JP2006294990A - 半導体デバイス - Google Patents

半導体デバイス Download PDF

Info

Publication number
JP2006294990A
JP2006294990A JP2005115952A JP2005115952A JP2006294990A JP 2006294990 A JP2006294990 A JP 2006294990A JP 2005115952 A JP2005115952 A JP 2005115952A JP 2005115952 A JP2005115952 A JP 2005115952A JP 2006294990 A JP2006294990 A JP 2006294990A
Authority
JP
Japan
Prior art keywords
region
drain
epitaxial layer
base
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005115952A
Other languages
English (en)
Inventor
Akira Takaishi
昌 高石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2005115952A priority Critical patent/JP2006294990A/ja
Priority to EP06731613A priority patent/EP1870940A4/en
Priority to PCT/JP2006/307666 priority patent/WO2006112305A1/ja
Priority to KR1020077022451A priority patent/KR20070114379A/ko
Priority to US11/918,165 priority patent/US20090050961A1/en
Priority to CNA200680012090XA priority patent/CN101160665A/zh
Priority to TW095113201A priority patent/TW200735358A/zh
Publication of JP2006294990A publication Critical patent/JP2006294990A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract


【課題】 ターンオン時間が短縮できる半導体デバイスの提供。
【解決手段】 この半導体デバイス1は、エピタキシャル層12と、エピタキシャル層12の表面領域に埋設された2つのベース領域13と、これらのベース領域13に埋設されたソース領域14と、エピタキシャル層12におけるベース領域13を除く領域15、16を少なくとも含むドレイン領域と、2つのベース領域13の表面に端部が対向するように絶縁膜20を介して設けられたゲート電極21と、を有するものであって、ドレイン領域は、オフ状態では、2つのベース領域13からの空乏層40が2つのベース領域間に位置する部分15において互いにつながるよう形成される。
【選択図】 図2

Description

本発明は半導体デバイスに関し、特に、パワートランジスタであるDMOSFET(2重拡散MOSFET)又はIGBT(絶縁ゲート型バイポーラトランジスタ)に関する。
従来より、高電圧の下で大電流を制御できるスイッチング素子のパワートランジスタとして、DMOSFET又はIGBTがある(例えば特許文献1)。図5に従来のDMOSFETの断面図を示す。このDMOSFET101は、N型の半導体基板111の表面上に、それよりも濃度の低いN型のエピタキシャル層112が形成される。半導体基板111の裏面はメタルにより被覆され、ドレイン電極110が設けられている。
エピタキシャル層112の表面領域(エピタキシャル層112の内側でその表面に接する領域)の一部には少なくとも2つのP型拡散層がベース領域113として埋設され、更にそれぞれのベース領域113の表面領域の一部には2つのN拡散層がソース領域114として埋設されている。エピタキシャル層112における2つのベース領域113、113間に位置する部分115はドレイン領域の一部であり、後述するように、オン状態でJFET動作を行うことから、ここではドレインJFET領域と称する。ドレインJFET領域115と半導体基板111との間に存在するエピタキシャル層112の残りの部分116を、ここではドレインエピタキシャル領域と称する。また、半導体基板111もドレイン領域の一部である。
更に、エピタキシャル層112の表面上に、ゲート絶縁膜120を介してゲート電極121が形成されている。ゲート電極121は、その端部が2つのベース領域113、113の表面に対向するように設けられている。ゲート電極121は絶縁膜122により被覆され、その上にはパターニングされたメタル配線123が敷設される。メタル配線123はソース電極を形成し、絶縁膜122の一部をエッチングにより除去された部分、すなわち、コンタクトホールで、ベース領域113及びソース領域114とオーミック接続されている。ゲート電極121は、パターンニングされ、図示していないが、このパターンの端部において別のメタル配線に接続されている。
このようなDMOSFET101の回路図は、一般に、図7に示すように表される。ドレイン電極(図5のドレイン電極110に対応する)とソース電極(前述のソース電極に対応する)との間にはドレイン・ソース間電圧VDSがかかり、ゲート電極(図5のゲート電極121に対応する)とソース電極との間にはゲート・ソース間電圧VGSがかかる。ゲート・ドレイン間容量CGDについては後述する。
図6は、DMOSFET101のオフ状態及びオン状態を表す断面図である。(a)はオフ状態、(b)はオン状態のものである。ゲート・ソース間電圧VGSが閾値(正の所定値)未満のときは、DMOSFET101はオフ状態である。ドレインJFET領域115及びドレインエピタキシャル領域116におけるベース領域113との境界付近には、(a)に示すように、厚い空乏層140が形成される。ベース領域113の不純物濃度がドレインJFET領域115とドレインエピタキシャル領域116の不純物濃度よりも非常に濃い場合には、空乏層140はほとんどこれら後者115、116の側だけに拡がる。例えば、これら後者115、116の不純物濃度が4×1016/cm、ゲート・ソース間電圧VGSが0V、ドレイン・ソース間電圧VDSが20Vである場合、ドレイン・ベース間の空乏層の幅が約0.8μm程度となる。また、ドレインJFET領域115の表面付近にも、ゲート電極121にはドレインJFET領域115に対して−20Vかかっているので、空乏層141が形成される。
一方、ゲート・ソース間電圧VGSが閾値以上のときは、DMOSFET101はオン状態である。ベース領域113の表面(ゲート電極121の端部に対向する部分)にチャネル層が形成される。そして、電流は、ドレイン電極110から半導体基板111、ドレインエピタキシャル領域116、ドレインJFET領域115、ベース領域113のチャネル層、ソース領域114からなる電流路を通って流れる。オン状態でのドレイン電極からソース電極までの抵抗(オン抵抗)は、上記の電流路における抵抗成分の合計となるが、ドレインJFET領域115の抵抗成分の寄与が特に大きい。
このオン状態では、ドレイン・ソース間電圧VDSは低下し、図6(b)に示すように、ドレインJFET領域115の深い部分(半導体基板111に近い部分)とドレインエピタキシャル領域116とだけに薄い空乏層140が形成される。ここで、ドレインJFET領域115に大電流が流れるときは、その抵抗成分にかかる電圧が大きくなるので、深い部分での空乏層140の幅は拡がって行く。そうすると、ドレインJFET領域115の電流路の幅は狭くなるので、更に抵抗値は大きくなる。こうして、空乏層140によりオン抵抗が増減するので、ドレインJFET領域115はJFET動作を行うのである。このため、従来のDMOSFET101では、ドレインJFET領域115の抵抗成分による抵抗値があまり大きくならないように、その横方向の長さ、つまり、2つのベース領域113、113の横方向の距離を、例えば、3μm程度と比較的大きくしている。
特開平7−169950号公報
ところで、近年、低消費電力志向の観点から、携帯機器のみならず据置型の機器においてもDC/DCコンバータの出力電圧の低電圧化の要求は強くなっている。このようなDC/DCコンバータに使用されるスイッチはそのオン期間が短いことが必要であり、スイッチとして用いられるパワートランジスタであるDMOSFETには高速のスイッチング能力が求められる。そのためには、ターンオン(オフ状態からオン状態への移行)に要する時間、すなわちターンオン時間を短縮する必要がある。
ターンオン時間は、ゲート・ドレイン間容量CGDが大きく影響している。この容量は、図6(a)に示すように、オフ状態では(ゲート・ソース間電圧VGSが閾値未満のとき)、ゲート絶縁膜120が有する容量と、空乏層141が有する容量と、が直列結合したものとなる。空乏層141が有する容量の値はその幅に反比例するので、空乏層141の幅が小さければ、それが有する容量の値は大きい。従って、空乏層141が有する容量とゲート絶縁膜120が有する容量との直列結合であるゲート・ドレイン間の容量CGDも大きくなる。逆に、空乏層141の幅が大きければ、それが有する容量の値は小さく、ゲート・ドレイン間の容量CGDも小さくなる。
そこで、本願発明者は、オフ状態の空乏層141の幅を強制的に大きくすれば、ゲート・ドレイン間容量CGDが小さくなり、ターンオン時間が短縮できることに着目した。
本発明は、係る事由に鑑みてなされたものであり、その目的は、ターンオン時間が短縮できる半導体デバイスを提供することにある。
上記の課題を解決するために、請求項1に係る半導体デバイスは、エピタキシャル層と、エピタキシャル層の表面領域に埋設された2つのベース領域と、これらのベース領域に埋設されたソース領域と、エピタキシャル層におけるベース領域を除く領域を少なくとも含むドレイン領域と、2つのベース領域の表面に端部が対向するように絶縁膜を介して設けられたゲート電極と、を有する半導体デバイスであって、前記ドレイン領域は、オフ状態では、2つのベース領域からの空乏層が2つのベース領域間に位置する部分において互いにつながるよう形成されることを特徴とする。
請求項2に係る半導体デバイスは、請求項1に記載の半導体デバイスにおいて、前記エピタキシャル層における2つのベース領域間に位置するドレイン領域は、不純物濃度がエピタキシャル層における残りのドレイン領域よりも高いことを特徴とする。
請求項3に係る半導体デバイスは、エピタキシャル層と、エピタキシャル層の表面領域に埋設された第1と第2のベース領域と、第1と第2のベース領域に埋設された第1と第2のソース領域と、エピタキシャル層におけるベース領域を除く領域を少なくとも含むドレイン領域と、第1のベース領域の表面に対向するように絶縁膜を介して設けられた第1のゲート電極と、第2のベース領域の表面に対向するように絶縁膜を介して設けられ、かつ、第1のゲート電極から所定距離隔てられた第2のゲート電極と、を有する半導体デバイスであって、前記エピタキシャル層における第1と第2のベース領域間に位置するドレイン領域は、不純物濃度がエピタキシャル層における残りのドレイン領域より高く、かつ、オフ状態では、第1と第2のベース領域からの空乏層がそれぞれ第1と第2のゲート電極に対向する部分以上に延びるよう形成されることを特徴とする。
請求項4に係る半導体デバイスは、請求項1乃至3のいずれかに記載の半導体デバイスにおいて、前記エピタキシャル層は半導体基板の表面上に形成され、この半導体基板の裏面にはドレイン電極が設けられていることを特徴とする。
本発明に係る半導体デバイスは、ゲート電極の直下では、ドレイン領域において2つのベース領域からの空乏層が形成されているのでゲート・ドレイン間容量CGDが小さくなり、ターンオン時間が短縮できる。
以下、本発明の望ましい実施形態に係る半導体デバイスを図面を参照しながら説明する。図1は、本発明の望ましい実施形態に係る半導体デバイスであるDMOSFETの断面図である。このDMOSFET1は、背景技術で説明した従来のものと同様、半導体基板11、エピタキシャル層12、ベース領域13、ソース領域14、ドレインJFET領域15、ドレインエピタキシャル領域16、ゲート電極21を含み、従来のものに比べてドレインJFET領域15の不純物濃度と横方向の長さが改良されている。
すなわち、DMOSFET1は、N型の半導体基板11の表面上に、それよりも濃度の低いN型のエピタキシャル層12が形成される。半導体基板11の裏面はメタルにより被覆され、ドレイン電極10が設けられている。エピタキシャル層12の表面領域の一部には少なくとも2つのP型拡散層が、横方向に所定距離だけ隔てられたベース領域13として埋設され、更にそれぞれのベース領域13の表面領域の一部には、2つのN拡散層がソース領域14として埋設されている。エピタキシャル層12における2つのベース領域13、13間に位置する部分であるドレインJFET領域15と、ドレインJFET領域15と半導体基板11との間に存在するエピタキシャル層12における残りの部分であるドレインエピタキシャル領域16と、半導体基板11と、はドレイン領域を形成している。ドレインJFET領域15は、ドレインエピタキシャル領域16よりも濃い不純物濃度のN型拡散層により形成されている。また、ドレインJFET領域15の横方向の長さは、横方向に所定距離だけ隔てて形成されるベース領域13、13により決まるのであるが、従来のものより短くしている。
更に、エピタキシャル層12の表面上にゲート絶縁膜20を介してゲート電極21が形成されている。ゲート電極21は、その端部が2つのベース領域13の表面に対向するように設けられている。ゲート電極21は絶縁膜22により被覆され、その上にはパターニングされたメタル配線23が敷設される。メタル配線23はソース電極を形成し、コンタクトホールで、ベース領域13及びソース領域14とオーミック接続されている。ゲート電極21はパターンニングされ、このパターンの端部において別のメタル配線に接続されている。
このDMOSFET1の製造方法の詳細な説明は省略するが、従来と異なっているのは、ゲート電極21を形成する前に、ドレインJFET領域15のN型拡散層を不純物拡散工程または不純物インプラ工程により形成する点である。或いは、このN型拡散層は、ドレインエピタキシャル領域16のエピタキシャル成長後に、不純物ドーピング量を増やしてさらにエピタキシャル成長することによっても形成可能である。
具体的な例として、ドレインJFET領域15の不純物濃度を14×1016/cm、横方向の長さを0.85μmにした場合で、ゲート・ソース間電圧VGSが閾値未満、すなわちDMOSFET1がオフ状態である場合を説明する。ドレイン・ソース間電圧VDSが20Vであるとすると、空乏層の幅は約0.43μm程度となる。従って、図2に示すように、ドレインJFET領域15において、2つのベース領域13、13からの空乏層40は互いにつながる。ドレインJFET領域15は空乏層で満たされているので、ドレインJFET領域15の表面付近(ゲート電極21に対向する部分)にできる空乏層と2つのベース領域13、13からの空乏層40を区別することはできない。
その結果、ゲート・ドレイン間容量CGDは減少することになる。前述のように、ゲート・ドレイン間容量CGDは、ゲート絶縁膜20が有する容量と、ドレインJFET領域15の表面から縦方向(深さ方向)に延びている空乏層が有する容量とが、直列結合したものになり、この空乏層の縦方向の幅はドレインJFET領域15の縦方向の幅以上に延びているからである。
このように、ドレインJFET領域15の横方向の長さ、つまり、2つのベース領域13の横方向の距離を、ベース領域13、13からの空乏層40が互いにつながるような長さにすることで、ゲート・ドレイン間容量CGDを減少させることができる。その結果、ターンオン期間を短縮することが可能となり、高速スイッチングが実現できる。
一方、この条件は背景技術で説明した従来のもの(ドレインJFET領域の不純物濃度が4×1016/cm、横方向の長さが3μm)に比べて不純物濃度が3.5倍、断面積が約0.28倍になるので、断面積×不純物濃度は約1倍となり、ドレインJFET領域15の抵抗値は従来のものとほぼ同じにすることができる。従って、オン抵抗も従来のものとほぼ同じになる。なお、ゲート電極21はストライプ状にパターニングされているとした。こうして、ドレインJFET領域15の不純物濃度を濃くすることで、ドレインJFET領域15の横方向の長さを短くしたために増加する抵抗値を補償し、オン抵抗の増加を抑制することができるのである。
なお、オン抵抗が多少増加しても構わない場合は、ドレインJFET領域15の不純物濃度をドレインエピタキシャル領域16と同じにし、その横方向の長さを、ベース領域13、13からの空乏層40が互いにつながるような長さにしてもよい。例えば、DC/DCコンバータに使用されるパワートランジスタは、出力端子につながる負荷によっては、低いオン抵抗が必ずしも要求されるものではないからである。こうすると、ドレインJFET領域15の不純物拡散工程等を必ずしも設ける必要がなくなる。具体的な例としては、ドレインJFET領域15の横方向の長さを1.6μm、不純物濃度を4×1016/cm とすると、従来のものに比べて、オン抵抗は横方向の長さが短くなった分だけ、すなわち、約1.875倍増している。しかし、空乏層の幅は約0.8μmになっているから、ドレインJFET領域15における空乏層40を横方向に接触させることができる。
次に、図3に本発明の別の望ましい実施形態に係る半導体デバイスであるDMOSFETの断面図を示す。このDMOSFET2は、DMOSFET1と同様、半導体基板11、エピタキシャル層12、少なくとも2つのベース領域(第1と第2のベース領域)13、ソース領域14、ドレインJFET領域15、ドレインエピタキシャル領域16を含んでいる。ただし、ドレインJFET領域15の横方向の長さとゲート電極の形状が異なる。すなわち、DMOSFET2のドレインJFET領域15の横方向の長さはDMOSFET1よりも大きい。また、ゲート電極はDMOSFET1のゲート電極21の中央部が取り除かれて広げられた形状であり、第1のゲート電極24と第2のゲート電極25が存在する。
このDMOSFET2では、図4に示すように、オフ状態では、ドレインJFET領域15において第1と第2のベース領域13、13からの空乏層40、40がそれぞれ第1と第2のゲート電極24、25に対向する部分以上に延びるよう形成される。言い換えれば、第1と第2のゲート電極24、25の直下では、ドレインJFET領域15において空乏層40が形成されていることになる。その結果、ゲート・ドレイン間の容量CGDは減少する。従って、DMOSFET1と同様に、ターンオン時間が短縮できて高速スイッチングが実現できる。
また、DMOSFET2のドレインJFET領域15の横方向の長さは、DMOSFET1のように狭くする必要はなく、任意に広くすることができる。このため、DMOSFET1と同等なオン抵抗を確保するためには、不純物濃度をある程度低くしても構わない。
なお、本願発明は、上述した実施形態に限られることなく、特許請求の範囲に記載した事項の範囲内でのあらゆる設計変更が可能である。例えば、以上のDMOSFETについての説明は、DMOSFETとバイポーラトランジスタが一つの素子に等価的に構成されているIGBTにおいても同様に成り立つ。この場合、ドレイン電極はコレクタ電極に、ソース電極はエミッタ電極に読み替えられる。
本発明の望ましい実施形態に係る半導体デバイスであるDMOSFETの断面図。 同上のオフ状態を表す断面図。 本発明の別の望ましい実施形態に係る半導体デバイスであるDMOSFETの断面図。 同上のオフ状態を表す断面図。 従来のDMOSFETの断面図。 同上のオフ状態及びオン状態を表す断面図。 DMOSFETの回路図。
符号の説明
1、2 半導体デバイス(DMOSFET)
10 ドレイン電極
11 半導体基板
12 エピタキシャル層
13 ベース領域
14 ソース領域
15 2つのベース領域間に位置するドレイン領域(ドレインJFET領域)
21、24、25 ゲート電極
40 空乏層

Claims (4)

  1. エピタキシャル層と、
    エピタキシャル層の表面領域に埋設された2つのベース領域と、
    これらのベース領域に埋設されたソース領域と、
    エピタキシャル層におけるベース領域を除く領域を少なくとも含むドレイン領域と、
    2つのベース領域の表面に端部が対向するように絶縁膜を介して設けられたゲート電極と、
    を有する半導体デバイスであって、
    前記ドレイン領域は、オフ状態では、2つのベース領域からの空乏層が2つのベース領域間に位置する部分において互いにつながるよう形成されることを特徴とする半導体デバイス。
  2. 請求項1に記載の半導体デバイスにおいて、
    前記エピタキシャル層における2つのベース領域間に位置するドレイン領域は、不純物濃度がエピタキシャル層における残りのドレイン領域よりも高いことを特徴とする半導体デバイス。
  3. エピタキシャル層と、
    エピタキシャル層の表面領域に埋設された第1と第2のベース領域と、
    第1と第2のベース領域に埋設された第1と第2のソース領域と、
    エピタキシャル層におけるベース領域を除く領域を少なくとも含むドレイン領域と、
    第1のベース領域の表面に対向するように絶縁膜を介して設けられた第1のゲート電極と、
    第2のベース領域の表面に対向するように絶縁膜を介して設けられ、かつ、第1のゲート電極から所定距離隔てられた第2のゲート電極と、
    を有する半導体デバイスであって、
    前記エピタキシャル層における第1と第2のベース領域間に位置するドレイン領域は、不純物濃度がエピタキシャル層における残りのドレイン領域より高く、かつ、オフ状態では、第1と第2のベース領域からの空乏層がそれぞれ第1と第2のゲート電極に対向する部分以上に延びるよう形成されることを特徴とする半導体デバイス。
  4. 請求項1乃至3のいずれかに記載の半導体デバイスにおいて、
    前記エピタキシャル層は半導体基板の表面上に形成され、この半導体基板の裏面にはドレイン電極が設けられていることを特徴とする半導体デバイス。
JP2005115952A 2005-04-13 2005-04-13 半導体デバイス Pending JP2006294990A (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005115952A JP2006294990A (ja) 2005-04-13 2005-04-13 半導体デバイス
EP06731613A EP1870940A4 (en) 2005-04-13 2006-04-11 SEMICONDUCTOR DEVICE
PCT/JP2006/307666 WO2006112305A1 (ja) 2005-04-13 2006-04-11 半導体デバイス
KR1020077022451A KR20070114379A (ko) 2005-04-13 2006-04-11 반도체 디바이스
US11/918,165 US20090050961A1 (en) 2005-04-13 2006-04-11 Semiconductor Device
CNA200680012090XA CN101160665A (zh) 2005-04-13 2006-04-11 半导体装置
TW095113201A TW200735358A (en) 2005-04-13 2006-04-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005115952A JP2006294990A (ja) 2005-04-13 2005-04-13 半導体デバイス

Publications (1)

Publication Number Publication Date
JP2006294990A true JP2006294990A (ja) 2006-10-26

Family

ID=37115030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005115952A Pending JP2006294990A (ja) 2005-04-13 2005-04-13 半導体デバイス

Country Status (7)

Country Link
US (1) US20090050961A1 (ja)
EP (1) EP1870940A4 (ja)
JP (1) JP2006294990A (ja)
KR (1) KR20070114379A (ja)
CN (1) CN101160665A (ja)
TW (1) TW200735358A (ja)
WO (1) WO2006112305A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179346A (ja) * 2006-12-07 2013-09-09 Shindengen Electric Mfg Co Ltd 半導体装置およびその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130307122A1 (en) * 2012-05-16 2013-11-21 Tsinghua University Bipolar transistor with embedded epitaxial external base region and method of forming the same
CN103094331B (zh) * 2013-01-25 2016-01-06 淄博美林电子有限公司 高效率沟槽式绝缘栅双极型晶体管igbt
CN103077967B (zh) * 2013-01-25 2016-01-06 淄博美林电子有限公司 一种高效率平面式绝缘栅双极型晶体管igbt
DE112018000517T5 (de) * 2017-01-25 2019-10-10 Rohm Co., Ltd. Halbleitervorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167066A (ja) * 1983-03-14 1984-09-20 Nissan Motor Co Ltd 縦形mosfet
JPH02231771A (ja) * 1989-03-03 1990-09-13 Nec Corp 縦型電界効果トランジスタ
JP2001127285A (ja) * 1999-10-27 2001-05-11 Nec Kansai Ltd 縦型電界効果トランジスタ
JP2003298052A (ja) * 2002-03-29 2003-10-17 Toshiba Corp 半導体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2771172B2 (ja) * 1988-04-01 1998-07-02 日本電気株式会社 縦型電界効果トランジスタ
JP5023423B2 (ja) * 2001-09-27 2012-09-12 サンケン電気株式会社 縦型絶縁ゲート型電界効果トランジスタおよびその製造方法
US6894345B2 (en) * 2002-07-23 2005-05-17 International Rectifier Corporation P channel Rad Hard MOSFET with enhancement implant
US7067363B2 (en) * 2002-12-30 2006-06-27 Stmicroelectronics S.R.L. Vertical-conduction and planar-structure MOS device with a double thickness of gate oxide and method for realizing power vertical MOS transistors with improved static and dynamic performances and high scaling down density

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167066A (ja) * 1983-03-14 1984-09-20 Nissan Motor Co Ltd 縦形mosfet
JPH02231771A (ja) * 1989-03-03 1990-09-13 Nec Corp 縦型電界効果トランジスタ
JP2001127285A (ja) * 1999-10-27 2001-05-11 Nec Kansai Ltd 縦型電界効果トランジスタ
JP2003298052A (ja) * 2002-03-29 2003-10-17 Toshiba Corp 半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179346A (ja) * 2006-12-07 2013-09-09 Shindengen Electric Mfg Co Ltd 半導体装置およびその製造方法

Also Published As

Publication number Publication date
EP1870940A1 (en) 2007-12-26
CN101160665A (zh) 2008-04-09
KR20070114379A (ko) 2007-12-03
EP1870940A4 (en) 2008-05-28
WO2006112305A1 (ja) 2006-10-26
TW200735358A (en) 2007-09-16
US20090050961A1 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
JP4817827B2 (ja) 半導体装置
JP4832731B2 (ja) 電力用半導体装置
US8053858B2 (en) Integrated latch-up free insulated gate bipolar transistor
KR100859701B1 (ko) 고전압 수평형 디모스 트랜지스터 및 그 제조 방법
KR101175228B1 (ko) 반도체 장치
JP5504235B2 (ja) 半導体装置
JP2007123887A (ja) レトログレード領域を備える横型dmosトランジスタ及びその製造方法
KR20100064263A (ko) 반도체 소자 및 이의 제조 방법
JP2008091450A (ja) 半導体素子
KR100317458B1 (ko) 선형 전류-전압특성을 가진 반도체 소자
JP5008046B2 (ja) 半導体デバイス
JP4971848B2 (ja) 低スイッチング損失、低ノイズを両立するパワーmos回路
JP2006294990A (ja) 半導体デバイス
JP5056147B2 (ja) 半導体装置
US6060731A (en) Insulated-gate semiconductor device having a contact region in electrical contact with a body region and a source region
US10269945B2 (en) Power transistor device
JPH0855860A (ja) 半導体装置
US8530942B2 (en) Semiconductor device and method of fabricating the same
KR101209564B1 (ko) 반도체장치
JP2005116876A (ja) 半導体装置
JP2006120952A (ja) Mis型半導体装置
CN109524473B (zh) 一种低功耗功率mosfet器件及制备方法
KR100763310B1 (ko) 전력 반도체 소자
KR20200003593A (ko) 반도체장치
JP2007294766A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120406