本発明はコンデンサに関し、例えば、高速動作する電気回路に配設され、高周波ノイズのバイパス用として、もしくは電源電圧の変動防止用に供される、大容量、低インピーダンスのコンデンサに関するものである。
近年、電子機器の小型化、高機能化に伴い、電子機器内に設置される電子部品にも小型化、薄型化、高周波対応などの要求が強くなってきている。
特に、大量の情報を高速に処理する必要のあるコンピュータの高速デジタル回路では、パーソナルコンピュータレベルにおいても、CPUチップ内のクロック周波数は400MHzから1GHz、チップ間バスのクロック周波数も75MHzから100MHzという具合に高速化が顕著である。
また、LSIの集積度が高まりチップ内の素子数の増大につれ、消費電力を抑えるために電源電圧は低下の傾向にある。これらIC回路の高速化、高密度化、低電圧化に伴い、コンデンサ等の受動部品も小型大容量化と併せて、高周波もしくは高速パルスに対して優れた特性を示すことが必須になってきている。
コンデンサを小型高容量にするためには、一対の電極に挟持された誘電体層を薄くし、薄層化することが最も有効である。薄層化は上述した電圧の低下の傾向にも適合している。
一方、IC回路の高速動作に伴う諸問題は各素子の小型化よりも一層深刻な問題である。このうち、コンデンサの役割である高周波ノイズの除去機能において、特に重要となるのは、論理回路の切り替えが同時に発生したときに生ずる電源電圧の瞬間的な低下を、コンデンサに蓄積されたエネルギーを瞬時に供給することにより低減する機能であり、いわゆるデカップリングコンデンサと称されるものである。
このデカップリングコンデンサに要求される性能は、クロック周波数よりも速い負荷部の電流変動に対して、いかにすばやく電流を供給できるかにある。従って、100MHzから1GHzにおける周波数領域に対してコンデンサとして確実に機能しなければならない。
しかし、実際のコンデンサは静電容量成分の他に、抵抗成分、インダクタンス成分を持つ。容量成分のインピーダンスは周波数増加とともに減少し、インダクタンス成分は周波数の増加とともに増大する。
このため、動作周波数が高くなるにつれ、素子の持つインダクタンスが供給すべき過渡電流を制限してしまい、論理回路側の電源電圧の瞬時低下、または新たな電圧ノイズを発生させてしまう。結果として、論理回路上のエラーを引き起こしてしまう。特に最近のLSIは総素子数の増大による消費電力増大を抑えるために電源電圧は低下しており、電源電圧の許容変動幅も小さくなっている。従って、高速動作時の電圧変動幅を最小に抑えるため、デカップリングコンデンサ自身の持つインピーダンスを高周波領域においても減少させ、貯えられた電荷を瞬時に必要な電流として供給できる性能を有することが非常に重要である。
インピーダンス低減の目安は、A. J. Rainal, " Computing Inductive Noiseof CMOS Drivers", IEEE Trans. Comp., Packag., Manufact. Technol.-Part B,Vol. 19, pp. 789-802(1996) に記載されているように、1ドライバ当りの電流変化は40mA/nsである。電源電圧が1.8V、電圧変動の許容範囲が10%の0.18V、オフチップドライバの数が64個とすると、インダクタンスの上限は0.14nHとなり、1GHzでのインピーダンスを約0.4Ω以下としなければならない。
必要な周波数領域でコンデンサのインピーダンスを最小にするためには、コンデンサ自身の静電容量成分を大きくし、抵抗成分並びにインダクタンス成分を小さくするか、等価直列インダクタンスESLと静電容量Cとで決定される共振周波数f0=1/2π(ESL・C)1/2を必要周波数に合わせるように静電容量を下げればよい。
前者の手法は、まず静電容量に関しては、上述したように電極層に狭持された誘電体層の厚みを薄くすることがもっとも有効である。抵抗成分は誘電体の誘電損失および電極層の抵抗により決定され、電極層の抵抗については数GHz以上で顕著になる表皮効果を別にすれば、ほぼ一定値と考えればよい。
インダクタンスを減少させる方法としては、電流経路の長さを最小にする方法、電流経路をループ構造としループ断面積を最小にする方法、電流経路をn個に分配して実効的なインダクタンスを1/nにする方法がある。
このような方法によりコンデンサのインダクタンスを低減し、素子のインピーダンスを低減させる試みがなされているが、インピーダンスが0.4Ω以下で使用できる領域はコンデンサの静電容量とインダクタンスで決定される共振周波数付近のみである。これ以上の周波数領域で容量を下げて使用した場合、上記共振周波数±数十MHz程度の領域でしか機能しないコンデンサになってしまう。
共振周波数付近でしかインピーダンスが下がらない点を克服し、広い周波数領域において低インピーダンスで機能するコンデンサを実現する方法としては、容量の異なるコンデンサを並列接続する手段が考えられている。例えば、特開平6−77083号公報で開示されているように、比誘電率の異なる複数の誘電体材料を並列に配列し、大容量でかつ高周波特性に優れるコンデンサを得る試みもある。
積層セラミックコンデンサにおいては、特開平8−162368号公報に記載されているように、1つのコンデンサ内で電極面積および誘電体層厚みを変えることにより、容量の異なる2つの容量素子を並列接続し、容量の異なる2つの容量素子の共振点で低インピーダンスを促進し、単一の部品で広い周波数領域でノイズ吸収機能を発現させる試みがなされている。
また、特開平9−246098号公報には、各容量が異なるように各層の電極を形成し、各段をインダクタ素子を介して並列接続することにより、上記と同様に広い周波数領域でノイズ吸収機能を発現させる試みがなされている。
特開平6−77083号公報
特開平8−162368号公報
特開平9−246098号公報
特開平2−256216号公報
特開平10−189390号公報
しかしながら、特開平6−77083号公報の薄膜コンデンサでは、コンデンサの端子電極を1対のままで、誘電体層を平面内で分割しても、等価回路は単一のコンデンサと何ら変わらないため、材料の誘電特性の並列効果のみで、等価回路上の効果は現れていないと考えられる。
また、特開平8−162368号公報の並列コンデンサでは、等価回路上は並列回路であるが、チップ内の2つの容量素子の自己インダクタンスが大きいと、その並列接続による大きな効果を得ることができない。さらに、この構造では2つの容量素子自身には同一方向の電流が流れてしまうため、2つの容量素子間の相互インダクタンスが大きくなり並列接続の効果を期待することはできない。
また、特開平9−246098号公報の並列コンデンサの間にインダクタ素子を挿入するコンデンサでは、素子全体のインダクタンスが増大してしまい低インピーダンス化に逆行する。さらに重要な問題として、各共振点間には並列共振によるインピーダンスの極大点が存在してしまい、この並列共振を抑えないと100MHz以上の広い周波数領域でインピーダンスを下げることはできないという問題があった。
本発明は、幅広い周波数領域において大容量でかつ低インピーダンスのコンデンサを提供することを目的とする。
本発明のコンデンサは、第1電極層と第2電極層とが誘電体層を挟んで交互に積層されて成る多角形状のコンデンサ本体の周囲に、前記第1電極層に接続する複数の第1端子電極と前記第2電極層に接続する複数の第2端子電極とを交互に形成してなり、前記第1端子電極または前記第2端子電極のいずれか一方の端子電極を前記コンデンサ本体の表面の角部に設け、他方の端子電極を前記コンデンサ本体の表面の辺部に設けてなることを特徴とするものである。
また、本発明のコンデンサは、上記構成において、前記第1端子電極および前記第2端子電極は、前記コンデンサ本体の端面にかけて形成されているとともに、前記第1電極層および前記第2電極層からそれぞれ前記コンデンサ本体の端面に延出された第1電極引出部および第2電極引出部が接続されていることを特徴とするものである。
また、本発明のコンデンサは、上記構成において、前記第1端子電極および前記第2端子電極は、前記コンデンサ本体の表面、端面、裏面の3つの面に渡り形成されていることを特徴とするものである。
また、本発明のコンデンサは、上記構成において、前記他方の端子電極を前記コンデンサ本体の辺部の中央に設けてなるものである。
従来の特開平8−162368号公報の並列コンデンサでは、近接した2つの容量素子に同一方向の電流が流れるため、2つの容量素子間の相互インダクタンスが大きくなり、並列接続の効果を期待することはできなかった。2つの容量素子の間隔を大きくとれば相互インダクタンスは減少するものの、大型化するとともに、2つの容量素子への電流を供給する端子電極や導線により全体のインダクタンスが大きくなり、その結果、従来のコンデンサでは並列接続の効果は得られなかった。
一方、本発明のコンデンサでは、電流が複数個(n個とする)の第1端子電極に分流されて入力され、一つの第1端子電極から、この第1端子電極に最も近い両隣の第2端子電極に流れるように、1つの第1端子電極から少なくとも2方向以上に確実に分流される。
例えば平面形状が四角形(例えば正方形)のコンデンサ本体の角部にそれぞれ第1端子電極を設け、一対の第1端子電極を結ぶ線上にそれぞれ第2端子電極を設け、電流が第1端子電極から入力される場合について説明すると、コンデンサ本体の角部の第1端子電極より電流が入力されて、その角を形成する両辺にある第2端子電極に分流される。また、第1端子電極も第2端子電極もコンデンサ本体の辺部に設け、電流が第1端子電極から入力される場合では、その第1端子電極と同一辺にある第2端子電極及び隣接する辺にある第2端子電極に分流される。従って、いずれにしても実効的なインダクタンスを減少させることができるとともに、あたかも一つの第1端子電極と両隣の第2端子電極からなる容量素子をn個並列接続した回路となり、分流効果と並列接続により幅広い周波数領域で低インピーダンス特性を示すことが可能となる。
また、本願発明では、第1端子電極と第2端子電極を近接して設けた場合にも、一方の第1端子電極と他方の第1端子電極とから、これらの間に設けられた第2端子電極に流れる電流の向きを逆方向とできるため、各第1端子電極間での相互干渉が生じることがなく、確実に分流することができる。
さらに、例えば、角部に第1端子電極を設けた場合、第2端子電極を一対の第1端子電極を結ぶ線上の中央に設けることにより、第2端子電極と一対の第1端子電極との距離が同じになり、第1端子電極から第2端子電極に流れる電流の強さが同じになり、上記した分流効果をさらに向上できる。また、電極層に接続される端子電極間の距離が同じになり、他の基板への実装が容易となる。
以上詳述したように、本発明によれば、例えば、電流が4個の第1端子電極(第1電極引出部)に分流されて入力され、一つの第1端子電極(第1電極引出部)から、この第1端子電極(第1電極引出部)に最も近い両隣の第2端子電極(第2電極引出部)に流れるように、1つの第1端子電極(第1電極引出部)から少なくとも2方向以上に確実に分流され、実効的なインダクタンスを減少させることができるとともに、あたかも一つの第1端子電極(第1電極引出部)と両隣の第2端子電極(第2電極引出部)からなる容量素子を4個並列接続した回路となり、分流効果と並列接続により幅広い周波数領域で低インピーダンス特性を示すことができる。
本発明のコンデンサは薄膜タイプ並びにチップコンデンサなどの厚膜タイプのどちらの形状においても実現可能であり、単板型のみならず積層型においても用いることができる。以下、各タイプについて説明する。
−実施形態1−
図1乃至図4は本発明の単板型の薄膜コンデンサを示すもので、絶縁体基板1上に、2層の電極層2と1層の誘電体層3を交互に積層して構成された平面形状が正方形状のコンデンサ本体4が形成されており、電極層2が下側から第1電極層2a、第2電極層2bとされている。
コンデンサ本体4の周囲には、図2に示すように、第1電極層2aに接続した4個の第1端子電極5と、第2電極層2bに接続した4個の第2端子電極6が交互に設けられている。
第1端子電極5はコンデンサ本体4の角部に設けられており、第2端子電極6は、この第2端子電極6の両隣の第1端子電極5を結ぶ線x上に設けられている。この第2端子電極6は、一対の第1端子電極5を結ぶ線x上の中央に設けられている。ここで、コンデンサ本体4とは、誘電体層3を第1電極層2aと第2電極層2bにより挟持した部分、つまり実質的に容量を発生させる部分をいい、第1端子電極5と第2端子電極6は、コンデンサ本体4の周囲、即ちコンデンサ本体4から外方に突出して設けられている。
隣接する第1端子電極5と第2端子電極6との距離Lは可能な限り短い方が好ましいが、実質的な素子の外形および素子全体のインダクタンスを考慮すると1.5mm以下であることが望ましい。1.5mmより大きくなると素子全体のインダクタンスが高くなり、また大型化するからである。一方、作製の容易性を考慮すると、0.2mm以上が望ましい。
絶縁体基板1上には、図1に示すように、コンデンサ本体4、第1端子電極5、第2端子電極6を被覆するように光硬化性樹脂、SiO2等からなる保護層7が形成されており、図3および図4に示すように、第1端子電極5、第2端子電極6に接続する、例えばAg−Pd、ハンダ、金等からなるビアホール導体8が保護層7内部にそれぞれ形成され、それらのビアホール導体8上面には、他の基板等に接続するための外部端子電極9がそれぞれ形成されている。これらの外部端子電極9は半田ボール若しくは半田ペースト等により形成される半田バンプや、Ag−Pd等のペーストのスクリーン印刷、Ni−半田メッキ、Ni−Snメッキ等の公知の技術で形成可能であればよい。また、ビアホール導体8は、ビアホール内に外部端子電極9の作製と同時に同一材料により形成しても良い。
絶縁体基板1はアルミナ、サファイア、窒化アルミニウム、MgO単結晶、SrTiO3単結晶、表面酸化シリコン、ガラス、石英等から選択されるもので特に限定されない。
また、電極層2材料および端子電極5、6材料は、白金(Pt)、金(Au)、銀(Ag)、パラジウム(Pd)、低抵抗のCu、Ni等が好適に使用可能であり、誘電体層3との反応性が小さい材料であれば特に限定されず、真空蒸着、スパッタ等の手法で形成可能であればよい。
さらに、誘電体層3材料は、高周波領域において高い誘電率を有するものであれば良いが、Pb、Mg、Nbを含むペロブスカイト型酸化物結晶からなる誘電体や、それ以外のPZT、PLZT、BaTiO3、SrTiO3、Ta2O5や、これらに他の金属酸化物を添加したり、置換した化合物であってもよく、特に限定されるものではない。また、薄膜タイプの場合、膜厚は高い容量と絶縁性を確保するため、0.3〜1.0μm、特に0.4〜0.8μmの膜厚が望ましい。
以上のように構成されたコンデンサでは、図2に示したように、例えば、外部端子電極9を介して電流が4個の第1端子電極5に分流されて入力され、一つの第1端子電極5から両隣の2個の第2端子電極6に流れ、その他の第2端子電極6へは殆ど流れないため、また、第1端子電極5と第2端子電極6を近接して設けた場合にも、一方の第1端子電極5と他方の第1端子電極5とから、これらの間に設けられた第2端子電極6に流れる電流の向きを逆方向とできるため、各第1端子電極5間での相互干渉が生じることがなく、確実に分流することができ、実効的なインダクタンスを減少させることができる。
さらに、一つの第1端子電極5と、この第1端子電極5の両隣の2個の第2端子電極6とからなる4個の容量素子が一対の電極層2と誘電体層3で形成され、あたかも4個の容量素子を並列接続した回路となり、上記した分流効果と並列接続により幅広い周波数領域で低インピーダンス特性を示すことができる。
また、第2端子電極6を一対の第1端子電極5を結ぶ線x上の中央に設けることにより、第2端子電極6と一対の第1端子電極5との距離Lが同じになり、第1端子電極5から第2端子電極6に流れる電流の強さが同じになり、上記した分流効果をさらに向上できる。また、この場合には、各端子電極5、6間の距離が等しくなるため、他の基板への実装が容易になる。
−参考例−
図5乃至図9は、参考例としての積層チップコンデンサタイプのコンデンサを示すもので、このコンデンサでは、4層の電極層10と3層の誘電体層11を交互に積層して構成された正方形状のコンデンサ本体12が形成されており、このコンデンサ本体12の上下に、実質的に容量を形成しない誘電体層が積層されている。ここでもコンデンサ本体12とは、誘電体層11を電極層10で挟んだ部分、つまり実質的に容量を発生させる部分をいう。電極層10は下側から交互に第1電極層10aまたは第2電極層10bとされている。この場合、誘電体層11の厚みは数μmから数十μmで形成されていれば特に限定されない。誘電体層11の材料としては、実施形態1と同質のものを適用することができる。
すなわち、高周波領域において高い誘電率を有するものであれば良いが、Pb、Mg、Nbを含むペロブスカイト型酸化物結晶からなる誘電体や、それ以外のPZT、PLZT、BaTiO3、SrTiO3、Ta2O5や、これらに他の金属酸化物を添加したり、置換した化合物であってもよく、特に限定されるものではない。
コンデンサ本体12の周囲の辺部には、図5に示すように、第1電極層10aに接続した第1外部端子電極15及び第2電極層10bに接続した第2外部端子電極16が形成されている。この第1及び第2外部端子電極15、16は、各々一辺の辺部に各々形成されている。即ち、全体として4つの第1外部端子電極15、4つの第2外部端子電極16を有している。また、各外部端子電極15、16は、コンデンサ本体12の表面、端面、裏面の3つの面に渡り形成されており、図6、7に示すように断面コ字状となっている。
そして、第1外部端子電極15(第2外部端子電極16)と同一辺内にある第2外部端子電極16(第1外部端子電極15)との距離と、異なる辺内にあってその第1外部端子電極15(第2外部端子電極16)に隣接する第2外部端子電極16(第1外部端子電極15)との距離とは互いに等しい。
また、図8に示したように、第1電極層10aには、コンデンサ本体12の各4つの辺に延出し、各々第1外部端子電極15に接続する4個の第1電極引出部(図1〜図4の端子電極に相当)13が設けられており、一方、図9に示したように、第2電極層10bには、コンデンサ本体12の各4つの辺に延出し、各々第2外部端子電極16に接続する4個の第2電極引出部(図1〜図4の端子電極に相当)14が設けられている。
従って、第1電極層10aの第1の電極引出部13と第2電極層10bの第1の電極引出部14とを平面的に見れば、第1電極引出部13(第2電極引出部14)と同一辺内にある第2電極引出部14(第1電極引出部13)との距離と、異なる辺内にあってその第1電極引出部13(第2電極引出部14)に隣接する第2電極引出部14(第1電極引出部13)との距離とが互いに等しい。従って、第1第2に関わらず隣り合う外部端子電極(電極引出部)を線で結ぶと平面視八角形を形成する。
電極層10a、10bの材料及び第1、第2電極引出部13、14材料は、白金(Pt)、金(Au)、銀(Ag)、パラジウム(Pd)、低抵抗のCu、Ni等が好適に使用可能であり、誘電体層11との反応性が小さい材料であれば特に限定されず、スクリーン印刷等の手法で形成可能であればよい。
また、第1及び第2外部端子電極15、16材料は、銀(Ag)や銀パラジウム(Ag−Pd)合金などを焼き付けた後に、Ni−半田メッキ、Ni−Snメッキなどの公知の技術で形成可能なものであればよい。
以上のように構成されたコンデンサでは、図10に示したように、例えば、第2電極層10bに供給される電流は、4つの第2外部端子電極16を介して電極引出部14に分流されて入力される。そして、一つの第2電極引出部14から分流された電流は両隣の2個の第1電極引出部13に向かって流れ、その他の第1電極引出部13へは殆ど流れない。このため、第1電極引出部13と第2電極引出部14を近接して設けた場合にも、一方の第2電極引出部14と他方の第2電極引出部14とから、これらの間に設けられた第1電極引出部13に流れる電流の向きを逆方向とできるため、各第2電極引出部14間での相互干渉が生じることがなく、確実に分流することができ、実効的なインダクタンスを減少させることができる。
さらに、一つの第2電極引出部14と、この第2電極引出部14の両隣の2個の第1電極引出部13とからなる4個の容量素子が一対の電極層10a、10bと誘電体層11で形成され、あたかも4個の容量素子を並列接続した回路となり、上記した分流効果と並列接続により幅広い周波数領域で低インピーダンス特性を示すことができる。
また、第2外部端子電極16(第1外部端子電極15)とその隣の第1外部端子電極15(第2外部端子電極16)との距離、即ち第2電極引出部14(第1電極引出部15)とその隣の第1電極引出部13(第2電極引出部14)との距離をすべて同じにすることにより、第2電極引出部14から第1電極引出部13に流れる電流の強さが同じになり、上記した分流効果をさらに向上できる。しかも、この場合には、各外部端子電極15、16間の距離が等しいため、他の基板への実装が容易になる。
−実施形態2−
図11乃至図15は本発明の第2実施形態の積層チップコンデンサタイプのコンデンサを示すものであり、第1及び第2外部端子電極の配置が参考例のコンデンサと異なる。実施形態2では、第1外部端子電極25はコンデンサ本体22の角部に設けられており、第2外部端子電極26は、この第2外部端子電極26に隣接する一対の第1外部端子電極25を結ぶ線上の中央に設けられている。従って、第2外部端子電極26とそれに隣接する第1外部端子電極25との距離Lはすべて等しい。そして、図14に示したように、第1電極層20aは誘電体層21の4つの頂点部に延出された第1電極引出部(図1〜図4の端子電極に相当)23を有している。また、図15に示したように第2電極層20bは誘電体層21の各辺の中心に延出された第2電極引出部24(図1〜図4の端子電極に相当)を有している。
電極層、誘電体層及び外部端子電極の材料としては、参考例で用いたものと同じものを適用可能である。
以上のように構成されたコンデンサでは、図16に示したように、例えば、第2外部端子電極26を介して電流が平面視4個の第2電極引出部24に分流されて入力され、一つの第2電極引出部24から両隣の2個の第1電極引出部23に向かって流れ、その他の第1電極引出部23へは殆ど流れないため、また、第1電極引出部23と第2電極引出部24を近接して設けた場合にも、一方の第2電極引出部24と他方の第2電極引出部24とから、これらの間に設けられた第1電極引出部23に流れる電流の向きを逆方向とできるため、各第2電極引出部24間での相互干渉が生じることがなく、確実に分流することができ、実効的なインダクタンスを減少させることができる。
さらに、一つの第2電極引出部24と、この第2の外部端子電極26の両隣の2個の第1電極引出部23からなる4個の容量素子が一対の電極層20a、20bと誘電体層21で形成され、あたかも4個の容量素子を並列接続した回路となり、上記した分流効果と並列接続により幅広い周波数領域で低インピーダンス特性を示すことができる。
また、第2外部端子電極26(第1外部端子電極25)とその隣の第1外部端子電極25(第2外部端子電極26)との距離、即ち、第2電極引出部24(第1電極引出部23)とその隣の第1電極引出部23(第2電極引出部24)との距離をすべて同じにすることにより、第2電極引出部24から第1電極引出部23に流れる電流の強さが同じになり、上記した分流効果をさらに向上できる。
しかも、この場合には、各外部端子電極25、26間の距離が等しいため、他の基板への実装が容易になる。
尚、本発明では、コンデンサ本体4、12、22の平面形状は各辺の長さが等しい多角形状が望ましい。このような形状とすることにより、角部に設けられ第1外部端子電極5、15、25または第2外部端子電極6、16、26と、その両隣に設けられた第2外部端子電極6、16、26または第1外部端子電極5、15、25の距離が最短となり、電流がこれらの間を流れやすくなり、並列接続の効果を十分に発揮できる。
また、上記態様では、電極層2、10、20を正方形状、つまりコンデンサ本体4、12、22の平面形状を正方形としたが、三角形状、5角形状等の多角形状であれば良く、分流効果を向上させるためには、特に4辺以上を有する多角形状が望ましい。
−実施形態3−
次に、参考例または実施形態2で説明した積層チップコンデンサを実装する例を示す。図17は本発明の積層チップコンデンサ30をICパッケージ31の上面に組み込んで、ICパッケージ31ごと実装基板32に実装したところを示す半断面図、図18は同じくICパッケージ31の下面に組み込んで、ICパッケージ31ごと実装基板32に実装したところを示す半断面図である。いずれの場合も参考例の積層チップコンデンサ30と実装基板32の電極パッド33またはICパッケージ31の電極パッド34との接続状態は、平面視で図19のようになる。
参考例の積層チップコンデンサにしろ実施形態2の積層チップコンデンサにしろ、第1電極引出部に接続する第1外部端子電極と第2電極引出部に接続する第2外部端子電極とが規則正しく配置されているので、CPUチップ自体の配線、CPUチップと実装基板との配線、及び実装基板自体の配線を変更する必要はない。従って、無駄な配線やランドを設けなくてもよい。その結果、積層チップコンデンサをICパッケージと別個に実装基板上に実装していた従来構造に比べて、CPUチップとコンデンサ間の配線によるインダクタンスの影響を低減することができる。また、CPUチップの近傍にコンデンサを配置しているので、デカップリングコンデンサとしての効率を向上させることもできる。
実施例1
これは実施形態1のコンデンサを製造し、性能を評価した例である。各電極層の形成は高周波マグネトロンスパッタ法を用いた。まず、スパッタ用ガスとしてプロセスチャンバー内にArガスを導入し、真空排気により圧力は6.7Paに維持した。スパッタ時には成膜する材料種のターゲット位置に基板ホルダーを移動させ、基板−ターゲット間距離は60mmに固定した。
次に、基板ホルダーとターゲット間には外部の高周波電源により13.56MHzの高周波電圧を印加し、ターゲット背面に設置された永久磁石により形成されたマグネトロン磁界により、ターゲット近傍に高密度のプラズマを生成させてターゲット表面のスパッタを行った。
本実施例では、基板に最近接のターゲットにのみ印加してプラズマを生成した。基板ホルダーはヒータによる加熱機構を有しており、スパッタ成膜中の基板温度は一定となるよう制御した。また、基板ホルダーに設置された基板のターゲット側には厚さ0.1mmの金属マスクが設置されており、成膜パターンに応じて必要なマスクが基板成膜面にセットできる構造とした。
誘電体層は全てゾルゲル法にて作製した。また、酢酸MgとNbエトキシドを1:2のモル比で秤量し、1,3−プロパンジオール中で還流操作(約124℃で6時間)を行い、MgNb複合アルコキシド溶液(Mg=5.0mmol、Nb10.0mmol、1,3−プロパンジオール140mmol)を合成した。
次にこのMgNb複合アルコキシド溶液に酢酸鉛(三水和物)15mmolを添加し、60℃で溶解させ、Pb(Mg1/3Nb2/3)O3(PMN)前駆体溶液を合成した。
そして、厚さ0.25mmのアルミナの基板上に、厚み0.3μmのAuからなる第1電極層を形成し、前記(PMN)前駆体溶液をスピンコーターで塗布し、乾燥させた後、約400℃で熱処理を1分間行い、ゲル膜を作製した。
(PMN)前駆体溶液の塗布−熱処理の操作を繰り返した後、約800℃で2分間(大気中)の焼成を行い、誘電体層3となる膜厚0.7μmのPMN薄膜を得た。得られた薄膜のX線回折結果より、ペロブスカイト生成率を計算すると約95%であった。その後、フォトレジスト工程により、誘電体膜のパターニングを行った。
この誘電体膜表面に、Auからなる第2電極層をスパッタ蒸着した。そして、第1電極層パターン、第2電極層パターンのサイズを変更することにより、第1外部端子電極と第2外部端子電極間の距離Lを表1に示すように変更した試料を作製した。この後、光硬化性樹脂を用い、ビアホールを有する保護膜を形成し、そのビアホール内に、半田ペーストをスクリーン印刷した後、リフロー処理により、ビアホール導体とともに、直径0.1mmの半田バンプを8個形成し、図1乃至図4に示したような単板型の薄膜コンデンサを得た。コンデンサ本体の面積、つまり電極層の面積を表1に示す。
作製した薄膜コンデンサの1MHzから1.8GHzでのインピーダンス特性をインピーダンスアナライザー(ヒューレットパッカード社製HP4291A)とマイクロ波プローブ(ピコプローブ社製)を用いて測定した結果を表1に示す。尚、表1における静電容量は1MHzの値、インダクタンスはL=1/(2πf
0)
2×Cから計算した値である。
この表1から、第1外部端子電極と第2外部端子電極間の距離Lが小さいほど、インダクタンスが小さいことが判る。図20に端子電極間距離L=0.65mmの試料No.3のインピーダンス特性を示す。この図より、広い周波数領域で低いインピーダンス特性を示していることがわかる。
実施例2
これは、実施形態2のコンデンサを製造し、性能を評価した例である。まず、チタン酸バリウムを主成分とし、焼結助剤、溶剤、分散剤、バインダーを混合したスリップを用いて、ドクターブレード法にて厚み10μmのグリーンシートを成形した。
一方、内部電極として、市販のAg−Pdペーストを用意し、上記グリーンシート上に第1電極層20aとなる導体膜をスクリーン印刷法にて形成した。次に、別のグリーンシート上に第2電極層20bとなる導体膜をスクリーン印刷法にて形成した。次に第1電極層20aとなる導体膜が印刷されたグリーンシートと第2電極層20bとなる導体膜が印刷されたグリーンシートを交互に積層して合計24層とし、最後に電極層が印刷されていないグリーンシートを積層し、熱圧着して成形体を得た。この時、電極パターンのサイズを変更することにより、焼成後の第1外部端子電極25と第2外部端子電極26間の距離(実際には電極の中心点間の距離)が表2となるようにした。
得られた成形体を切断し、第1電極引出部23と第2電極引出部24の端部を露出させた後、大気中にて温度1250℃で2時間焼成し、電極層数や誘電体層数が異なる点を除き、図11−図15に示すようなコンデンサ本体を作製した。
この後、第1電極引出部23と第2電極引出部24の端部が露出した部分を含むコンデンサ本体22の辺部または頂部の表面、端面及び裏面に渡り、Ag−Pdからなる導電性ペーストを塗布・乾燥した後、800℃で焼き付けを行ない、この焼き付け厚膜導体上にNi−ハンダメッキによりメッキ被覆層を形成し、図11に示すような第1及び第2外部端子電極25、26を形成し、積層チップコンデンサを得た。コンデンサ本体の面積、つまり電極層の面積を表2に示す。
作製したコンデンサの1MHzから1.8GHzでのインピーダンス特性をインピーダンスアナライザー(ヒューレットパッカード社製HP4291A)とマイクロ波プローブ(ピコプローブ社製)を用いて測定した結果を表2に示す。尚、表2における静電容量は1MHzの値、インダクタンスはL=1/(2πf
0)
2×Cから計算した値である。
この表2から、第1外部端子電極25と第2外部端子電極26間の距離Lが小さいほど、インダクタンスが小さいことが判る。図21は端子電極間距離L=1.4mmの試料No.13の積層チップコンデンサのインピーダンス特性である。
この図9から、広い周波数領域で低いインピーダンス特性を示すことが判る。
本発明の実施形態1に関わる薄膜コンデンサの分解斜視図である。
保護層を省略した図1の平面図である。
図2のx線に沿う断面図である。
保護層を省略した図1の斜視図である。
参考例に関わる積層チップコンデンサの外観斜視図である。
図5のコンデンサ本体のAA断面図である。
図5のコンデンサ本体のBB図である。
参考例の第1電極層を示す平面図である。
参考例の第2電極層を示す平面図である。
参考例のコンデンサに入力される電流の流れをコンデンサ本体の上面から見た図である。
本発明の実施形態2に関わる積層チップコンデンサの外観斜視図である。
図11のコンデンサ本体のAA断面図である。
図11のコンデンサ本体のBB図である。
実施形態2の第1電極層を示す平面図である。
実施形態2の第2電極層を示す平面図である。
実施形態2のコンデンサに入力される電流の流れをコンデンサ本体の上面から見た図である。
実施形態2または参考例の積層チップコンデンサをICパッケージに組み込んで実装した状態を示す半断面図である。
実施形態2または参考例の積層チップコンデンサを別のICパッケージに組み込んで実装した状態を示す半断面図である。
参考例の積層チップコンデンサと実装基板とを接続した状態を示す平面図である。
図1の薄膜コンデンサのインピーダンス特性である。
図11の積層チップコンデンサのインピーダンス特性である。
符号の説明
1・・・絶縁体基板
2a、10a、20a・・・第1電極層
2b、10b、20b・・・第2電極層
3、11、21・・・誘電体層
4、12、22・・・コンデンサ本体
5・・・第1端子電極
6・・・第2端子電極
13、23・・・第1電極引出部
14、24・・・第2電極引出部
9・・・外部端子電極
15、25・・・第1外部端子電極
16、26・・・第2外部端子電極
30・・・積層チップコンデンサ
31・・・ICパッケージ
32・・・実装基板
33、34・・・電極パッド