436nmの輝線強度が低くなる傾向を示すからである。好ましい0.8mmから2.0mmの範囲では、上記のような不都合がないのに加え、ハロゲンサイクルによって蒸発したタングステンが電流先端に戻され、非常にとがった先端形状となり、細いアークを形成せしめて、反射鏡50による光の収束に有利に働く。
【0051】
発光管1の内容積は約0.01cm3から5cm3の間にあり、好ましくは、0.05cm3から2cm3 である理由を次に述べる。0.01cm3よりも小さければ、石英ガラスの熱的な制限によって、実質的に入力できる電力は30W程度に制限され、絶対的に大きな出力がとれないからである。一方、5cm3よりも大きくすると、その大きな寸法がもはや点灯中の水銀蒸気の対流にまで影響を及ぼすようになり、例えば発光管1の最高温度部と最低温度部との差をますます大きくして、アークの不安定さを増す。好ましい0.05cm3から2cm3の範囲では、上記のような不都合がないのに加え、点灯を開始してから水銀が全て蒸発し、所定の定格光出力を得るまでの時間が、車のヘッドライト用の高圧放電ランプの点灯開始のように、数分もしくは1,2分程度と非常にスムーズに光出力が立ち上がる。このことは、定格電流よりも過度の電流が流れる期間が短いことを意味し、したがって、始動電流による電極ダメージが低く抑えられ、寿命に有利に働く。
【0052】
発光管1に封入しているハロゲンの量が10-6μmol/mm3以上、好ましくは10-6と10-1μmol/mm3の間にある理由を次に述べる。それは、10-6μmol/mm3以上のハロゲンは、蒸発したタングステンが電極先端に戻され、非常にとがった電極先端形状をもたらし、その結果、細いアークを形成せしめて、反射鏡50による光の収束に有利に働くからである。なお、ハロゲンが10-1μmol/mm3よりも多くなると、先端形状の変形が激しくアークの位置が一定に定まらず不安定となる。先端形状の鋭角化に関しては、ハロゲンの種類は臭素の他に、ヨウ素や塩素も選択可能である。しかし、ヨウ素は始動電圧が高くなる傾向があり、また塩素はグロー放電電圧を高くするので、アーク放電への移行がヨウ素や臭素と比べて困難となるので臭素が好適である。
【0053】
また、反射鏡50は光軸を有する凹状反射面を持つ反射部分50aと、反射部分50aと一体で光軸を包んでいる中空ネック部50bとを備え、いずれもガラスから構成されているが、少なくとも反射部分50aの肉厚は3mm以上とするのが好ましい。従来よりも高い水銀蒸気圧は、樹脂効果や露光に有利な波長の光量を増すが、同時に、赤外成分の発光も増加する。本実施形態のように当該肉厚を3mm以上にすれば、従来よりも増加した赤外線を吸収することができ、その結果、反射鏡50から周囲に漏れ出る赤外線を従来ランプレベルに抑制することが可能となる。このことは、装置の加熱を防止し、機器の小型化に有利に働く。さらに、中空ネック部50bは、放電ランプの光の影響をほとんど受けないので、赤外線を吸収した反射部分50aのラジエターの働きをし、効果的に、反射鏡50全体の温度低下に寄与する。
【0054】
なお、反射鏡50の開口部(広開口部)を、紫外線を透過するガラス、例えば石英ガラスで塞げば、放電ランプ100の温度をより安定に一定に保つことができ、その結果、水銀蒸気圧の変化を抑え、光出力の安定に有利に働く。また、そのガラスが従来よりも増加した赤外線の一部を吸収し、被照射物の温度上方を効果的に抑制することもでき、有利である。
【0055】
本実施形態の楕円反射鏡50の焦点距離F1が3mm以上で、好ましくは5mmから35mmの間にある理由を述べると、まず、3m未満ではランプ100が中空ネック部50bに近すぎて、その部分の温度を上昇させ、上述のラジエター効果を抑制するばかりでなく、熱的負担の増加によってネック部50bのわれを生じる危険性が増すからである。5mmから35mmの範囲が好ましい理由は、上述のような不都合がないことに加えて、中空ネック部50b側に位置する放電ランプ100の封止部2が過度に長くなりすぎず、したがって、放電ランプ100の温度を適切に高め、蒸気圧の低下を抑制することができるからである。
【0056】
また、焦点距離F2が50mm以上で、好ましくは50mmから300mmの間にある理由を述べると、まず、50mm以下だと反射鏡50からの収束光が放電ランプ100の封止部2に遮られるおそれがあるからである。そして、300mmを超えると、収束位置において反射鏡50からの光が収束する範囲が広がり、シャープな光強度分布が得られず、例えば、収束付近に光ファイバの入射端を設け、光ファイバによって光を通じて光を照射するような場合、光ファイバへの入射効率が悪く、結果として、光利用効率を低下させてしまうからである。ただし、それを補正するレンズなどを用いる場合は、焦点距離F2は300mmよりも長くしてもよく、その意味で、楕円反射鏡の代わりに、放物面反射鏡を用い、それと集光レンズ系を組み合わせるような構成にしてもよい。
【0057】
なお、本実施形態の光照射装置では、高圧放電ランプ100が光軸上にあるような状態で封止部2が中空ネック部50bに挿入され、中空ネック部50bと隙間がないように、例えば無機系接着剤(セメントなど)で固着されおり、それゆえ、ランプ交換は、反射鏡50と高圧放電ランプ100とを同時に交換可能となっている。このことは、従来のランプのみを交換する方式(例えば、特許文献1参照)と比べて、反射部分50aの反射面にコートされている膜(紫外線反射・赤外線透過膜)が、長い時間、放電ランプ100の強い光や熱に曝されることで劣化し、光出力特性に変化を及ぼす可能性を無くするとともに、ランプの位置を再度調整し配置する煩雑な手間や、あるいは配置ミスの可能性を実質的に完全になすくことができることを意味する。
【0058】
なお、本実施形態の構成では、高圧放電ランプ100が光軸上にあるような状態で封止部2が中空ネック部50bに挿入され、中空ネック部50bと隙間がないように固着させた例を示したが、反射鏡50の温度をコントロールするための間隙が中空ネック部50bと封止部2との間にあってもよい。また、中空ネック部50bと封止部2とをセメントによって直接固着するのはなく、スペーサを介して両者を固着するようにしてもよい。また、中空ネック部50bの中空部は、反射部分50aに向かって円錐状に、孔が小さくなる形が光景である。この方が反射部分50aの反射面を大きくとれ、それゆえ、収束する光の量が増える。
【0059】
また、上述したことと重複する部分もあるが、特許文献1等の従来技術は、本実施形態の構成と比較して、点灯中の水銀蒸気圧が数十気圧程度と低いので、次のような問題が発生し得る。ただし、この問題は、従来においては、常識的な条件での使用であったため、問題とはされていなかったものである。
【0060】
点灯中の水銀蒸気圧が数十気圧程度と低いことにより、点灯中のランプ動作電圧が低く、ランプ電流が大きいため、電極の熱負担が大きく、それゆえ、寿命が短い。さらに、低い蒸気圧のために特に波長300nm以下の水銀発光が強力で、被照射物や照射装置自身が、この紫外線によりダメージを受けていた。さらに、ランプだけを交換するために、長期の使用により反射鏡の特性(分光反射率、強度など)が劣化し、その反射鏡の劣化により出力が変化したり、反射鏡が破損し得るという問題もあった。
【0061】
さらに、特許文献2に開示された技術のように、紫外線放射を増すためにアルゴンを高圧で封入するには、ランプの製造工程において液体窒素にてランプを冷却しアルゴンガス(沸点−186℃)を発光管内にトラップする必要がある。アルゴンガスと沸点が近い液体窒素(沸点−196℃)にてランプを冷却する場合、管壁負荷が10〜30W/cm2といった寸法の大きな発光管しか製造できなかったり、あるいは小型のランプを作製する場合は、非常に高価な液体ヘリウムを使用したりする必要があり、それが問題となる。さらに、高圧のアルゴンガスはランプの始動を非常に困難にし、そのため高い始動電圧を印加する必要があるために、装置の大型化を招いたり、あるいは、高い始動電圧がランプの電極にダメージを与え、寿命を短くするという問題も生じる。
【0062】
特許文献1、2を含む従来技術でもそうであるが、紫外光照射装置用のランプは、直流型の高圧放電ランプ(DCランプ)が用いられるのが一般的である。これに対し、交流型の高圧放電ランプを用いた場合、陰極輝点(この近傍では、高温のため紫外光がより多く発せされる)が2つ出来るので、光ファイバ等への紫外光がより多く収束(集光)されるという利点もある。なお、上述した水銀封入量が150mg/cm3を超える高圧放電ランプによってもたらされる効果は、直流型ランプ、交流型ランプに限定されず、得られるものであるので、本実施形態の光照射装置は、交流型ランプ、直流型ランプともに利用可能である。
【0063】
本発明の実施形態に係る光照射装置および光照射方法は、少なくとも紫外線を含む光を照射する用途に適用できる。例えば、上述した紫外線硬化性樹脂の硬化や、半導体基板・液晶基板の露光の用途に利用することができる。より具体的な用途としては、キュアリング、UV接着、ウエハ露光、ウエハ周辺露光、液晶露光、プリント基板露光、TAB露光などに用いることができる。
【0064】
【発明の効果】
本発明の光照射装置によれば、150mg/cm3を超える水銀、ハロゲンおよび希ガスが発光管に封入され、管壁負荷が80W/cm2以上である高圧放電ランプと反射鏡とを備えているので、従来よりも紫外放射エネルギー効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る光照射装置500の構成を示す模式図
【図2】本発明の実施形態に係る高圧放電ランプ100の構成を示す模式図
【図3】焦点f1,f2および焦点距離F1,F2の関係を説明するための図
【図4】 水銀動作圧力を変化させたときの、ランプから放射される各種水銀輝線強度についてのグラフ
【図5】ランプを反射鏡に組み込んだ場合における、水銀動作圧力を変化させたときの、ランプから放射される各種水銀輝線強度についてのグラフ
【図6】従来の紫外線照射装置の構成を示す図
【符号の説明】
1 発光管
2 封止部(側管部)
3 電極(電極棒)
4 金属箔
5 外部リード
6 発光種(水銀)
7 口金
50 反射鏡
50a 反射部分
50b 中空ネック部
100 高圧放電ランプ(高圧水銀ランプ)
120 筐体
125 窓
130 点灯装置
131 DC−DCコンバータ回路
132 インバータ回路
500 光照射装置(紫外線照射装置)

Claims (6)

  1. 管内に発光物質が封入された発光管と、前記発光管から延びた封止部とを有する高圧放電ランプと、
    前記高圧放電ランプから発せられる光を反射する反射鏡と
    を備え、
    前記高圧放電ランプから発せられる前記光は、少なくとも紫外域のスペクトルを有し、
    前記発光管には、前記発光管の容積を基準にして、150mg/cm3を超える水銀、ハロゲンおよび希ガスが封入されており、
    前記ランプの管壁負荷は、80W/cm2以上である、光照射装置。
  2. 前記光照射装置は、少なくとも紫外線を照射する紫外線照射装置であり、
    前記反射鏡は、コールドミラーであり、
    前記水銀の封入量は、前記発光管の容積を基準にして、190mg/cm3以上である、請求項1に記載の光照射装置。
  3. 前記発光管内には、一対の電極が対向して配置されており、
    前記電極は、前記封止部内に配置された金属箔に電気的に接続されており、
    前記一対の電極の間の距離は、2.5mm以下である、請求項2に記載の光照射装置。
  4. 前記反射鏡は、前記高圧放電ランプの前記封止部が挿入される開口部が形成された中空ネック部を有し、
    前記高圧放電ランプは、前記中空ネック部に挿入されて前記反射鏡に固定されており、
    前記反射鏡は、楕円面の反射面を有する楕円面鏡であり、
    前記光照射装置は、前記反射鏡を取り囲み、前記反射鏡からの光を通過させる窓が形成された筐体をさらに備えており、
    前記筐体内には、前記高圧放電ランプに電気的に接続された点灯回路が配置されている、請求項1から3の何れか一つに記載の光照射装置。
  5. 前記筐体の窓の周囲には、光ファイバが配置されている、請求項4に記載の光照射装置。
  6. 前記高圧放電ランプは、交流点灯型のランプである、請求項1から5の何れか一つに記載の光照射装置。
JP2003179107A 2003-06-24 2003-06-24 光照射装置 Pending JP2006344383A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003179107A JP2006344383A (ja) 2003-06-24 2003-06-24 光照射装置
PCT/JP2004/009244 WO2004114364A1 (ja) 2003-06-24 2004-06-23 光照射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003179107A JP2006344383A (ja) 2003-06-24 2003-06-24 光照射装置

Publications (1)

Publication Number Publication Date
JP2006344383A true JP2006344383A (ja) 2006-12-21

Family

ID=33535047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003179107A Pending JP2006344383A (ja) 2003-06-24 2003-06-24 光照射装置

Country Status (2)

Country Link
JP (1) JP2006344383A (ja)
WO (1) WO2004114364A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191252A (ja) * 2007-02-01 2008-08-21 Phoenix Denki Kk 露光用光源ならびにこれを用いた露光装置
JP2009042715A (ja) * 2007-07-17 2009-02-26 Ushio Inc 光源装置
JP2009105014A (ja) * 2007-10-25 2009-05-14 Panasonic Electric Works Co Ltd 照明器具
JP2010085954A (ja) * 2008-10-03 2010-04-15 Orc Mfg Co Ltd 露光描画装置
JP2011128295A (ja) * 2009-12-16 2011-06-30 Ushio Inc 露光装置及び露光装置の点灯方法
JP5885879B1 (ja) * 2015-10-19 2016-03-16 フェニックス電機株式会社 高圧放電ランプの点灯方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2785430B2 (ja) * 1990-03-28 1998-08-13 三菱マテリアル株式会社 光伝送用石英ガラス
JPH0743938Y2 (ja) * 1991-08-19 1995-10-09 江東電気株式会社 重水素放電管
JPH05180692A (ja) * 1991-12-28 1993-07-23 Toshiba Lighting & Technol Corp 紫外線照射装置、光学系の光軸調整装置及び光軸調整方法
JP2931735B2 (ja) * 1993-04-26 1999-08-09 信越石英株式会社 耐失透性放電灯用シリカガラス
JP3228676B2 (ja) * 1996-03-07 2001-11-12 信越石英株式会社 遠紫外線用高純度シリカガラス及びその製造方法
JP2980094B2 (ja) * 1997-05-16 1999-11-22 住友電気工業株式会社 石英ガラス物品及びその製造方法
JP3041298B2 (ja) * 1998-05-12 2000-05-15 ウシオ電機株式会社 高圧放電ランプ
JP4531904B2 (ja) * 1999-01-21 2010-08-25 東ソー株式会社 紫外線用光学材料およびその製造方法
JP2001079388A (ja) * 1999-09-17 2001-03-27 Japan Storage Battery Co Ltd 紫外線照射装置
JP3319742B2 (ja) * 1999-10-18 2002-09-03 松下電器産業株式会社 高圧水銀ランプ、ランプユニットおよび高圧水銀ランプの製造方法
US6495844B1 (en) * 2000-01-25 2002-12-17 Welch Allyn, Inc. Metal halide lamp for curing adhesives
JP4577602B2 (ja) * 2001-07-31 2010-11-10 岩崎電気株式会社 紫外線照射装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191252A (ja) * 2007-02-01 2008-08-21 Phoenix Denki Kk 露光用光源ならびにこれを用いた露光装置
JP2009042715A (ja) * 2007-07-17 2009-02-26 Ushio Inc 光源装置
JP2009105014A (ja) * 2007-10-25 2009-05-14 Panasonic Electric Works Co Ltd 照明器具
JP2010085954A (ja) * 2008-10-03 2010-04-15 Orc Mfg Co Ltd 露光描画装置
JP2011128295A (ja) * 2009-12-16 2011-06-30 Ushio Inc 露光装置及び露光装置の点灯方法
JP5885879B1 (ja) * 2015-10-19 2016-03-16 フェニックス電機株式会社 高圧放電ランプの点灯方法

Also Published As

Publication number Publication date
WO2004114364A1 (ja) 2004-12-29

Similar Documents

Publication Publication Date Title
US7178944B2 (en) Lighting apparatus
JP4872224B2 (ja) 無電極放電ランプと同ランプを備えた照明器具
KR20000071351A (ko) 쇼트 아크 방전 램프
JP3623137B2 (ja) 放電ランプと光源装置
CN1469422A (zh) 高压水银灯和灯装置
JP2006344383A (ja) 光照射装置
JPH1050254A (ja) アーク放電光源
JP2004031153A (ja) 高圧水銀ランプおよびランプユニット
JP4400125B2 (ja) ショートアーク型放電ランプ点灯装置
TWI344320B (en) Short arc type discharge lamp operating apparatus, ultraviolet irradiation apparatus and method of ultraviolet irradiating
JP2007273153A (ja) ショートアーク型水銀ランプ
JP2007026675A (ja) 光照射装置、光照射装置用ランプおよび光照射方法
CN103367096B (zh) 超高压汞灯及具有其的紫外线照射装置
EP2239761A2 (en) High-intensity discharge lamp and lighting device
JPWO2009019978A1 (ja) 放電ランプ
JP4897397B2 (ja) 紫外線照射装置
JP2005243339A (ja) 閃光放電ランプおよび光エネルギー照射装置
JP4609224B2 (ja) 光源装置
JP3345879B2 (ja) 高圧水銀蒸気放電灯及びそれを用いた光源装置
JPH11273619A (ja) ショートアーク型水銀ランプ、および紫外線発光装置
JP4756878B2 (ja) セラミック放電ランプ点灯装置
JP2018185921A (ja) 放電ランプ
JP2011119151A (ja) キセノン水銀放電ランプおよび光照射装置
JP2006318729A (ja) メタルハライド放電ランプおよびメタルハライド放電ランプシステム
JP2009230904A (ja) ショートアーク型放電ランプ